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THE THEORY OF DIFFERENTIAL INVARIANTS

AND KDV HAMILTONIAN EVOLUTIONS

BY GLORIA MARI BEFFA (*)

ABSTRACT. — In this paper I prove that the second KdV Hamiltonian evolution
associated to SL(n, R) can be view as the most general evolution of projective
curves, invariant under the SL(n,R)-projective action on RP"'"1, provided that certain
integrability conditions are satisfied. This way, I establish a very close relationship
between the theory of geometrical invariance, and KdV Hamiltonian evolutions. This
relationship was conjectured in [4].

RESUME. — LA THEORIE DES INVARIANTS DIFFERENTIELS ET LES EVOLUTIONS
HAMILTONIENNES DE KDV. — Dans cet article, je prouve que la seconde evolution
hamiltonienne de KdV, associee au groupe SL(n,R), peut etre consideree comme
1'evolution la plus generale des courbes projectives qui sont invariantes par Faction
projective de SL(n, R) sur RP71"1, si une certaine condition d'integrabilite est satisfaite.
Je mets alors en evidence une connection tres etroite entre la theorie d'invariance
geometrique et les evolutions hamiltoniennes de KdV. Cette relation a ete conjecturee
en [4].

1. Introduction
Consider the following problem: Let ( / ) ( t ^ 0 ) € MP^"1 be a family

of projective curves. We ask the following question: is there a formula
describing the most general evolution for 0 of the form

^=F(^^^...)

invariant under the projective action of SL(n,R) on RP72"1? Here

,/ / d0 / d<^0 =^e=^. ^ - d T
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364 G. MARI BEFFA

The projective action of SL(n,R) on RP7'"1 is the one induced on W"1

by the usual action of SL(n, R) on R71 via the lift

ron—l •(i ,^) .
As we showed in [4], such a formula can be found using the theory of
projective differential invariance. In fact, one can prove that any evolution
of projectives curves which is invariant under SL(n,R) can always be
written as

(1.1) rf>t=^

where 1 is a vector of differential invariants for the action and ji is a
particular (fixed) matrix of relative invariants^ whose explicit formula was
found in [4]. Roughly speaking, if a group G acts on a manifold M, one
can define an action of the group on a given jet bundle J^ of order k,
where J^ is the set of equivalence classes of submanifolds modulo border
contact. This action, in coordinates looks like

GxJ^^jW,

(g,uK) •—^ (gu)K,
for any differential subindex K of order less or equal to A:, and it is called
the prolonged action. A differential invariant is a map

j: jW _, ̂

which is invariant under the prolonged action. A relative differential
invariant is a map

j: jW _, ̂

whose value gets multiplied by a factor under the prolonged action. The
factor is usually called the multiplier. In our particular case, their infini-
tesimal definitions are given in the second part of section 2. Differential
invariants and relative invariants are the tools one uses to describe inva-
riant evolutions.

These two concepts belong to the theory of Klein geometries and
geometric invariants which had its high point last century before the
appearance of Cartan's approach to differential geometry. It is also
closely related to equivalence problems. Namely, one poses the question
of equivalence of two geometrical objects under the action of a certain
group, that is, when can one of those objects be taken to the other one
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DIFFERENTIAL INVARIANTS AND KDV EVOLUTIONS 365

using a transformation belonging to the given group? For example, given
two curves on the plane, when are they equivalent under an Euclidean
motion? or, when are they the same curve, up to parametrization? etc. One
answer can be given in terms of invariants, that is, expressions depending
on the objects under study and that do not change under the action
of the group. If two objects are to be equivalent, they must have the
same invariants. If these invariants are functions on some jet space (for
example, if they depend on the curve and its derivatives with respect to
the parameter), then they are called differential invariants. In the case of
curves on the Euclidean plane under the action of the Euclidean group,
the basic differential invariant is known to be the Euclidean curvature,
and any other differential invariant will be a function of the curvature
and its derivatives. In the case of immersions

with SL(2,M) acting on MP1, the basic differential invariant is classically
known to be the Schwarzian derivative of 0,

^/. r 3/0'Y
sw=~^~2(~^) '

Within the natural scope of the study of equivalence problems and their
invariants lies also the description of invariant differential equations,
symmetries, relative invariants, etc. For example, recently Olver et al. [12]
used these ideas to characterize all scalar evolution equations invariant
under the action of a subgroup of the projective group in the plane, a
problem of interest in the theory of image processing. See Olver's book [11]
for an account of the state of the subject.

