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HYPERBOLIC SYSTEMS ON NILPOTENT COVERS

by Yves Coudene

Abstract. — We study the ergodicity of the weak and strong stable foliations of
hyperbolic systems on nilpotent covers. Subshifts of finite type and geodesic flows on
negatively curved manifolds are also considered.

Résumé (Systèmes hyperboliques sur des revêtements nilpotents)
Nous étudions les propriétés ergodiques des feuilletages stables forts et faibles des

systèmes hyperboliques définis sur un revêtement nilpotent. Les châınes de Markov et
les flots géodésiques en courbure négative sont aussi étudiés.

1. Introduction

This article is devoted to the study of the ergodicity of the stable foliation
of an hyperbolic flow defined on a nilpotent cover of a manifold.

The geodesic flow on a compact two dimensional manifold of constant neg-
ative curvature is one of the simplest example of hyperbolic flow. E. Hopf [19],
G.A. Hedlund [17], [18] showed the ergodicity of the associated horospheric
flow with respect to the Liouville measure. H. Furstenberg obtained its unique
ergodicity [15]. This was generalized to the case of the stable foliation of an
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268 COUDENE (Y.)

hyperbolic flow by D.V. Anosov [2] and R. Bowen and B. Marcus [6]. In the con-
text of infinite measure ergodic theory, it was natural to ask whether ergodicity
of the foliation is again true on a regular cover.

This question has been investigated by many authors in the last decade.
M. Babillot, F. Ledrappier studied the case of the geodesic flow on a compact
manifold of constant negative curvature [3]. The extension of the flow to an
abelian cover admits a number of invariant measures; they were able to show
that the stable foliation of the extension is ergodic with respect to these mea-
sures. Their proof relies on counting estimates obtained by transfer operator
technics. Using results from harmonic analysis, V. Kaimanovich was able to
generalize their result to nilpotent extensions for the Liouville measure [20].
In another direction, M. Pollicott considered homologically full Anosov flows
and obtained ergodicity of the foliation on an abelian cover for the measure
of maximal entropy [23]. The method makes use of a symbolic model. We
studied the case of Axiom A flows [10]; for these systems, the stable foliation
may be non ergodic and we gave necessary and sufficient conditions in term of
periodic orbits in order to get that ergodicity. Very few hypothesis were made
on the measure, in order to treat the case of the Liouville measure, measure
of maximal entropy and harmonic measure. Following M. Pollicott, we were
working in a symbolic setting, so that two restrictive hypothesis were needed:
the non-wandering set of the flow on the basis of the cover had to be compact
and the cover was abelian. R. Solomyak [27], U. Hamenstadt [16] and then
J. Aaronson, R. Solomyak and O. Sarig [1], also obtained several results, using
methods of independent interest.

The goal of this article is to provide an unified approach to these problems
and to recover these results using just the hyperbolicity of the systems. No
compactness assumption on the wandering set is made and the cover can be
taken nilpotent. As a consequence, we obtain a number of theorems, conjec-
tured from the beginning, but which resisted all previous attempts, like the
finite volume case.

We first state a general result concerning the ergodicity of the stable foliation
of systems admitting local product structures. The second part of the article
is devoted to the proof of that result. It is then applied to hyperbolic flows,
subshifts of finite type and geodesic flows on negatively curved manifolds.

2. Main result

Let G be a Polish group acting continuously on a Polish space X̂ and φ̂t a
continuous flow on X̂ commuting with the G action. The quotient of X̂ by G
is denoted by X , the projection from X̂ to X by π, and the quotient flow on X
by φt. Let us assume that the quotient topology on X is given by a metric for
which π is Lipschitz. Strong stable sets are defined by:

tome 131 – 2003 – no 2



HYPERBOLIC SYSTEMS ON NILPOTENT COVERS 269

W ss(x) :=
{
y ∈ X | limt→∞ d(φt(x),φt(y)) = 0

}
;

W ss
ε (x) :=

{
y ∈ W ss(x) | d(φt(x),φt(y)) ≤ ε for all t ≥ 0

}
;

Ŵ ss(x̂) :=
{
ŷ ∈ X̂ | limt→∞ d(φ̂t(x̂), φ̂t(ŷ)) = 0

}
;

Ŵ ss
ε (x̂) :=

{
ŷ ∈ Ŵ ss(x̂) | d(φ̂t(x̂), φ̂t(ŷ)) ≤ ε for all t ≥ 0

}
.

The weak stable sets Ŵws, Wws of φ̂t and φt are equal to φ̂R

(
Ŵ ss

)
and

φR

(
W ss

)
. One also defines the strong unstable sets Ŵ su, Ŵ su

ε , W su and W su
ε

of φ̂t and φt; these are the stable sets of φ̂−t and φ−t.
Let τ be a periodic orbit of φt on X and x̂ ∈ X̂ a preimage of a point on the

orbit τ . The period of τ is denoted by %(τ). The Frobenius element [τ ] in G

is the translation in the fiber along τ : φ̂"(τ)(x̂) = [τ ](x̂). Its conjugacy class
does not depend on the chosen preimage. If it belongs to the center of G, it is
independant of the chosen preimage.

The next three uniformity assumptions are satisfied, for example, if the G-
action on X̂ is isometric and the distance on X is locally equivalent to the
distance d′(x, y) = dX(π−1x,π−1y).

• For all g ∈ G, the function x̂ $→ gx̂ is uniformly continuous on X̂. In
particular, this implies the relation g Ŵ ss(x̂) = Ŵ ss(gx̂) for all x̂.

• For all v ∈ X , ε > 0 and T ≥ 0, there is a δ > 0 such that for all
v̂ ∈ π−1(v), d(x̂, v̂) < δ implies d(φ̂t(x̂), φ̂t(v̂)) < ε for all |t| ≤ T .

• Let v some point in X . If {x̂n} is a sequence in X̂, d(π(x̂n), v) → 0 implies
d(x̂n,π−1v) → 0.

