Toshiniro Yamaguchi

Formality of the function space of free maps into an elliptic space

Bulletin de la S. M. F., tome 128, no 2 (2000), p. 207-218
http://www.numdam.org/item?id=BSMF_2000__128_2_207_0
© Bulletin de la S. M. F., 2000, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

FORMALITY OF THE FUNCTION SPACE OF FREE MAPS INTO AN ELLIPTIC SPACE

By Toshihiro YAMAGUCHI (*)

Abstract

Let X be an n-connected elliptic space and Y a non rationally contractible, finite-type, q-dimensional CW complex, where $q \leq n$. We show that the function space X^{Y} of free maps from Y into X is formal if and only if the rational cohomology algebra $H^{*}(X ; Q)$ is free, that is, X has the rational homotopy type of a product of odd dimensional spheres.

Résumé. - Formalité des espaces de fonctions libres dans un espace ellipTIQUE. - Soient X un espace elliptique n-connexe et Y un CW complexe non rationnellement contractile, de type fini et de dimension $q \leq n$. Nous montrons que l'espace X^{Y} des fonctions libres de Y dans X est formel si et seulement si l'algèbre $H^{*}(X, Q)$ est libre, i.e. X a le type d'homotopie rationnelle d'un produit de sphères de dimensions impaires.

1. Introduction

D. Sullivan's minimal model $(\Lambda V, d)$ satisfies a nilpotence condition on d, i.e., there is a well ordered basis $\left\{v_{i}\right\}_{i \in I}$ of V such that, $i<j$ if $\operatorname{deg} v_{i}<\operatorname{deg} v_{j}$ for each $i, j \in I$ and $d\left(v_{i}\right) \in \Lambda V_{<i}$. Here $V_{<i}$ denotes the subspace of V generated by basis elements $\left\{v_{j} ; j \in I, j<i\right\}$. According to [9, Def. 1.2], $(\wedge V, d)$ is called normal if $\operatorname{Ker}\left[\left.d\right|_{V}\right]=\operatorname{Ker}\left(d_{\mid V}\right)$ where
$\operatorname{Ker}\left[d_{\mid V}\right]:=\left\{v_{i} \in V ; i \in I, d\left(v_{i}\right)\right.$ is cohomologus to zero in $\left.\left(\wedge V_{<i}, d\right)\right\}$.

Let F, E and B be connected nilpotent spaces and let $\mathcal{M}(B)$ be a normal minimal model. In this paper, we say that a rational fibration [7, p. 200]

[^0]Keywords: Sullivan's minimal model, formal, function space, elliptic space.
$F \xrightarrow{i} E \xrightarrow{\pi} B$ is M.N if there is a KS-extension:

in which $(\mathcal{M}(B) \otimes \wedge V, D)$ is minimal (i.e., D is decomposable) and normal by a suitable change of KS-basis. Here $A^{*}(X)$ denotes the rational de-Rham complex of a space $X, \mathcal{M}(F) \cong(\wedge V, \bar{D})$ and " \simeq " means quasi-isomorphic, i.e., the map induces an isomorphism in cohomology. We remark that "M.N" is a characteristic of the rational fibration but not of the total space.

Many rational fibrations are M.N. For example, the rational fibration given by a KS-extension:

$$
(\wedge(x, y), 0) \longrightarrow(\wedge(x, y, z), D) \longrightarrow(\wedge z, 0)
$$

with $|x|=3$ (where $|v|$ means $\operatorname{deg}(v)$ for $v \in V$), $|y|=3,|z|=5$ and $D(z)=x y$ is M.N. Of course, any rationally trivial fibration is M.N. On the other hand, many rational fibrations are not M.N. For example, in the KS-model of the Hopf fibration $S^{3} \rightarrow S^{7} \rightarrow S^{4}$, the model of the total space $\left(\mathcal{M}\left(S^{4}\right) \otimes \wedge\left(x_{3}\right), D\right)$ with $\left|x_{3}\right|=3$ is not even minimal. The rational fibration given by a KS-extension:

$$
(\wedge(x, y), d) \longrightarrow(\wedge(x, y, z), D) \longrightarrow(\wedge z, 0)
$$

with $|x|=2,|y|=5,|z|=3, D(x)=d(x)=0, D(y)=d(y)=x^{3}$ and $D(z)=x^{2}$ is minimal but can not be normal by any change of KS-basis.

In the following, a fibration means a rational fibration. A nilpotent space X or the minimal model $\mathcal{M}(X)$ is called (rationally) formal if there is a quasiisomorphism from $\mathcal{M}(X)$ to $\left(H^{*}(X ; Q), 0\right)$ (see [3]). The reason we consider M.N-type fibrations is that we can then state a necessary (but perhaps not sufficient) condition for the formality of the total space as in [3, Thm 4.1] when the base space is formal (see Lemma 2.3).

A fibration $F \rightarrow E \rightarrow B$ is called:

- $\sigma \cdot F$ if it has a rational section;
- W.H.T if $\pi_{*}(E) \otimes Q=\left(\pi_{*}(B) \otimes Q\right) \oplus\left(\pi_{*}(F) \otimes Q\right)$ for the rational number field Q and
- H.T if it is rationally trivial (see [11]).
tome $128-2000-\mathrm{N}^{\circ} 2$

The following lemma expresses the relations among these different types of fibrations.

Lemma 1.1.