A subject apparently unrelated to the Theory of differential invariance
is the subject of Hamiltonian structures of partial differential equations,
integrability and, in general, of infinite dimensional Poisson structures.
The so-called KdV Poisson brackets lie within this area. These brackets
were defined by Adier [1] in an attempt to generalize the bi-Hamiltonian
character of the Korteweg-deVries (KdV) equation and its integrability.
He defined a family of second Hamiltonian structures with respect to
which the generalized higher-dimensional KdV equations could also be
written as Hamiltonian systems. JacobFs identity for these brackets was
proved by GePfand and Dikii in [3]. These Poisson structures are called
second Hamiltonian KdV structures or Adier- Gel Jand- Dikii brackets^ and
they are defined on the manifold of smooth Lax operators. Since the
original definition of Adier was quite complicated and not very intuitive,
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366 G. MARIBEFFA

alternative definitions have been subsequently offered by several authors,
most notably by Kupershmidt and Wilson in [7], and by DrinfePd and
Sokolov in [2]. Once the second Hamiltonian structure was found, the
integrability of generalized KdV equations was established via the usual
construction of a sequence of Hamiltonian structures with commuting
Hamiltonian operators. In this paper I will restrict to the case of the
SL(n,R) AdIer-GePfand-Dikii bracket, although brackets have been given
for other groups (DrinfePd and Sokolov described their definition for
any semisimple Lie algebra). The second Hamiltonian Structure in this
hierarchy of KdV brackets coincides with the usual second Poisson bracket
for the KdV equation, that is, the canonical Lie-Poisson bracket on the
dual of the Virasoro algebra. This is the only instance in which the
second KdV bracket is linear.

The relationship between Lax operators (scalar n-th order ODE's) and
projective curves was established by the classics and clearly described by
Wilczynski in [13]. More recently (see [12]) the topology of these curves
was used to identify one of the invariants of the symplectic leaves of
the AdIer-GePfand-Dikii Poisson foliation. Some comments with respect
to the role of projective curves in these brackets can be found in [14]
and [7]. In [4] it was conjectured that the second KdV Hamiltonian
evolution and the general evolution for projective curves (1.1) found
in [4] were, essentially, the same evolution under a 1-to-l (up to SL(n,]R)
action) correspondence between Lax operators and projective curves. The
only condition that needed to be imposed was that certain invariant
combination of the components of the invariant vector Z in (1.1) should
be integrable to define the gradient of certain Hamiltonian operator (one
can even describe the evolution so that both I and Hamiltonian coincide
after the identification).

In this paper I prove this conjecture. Namely, I prove that there exists
an invariant matrix M, invertible, such that, ifHis the pseudo-differential
operator associated to an operator 7^, and if

H=MI
then, whenever (f) evolves following (1.1) with general invariant vector Z,
then their associated Lax operators (associated in the sense of [4] and
described again in the next chapter) will evolve following an AGD-
evolution with Hamiltonian operator H. I also prove the conjectured
shape of M., namely, lower triangular along the transverse diagonal with
ones down the transverse diagonal and zeroes on the diagonal inmediately
below the transverse one. The proof is based on a manipulation ofWilson's
antiplectic pair for the GL(?2, R)-AGD bracket and on the comparison of
the resulting formulas with the invariant formulas (1.1).
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DIFFERENTIAL INVARIANTS AND KDV EVOLUTIONS 367

In chapter 2, I will briefly describe the 1-1 (up to SL(?2,IR) action)
correspondence between the SL(n,R) AGD manifold and the manifold
of projective curves, and I will also describe the evolutions we wish to
relate. In chapter 3, I will describe Wilson's theory of antiplectic pairs
and, in particular, the antiplectic pair for the GL(?2,IR)-AGD bracket.
In chapter 4,1 will adapt Wilson's formulas and finally give the proof of the
Main Theorem. I will also prove that M. has the shape conjectured in [4].
For more information or further references about either the evolutions
under study or the correspondence between Lax operators and projective
curves, please see [4].

2. Description of the manifolds and their evolutions
Before describing evolutions, I will state the known parallelism between

the manifold of Lax operators and the manifold of projective curves.