The strong unstable foliation Ŵ su is said to be locally contracting uniformly
in fibers if for any v ∈ X , there is an ε > 0 such that for any δ0 > 0, one can
find a t0 ∈ R so that d(φ̂−t(x̂), φ̂−t(ŷ)) ≤ δ0 whenever t ≥ t0, d(x̂,π−1v) < ε,
d(ŷ,π−1v) < ε and y ∈ Ŵ su

ε (x).
The flow φ̂t is said to admit a local product structure if, for all points

v ∈ X, and all ε > 0, there exists an ε0 > 0, a neighborhood V of π−1v
with ε0 < d(π−1v, V c), d(x,π−1v) < ε for all x ∈ V , and positive constants
δ1, δ2 less than ε, such that for all x, y ∈ V with d(x, y) ≤ δ1, there is a
point 〈x, y〉 ∈ V , a real number t with |t| ≤ δ2, and an element g ∈ G with
d(g, id) ≤ δ2, so that:

Ŵ ss
δ2

(
gφ̂t(x)

)
∩ Ŵ su

δ2 (y) = 〈x, y〉.

The maps sending (x, y) to 〈x, y〉, g and t are furthermore supposed to be Borel
maps; in practice, they will even be continuous on V .

The spaces X̂ and X are endowed with two Borel measures, µ̂ and µ, in
such a way that the projection π : X̂ → X is non-singular: inverse images
of sets of zero measure are of zero measure. These measures are supposed to
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be invariant by the flows φ̂t and φt; the space X̂ admits a countable cover by
open sets of finite µ̂-measure, whereas µ is a probability measure ergodic with
respect to the flow φt. The measure µ̂ satisfies the following conditions: there
is a neighborhood of the identity in G and a constant C such that g∗µ̂ ≤ Cµ̂
for g in the neighborhood. We also suppose:

Given a periodic vector v in X , let V be a neighborhood of π−1v com-
ing from the local product structure. Consider the set A of points x̂ in V ,
for which [v]−1φ̂"(v)(x̂) is again in V and δ1-close to x̂, and the transforma-
tion T on A which associate to the point x̂ in A the point 〈[v]−1φ̂"(v)(x̂), x̂〉.
Then we suppose that there is a constant C depending only on v, such that
µ̂(T−1B ∩ A) ≤ Cµ̂(B) for all Borel set B in X̂.

This condition may seem awkward; in practice, it follows easily from the ab-
solute continuity of the measure with respect to the holonomy of the foliations.
However, since no regularity on the foliations is assumed, one has to give a
more technical statement.

Finally, recall that the partition of X̂ by the stable sets Ŵ ss is said to be
ergodic if any union of elements of the partition that forms a Borel set is of
measure 0 or with complement of measure 0. In the following, this partition
will be called abusively a foliation, and the sets Ŵ ss will be called the leaves
of the foliation.

We can now state the main result:

Theorem 1. — Let G be a Polish group acting continuously on a Polish
space X̂ and φ̂t a continuous flow on X̂ commuting with the G action. The
system satisfies the previous hypothesis: three uniformity conditions, local con-
traction of Ŵ su uniformly in fibers, and local product structure. Moreover X
and X̂ are equipped with measures µ and µ̂ as defined above.

Suppose that G is a nilpotent group admitting a central series composed of
closed subgroups {1} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G so that, for all i ≥ 1,
the subgroup of Gi/Gi−1 generated by the Frobenius elements in Gi of periodic
orbits of φt is dense in Gi/Gi−1:

〈
{[τ ] ; τ periodic orbit of φt with [τ ] ∈ Gi}

〉
= Gi/Gi−1,

then the weak stable foliation Ŵws is ergodic with respect to µ̂.
If moreover the following is satisfied:

{0}× Gi/Gi−1 ⊂
〈
{(%(τ), [τ ]) ; τ periodic orbit of φt with [τ ] ∈ Gi}

〉
,

〈
{%(τ) ; τ periodic orbit of φt}

〉
= R,

then the strong stable foliation Ŵ ss is ergodic with respect to µ̂.
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Remarks. — • The periodic orbits of φt with Frobenius elements in Gi are
precisely the orbits whose lifts in X̂/Gi are again periodic.

• The conditions for the ergodicity of the strong stable foliation can be
rewritten as 〈{[τ ]′ ; [τ ]′ ∈ G′

i}〉 = G′
i/G′

i−1 for all i ≥ 1, with the convention
G′ = R × G, G′

i = {0}× G′
i if i < n, and [τ ]′ = (%(τ), [τ ]).

• There are systems satisfying the equalities {[τ ] ; [τ ] ∈ Gi} = Gi/Gi−1 and
〈{%(τ) ; [τ ] ∈ Gi}〉 = R, for all i ≥ 1, and whose strong stable foliation is not
ergodic. An example is provided in the section dealing with subshifts of finite
type. In that example, the flow φ̂t has no periodic orbits on X̂.

• If the subgroup generated by the lengths of the periodic orbits of φ̂t on X̂
is dense in R, then the conditions 〈{[τ ] ; [τ ] ∈ Gi}〉 = Gi/Gi−1, for all i, are
easily seen to imply the ergodicity of both foliations on X̂ .

A similar result can be proven for transformations instead of flows; here are
the modifications to introduce in that case: the group R should be replaced
by Z whenever it occurs; in the definition of the local product structure, the
constant δ2 is removed and t(x, y) is equal to zero. The statement of the
theorem now translates verbatim, and there is essentially no change in the proof.

3. Proof of the ergodicity

This section is devoted to the proof of the main theorem. The central series
of G gives a sequence of systems:

X̂ → X̂/G1 → · · · → X̂/Gi−1 → X̂/Gi → · · · → X̂/Gn−1 → X̂/G = X.

Ergodicity of the strong stable foliation is proven by a recurrence on this se-
ries. Assuming that the strong stable foliation of the quotient flow on X̂/Gi

is ergodic, one has to show that it is again ergodic on X̂/Gi−1. This amounts
to showing that Borel functions F : X̂/Gi−1 → R invariant by the strong
stable foliation of the quotient flow on X̂/Gi−1 are invariant by the action
of Gi/Gi−1; indeed this implies that F factorizes through an invariant function
defined on X̂/Gi, and is thus constant by the recurrence hypothesis.