1) "M.N" is embedded in the sequence of implications:

$$
\sigma \cdot F \Longrightarrow M \cdot N \Longrightarrow \text { W.H.T }
$$

where the reversed implications are false in general.
2) If a fibration $F \rightarrow E \rightarrow B$ is $\sigma \cdot F$ and E is formal, then B is formal (compare [4, Lemme 2])

Our object of interest is the function space X^{Y} of free, continuous maps from a connected space Y into a connected space X, endowed with the compact-open topology. Observe that X^{Y} is infinite dimensional and is connected if X is n connected and Y is a q-dimensional CW-complex, where $q \leq n$. Furthermore, X^{Y} is the total space of the fibration:

$$
\begin{equation*}
(X, *)^{(Y, *)} \longrightarrow X^{Y} \xrightarrow{\pi} X, \tag{*}
\end{equation*}
$$

where $(X, *)^{(Y, *)}$ is the function space of pointed maps, and π is the evaluation at the base point. We know that $\left(^{*}\right)$ has a section s, where $s(x)$ is the constant map at x. Therefore $\left(^{*}\right)$ is $\sigma \cdot \mathrm{F}$. When $Y=S^{1}$, N. Dupont and M. Vigué-Poirrier proved the following formality result.

Theorem (see [4, Théorème]). - Let X be a simply connected space where $H^{*}(X ; Q)$ is finitely generated. Then $X^{S^{1}}$ is formal iff $H^{*}(X ; Q)$ is free, i.e., X has the rational homotopy type of a product of Eilenberg Maclane spaces.

Our goal in this article is to generalize the theorem of Dupont and ViguéPoirrier to X^{Y}, when Y is of finite-type, i.e., $\pi_{i}(Y) \otimes Q$ is finite-dimensional for all i, provided that X is elliptic, i.e., the total dimensions of $H^{*}(X ; Q)$ and $\pi_{*}(X) \otimes Q$ are finite. More precisely, we prove the following theorem.

Theorem 1.2. - Let X be an n-connected elliptic space, and let Y be a non rationally contractible, finite-type, q-dimensional $C W$ complex, where $q \leq n$. Then X^{Y} is formal iff $H^{*}(X ; Q)$ is free, i.e., X has the rational homotopy type of a product of odd dimensional spheres.

In proving Theorem 1.2, we use a model due to Brown and Szczarba [2] for the connected component in X^{Y} of a map $f: Y \rightarrow X$, which is constructed from minimal models of X, Y and f. We remark that, under the hypotheses of Theorem 1.2, this non-formalizing tendency of X^{Y} does not depend on the rational homotopy type of Y. We cannot easily relax the connectivity hypothesis.

For example, when $X=\mathbb{C P}^{2}$ and $Y=S^{3}$, we can see $X_{(0)}^{Y} \simeq\left(\mathbb{C P}^{2} \times K(Q, 2)\right)_{(0)}$ by the calculation in [2]. In particular, $X_{(0)}{ }^{Y}$ is formal even though X does not have the rational homotopy type of a product of odd dimensional spheres. Also we must consider each connected component of X^{Y} in the general case.

In the following sections, our category is CDGA, that is, the objects are commutative differential graded algebras (cdga) over Q, and the morphisms are maps of differential graded algebra. Also, $H^{*}()$ means $H^{*}(; Q)$ and $I(S)$ denotes the ideal in the algebra A generated by a basis of a subspace S in A. When B is a subalgebra of A and both A and B contain S, then $I(S)$ denotes the ideal in the algebra A and $I_{B}(S)$ the ideal in the algebra B, unless otherwise noted.

2. Two changes of KS-basis

When a $\operatorname{cdga} \mathcal{A}$ is formal, we can choose a minimal model $\mathcal{M}=(\Lambda V, d)$ of \mathcal{A} such that $V=\operatorname{Ker}\left(d_{\mid V}\right) \oplus \operatorname{Ker}\left(\psi_{\mid V}\right)$ for a quasi-isomorphism $\psi: \mathcal{M} \rightarrow\left(H^{*}(\mathcal{A}), 0\right)$. Therefore, according to [3, Thm 4.1], \mathcal{A} is formal iff there is a complement N to $\operatorname{Ker}\left(d_{\mid V}\right), V=\operatorname{Ker}\left(d_{\mid V}\right) \oplus N$, such that any d-cocycle of $I(N)$ is d exact. We remark this ' \mathcal{M} ' must be a normal minimal model. Conversely, if $\mathcal{M}=(\Lambda V, d)$ is a normal minimal model and formal, $H^{*}(\mathcal{M})$ is generated by $\operatorname{Ker}\left(d_{\mid V}\right)$ as an algebra (see [9, Lemma 1.8]). Therefore for any quasi-isomorphism $\psi: \mathcal{M} \rightarrow\left(H^{*}(\mathcal{A}), 0\right)$, we have $V=\operatorname{Ker}\left(d_{\mid V}\right) \oplus \operatorname{Ker}\left(\psi_{\mid V}\right)$.