Let An be the infinite-dimensional Frechet manifold of scalar differen-
tial operators (or Lax operators) with T-periodic, smooth coefficients of
the form

, , d71 d71-2 d
(2J) L=~^J^Un-2^~^"^ulTe^uQ'

The manifold An is called the SL(n, M) AdIer-GePfand-Dikii manifold, or
manifold of SL(n,IR)-Lax operators. (Notice that for much of the study
below the periodicity condition can be omitted.) The case when Un-i
does not vanish is refered to as the GL(n, R) AGD manifold or manifold
of GL(n, M)-Lax operators.

Let ^L = (^i) • • • j^n) be a solution curve associated to L, that is

L^=0, A ; = l , . . . , n ,

the Wronskian of whose components equals one. Notice that, since the
Wronskian of any solution curve is constant {un-i = 0), up to multi-
plication by a matrix in SL(n,R), ̂  will be uniquely determined by its
Wronskian being equal to 1. Now, due to the periodicity of the coefficients
of L, there exists a matrix ML G SL(n,R), called the monodromy of L,
such that

^(<9 + T) = Mz^(6Q, for all 0 C M.

(ML is conjugate to the transposed of the Floquet matrix.) This same pro-
perty is shared by the projective coordinates of its projection on RP71"1, as
far as we consider the action of SL(n, R) on the projective space. Observe
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368 G. MARI BEFFA

that the monodromy is not completely determined by the operator L, but
by its solution curves. Namely, if one chooses a different solution curve, its
monodromy won't be equal to ML in general, but it will be the conjugate
of ML by an element of GL(n, R). If we additionally ask the solution curve
to have Wronskian equals 1, then ML is determined by the equation up
to conjugation by an element of SL(n,R). Thus, to each Lax operator we
can associate a projective curve (the projectivisation of certain solution
curve) whose monodromy is an element of SL(n,R). This curve is unique
up to the projective action of SL(?2,IR).

Conversely, let Cn be the space of curves

J,. TQ) ___, 7D) "p^ — 1(p . M ——>• IKIr

with the following nondegeneracy condition: the determinant

^"-1)
/,("-!)
°2

^(»-1)
Pn-1

€ ^

4>2 ^

I I

n-1
/
n-1

must be positive. (This is equivalent to the Wronskian of the components
of (1,0) being positive; for example, the curve would be convex and right-
hand oriented in the case n = 3.) Assume also that the elements of Cn
satisfy a monodromy property:

(2.2) 0(<9 + T) = (M • 0)((9), for all 0 6

for some M e SL(7i,R). Here M • (f) represents the projective action of
SL(n,R) onW"1.

To each (j) one can associate a differential operator of the form (2.1)
in the following manner: We lift (j) to a unique curve on R71 so that the
Wronskian of the components of the lifted curve equals 1. There is a
unique choice /(^)(1,<^), namely when

/ = W(l, 0i , . . . . (^-i)-^ = W(^.... <^_i)-* = W^,

where (f) = (0i , . . . , (f)n-i) and W represents the Wronskian. It is not very
hard to see that the coordinate functions of the lifted curve are solutions
of a unique differential equation. The equation for the unknown y is of
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DIFFERENTIAL INVARIANTS AND KDV EVOLUTIONS 369

the form

(2.3)

yW (f^)W

V^^ Wo)^

/00

Wn-l)^

(f^n-l)^

f^n-1

= y^ + Un^y^'^ + • • • + u^y' + uo2/ = 0,

where 0o = 1- O116 can easily see (cf. [4]) that the monodromy property
(2.2) results on the coefficients i^, i = 0,1, . . . , n — 2 being T-periodic, so
that this equation corresponds to a Lax operator of the form (2.1).

It is known (see [13]) that the coefficients of this Lax operator form
the so-called generating set of differential invariants for projective curves
under the projective action of SL(n, R). Namely, if a function J, depending
on (f) and its derivatives, is invariant under the prolonged projective action
of SL(n, IR), then, necessarily I is a function of the coefficients u^s and their
derivatives. The u^s can thus be called the "projective curvatures" of the
curve (/). I will go back to this point in the description of the evolution of
curves. For more information see [13] and [4].

EXAMPLE. — In the case of immersions (/): R —^ RP1, with SL(2,R)
acting on RP1, the Wronskian W^ equals <j)'. Thus, the lift ^ is given by
(^i, ̂ 2) = (0'~2 ^ ^'"^(f^). If we write down the associated Lax operator for
this particular example, we obtain

(^y o^n
=y"+^S((f,)y,W-.y^ (^/-^y

^-4
where, again, S((f)) = <y" 1 ^ > ' — |(<^//1^/)2 is the classical Schwarzian
derivative of (^, the basic differential invariant or projective curvature.