The following set is easily seen to be a closed subgroup of R × G/Gi−1:
{
(t , g) ; for all Ŵ ss invariant F in L∞(X̂ /Gi−1 ), F (φ̂−tgx ) = F (x )

}

The invariant functions will factorize through X̂/Gi if {0} × Gi/Gi−1 is
included in this set. In order to obtain this inclusion, it will be shown that the
lengths and the Frobenius elements (%(τ), [τ ]) of the periodic orbits τ of φt are
included in this set, if [τ ] belongs to Gi.

Lemma 1. — The closed group
{
(t , g) ∈ R × G/Gi−1 ; ∀F , Ŵ ss invariant on X̂ /Gi−1 , F (φ̂−tgx ) = F (x )

}
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contains the elements of the form (%(τ), [τ ]), where τ is any periodic orbit of φt

on X, whose Frobenius element belongs to the center of G/Gi−1.

This will imply the theorem.
Indeed, Gi/Gi−1 is included in the center of G/Gi−1, since G is nilpotent.

The hypothesis of Theorem 1 imply that the closed group mentionned in Lemma
1 contains {0} × Gi/Gi−1. Hence, functions on X̂ invariant by Ŵ ss, are lifts
of functions on X invariant by W ss. Moreover, if the condition 〈{%(τ)}〉 = R

is satisfied, then functions on X , which are W ss-invariant, are invariant by the
flow: this is the case Gi−1 = G in Lemma 1. So, these functions are constant,
by ergodicity of φt.

The case of the foliation Ŵws is similar; the R-component of the group
mentioned in Lemma 1 can be dropped, since functions invariant by the weak
stable foliation are invariant by the flow φ̂t itself.

In order to simplify the notations, the space X̂/Gi−1 will be denoted by X̃

and the quotient flow by φ̃t. The central series then gives the sequence:

X̃ −→ X̃/(Gi/Gi−1) −→ X̃/(G/Gi−1) = X.

3.1. Deformation along periodic orbits. — Let v ∈ X a periodic point
of φt, whose Frobenius element [v] belongs to Gi. Since the group Gi/Gi−1

is abelian, the image of [v] in this quotient is uniquely defined. Given some
point x̃ ∈ X̃, we explain how to build a point ỹ belonging to W̃ ss(x̃) so that
the point φ̃"(v)[v]−1(ỹ) is arbitrarily close to x̃. This will be enough to insure
the ergodicity of W̃ ss.

Let ε > 0. By conservativity and ergodicity of φt, almost every point x̃ ∈ X̃
has a projection π(x̃) in X which has a positively transitive orbit. In particular,
the orbit of π(x̃) comes arbitrarily close to v. This means that the orbit of x̃
comes close to some preimage ṽ ∈ X̃ of v. By continuity of the flow, it stays
close to the orbit of ṽ during a time equal to, say, twice the period of v.
So, for almost all x̃ ∈ X̃, and any ε′ > 0, there exists an n ∈ N such that
d(φ̃n"(v)+t(x̃), φ̃t(ṽ)) < ε′, for all positive t less than or equal to %(v). The set
of such elements x̃ is denoted by D̃n; These Borel sets cover almost all of X̃ .
For the points in D̃n, we have:

d
(
φ̃n"(v)(x̃), ṽ

)
< ε′, d

(
φ̃n"(v)+"(v)(x̃), φ̃"(v)(ṽ)

)
< ε′.

By definition of the Frobenius element, φ̃"(v)(ṽ) = [v](ṽ). Moreover, [v] acts
uniformly on the fiber of ṽ; given some δ1 > 0, one can choose ε′ such that

d
(
φ̃n"(v)(x̃), [v]−1φ̃"(v)φ̃n"(v)(x̃)

)
≤ ε.

The local product structure can now be used to get a real number t close to 0,
an element g of G close to identity, and a point z̃ close to ṽ which lies both in
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W̃ su
ε (φ̃n"(v)(x̃)) and in W̃ ss

ε ([v]−1φ̃"(v)φ̃n"(v)gφ̃t(x̃)). One then take

ỹ = [v]φ̃−"(v)g
−1φ̃−n"(v)−t(z̃).

The point ỹ is in W̃ ss(x̃) and satisfies:

[v]−1φ̃"(v)gφ̃t(ỹ) ∈ W̃ su(x̃), d
(
gφ̃t[v]−1φ"(v)(ỹ), x̃

)
≤ ε.

x̂

ỹ

π(x̃)

[τ ]

Figure 1. Deformation of the orbit

3.2. Ergodicity. — We now suppose that the element (%(v), [v]) does not
belong to the subgroup

{
(t , g) ∈ R × G/Gi−1 ; ∀F ∈ L∞(X̃ ),F invariant , F (φ̃−tgx ) = F (x )

}

and try to get a contradiction.
We first note that we may restrict our attention to functions F satisfying

the following continuity assumption:

∀η > 0, ∃ r > 0, ∀ (t, g) ∈ R × G with d((t, g), (0, id)) < r,

∀x̃ ∈ X̃,
∣∣F (gφ̃t(x̃)) − F (x̃)

∣∣ <
1
2
η.

Indeed, any bounded measurable function F may be approximated by such a
function, using the formula:

F ∗ θ(x̃) =
∫

R×G
F (hφsx̃)θ(s, h)dsdh

where θ is some continuous positive function on R × G with integral one and
support in a small neighborhood of (0, id). It is elementary to show that the
function F ∗ θ satisfies the continuity assumption above; one also checks that
the invariance of F with respect to the foliation implies the same invariance for
F ∗ θ. Now, if the functions of the form F ∗ θ are invariant by the flow and the
group action, the same is true for F :
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274 COUDENE (Y.)

Lemma 2. — There exists functions θn such that the sequence F ∗θn converges
almost everywhere to F .

Proof. — First note that since X̃ can be covered by countably many open sets
of finite measure, X̃ may be written as a union of a set with zero measure and
of countably many compact sets, each of them admitting a neighborhood of
finite measure. Let K be one of these compact sets. Then, we have

∫

K
|F ∗ θ − F | −→ 0

as the support of θ shrinks to (0, id). This is seen by approximating F by a
continuous function on a neighborhood of K and using the inequality g∗µ̃ < Cµ̃
for g close to the identity. One then chooses a sequence of functions θ with
support decreasing to zero, and extracts subsequences.