Following [8, p.5], we use the term "change of KS-basis" in this paper as follows. Suppose that

$$
\left(B^{*}, d_{B}\right) \longrightarrow\left(B^{*} \otimes \wedge V, \delta\right) \longrightarrow(\wedge V, \bar{\delta})
$$

is a KS-extension with KS-basis $\left\{v_{i}\right\}_{i \in I}$, i.e., a well-ordered basis of V such that $i<j$ if $\left|v_{i}\right|<\left|v_{j}\right|$ for each $i, j \in I$ and $\delta\left(v_{i}\right) \in B^{*} \otimes \wedge V_{<i}$. Define a map of algebras $\phi: B^{*} \otimes \Lambda V \rightarrow B^{*} \otimes \Lambda V$ by setting

$$
\phi_{\mid B}=\operatorname{id}_{B} \quad \text { and } \quad \phi\left(v_{i}\right)=v_{i}+\chi_{i}
$$

on basis elements of V, where $\chi_{i} \in B^{*} \otimes \wedge V_{<i}$ (To be exact, this is different from the definition of "KS-change of basis" of [8, p. 5] since χ_{i} may not be contained in $B^{+} \otimes \wedge V$.) Finally, define a new differential D on $B^{*} \otimes \wedge V$ by

$$
D=\phi^{-1} \circ \delta \circ \phi
$$

Then we have an isomorphism of KS-extensions

where $D_{\mid B^{*}}=\delta_{\mid B^{*}}=d_{B}$.

$$
\text { томе } 128-2000-\mathrm{N}^{\circ} 2
$$

In this section we introduce two changes of KS-basis. If the fibration (1.1) is M.N, the normal minimal model $\mathcal{M}(E) \cong(\mathcal{M}(B) \otimes \wedge V, D)$ is given by a change of KS-basis that we denote ϕ_{1}, one of two basis changes studied in this section.

Proof of Lemma 1.1.

1) The implication $(\sigma \cdot F \Rightarrow M . N)$ is given in terminology of (1.1) with KSbasis $\left\{v_{i}\right\}_{i \in I}$ as follows. We know that (1.1) is $\sigma \cdot F$ iff $D v-\bar{D} v \in \mathcal{M}^{+}(B) \otimes \Lambda^{+} V$ for $v \in V$ (see [10, VI.6.(1)]). Therefore the minimality follows. Suppose there are $\left\{v_{i}\right\}_{i \in J}$ with $J \subset I$ such that $D v_{i}$ is cohomologous to 0 . For $i \in J$, we can change KS-basis inductively, as $\phi_{1}\left(v_{i}\right)=v_{i}-\chi_{i}$ if $D v_{i}=D\left(\chi_{i}\right)$ where $\chi_{i} \in B^{*} \otimes \wedge V_{<i}$ and $\phi_{1}\left(v_{i}\right)=v_{i}$ for $i \in I-J$. Put $\widetilde{D}=\phi_{1}^{-1} \circ D \circ \phi_{1}$ and then we have $\widetilde{D}\left(v_{i}\right)=0$ for $i \in J$. Thus we have $\operatorname{Ker}\left[\widetilde{D}_{\mid V}\right]=\operatorname{Ker}\left(\widetilde{D}_{\mid V}\right)$. We put again $D=\widetilde{D}$. Since again $D v-\bar{D} v \in \mathcal{M}^{+}(B) \otimes \wedge^{+} V$ for $v \in V$, we have for $\mathcal{M}(B)=\left(\wedge V_{B}, d_{B}\right)$

$$
\operatorname{Ker}\left[D_{\mid V_{B}}\right]=\operatorname{Ker}\left[d_{B \mid V_{B}}\right]=\operatorname{Ker}\left(d_{B \mid V_{B}}\right)=\operatorname{Ker}\left(D_{\mid V_{B}}\right) .
$$

The implication ($M . N \Rightarrow W . H . T$) is clear from the decomposability of D. On the other hand, the first and last examples in Section 1 provide counter-examples to the first and second converses, respectively.
2) From 1), we can assume $\left(\wedge\left(V_{B} \oplus V\right), D\right)$ of (1.1) is minimal and normal. Since E is formal, there is a complement N to $\operatorname{Ker}\left(D_{\mid V_{B} \oplus V}\right)$ in $V_{B} \oplus V$ such that any D-cocycle of $I(N)$ is D-exact since $H^{*}(E)$ is generated by $\operatorname{Ker}\left(D_{\mid V_{B} \oplus V}\right)$ (see [3], [9]). Then $N \cap V_{B}$ is a complement to $\operatorname{Ker}\left(D_{\mid V_{B}}\right)=\operatorname{Ker}\left(d_{B \mid V_{B}}\right)$ in V_{B}. From $(D-\bar{D})(V) \subset \Lambda^{+} V_{B} \otimes \Lambda^{+} V$ and $D_{\mid V_{B}}=d_{B}$, we see any d_{B}-cocycle of $I_{B}\left(N \cap V_{B}\right)$ is d_{B}-exact, where $I_{B}(S)$ is the ideal of ΛV_{B} generated by a subset S of V_{B}. The formality of B follows again from [3, Thm 4.1].

As in the proof of Lemma 1.1, part 1), given any KS-extension (1.1), we can change KS-basis

$$
\phi_{1}:\left(\wedge\left(V_{B} \oplus V\right), \widetilde{D}\right) \cong\left(\wedge\left(V_{B} \oplus V\right), D\right)
$$

so that $\operatorname{Ker}\left[\widetilde{D}_{\mid V}\right]=\operatorname{Ker}\left(\widetilde{D}_{\mid V}\right)$. We put again $D=\widetilde{D}$.
Next we introduce the second type change of KS-basis, which we denote ϕ_{2}.
Lemma 2.1. - Let E be a formal space and $F \rightarrow E \rightarrow B$ a W.H.T fibration, with KS-model $\left(\wedge V_{B}, d_{B}\right) \rightarrow\left(\wedge\left(V_{B} \oplus V\right), D\right) \rightarrow(\wedge V, \bar{D})$. Then, for any complement N to $\operatorname{Ker}\left(D_{\mid V}\right)$ in V, there is a change KS-basis

$$
\phi_{2}:\left(\wedge\left(V_{B} \oplus V\right), \widetilde{D}\right) \cong\left(\wedge\left(V_{B} \oplus V\right), D\right)
$$

such that any \widetilde{D}-cocycle of $I(N)$ is \widetilde{D}-exact.