The above description establishes a 1-1 (up to SL(n,R)) correspon-
dence between An and Cn' Next I will describe two different evolutions,
one in each manifold.

The AdIer-Gel'fand-Dikii bracket, or the evolution on An'
Given a linear functional Ji on An-, one can associate to it a pseudo-

differential operator symbol of the form

(2.4) H=^hi9~\ <9=
d

~d0
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370 G. MARI BEFFA

such that
H(L)= [ ves(HL)d0,

J s 1

where 'res' selects the coefficient of 9~1 and is called the residue of
the pseudo-differential operator (see [1] or [3]). The coefficients h^
i = 1, . . . , n - 1 are combinations of the coefficients of the gradient QH/Qu
and their derivatives; the coefficient hn will be determined below.

To any H we can associate a (Hamiltonian) vector field VH defined as

VH(L)=(LH)^L-L{HL)^

where by ( )+ we denote the non-negative (or differential) part of the
operator. The vector field VH defines a bracket, namely

(2.5) {H^}(L)= [ res(l^(L)F)d0,
J s 1

which turns out to be a Poisson bracket with associated Hamiltonian
evolutions given by

(2.6) Lt = Vn{L)

cf. [I], [3] or [9]. The coefficient hn of the operator H is fixed, and its
value easily found, so as to make the vector field VH tangent to the
manifold An (that is, so that both sides of (2.6) have the n - 1 term equal
zero). These are called the SL(n,M) AdIer-GePfand-Dikii evolutions. As
I explained in the introduction, the original definition of the bracket was
given by Adier [1] in an attempt to make generalized KdV equations bi-
Hamiltonian systems. GePfand and Dikii proved JacobPs identity in [3].
In the case n = 2, this bracket coincides with the Lie-Poisson structure
on the dual of the Virasoro algebra. Two other equivalent definitions of
the original bracket were found in [6] and in [2]. I will describe briefly the
definition in [6] in the chapter where I prove the Main Theorem.

Invariant evolutions of protective curves, or the evolution on Cn.
On Cn we are interested in evolutions of the form

(2.7) ^ = F(^ 0', ̂ / / , . . .) , 0: R2 —— Rp—i,

such that whenever (f)(0,t) is a solution of (2.7) so is (M • (f))(0,t), for all
M € SL(n,M). That is, evolutions of curves on RP71"1, invariant under
the projective action of SL(n,R).
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DIFFERENTIAL INVARIANTS AND KDV EVOLUTIONS 371

One can see that, if the initial condition has the monodromy property,
the entire flow does and in fact the monodromy is preserved, as far as
the solution is unique. Indeed, (2.7) is invariant under translations of the
independent variable 0. Hence, if the initial condition 0( • , 0) of (2.7) has
a matrix M € SL(n, M) as monodromy, and we consider a different curve
in the flow (f)( • , t), we have that (f)(0 — T, t) is also a solution. If (2.7) is
SL(n, R)-invariant, M'(f)(0—T, t) will also be a solution of (2.7). Applying
uniqueness of solutions of (2.7) (whenever possible),

M -(f){e-T,t) =(/)(0,t),

so that ( f ) ( ' ,^) has the same monodromy as 0( - ,0 ) . If there is no
uniqueness of solutions, both Hamiltonian and invariant evolutions are
obviously much more complicated; I won't deal with those cases in this
paper.

In [4] we found the explicit formula for the most general form of evo-
lution (2.7). It could be described as follows: First of all, the infinitesimal
generators of the projective SL(n, R) action on RP71"1 are easily found to
be the following vector fields on R x M x W"1:

r\ r\ 1T' r\(2.8)^=—. v^j=(l)^^T~^ w! = ̂ y^^'^r^ i^j^^-i-dcpi d(j)j ^ d(j)j

n—in-l
S ''Iz^f ̂
i=l

If -y = ̂  y^^^^— is a vertical vector field, its prolongation prv

(see [9]) is the vector field defined on the jet space by

8n-l

(2.9) ^=^Y.WD^-
j^l i=l ^W Vi )
k>0

where (^u) = Q^i, D is the total derivative operator with respect to 0

D=9+Y.Y,<P(,j+l)9
/-^ Z - ^ ' 1 QJL(.0)
J'^O 2=1

and

n-l 9(2.10) Dt=9t+^^9^)^^^i ; y)
j^O i=l ^Vi
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The prolongation of an infinitesimal generator is indeed the infinitesimal
generator of the prolonged action on the jet space. In our case, it reduces
to the vector field