So, in order to get a contradiction, we suppose that there exists some function
F ∈ L∞(X̃) satisfying the above continuity assumption, invariant by the stable
foliation, and that there also exists a Borel set B of positive measure, and some
constant η > 0 such that F (φ̃−"(v)[v](x̃)) > F (x̃)+η, for all x̃ ∈ B. This implies
that:

F
(
φ̃−"(v)[v](x̃)

)
> F (ỹ) + η, for all x̃ ∈ B , for all ỹ ∈ W̃ ss(x̃ ).

Considering F ◦ φ−"(v)[v] instead of F , φ̃"(v)[v]−1(B) instead of B, one gets
F (x̃) > F (φ̃"(v)[v]−1ỹ) + η, for all x̃ ∈ B, for all ỹ ∈ W̃ ss(x̃). Since X̃ can be
covered by a countable cover of open sets of finite measure, the measure µ̃ is
regular and B can be taken compact, with a δ-neighborhood of finite measure.

Restricting B slightly and applying Luzin theorem, one can suppose that F is
uniformly continuous on B: there is an ε > 0 such that if x̃, x̃′ ∈ B, d(x̃, x̃′) < ε,
then |F (x̃) − F (x̃′)| < 1

2η.
So if there exists x̃ ∈ B, ỹ ∈ W̃ ss(x̃) such that [v]−1φ̃"(v)gφ̃t(ỹ) is in B and

at distance less than ε from x̃, one can bound |F (x̃) − F ([v]−1φ̃"(v)(ỹ))| by
∣∣F (x̃) − F (gφ̃t[v]−1φ̃"(v)(ỹ))

∣∣ +
∣∣F (gφ̃t[v]−1φ̃"(v)(ỹ)) − F ([v]−1φ̃"(v)(ỹ))

∣∣.

The first term is bounded by 1
2η by uniform continuity, and the second term is

bounded by 1
2η by the continuity assumption on F . This gives a contradiction.

The point ỹ is built by deformation along the periodic orbit, using the ε
giving the contradiction in the previous argument. It remains to show that
[v]−1φ̃"(v)gφ̃t(ỹ) can be taken in B. This is the goal of the next section.

3.3. Return times. — Recall that the sets D̃k, k ∈ N, are the sets of
points x̃ ∈ X̃ which enter a sufficiently small neighborhood of the fiber of ṽ
at time k%(v). Note also that there is an ε′ > 0 such that each of the sets
π−1(φ−1

t (B(v, ε′))), t > 0, is contained in some D̃k. The sets D̃k cover almost
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all of X̃ . The point [v]−1φ̃"(v)gφ̃t(ỹ) associated to x̃ via deformation is denoted
by Tk(x̃). It is equal to φ̃−k"(v)(z̃), where z̃ is the point near ṽ obtained by using
the local product structure. In order to complete the proof of the theorem, it
is sufficient to find an x̃ ∈ B and an integer k such that x̃ is in D̃k and Tk(x̃)
is in B. This is the goal of the next two lemmas.

Lemma 3. — µ̃({x̃ ∈ B ; x̃ ∈ D̃k, Tk(x̃) 0∈ B}) → 0 as k → ∞.

Proof. — Recall that VδB is the δ-neighborhood of B. Since B is a closed set,
the quantities µ̃(VδB\B) tend to zero as δ tends to zero. So, given some η > 0,
there exists a δ0 > 0 such that µ̃(Vδ0B\B) < η/C. Moreover, Tk(x̃) is on
W su(x̃) and the images of these two points get ε-close after time k. Since the
unstable foliation is locally contracting uniformly in fibers, there is a k0 such
that for all k ≥ k0, and all x̃ ∈ D̃k, d(x̃, Tk(x̃)) < δ0. The transformation Tk

is obtained by composition of φ̃kl(v) with the deformation process in the local
product neighborhood of some preimage of v. The measure µ̃ is invariant by
the flow and satisfies a uniform majoration under the deformation; this gives:

µ̃
(
T−1

k (Vδ0B\B) ∩ D̃k

)
≤ Cµ̃

(
Vδ0B\B

)
≤ η.

Finally if k ≥ k0 the set {x̃ ∈ B ; x̃ ∈ D̃k, Tk(x̃) 0∈ B} is contained in the set
T−1

k (Vδ0B\B) ∩ D̃k.

Lemma 4. — µ̃({x̃ ∈ B ; x̃ ∈ D̃k}) 0→ 0 as k → ∞.

Proof. — If the quantities µ̃(B ∩ π−1φ−tB(v, ε′)) tend to zero as t tends to
infinity, the same is true of the integral:

1
t

∫ t

0

∫

B
1B(v,ε) ◦ φsd(π∗µ̃)ds.

But this integral converges to µ(B(v, ε′))µ̃(B): this is a direct application of
the Fubini theorem, the Birkhoff ergodic theorem and the Lebesgue dominated
convergence theorem. This proves the lemma.

4. Hyperbolic systems

In this section, the main result is applied to hyperbolic flows and diffeomor-
phisms.

Let φt be a C1 flow on a C∞ riemannian manifold M and Λ a compact set
invariant by φt.

Definition 1. — The flow is said to be hyperbolic on Λ if Λ contains no fixed
points of the flow, periodic points are dense in Λ, there exists an orbit dense
in Λ, and there is an open set U containing Λ such that

⋂
φtU = Λ, the
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intersection being on all t ∈ R and, moreover, if there exist positive con-
stants C,λ, such that for all x ∈ Λ there is a decomposition of the tangent
bundle TxM = E0

x ⊕ Ess
x ⊕ Esu

x satisfying:
• E0 is one-dimensional tangent to the flow;
• DφtEss

x = Ess
x , DφtEsu

x = Esu
x ;

• ‖Dφt|Ess
x
‖ ≤ Ce−λt and ‖Dφ−t|Esu

x
‖ ≤ Ce−λt for all t > 0 , .

There is a similar definition for diffeomorphisms; the E0 part has to be
removed in the previous statement; see, e.g. [25].