Proof. - Since the fibration is W.H.T, $\left(\wedge\left(V_{B} \oplus V\right), D\right)$ is a minimal model of E with a KS-basis $\left\{v_{i}\right\}_{i \in I}$ of V. Let $\psi:\left(\Lambda\left(V_{B} \oplus V\right), D\right) \rightarrow\left(H^{*}(E), 0\right)$ be a quasi-isomorphism and $K=\operatorname{Ker}\left(\psi_{\mid V}\right)$ with the sub-KS-basis $\left\{v_{i}\right\}_{i \in I_{1}}$. Then K is a complement of $\operatorname{Ker}\left(D_{\mid V}\right)$ in V such that any D-cocycle of $I(K)$ is D-exact (see [3], [9]). Let $\left\{v_{j}\right\}_{j \in I_{2}}$ be the sub-KS-basis of $\operatorname{Ker}\left(D_{\mid V}\right)$ where we assume that I is indexed by $i>j$ if $\left|v_{i}\right|=\left|v_{j}\right|$ for $i \in I_{1}$ and $j \in I_{2}$. Here $I=I_{1} \cup I_{2}$ and $I_{1} \cap I_{2}=\phi$. Then we can choose a basis of the given complement N to $\operatorname{Ker}\left(D_{\mid V}\right)$ as $\left\{v_{i}+\sum_{j \in J_{i}} a_{i j} v_{j}\right\}_{i \in I_{1}}$ with some $a_{i j} \in Q$. Here $J_{i}=\left\{j \in I_{2} ;\left|v_{j}\right|=\left|v_{i}\right|\right\}$. There is a regular liner transformation $\phi_{2}: V \rightarrow V$ given by

$$
\phi_{2}\left(v_{i}\right)=v_{i}-\sum_{j \in J_{i}} a_{i j} v_{j} \text { for } i \in I_{1} \quad \text { and } \quad \phi_{2}\left(v_{j}\right)=v_{j} \text { for } j \in I_{2}
$$

Extend it to an algebra map

$$
\phi_{2}: \wedge\left(V_{B} \oplus V\right) \longrightarrow \wedge\left(V_{B} \oplus V\right)
$$

by $\phi_{2 \mid V_{B}}=\operatorname{id}_{V_{B}}$ and define $\widetilde{D}=\phi_{2}^{-1} D \phi_{2}$. Then N is also a complement to $\operatorname{Ker}\left(\widetilde{D}_{\mid V}\right)$ in V and equals $\operatorname{Ker}\left(\psi \phi_{2 \mid V}\right)$. If an element w of $I(N)$ is a \widetilde{D}-cocycle, then $[w]=\psi \phi_{2}(w)=0$ and w is \widetilde{D}-exact since $\psi^{*} \phi_{2}^{*}$ is an isomorphism on cohomology and $\operatorname{Ker}\left[\widetilde{D}_{\mid V}\right]=\operatorname{Ker}\left(\widetilde{D}_{\mid V}\right)$.

Corollary 2.2. - Let $\mathcal{M}=(\wedge V, d)$ be a normal minimal model. If \mathcal{M} is formal, for any complement N to $\operatorname{Ker}\left(d_{\mid V}\right)$ there is a change of basis $(\wedge V, \tilde{d}) \cong$ $(\wedge V, d)$ of V so that any \tilde{d}-cocycle of $I(N)$ is \tilde{d}-exact.

Proof. - It follows by applying Lemma 2.1 when the base space is the onepoint space.

Let a fibration $F \rightarrow E \rightarrow B$ be M.N. Let $\mathcal{M}(B)=\left(\wedge V_{B}, d_{B}\right)$ be normal and $\left(\wedge V_{B}, d_{B}\right) \xrightarrow{i}\left(\Lambda\left(V_{B} \oplus V\right), D\right)$ a KS-extension, which is normal by a suitable KS-basis change ϕ_{1}. Let B be formal. Then there is a quasi-isomorphism $\rho_{B}:\left(\wedge V_{B}, d_{B}\right) \rightarrow\left(H^{*}(B), 0\right)$ embedded in the commutative diagram:

which is push out in CDGA, i.e., $D^{\prime}{ }_{\mid V}:=\left(\rho_{B} \otimes 1\right) \circ D_{\mid V}$. Here i and i^{\prime} are inclusions and ρ is a quasi-isomorphism since ρ_{B} is [1]. There is a complement N_{B} to $\operatorname{Ker}\left(d_{B \mid V_{B}}\right)$ in V_{B} such that any d_{B}-cocycle of $I_{B}\left(N_{B}\right)$ is d_{B}-exact (see [3], [9]). We remark that

$$
N_{B}=\operatorname{Ker}\left(\rho_{B \mid V_{B}}\right)=\operatorname{Ker}\left(\rho_{\mid V_{B} \oplus V}\right) .
$$