(2.11) prv=v+^^{D^i)^
9^j>l i=l

defined on the infinite-dimensional jet space

TOO —— TOO /TTp TOTir7'1"^J = J ^M, Mir )

with local coordinates 0, (p^ where 1 < i <^ n— 1 and j > 0 (to be correct,
we should in fact restrict ourselves to the jet space J^\ for some order k
as large as necessary; but for simplicity I will work on J^).

DEFINITION 2.1.
a) We will say that J is a differential invariant for the SL(n,R)-

projective action if

PTV(I) = 0 for all v € sl(n,IR).

This is indeed the infinitesimal version of the definition we gave in the
introduction: I is invariant under the prolonged action.

b) (Infinitesimal definition also) Let

n—l ^

=y^((9,^)—— esl(n.R)
^ ^

v =

be an infinitesimal generator. We will say that F is a relative vector
differential invariant of the Lie algebra sl(n,M) given by (2.8), whose
associated weight is the matrix 9rj/9(/) whenever

(2.12) pr^(F)=^F,

for all v e sl(n, R), where Orj/Qcf) is the (n - 1) x (n - 1) matrix with (ij)
entry 9rji/9(f)j.

It is not hard to see (cf. [4]) that (2.7) is invariant if, and only if F
is a relative vector differential invariant of the Lie algebra sl(n, R) with
weight Qrj/Qcf).
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THEOREM 2.2 (see [4]). — The most general solution F of (2.12) is of
the form

F=^.

where the {n — 1) x (n — 1) matrix

/i=(^2... ^"-1)
is any matrix with non-vanishing determinant and whose columns ^ are
particular solutions of (2.12), and where

T- =(Wi1

is an arbitrary absolute (vector) differential invariant of the algebra (2.8),
i.e. a solution of

prv(Ii) =0, W e 5[(n), i = 1 , . . . ,n - 1.

The problem is thus splitted into two parts: first find the invariants,
second find the matrix fi.

The first part was already solved by Wilczynski in [13]. He proved
that, in the case of projective curves, a set of generating basic differential
invariants are the coefficients of the differential operator associated to (f)
as in (2.3). That is, any differential invariant Ij will have to be a function
of the coefficients Uz, i = 0 , . . . ,n — 2 and their derivatives with respect
to 0.

In [4] we solved the second part, finding an explicit expression for a
regular matrix of relative differential invariants, ^, which I describe below.

DEFINITION 2.3.
a) For % i , . . . ,%fc > 0 and 1 <, k <, n — 1, let us denote

Wi

^1)

^

^

^
^2)

^

... ^
-. ^2)

.:: ^
and

W^ = Wi2...fc.

b) We define the homogeneous variables ^i^...^ by

(1^1^2.••ik =
W,' Z l Z 2 - - - Z k

W1"
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c) For k = 1,2,. . . ,n the variables q^ are defined as follows:

^=9l2...fc...»'

where the notation k means that the index k is to be omitted.

THEOREM 2.4. — An invertible matrix /j, of relative invariants with
weight Qr]/9<p is given by a matrix of the form

W^(Id+A)

where W^ is the transposed of the Wronskian matrix of <j) defined as

( ^ ^ . . . ^-i \

(2.13) W^ =

P'n-,

^ ^ ... <_l

U^ ^-1) ... ^)

and where A = (a^) is defined by

[ (-Ip-1^)
I \Z / n— Q-i-i • r •

(2.14) ai = { ( n ^ ^ J+ ^ ^ < ̂
| \ J - i }

0 if i > j .

As an immediate consequence one obtains:

COROLLARY 2.5. — The most general equation for the evolution of
curves on RP71"1 which is invariant under the projective action ofSL(n, R)
is given by

(2.15) ^=H^(Id+A)Z,

where YV^ and A are given by (2.13) and (2.14), and where I is any vector
differential invariant for the action.

Before finishing the section I will like to include an immediate corollary
to Theorem 2.2 which will be of use later on.
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DIFFERENTIAL INVARIANTS AND KDV EVOLUTIONS 375

COROLLARY 2.6. — Let fJi and /2 be two nondegenerate matrices whose
columns are relative vector differential invariants, with associated weights
given as in (2.12). Then, there exists an invariant and nondegenerate
matrix M. such that

^ = JIM.