Transitive Anosov flows correspond to flows hyperbolic on the whole man-
ifold. Axiom A flows are a specific class of flows which are hyperbolic on the
components of the non-wandering set.

Hyperbolic flows admit many invariant ergodic probability measures. Given
some Hölder continuous function f on Λ, there is a unique measure maximizing
the quantity hµ +

∫
f dµ among the set of invariant Borel probability measures

µ supported on Λ, where hµ is the entropy of µ with respect to φ1 [7]. This
measure is called the Gibbs measure associated to the potential f . We will
check below that it satisfies the conditions of Theorem 1.

Let φt a hyperbolic flow on a compact set Λ ⊂ M , M̂ a G-fiber bundle
over M and φ̂t an extension of φt on M̂ commuting with the G-action. In local
trivializations U × G, φ̂t takes the form (x, g) → (φt(x), At(x)g), where At is
an map from U to G. We say that φ̂t is a Hölder extension of φt if there is a
covering of Λ with trivializations charts such that the maps At(x) are Hölder
continuous in x for small t. Note that when G is discrete, there exists a unique
extension, which corresponds to At ≡ 0. In the case of diffeomorphisms, an
extension is said to be Hölder if it is of the form (x, g) $→ (φ(x), f(x)g) in local
charts U × G, with f : U → G Hölder.

Theorem 2. — Let φt (resp. φ) an hyperbolic flow (resp. diffeomorphism) on
some compact subset Λ of a manifold M , G a locally compact second countable
group carrying a biinvariant distance, M̂ a Hölder principal G-fiber bundle
over M , φ̂t (resp. φ̂) a Hölder extension of φt (resp. φ) to M̂ commuting
with G, µ a Gibbs measure on Λ. The manifold M̂ is endowed with a measure
µ̂ which coincides with µ × Haar on local trivializations of the bundle. Sup-
pose that G is a nilpotent group admitting a central series composed of closed
subgroups {1} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that:

〈
{[τ ] ; τ periodic orbit on Λ with [τ ] ∈ Gi}

〉
= Gi/Gi−1,

then the weak stable foliation Ŵws is ergodic with respect to µ̂. If moreover

{0}× Gi/Gi−1 ⊂
〈
{(%(τ), [τ ]) ; τ periodic orbit on Λ with [τ ] ∈ Gi}

〉
,

〈
{%(τ) ; τ periodic orbit on Λ}

〉
= R (resp. Z),
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then the strong stable foliation Ŵ ss is ergodic with respect to µ̂.

Remark. — There are similar statements for Ŵ su, Ŵws, Ŵwu, which follow
from Theorem 1. Note that the condition 〈{%(τ)}〉 = R (resp. Z) is equivalent
to the flow (resp. the diffeomorphism) being topologically mixing on Λ. It is
always satisfied for hyperbolic diffeomorphisms if Λ is connected; on the other
hand, it fails for flows which are constant suspension of diffeomorphisms.

In order to prove this result, we have to show that the hypothesis of Theo-
rem 1 are satisfied for these systems; this is checked in three steps.

The case G = {0}. — In the context of Axiom A flows, local product
structures were introduced by S. Smale [26]. The next result is taken from
R. Bowen [5].

Proposition 1. — Let φt be a hyperbolic flow on some compact Λ; there are
δ1, δ2 for which the following is true: if x, y ∈ Λ and d(x, y) ≤ δ1, then there
is a unique t = t(x, y) with |t| ≤ δ2 so that

W ss
δ2

(
φt(x)

)
∩ W su

δ2 (y) = 〈x, y〉.

This set consists of a single point, which is denoted by 〈x, y〉. The maps t and
〈 , 〉 are continuous on the set {(x, y) ; d(x, y) ≤ δ1} ⊂ X × X.

A rectangle is a compact set, equal to the closure of its interior, such that
the local product of two points in the rectangle is again a rectangle. Each point
of Λ has a basis of neighborhoods composed of rectangles. This gives the local
product structure we need.

In the case of diffeomorphisms, there is a similar result; in fact, spaces
admitting maps with local product structures are called Smale spaces; their
study is developed in [24], where it is shown that they are essentially equivalent
to subshifts of finite type.

Now a Gibbs measure µ can be written as a product of a family µsu of
transverse measures to the strong unstable foliation by a family of measures µs

supported by the strong unstable leaves; moreover the modulus of absolute
continuity of these families with respect to the holonomy of the foliations is
explicitly known:

dζ∗µsu
A

dµsu
B

(y) = e[ζ−1y,y]

where A, B are any pairs of transversals to W su, ζ any one-to-one mesurable
map such that ζ(x) ∈ W su(x) for almost all x ∈ A, and [x, y] is defined by

[x, y] = lim
t→−∞

∫ t

0
f(φsx)ds −

∫ t

0
f(φsy)ds, for all x ∈ W su(y),
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where f is a Hölder function on M called the potential of the measure µ.
Note that this limit is converging because f is Hölder and φ−t is exponentially
contracting. The bracket [x, y] is thus bounded by a constant depending on the
Hölder constants of f , the contraction exponent of the flow, and the diameter
of Λ, but not on x, y. There are similar estimates for the modulus of absolute
continuity of µs with respect to the action of φ" and the holonomy of the weak
stable foliation. We refer to [3], Lemma 1, for explicit formulas. The point is
that these modulus are uniformly bounded on Λ.

The estimate needed on the transformation T , which sends the point x to
〈φ"(x), x〉, follows from these properties. Given some point x in a rectangle, T
sends the local weak stable leaf Wws

ε (x) to Wws(φ"(x)); in restriction to this
leaf, it coincides with the holonomy map ζ between the two transversals Wws

ε (x)
and Wws(φ"(x)). Hence, T has a bounded modulus of absolute continuity on
Wws

ε (x) with respect to µsu, and this modulus does not depend on x. On
the other end, the fibers W su(x) are send to themselves by T ; the image of a
point y in W su(x) is obtained first by applying φ" from W su(x) to W su(φ"(x)),
then by following the weak stable leaves to return to W su(x). The modulus of
absolute continuity is again bounded independently of x, so we are done.