[^1]Lemma 2.3. - Let E and B be formal spaces and $F \rightarrow E \rightarrow B$ be an M.N fibration, with $K S$-model $\left(\wedge V_{B}, d_{B}\right) \rightarrow\left(\wedge\left(V_{B} \oplus V\right), D\right) \rightarrow(\wedge V, \bar{D})$. Then, for any complement N to $\operatorname{Ker}\left(D_{\mid V}\right)$ in V, there is a change of KS-basis

$$
\phi_{2}:\left(\wedge\left(V_{B} \oplus V\right), \widetilde{D}\right) \cong\left(\wedge\left(V_{B} \oplus V\right), D\right)
$$

such that any \widetilde{D}-cocycle of $I\left(N_{B} \oplus N\right)$ is \widetilde{D}-exact.
Proof. - Let $\psi:\left(\Lambda\left(V_{B} \oplus V\right), D\right) \rightarrow\left(H^{*}(E), 0\right)$ be a quasi-isomorphism and $\rho:\left(\Lambda\left(V_{B} \oplus V\right), D\right) \rightarrow\left(H^{*}(B) \otimes \wedge V, D^{\prime}\right)$ a quasi-isomorphism as in (2.2). If $b \in N_{B}$, $\rho(b)=0$ since $\operatorname{Ker}\left(\rho_{B \mid V_{B}}\right)=\operatorname{Ker}\left(\rho_{\mid V_{B}}\right)$. Then

$$
0=\psi^{*} \rho^{*-1}[\rho(b)]=[\psi(b)]=\psi(b)
$$

in $H^{*}(E)$. Hence $N_{B} \subset \operatorname{Ker}\left(\psi_{\left.\right|_{B}}\right)$. We can change KS-basis by some ϕ_{2} for a given complement N to $\operatorname{Ker}\left(D_{\mid V}\right)$ in V as in Lemma 2.1, so that $N=$ $\operatorname{Ker}\left(\psi \phi_{2 \mid V}\right)$. Then $\phi_{2 \mid V_{B}}=\operatorname{id}_{V_{B}}$ and therefore we have

$$
\operatorname{Ker}\left(\psi \phi_{2 \mid V_{B} \oplus V}\right)=\operatorname{Ker}\left(\psi_{\mid V_{B}}\right) \oplus \operatorname{Ker}\left(\psi \phi_{2 \mid V}\right) \supset N_{B} \oplus \operatorname{Ker}\left(\psi \phi_{2 \mid V}\right)=N_{B} \oplus N .
$$

Thus we have that any \widetilde{D}-cocycle of $I\left(N_{B} \oplus N\right)$ is \widetilde{D}-exact since $\psi \phi_{2}$ is a quasiisomorphism and

$$
\begin{aligned}
\operatorname{Ker}\left[\widetilde{D}_{\mid V_{B} \oplus V}\right] & =\operatorname{Ker}\left[D \phi_{2 \mid V_{B} \oplus V}\right]=\operatorname{Ker}\left[D_{\mid V_{B} \oplus V}\right] \\
& =\operatorname{Ker}\left(D_{\mid V_{B} \oplus V}\right)=\operatorname{Ker}\left(D \phi_{2 \mid V_{B} \oplus V}\right)=\operatorname{Ker}\left(\widetilde{D}_{\mid V_{B} \oplus V}\right)
\end{aligned}
$$

3. Proof of Theorem 1.2

We begin this section by recalling the construction of the model of X^{Y} due to Brown and Szczarba [2]. Let $(\wedge V, d)$ a free cdga and $\left(B, d_{B}\right)$ a finite-type cdga. Let $\left(B_{*}, d_{*}\right)$ be the differential graded coalgebra with $B_{q}=\operatorname{Hom}\left(B^{-q}, Q\right)$. The differential d_{*} on B_{*} is the dual of d_{B} and the coproduct $\partial: B_{*} \rightarrow B_{*} \otimes B_{*}$ is the dual of multiplication. Let $\Lambda\left(\Lambda V \otimes B_{*}\right)$ be the free cdga generated by the vector space $\Lambda V \otimes B_{*}$ with the differential induced by the tensor product differential \tilde{d} on $\Lambda V \otimes B_{*}$, and let I be the ideal in $\Lambda\left(\Lambda V \otimes B_{*}\right)$ generated by $1 \otimes 1-1$ and by the all elements of the form

$$
v_{1} v_{2} \otimes \beta-\sum_{i}(-1)^{\left|v_{2}\right| \cdot\left|\beta_{i}\right|}\left(v_{1} \otimes \beta_{i}\right)\left(v_{2} \otimes \beta_{i}^{\prime}\right)
$$

with $v_{1}, v_{2} \in \Lambda V, \beta_{i}, \beta_{i}^{\prime} \in B_{*}$ and $\partial \beta=\sum_{i} \beta_{i} \otimes \beta_{i}^{\prime}$. Then there is a natural isomorphism

$$
\kappa: \wedge\left(V \otimes B_{*}\right) \cong \wedge\left(\wedge V \otimes B_{*}\right) / I
$$

as graded algebras, induced by the inclusion $V \otimes B_{*} \rightarrow \Lambda V \otimes B_{*}$ (see [2, Thm 3.5]). Note that $d(I) \subset I$. Define δ on $\Lambda\left(V \otimes B_{*}\right)$ by $\delta=\kappa^{-1} d \kappa$. For example, if $d v=v_{1} v_{2}$ where $v_{1}, v_{2} \in V$ and $\partial \beta=\sum_{i} \beta_{i} \otimes \beta_{i}^{\prime}$ (see [2, p. 6]),

$$
\delta(v \otimes \beta)=\sum_{i}(-1)^{\left|v_{2}\right| \cdot\left|\beta_{i}\right|}\left(v_{1} \otimes \beta_{i}\right) \cdot\left(v_{2} \otimes \beta_{i}^{\prime}\right)+(-1)^{|v|} v \otimes d_{*}(\beta) .
$$