After defining the two parallel evolutions, and describing some of the
theory of differential invariance, I would like to show that these are
essentially the same evolution. This implies that certain relationship will
have to be found between I and H. Notice that both of them are functions
of the coefficients ui, i = 0 , . . . ,n - 2, and their derivatives. In fact/it
was conjecture in [4] that both equations (2.6) and (2.15) are equivalent
whenever

(2.16)

where

m_
6u

=TMI,

(2.17) T=

t 1

9
92

93

gn-3

^gn-2

(^
(I

... ("33)^
fn-2
Vn-3

0

1

)92

^gn-3

0

0

1

(^

/n-2
V 3

0

0

0

1

/n-3
V 2 )92

)93

0

0

0

0

(n^
(n,2)^

... 0\

... 0

... 0

... 0

1 0

("r2)^/
and M. is a certain lower triangular matrix of the form

(2.18) M=

/O
0
0

0

\1

1

0

0
0
0

0
^-3
'^n^

0

0
1

-m 7l-4
'^71-4

yy^-4
77t'n-3

0

1

0

... r<-4

1
0

m\

m^-3

\

)

whose matrix elements m\ are all functions of the coefficients HI and their
derivatives. On the other hand, if

H^^hkQ^
k=l
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is the pseudo-differential operator associated to 7^, ( / ^ i , . . . , hn-i) is easily
seen to be related to the gradient of 7i through the matrix T, exactly the
same way M.T is conjectured to be in (2.16), namely,

^f"' vsu ^j
That is, the evolutions will be equivalent provided that

( hl \MI=( : ,
^n-l7

that is, provided that certain linear combination of 1 with differential
invariant coefficients coincides with the coefficients ( / i i , . . . , hn-i) of the
pseudo-differential operator H defining the evolution of u. The necessary
and sufficient condition for this to be true is, of course, for TM.I to have
self-adjoint Frechet derivative with respect to u. Notice the slight change
in the shape of T and M. as opposed to the ones conjectured in [4]. The
change is due to the fact that T was compared in [4] to (^n-i, . . . , h^
and here I have turned it into the more natural order ( / i i , . . . , hn-iY^ .

Before I specify all the details of the proof in Section 4, I need to give
a brief description of what is called the theory of antiplectic pairs, which
was introduced by Wilson in [14], [15] and [16], and, in particular, of the
antiplectic pair for the GL(TI,]R)-AGD bracket. In the next section I will
keep much of the notation as in [14], but I will try to avoid any confusion
with the notation I have used up to this point.

3. Antiplectic pairs
Let (A, 9) be the differential field of differential rational functions on

independent variables ^05^1? • • • ̂ n-i' That is, A is the field of ratio-
nal functions on the infinite-dimensional jet space J00^,!^) with coor-
dinates ^o? ^15 • • • 5 ^n-i-> ^d 9 is the unique derivation such that
9 S , ' == ^ ' . I will assume familiarity with concepts such as Frechet
derivatives of differential operators on A, tensors, etc^ such as we did
in [4]. For more information see [14] or [9].

Consider the action of GL(n,R) on A induced the usual way by the
action of GL(n, R) on IT. That is, if MS, indicates the action of GL(n, R)
on W given by matrix multiplication, ^ € R71, then M^ = (M^)^,
what we have called the prolonged action. Let (B, 9) be the differential
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field of invariants of the action. As it happened in the SL(n,M) case, B
is well known to be generated by the coefficients of the GL(n,R)-Lax
operator (2.1), that is, the case where Un-i i=- 0; B is a differential field
on the independent variables UQ, HI, . . . , u^-i, related to ^ analogously as
in (2.3), with associated derivation 9.

Let ^A and ^5 be the modules of differentials. That is, they are free
A[(9]-module with^basis {d^}, and free B[<9]-module with basis {dn,},
respectively. Let f2a be the module flp with scalars extended to A[9\.
If we impose that the action of GL(n,M) conmutes with d, the GL(n,R)
prolonged action can be extended to ^IA the obvious way. Consider also fT
to be the dual ^-module to f2, that is, ^* = Hom(^, R) where R = A[9]
is the algebra of differential operators with coefficients in A. Analogously
define ̂ , ̂  and %.