The case G discrete. — Principal bundles with discrete structure group
correspond to regular covers. The data on X lift to X̂: given some point v,
one considers a rectangle contained in some neighborhood U trivializing the
covering; the inverse image of this neighborhood is of the form U × G and the
local product structure is defined by 〈(x, g), (y, g)〉 = (〈x, y〉, g). The properties
of the measure µ̃ then follows from the one of µ, since µ̃ is equal to µ on each
level of the cover.

The general case. — In order to pull back the local product structure
from Λ to π−1Λ, we show how to find for any two close points x, y on Λ such
that x ∈ W ss(y), an element g(x, y) with (x, g(x, y)) ∈ Ŵ ss((y, id)).

The compact Λ is first covered with a finite number of flow boxes trivializing
the fiber bundle. There is an ε such that for any point x in Λ, φ[−ε,ε](B(x, ε))
is contained in one of the previous flow boxes. The orbit of some point x̂ in
the fiber of x can be described by using a succession of such sets: the point
first travels during time ε through the first trivialization; one then changes
from trivialization to travel through another during time ε, and so on. The
expression of φ̂nε(x, g) takes the form (φnε(x),

∏n
k=0 gk(φkε(x))Ak

ε (φkε(x) g),
where the gk correspond to the change of trivialization at time kε and the Ak

refer to the expression of the flow in that trivialization. Note that the gk
′s and

the Ak′s are commuting with each others.
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If y belongs to W ss
ε (x), the displacement in the fibers between the orbits of

φ̂nε(x, id) and φ̂nε(y, id) is equal to
n∏

k=0

gk

(
φkε(y)

)
Ak
ε

(
φkε(y)

)( n∏

k=0

gk

(
φkε(x)

)
Ak
ε

(
φkε(x)

))−1
.

The biinvariance of the distance on G implies the inequality

d(g1g2, g3g4) ≤ d(g1, g3) + d(g2, g4).

Since there are a finite number of flow boxes, the gk
′s and the Ak′s are

Hölder continuous, and the flow is exponentially contracting, the series∑
d(gk(φkε(x))Ak

ε (φkε(x)), gk(φkε(y))Ak
ε (φkε(y))) is uniformly convergent,

and bounded by a constant times d(x, y). This shows that the translation in
the fiber converges to a continuous function g(x, y). This function tends to zero
as d(x, y) tends to zero. There is a similar construction for the strong unstable
foliation which gives a function g′(x, y) so that (x, g′(x, y)) ∈ Ŵ su((y, id)).

The local product structure can now be defined by the following formula:
〈
(x, g1), (y, g2)

〉
=

(
〈x, y〉, g(〈x, y〉, y)′g2

)
.

This point belongs to Ŵ su((y, g2)); it also belongs to Ŵ ss(g̃φ̂t(x, g1)), where g̃
is equal to

g̃ = A−1
t g

(
〈x, y〉,φt(x)

)
g
(
〈x, y〉, y

)′
g2g

−1
1 ,

and t given by the local product structure on Λ. Note that the element g̃ is
close to the identity, as needed. Moreover, the local product structure acts as a
translation in each fiber; since the measure µ̂ coincides with the Haar measure
in the fiber, the estimate needed for the measure µ̂ follows from the one for µ
and the Fubini theorem.

5. Subshifts of finite type

Shifts on subshifts of finite type are essentially the same as hyperbolic dif-
feomorphisms. On the one hand, hyperbolic diffeomorphisms can be coded
by subshifts (see, e.g. [25]), whereas any subshift can be realized as the non-
wandering set of some hyperbolic system, the shift being conjugated to the
diffeomorphism. They both stand in the category of Smale spaces [24], for
which Theorem 1 applies.

A subshift of finite type is given by a finite alphabet I with n elements and
a n× n transition matrix A with coefficients in {0, 1}. The space of sequences
of the subshift is defined by

ΣA :=
{
{xk}k∈Z ∈ IZ ; ∀ k ∈ Z, Axkxk+1 = 1

}
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and the shift is the homeomorphism on ΣA given by σ({xi})i = xi+1. The
distance between two words xi, yi is equal to

d
(
{xi}, {yi}

)
= exp

(
−min{|i| with xi 0= yi}

)
.

The local product structure is defined on words with same zero coordinate as
〈
(. . . , x−1, x0, x1, . . . ), (. . . , y−1, y0, y1, . . . )

〉
=

(
. . . , y−2, y−1, y0, x1, x2, . . .

)
.

The notion of Gibbs measure is defined in the same way as for hyperbolic
diffeomorphisms: given a Hölder function f on ΣA, there is a unique invari-
ant Borel probability measure maximizing the quantity hµ +

∫
f dµ, where hµ

denotes the entropy of the measure with respect to the shift. This measure is
ergodic, of full support.

Repeating the arguments of the previous section, one gets the following
result; V. Kaimanovich and K. Schmidt announced a similar statement under
slightly different hypothesis, in [21]:

Theorem 3. — Let (ΣA,σ) a transitive subshift of finite type, µ a Gibbs mea-
sure on ΣA, G a locally compact second countable group admitting a biinvariant
metric, f : ΣA → G a Hölder continuous function depending only on posi-
tive coordinates, and T the transformation on ΣA × G which sends (x, g) to
(σx, f(x)g). Suppose that G is a nilpotent group admitting a central series
composed of closed subgroups {1} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G such that

〈
{[τ ] ; τ periodic point of σ with [τ ] ∈ Gi}

〉
= Gi/Gi−1,

then the weak stable foliation of T is ergodic with respect to µ × Haar. If
moreover the following is satisfied

{0}× Gi/Gi−1 ⊂
〈
{(%(τ), [τ ]) ; τ periodic point of σ with [τ ] ∈ Gi}

〉
,

〈
{%(τ) ; τ periodic point of σ}

〉
= Z,

then the strong stable foliation of T is ergodic with respect to µ × Haar.

Remarks. — • The condition 〈{%(τ)}〉 = Z is equivalent to the shift being
topologically mixing.

• The ergodicity of the weak (resp. strong) stable foliation implies the equal-
ity 〈{[τ ]}〉 = G (resp. 〈{(%(τ), [τ ])}〉 = Z × G ); this is a consequence of the
Livsic Theorem [22]; the argument can be found in [10]. In particular, the
conditions on the periodic orbits are necessary if G is abelian.