In the following, we suppose that X is n-connected and finite-type, with $\mathcal{M}(X)=(\wedge V, d)$ (so that $\left.V=\bigoplus_{i>n} V^{i}\right)$, and Y is a non rationally contractible, finite-type, q-dimensional CW complex, where $q \leq n$. Let $\mathcal{M}(Y)=\left(\wedge V_{Y}, d_{Y}\right)$ and $\mathcal{M}_{*}(Y)=\operatorname{Hom}(\mathcal{M}(Y), Q)$. Then

$$
\left(\wedge\left(\wedge V \otimes \mathcal{M}_{*}(Y)\right), \tilde{d}\right) / I \cong\left(\wedge\left(V \otimes \mathcal{M}_{*}(Y)\right), \delta\right) \cong(\wedge W, \delta) \otimes \mathcal{C} \simeq(\wedge W, \delta)
$$

where $W \subset V \otimes \mathcal{M}_{*}(Y)$ with

$$
W \equiv V \otimes\left\{\text { the cohomology classes of } d_{Y} \text {-cocycles }\right\}_{*} \cong V \otimes H_{*}(Y)
$$

as vector spaces and \mathcal{C} a contractible cdga. Here a basis of W is inductively constructed so that $V \otimes y_{*} \subset W$ for $y \in V_{Y}$ with $d_{Y}(y)=0$ and $\delta(W) \subset \wedge W$ (see [2]). According to [2, Thm 1.5], the minimal model of X^{Y} is given by $\mathcal{M}\left(X^{Y}\right) \cong(\wedge W, \delta)$.

Write $W=V \oplus W_{+}$, where $W_{+}:=W \cap\left(V \otimes \mathcal{M}_{+}(Y)\right)$. Then a KS-model of the fibration $\left(^{*}\right)$ (see Section 1) for a normal minimal model $\mathcal{M}(X)=(\Lambda V, d)$ is given as

$$
\begin{equation*}
(\wedge V, d) \longrightarrow\left(\wedge V \otimes \wedge W_{+}, \delta\right) \longrightarrow\left(\wedge W_{+}, \bar{\delta}\right) \tag{**}
\end{equation*}
$$

where $(\wedge W, \delta)=\left(\wedge V \otimes \wedge W_{+}, \delta\right)$ is minimal but may not be normal. Since $\left(^{*}\right)$ has a section, it is M.N by Lemma 1.1, part 1). Then there is a KS-basis change of $(* *)$ that can be given as follows:

where $(\wedge W, D)=\left(\Lambda V \otimes \Lambda W_{+}, D\right)$ is normal with $D=\phi_{1}^{-1} \delta \phi_{1}$.
In the following, we suppose that X is elliptic (i.e., $\operatorname{dim}_{Q} V<\infty$) and X^{Y} is formal, which implies that X is formal by Lemma 1.1, part 2). If X is elliptic, it is known that $H^{*}(X)$ is a Poincaré algebra (see [6]). Furthermore, if X is elliptic

```
томе 128-2000- N}\mp@subsup{}{}{\circ}
```

and formal, it is known that ($\wedge V, d$) is two stage, i.e., $V=V_{0} \oplus V_{1}$ with $d V_{0}=0$ and $d V_{1} \subset \wedge V_{0}$ (see [5]). Therefore we can put

$$
W_{(0)}=\left\{V_{0} \otimes \mathcal{M}_{*}(Y)\right\} \cap W \quad \text { and } \quad W_{(1)}=\left\{V_{1} \otimes \mathcal{M}_{*}(Y)\right\} \cap W
$$

Then $W=W_{(0)} \oplus W_{(1)}, V_{0} \subset W_{(0)}, V_{1} \subset W_{(1)}, \delta W_{(0)}=0$, and $\delta W_{(1)} \subset \wedge W_{(0)}$. Then $\phi_{1 \mid \operatorname{Ker}(\delta \mid W)}=\operatorname{id}_{\operatorname{Ker}(\delta \mid W)}$ and especially $\phi_{1 \mid W_{(0)}}=\operatorname{id}_{W_{(0)}}$.

For the quasi-isomorphism $\rho_{X}:(\wedge V, d) \rightarrow\left(H^{*}(X), 0\right)$ with $\operatorname{Ker}\left(\rho_{X \mid V}\right)=V_{1}$, there are the push outs:

and for the KS-basis change $\phi_{2}:\left(\wedge V \otimes \wedge W_{+}, \widetilde{D}\right) \cong\left(\wedge V \otimes \wedge W_{+}, D\right)$ corresponding to a certain complement N to $\operatorname{Ker}\left(D_{\mid V}\right)$ in V as in Lemma 2.1,

where ρ_{X}, η and $\tilde{\rho}$ are quasi-isomorphisms.
Claim. $-\left(H^{*}(X) \otimes \wedge W_{+}, \widetilde{D}^{\prime}\right) \cong\left(H^{*}(X) \otimes \wedge W_{+}, \delta^{\prime}\right)$ as cdgas.
Proof of Claim. - Since (3.3) is a push out, there is a map $\left(\phi_{1} \phi_{2}\right)^{\prime}$ such that the following commutes:

On the other hand, since (3.2) is a push out, there is a map $\left(\phi_{2}^{-1} \phi_{1}^{-1}\right)^{\prime}$ such that the following commutes:

Then $\left(\phi_{2}^{-1} \phi_{1}^{-1}\right)^{\prime} \circ\left(\phi_{1} \phi_{2}\right)^{\prime}=\operatorname{id}$ and $\left(\phi_{1} \phi_{2}\right)^{\prime} \circ\left(\phi_{2}^{-1} \phi_{1}^{-1}\right)^{\prime}=i d$ by universality. Hence $\left(\phi_{1} \phi_{2}\right)^{\prime}$ is an isomorphism in (3.4).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Proof of Theorem 1.2. - The if part is obvious since $\delta=0$ if $d=0$. The only if part is shown as follows. Suppose $V_{1} \neq 0$. Let $v=v_{i}$ be a non-zero basis element in a basis $\left\{v_{j}\right\}_{j \in I}$ of V_{1}, where $i=\max \left\{j \in I ;\left|v_{j}\right|=|v|\right\}$, and let y be a non-zero basis element of V_{Y} with $d_{Y}(y)=0$ for $\mathcal{M}(Y)=\left(\wedge V_{Y}, d_{Y}\right)$. Such an element y surely exists since Y is not rationally contractible and since V_{Y} has a well-ordered basis $\left\{y_{i}\right\}_{i}$ such that $d_{Y}\left(y_{i}\right) \in \Lambda\left(V_{Y<i}\right)$. Then we can regard $v \otimes y_{*}$ as a basis element of $W_{(1)}$ with the index k of the basis for some k and $\left\{v_{j} \otimes y_{*}\right\}_{j<i} \subset W_{<k}$ from the construction of W.

Suppose $\delta\left(v \otimes y_{*}\right)=\delta(\chi)$ for some $\chi \in \Lambda W_{<k}$. We can uniquely write

$$
\chi=\sum_{j<i} \theta_{j}\left(v_{j} \otimes y_{*}\right)+\mu
$$

for $\theta_{j} \in \Lambda V_{<i}$ and $\mu \notin \wedge V \otimes\left(V \otimes y_{*}\right)$. Then

$$
0=\delta\left(v \otimes y_{*}\right)-\delta \chi=\kappa^{-1} \tilde{d} \kappa\left((v-\theta) \otimes y_{*}\right)=\kappa^{-1}\left(d(v-\theta) \otimes y_{*}\right)
$$

for $\theta=\sum_{j<i} \theta_{j} v_{j}$ and $\delta(\mu)=0$ since
(a) $\tilde{d}\left(V \otimes z_{*}\right) \subset \wedge V \cdot\left(V \otimes z_{*}\right)$ for any $z \in V_{Y}$, since $d_{*}\left(z_{*}\right)=z_{*} \circ d_{Y}=0$ due to the decomposability of d_{Y}, and
(b) $\tilde{d}\left(V \otimes z_{*}\right) \subset \Lambda V \cdot\left(V \otimes\left(\Lambda^{>1} V_{Y}\right)_{*}\right) \oplus \Lambda V \cdot \Lambda^{>1}\left(V \otimes \mathcal{M}_{+}(Y)\right)$ for any $z \in \Lambda^{>1} V_{Y}$.

Since the derivation ()$\otimes y_{*}: \wedge V \rightarrow \wedge W$ is injective, $d(v)=d(\theta)$ for $\theta \in \wedge V_{<i}$, which contradicts the normality of $(\Lambda V, d)$. Thus $\delta\left(v \otimes y_{*}\right)$ is not cohomologus to zero.

We see therefore

$$
\phi_{1}\left(v \otimes y_{*}\right)=v \otimes y_{*}
$$

in (3.1) from the definition of change of KS-basis in the proof of Lemma 1.1 (1). Also

$$
D\left(v \otimes y_{*}\right)=\phi_{1}^{-1} \delta \phi_{1}\left(v \otimes y_{*}\right)=\phi_{1}^{-1} \delta\left(v \otimes y_{*}\right)=\delta\left(v \otimes y_{*}\right) \neq 0
$$

since $\delta\left(W_{(1)}\right) \subset \wedge W_{(0)}$ and $\phi_{1 \mid W_{(0)}}=\operatorname{id}_{W_{(0)}}$. Hence $v \otimes y_{*} \notin \operatorname{Ker}\left(D_{\mid W}\right)$. Then, from Lemma 2.1, we can change KS-basis $\phi_{2}:(\wedge W, \widetilde{D}) \cong(\wedge W, D)$, so that any \widetilde{D}-cocycle of $I(N)$ is \widetilde{D}-exact, for some subspace N of $W_{(1)} \cap W_{+}$with $v \otimes y_{*} \in N$. We fix a particular N.