Next, let us describe the general Hamiltonian formalism for evolution
equations.

DEFINITION 3.1. — A 2-form A e ^A ^ ^A, A = ̂ ^ 0 ̂ ,, is called
special if: l

1) A is GL(n,]R)-invariant;
2) the homomorphism A^: f^^ ^- f^ defined as

^(^ ̂ ^^^z)^

is injective and its image is ^5.

Jf A is special, we obtain a factorization of A^ through the inclusion
i: ^IB ^ ^A; namely,

(3.1) A^-^^-^

where a is invertible (an isomorphism). By the way, notice that, with
respect to the basis {d^} and {dui} for ^A and ^a and their dual basis
{d^,*} and {dn,*} for ̂  and ̂  respectively, the matrix associated to
the inclusion map has as (ij) entry Dui/D^j, the Frechet derivative ofn,
with respect to ̂ . That is, if we denote by P the matrix of the inclusion
map %: Q.B -^ ^A, then V is the Frechet Jacobian of u with respect to $.

Now, consider the map

(3.2) A: ^B ̂  ^A ̂  ^B'
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Since A is GL(n,R)-invariant, the map (3.2) must also be invariant.
Therefore, it must come from a homomorphism

£*:^B—%
by perhaps extensions ofscalars. The map C^ corresponds to a skew tensor
£e %(g)^g.

Let S = (sij) be the matrix of a~1 in the basis {ck^}, {d^} and
{d^*} that were fixed before. In the definitions that follows, let * denote
the formal adjoint of an operator. Then the matrix of A (or of A^ if one
prefers it), abusing the notation, is given by

A = S^V = -P*(5'*)-1 = (A^-).
Also, in the basis {di^}, {d^*} and {d^*}, the matrix of£ (or £^) is

t == SV = -PS'* = (£ij).
In this situation, and under all these conditions, there exists a unique

evolutionary derivation of B such that

(3.3) <^=-E^-
3 J

Furthermore, there also exists a GL(n,R)-equivariant derivation 9n of A
given by

(3.4) ^=E4^
3 J

whose restriction to B is (3.3).
DEFINITION 3.2. — The pair (A,^) is called antiplectic whenever £ is

Hamiltonian, that is, whenever the derivation given in (3.3) holds
9{H,G} = [9H,9G\

if it makes sense, where {H\G} = QuG.
It can be proved that if A is a closed form, then £ is Hamiltonian.
In [14], Wilson constructs an antiplectic pair for the GL(n,R) KdV

evolution, restricting himself to a particular symplectic leaf of the Poisson
foliation. Even though at the beginning of the paper he imposes two extra
conditions which are not included here, namely that the functions {^}
must be periodic, and the field C rather than R, the construction above,
and the one that follows, can be carried out without such assumptions.
(In fact, he seems to drop the periodicity assumption until he places the
antiplectic pair within the DrinfePd and Sokolov formulation. In that case,
for algebraic and invertibility reasons, the solutions of the Lax operators
need to be periodic — he is restricting to one symplectic leaf of the Poisson
manifold with identity monodromy.)
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Construction of Wilson's GL(n,R)-KdV antiplectic pair.
Consider the factorization of L into first order factors

(3.5) L = (9 + 2/,_i). . . (0 + y,)(9 + yo)

such that for each i = 0 ,1, . . . , n - 1 the set {$o , . . . . <^} is a basis for the
kernel of the operator (<9+^). • • (9+^/i)(9+?/o). Let ̂  be the Wronskian
of{^o , . . . , ^} . Define

^
Pz = ————

^i-1

and fix c^_i = 1.
As before, let f^ be the free module of differentials with base dp,, and

let f^ be ^ with an extension of scalars to the algebra A[<9], for any
i = 0 ,1, . . . , n - 1. Define the 2-forms

A^ = -pi^dpi (g) Qp^dp^ i = 0 ,1 , . . . ,n - 1,

and let ij: f^ —> ^^ be the natural inclusions j = 0,1, . . . , n — 1.
THEOREM 3.3 (see [14]). — The 2-form

(3.6) A, = zoA^ + ziA^ + ... + z,-iA^-1)

Z5 special under the action ofGL(n,R) and forms an antiplectic pair with
the GL(n,R)-AGD Poisson tensor.

For more information about this very inspiring construction, please
see [14].