• If the set {[τ ]} is invariant by the map g $→ g−1 and the subshift is a
Bernoulli shift, which means that Ai,j = 1, for all i, j, then the conditions in
term of periodic orbits break down to 〈{[τ ]}〉 = G for the weak stable foliation;
indeed a product of Frobenius elements of periodic orbits is the Frobenius ele-
ment of a single orbit, obtained by concatenating the words associated to each
orbit, hence commutators of Frobenius elements are again Frobenius elements.
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• Since we have made the assumption that f depends only on positive coor-
dinates, the stable foliation may be described as follows: one writes fm(x) for
the product f(σm−1x) · · · f(x); then two points ({xi}, u), ({yi}, v) are on the
same weak (resp. strong) stable leaf if and only if there are two positive inte-
gers m, n (resp. m = n) with xi+m = yi+n, for all i ≥ 0, and fm(x)u = fn(y)v.

Examples. — Let f : {0, 1}Z → Z be the map which takes value 1 on the set
{x ; x0 = 0} and −1 on its complementary set. Consider the system (σ, f) on
{0, 1}Z×Z; its weak stable foliation is ergodic, whereas its strong stable foliation
is not. Indeed, 〈[τ ]〉 = Z but %(τ) + [τ ] is even, so that 〈{(%(τ), [τ ])}〉 0= Z×Z.

Moreover let α be an irrationnal real number, r : {0, 1}Z → R the map which
takes value 1 on the set {x | x0 = 0} and α on its complementary set. The
space {0, 1}Z × R can be quotiented by the action (x, t) $→ (σx, t − r(x)) to
obtain a suspension over the subshift {0, 1}Z. The R-action on the suspension
can be conjuguated to a hyperbolic flow on some compact set homeomorphic
to the suspension space.

One gets an extension of that system by quotienting {0, 1}Z × R × Z by
(x, t, n) $→ (σx, t − r(x), n + f(x)). Note that ergodicity of the stable foliation
of the R-action on the whole space {0, 1}Z ×R×Z is the same as ergodicity on
the quotient, since two points with the same image in the quotient are on the
same stable leaf. We now have:

〈
{(%(τ), [τ ])}

〉
= Z(1, 1) ⊕ Z(α,−1),

〈
{%(τ)}

〉
= R,

{
[τ ]

}
= Z.

This gives an example of a mixing hyperbolic flow φt with extension φ̂t

satisfying {[τ ]} = G, for which the strong stable foliation is not ergodic.

6. Geodesic flow on negatively curved manifolds

Let H be a connected simply connected Riemannian manifold with sectional
curvature bounded between two negative constants. Such a manifold is homeo-
morphic to a ball and can be compactified by adding a sphere at infinity, which
is denoted by ∂H ; see, e.g. [14]. This boundary may be defined as equivalence
classes of asymptotic rays in H . Given two different points on ∂H , there is
exactly one geodesic going from one point to the other. The boundary can be
used to get a parametrization of the unitary tangent bundle S1H of H , called
the Hopf coordinates, from (∂H × ∂H − ∆) × R to S1H , where ∆ denotes
the diagonal {(ξ, η) ; ξ = η}. It sends the point (ξ, η, t) to the unitary vector
tangent to the oriented geodesic from ξ to η, and whose projection on H is at
distance t from an origin on the geodesic; one can take as origin the closest
point on the geodesic to a fixed point x0 ∈ H , for example.

The geodesic flow on S1H translates vectors along the geodesic they gener-
ate. In the Hopf coordinates, this is just the translation on the R-factor. The
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stable foliations of the flow may be described using the Hopf coordinates:

Wws(ξ, η, t) =
{
(ξ′, η′, t′) ; η′ = η

}
,

W ss(ξ, η, t) =
{
(ξ′, η′, t′) ; η′ = η, t′ = t

}
.

Any connected complete Riemannian manifold M whose sectional curvatures
lie between two constants can be written as H/Γ, where H is a manifold as
above, and Γ is a subgroup of the isometry group of H , which can be identified
with the fundamental group π1(M) of M . The action of Γ extends naturally to
the boundary ∂H . The elements of Γ have one or two fixed points on ∂H ; in
the first case they are called parabolic, in the second case hyperbolic. An hy-
perbolic element h fixes the geodesic joining its two fixed points. This geodesic
projects on a closed geodesic in M whose Frobenius element is equal to h, up
to conjuguacy.

The limit set ΛΓ of Γ is the set of accumulation points in ∂H of the orbit
under Γ of some point in H . It does not depend on the point chosen. The
group Γ is said to be elementary if this set has finitely many elements. This is
equivalent to Γ being virtually nilpotent.

The concept of Gibbs measure can be generalized to this setting [9], following
a construction due to S.J. Patterson. These measures are supported by the
non-wandering set of the flow. A finite Gibbs measure is ergodic; geometrically
finite manifolds always admit finite Gibbs measures. We will only use some
mild properties of the measure in the Hopf coordinates, which are explained
below, so that we do not give details of the construction.

Theorem 4. — Let M be a connected complete Riemannian manifold M
whose sectional curvatures lie between two negative constants, and with non-
elementary fundamental group. Let µ be a finite Gibbs measure on S1M , and
M̂ a connected regular cover of M with nilpotent deck transformation group.
Then the weak stable foliation Ŵws on S1M̂ is ergodic with respect to µ×Haar.

Moreover, if the lengths of the periodic geodesics on M̂ generate a dense
subgroup of R, then the horosphere foliation Ŵ ss is ergodic with respect
to µ × Haar.

Remarks. — • Bowen-Margulis measure and harmonic measure are examples
of Gibbs measures; they may be finite measures, depending on the geometry of
M .

• The topological mixing of the flow φ̂t on its non-wandering set in M̂ is
equivalent to the condition 〈{%(τ) ; [τ ] = 0}〉 = R, and to the transitivity of Ŵ ss

on M̂ [12]. It is known, for example, if there is a cusp on M̂ , if M is of finite
volume, or if the curvature is constant [11]. It is conjectured to be always
satisfied.

tome 131 – 2003 – no 2



HYPERBOLIC SYSTEMS ON NILPOTENT COVERS 283

• In constant curvature, the theorem can also be stated in term of group
actions. The horospheres are the orbits of a unipotent subgroup of the isometry
group of the manifold.