Let $[w]$ be the fundamental class of $H^{*}(X)$. Then $[w] \cdot\left(v \otimes y_{*}\right)$ is a δ^{\prime}-cocycle of $H^{*}(X) \otimes \wedge W_{+}$. In fact, if $d v=\sum_{i} a_{i} v_{i_{1}} \cdots v_{i_{n_{i}}}$ for $v_{i .} \in V_{0}$ and $a_{i} \in Q$,

$$
\begin{aligned}
\delta^{\prime}\left([w] \cdot\left(v \otimes y_{*}\right)\right) & =[w] \cdot\left(\rho_{X} \otimes 1\right) \delta\left(v \otimes y_{*}\right) \\
& =\sum_{i} \sum_{1 \leq j \leq n_{i}} \pm a_{i}\left[w v_{i_{1}} \cdots \hat{v}_{i_{j}} \cdots v_{i_{n_{i}}}\right] \cdot\left(v_{i_{j}} \otimes y_{*}\right)
\end{aligned}
$$

must be zero since the degree of $w v_{i_{1}} \cdots \hat{v}_{i_{j}} \cdots v_{i_{n_{i}}}$ is always greater than the formal dimension of X.

[^2]Let $\phi_{2}\left(v \otimes y_{*}\right)=v \otimes y_{*}+c$ with c a D-cocycle. Since $\phi_{1 \mid W_{(0)}}=\operatorname{id}_{W_{(0)}}$, we obtain

$$
0=D c=\phi_{1}^{-1} \delta \phi_{1}(c)=\delta \phi_{1}(c)
$$

i.e., $\phi_{1}(c)$ is a δ-cocycle. Then $[w]\left(v \otimes y_{*}+\phi_{1}(c)\right)$ is a δ^{\prime}-cocycle but cannot be δ^{\prime}-exact since $v \otimes y_{*}+\phi_{1}(c)$ contains a non-zero element of $W_{(1)} \cap W_{+}$due to the definition of change of KS-basis and since
(a) $\delta^{\prime}\left(W_{+}\right) \subset H^{*}(X) \otimes\left(W_{(0)} \cap W_{+}\right)$, and
(b) $\delta^{\prime}\left(\Lambda^{>1} W_{+}\right) \subset H^{*}(X) \otimes \Lambda^{>1} W_{+}$.

Then, according to the Claim above, $[w]\left(v \otimes y_{*}\right)$ is a non-exact \widetilde{D}^{\prime}-cocycle, since

$$
\left(\phi_{1} \phi_{2}\right)^{\prime}\left([w]\left(v \otimes y_{*}\right)\right)=[w]\left(\phi_{1}\left(v \otimes y_{*}\right)+\phi_{1}(c)\right)=[w]\left(\left(v \otimes y_{*}\right)+\phi_{1}(c)\right)
$$

in (3.4). Since $\tilde{\rho}$ is a quasi-isomorphism in (3.3), there exists a non-exact \tilde{D} cocycle $w \cdot\left(v \otimes y_{*}\right)+\xi$ in ΛW, such that $\tilde{\rho}(\xi)=0$. Since

$$
\operatorname{Ker}\left(\tilde{\rho}_{\mid V \oplus W_{+}}\right)=\operatorname{Ker}\left(\rho_{X \mid V \oplus W_{+}}\right)=V_{1},
$$

we obtain that $\xi \in I\left(V_{1}\right)$ and thus $w \cdot\left(v \otimes y_{*}\right)+\xi \in I\left(V_{1} \oplus N\right)$. This contradicts Lemma 2.3. Hence $V_{1}=0$.

Since $\operatorname{dim}_{Q} H^{*}(X)<\infty$, this means $V_{0}=V_{0}^{\text {odd }}$ and $H^{*}(X)=\Lambda\left(V_{0}^{\text {odd }}\right)$, i.e., X has the rational homotopy type of a product of odd dimensional spheres if $V_{0} \neq 0$ and is rationally contractible if $V_{0}=0$.

BIBLIOGRAPHIE

[1] Baues (H.J.). - Algebraic homotopy. - Cambridge Studies in Advanced Mathematics, 15, 1988.
[2] Brown (E.H.), Szczarba (R.H.). - On the rational homotopy type of function spaces, preprint, 1997.
[3] Deligne (P.), Griffiths (P.), Morgan (J.), Sullivan (D.). - The real homotopy theory of Kaehler manifolds, Invent. Math., t. 29, 1975, p. 245-274.
[4] Dupont (N.), Vigué-Poirrier (M.). - Formalité des espaces de lacets libres, Bull. Soc. Math. France, t. 126, 1998, p. 141-148.
[5] Félix (Y.), Halperin (S.). - Formal spaces with finite-dimensional rational homotopy, Transactions Amer. Math. Soc., t. 270, 1982, p. 575-588.
[6] Halperin (S.). -Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc., t. 230, 1977, p. 173-199.
[7] Halperin (S.). - Rational fibrations, minimal models and fibrings of homogeneous spaces, Trans. Amer. Math. Soc., t. 244, 1978, p. 199-223.
[8] Lupton (G.). - Variations on a conjecture of Halperin, preprint, 1998.
[9] Papadima (S.). - The cellular structure of formal homotopy types, J. Pure Applied Alg., t. 35, 1985, p. 171-184.
[10] Thomas (J.-C.). - Homotopie rationelle des fibrés de Serre, thèse, 1980.
[11] Thomas (J.-C.). - Rational homotopy of Serre fibration, Ann. Inst. Fourier Grenoble, t. 31, 3, 1981, p. 71-90.

[^0]: ${ }^{(*)}$ Texe recu le 8 fécrier 1999, revisé le 3 juin 1999, accepté le 25 juin 1999.
 T. Yamaguchi, University Education Center, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan). Email: t_yama@math.okayama-u.ac.jp.
 Mathematics Subject Classification: 55P62.

[^1]: томе $128-2000-$ n $^{\circ} 2$

[^2]: томе $128-2000-\mathrm{N}^{\circ} 2$