• The result can be generalized to CAT(−1) spaces. Finally, it is true if
the deck transformation group is virtually nilpotent; one just applies the result
with M replaced by the finite extension over which M̂ is a nilpotent cover.

• In [16], U. Hamenstädt studied the ergodicity of Ŵws on M̂ , when the
manifold M is compact; her approach is quite different from the one described
here, and makes use of leafwise Laplacians, harmonic measures and diffusion
processes. These methods seem difficult to generalize to the non-compact case.
One problem comes from the fact that the harmonic measure may be infinite,
non-ergodic, even on a finite volume manifold.

Proof. — The product structure may be defined globally on the universal
cover H of the manifold M , and then pushed down on the cover. The product
of two points (ξ1, η1, t1) and (ξ2, η2, t2), in Hopf coordinates, is given by the
formula

〈
(ξ1, η1, t1), (ξ2, η2, t2)

〉
= (ξ2, η1, t2)

and belongs to W̃ ss(φ̃t2−t1(ξ1, η1, t1))∩W̃ su(ξ2, η2, t2) as needed. This formula
commutes with the action of the isometry group, so it is uniform in the fibers
of the cover.

A Gibbs measure takes the following form in Hopf coordinates on H :

dµ(ξ, η, t) = eδβx0(ξ,η)dµx0(ξ)dµ′
x0

(η)dt

where x0 is some point in H chosen as origin. The function β is bounded
below and above on compact sets, by constants depending only on the distance
from x0 to the geodesic with endpoints ξ and η; whereas the modulus of absolute
continuity of µx0 with respect to some element γ of the isometry group of H
is known, and bounded on ∂H by a constant depending only on the distance
from γx0 to x0. We refer to [9] for an explicit formula, which is not needed
here.

Let ṽ be a periodic point on H and [ṽ] the hyperbolic element which fixes the
geodesic starting from ṽ and for which φ"(v)(ṽ) = [ṽ]ṽ. The transformation T
on H which associates the point 〈[ṽ]−1φ"(v)(x), x〉 to x is given in the Hopf
coordinates by the simple formula (ξ, η, t) $→ (ξ, [ṽ]−1η, t). Taking x0 as the
base point of the vector v, we see that the image of µ under T is bounded by a
constant times µ on balls centered on x0, the constant depending only on the
radius of the ball and on ṽ. Moreover the constant is the same for ṽ and its
images under the isometry group of H . This gives the estimate on the measure
needed to apply Theorem 1.

It remains to check the condition on the periodic orbits.
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Lemma 5. — Let Γ be a non-elementary subgroup of the group of isometry of
a connected riemannian manifold with sectional curvatures lying between two
negative constants. Then Γ is generated by its hyperbolic elements.

Proof of Lemma 5. — One has to show that parabolic elements are products
of hyperbolic elements. Let p be a parabolic element and p∞ its fixed point
in ∂H . The action of p on ΛΓ − {p∞} is free and properly discontinuous. So
there is an open set U ⊂ ΛΓ, whose images under p are disjoint. Let V be an
open ball whose closure is contained in U . The ends of periodic geodesics in M
are dense in ΛΓ× ΛΓ [14]. So, there is a hyperbolic element in Γ whose fixed
points are contained in V .

Taking some power of that element, we have found an hyperbolic element h
and two disjoint compact neighborhoods V1, V2 ⊂ V of the fixed points of h,
which satisfy h(V c

1 ) ⊂ V2. The group 〈p, h〉 generated by p and h is called an
extended Schottky group by F. Dal’bo and M. Peigné [13]. They show that it
is a free group with generators p and h. In particular the abelianized of 〈p, h〉
is equal to Zp⊕ Zh. It is moreover a geometrically finite group with one cusp,
which implies that all parabolic elements are conjuguated to a power of p [4].
So, the projection of a parabolic element in the abelianized group ends in the
first factor Zp. We deduce that the product of p by h is hyperbolic; this ends
the proof of the lemma.

We return to the proof of the theorem.
There is a periodic orbit associated to each hyperbolic element in π1(M); the

projections of hyperbolic elements of π1(M) in the deck transformation group
of the cover can thus be realized as Frobenius elements of periodic geodesics.
So, the lemma gives the equality 〈{[τ ] ; [τ ] ∈ Gi}〉 = Gi/Gi−1, for any central
series associated to the nilpotent group. If the flow is topologically mixing on
the cover, we also have 〈{%(τ) ; [τ ] = 0}〉 = R. In particular, R × {0} belongs
to the set 〈{(%(τ), [τ ]) ; [τ ] ∈ Gi}〉 for all i, hence

〈
{(%(τ), [τ ]) ; [τ ] ∈ Gi}

〉
= R × Gi/Gi−1.

This ends the proof.

Corollary 1. — Let M be a connected finite volume manifold whose sec-
tional curvatures lie between two negative constants, and with first partial
derivatives of the curvatures bounded on M . Let M̂ be a connected nilpotent
cover of M . Then the strong stable foliation on M̂ is ergodic with respect to
the Liouville measure.

Remark. — On a compact manifold, the absolute continuity of the Liouville
measure with respect to the foliations is due to D.V. Anosov [2]. The poten-
tial f(x) = −d/dt|t=0(ln | det(Dxφt|TxWsu )|), associated to the Liouville mea-
sure, is Hölder continuous, so that it is a Gibbs measure. The proof extends
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Figure 2. Left: Thick part of the thrice punctured sphere. Right:
Punctured torus

straightforwardly to the finite volume case if the first derivatives of the curva-
tures are bounded; this remark has been made by several authors, for example
M. Brin [8].

Examples: homology covers. — The corollary may be applied to homol-
ogy covers. The thick part of the thrice punctured sphere is on the left of
the picture; the once punctured torus is on the right. These are finite volume
manifolds and their horospheric foliations are ergodic on the cover with respect
to the Liouville measure.

Acknowledgements. — I wish to thank F. Ledrappier and L. Flaminio for their
help and comments.
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