I am most interested in one of the explicit formulas for the matrix 5'~1

defining the map a in (3.1). More precisely, I am interested in formula (5.9)
in [14], which can be described as follows: Let

n-l
L*=(-9)n+^^

1=1

be the dual operator to L. There exists a nondegenerate canonical pairing
between the kernels of L and L* given by the so-called bilinear concomi-
tant. It is defined as

(^)L = EE^1)^"1^^
i=l j=0

(see [5] for more information). Let {rji} be the dual to {^} with respect
to this pairing. Also, fix the basis {dui} in ^a and {d^,*} in ̂ .
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PROPOSITION 3.4 (see [14]). — If we denote by u the coefficients of L*,
the matrix S~1 associated to \n as in (3.6) is given by

(3.7) S-1 = H^*C7*

where Du/Du = (7*, and where W^ is the Wronskian matrix of rj, that
is, )% = (y^) where y^ = rj^ for ij = 0,1, . . . ,n - 1.

We now have most of the machinery I need to attack our problem, so
we finally go into out last section.

4. The equivalence of evolutions on An and Cn
In this section, I will prove our Main Theorem, the equivalence of the

two evolutions described in Section 2, and the description of M. But let's
first give a quick definition and let's set in place some preliminaries.

DEFINITION 4.1. — We will say that a vector funtion H = (h,) comes
from a gradient whenever there exists an operator H: AGD -^ R such
that its associated pseudodifferential operator, in the sense of (2.4) is

X=^hi9-^

i=l

That is, a vector function will come from a gradient whenever certain
combinations of its entries and their derivatives satisfy the corresponding
integrability condition so that they can be the gradient of an operator
defined on the AGD manifold.

The next thing to achieve is the rewriting of formula (3.4) in the
SL(n,]R) case, and to show that it induces an evolution on the projecti-
visation of ^. This evolution will be invariant under the projective action
of SL(n, M). The proof of the Theorem will finally come from the compa-
rison of the formula we will obtain and (2.15).

First of all let us consider the GL(n, M)-AGD evolutions (3.3) restricted
to the submanifold Un-i = 0, with the added condition 61-i/6un-i = 0.
I claim that, for Hamiltonians independent of Un-i, the submanifold
Un-i = 0 is left invariant by the flow of evolution (3.3), and so, there exists
an induced evolution on such submanifold. Furthermore, I claim that such
an evolution is the SL(n,R)-AGD evolution. This fact can be seen in
many different ways, but the easiest might be to follow Kupershmidt and
Wilson's definition of the AGD evolution given in [6]. Before stating the
theorem that describes the bracket, I need some definitions.
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Consider y defined as in (3.5) and let v be defined through the relation

(4.1) yk = vo + r^i + r2^ + — + r^-^Vn-^

0 < k < n — 1, where r = e~^~. Kupershmidt and Wilson [6] called Vz the
"modified" variables. In their paper, they proved the following theorem
(which I have somehow rephrased).

THEOREM 4.2 (see [6]). — Consider the following two evolutions for the
modified variables v:

(4.2) QfVi == --Oxn-z, i = 1 ,2 , . . . ,n- 1
n

(4.3) 9tVo=--9xo, QfVi == -~9xn-i, i = 1 ,2 , . . . ,n - 1
n n

where (XQ^ ... ̂ Xn-i) is the 1-form defined by the gradient of a Hamilto-
nian operator 7^, and where XQ corresponds exactly to 6H/6vQ. If u and v
are related by (3.5) and (4.1), then u will evolve following the SL(?2,R)
AGD evolution whenever v evolves following (4.2), and the GL(n,R) AGD
evolution whenever v follows (4.3). The Hamiltonian will be the same^ but
evaluated either on u or ^, depending on which evolution we consider.

That is, in modified variables the SL(n,]R) and the GL(n,R) AGD
brackets are given by (4.2) and by (4.3), respectively. Clearly, the subma-
nifold VQ = 0 is invariant under the later flow (4.3), provided that XQ = 0,
and the evolution induced on this manifold is the former (4.2). Finally,
noticed that Un-i = nvo so that both submanifold VQ = 0 and Un-i = 0
coincide. Thus, the restriction of (3.3) to Un-i = 0 is the SL(n,]R)-AGD
Hamiltonian evolution.

In second place we inquire: how does the restriction Un-i = 0 look
when carried over to the $ evolution (3.4)?

The condition Un-i == 0 imposes a condition on ^, namely, given L such
that Un-i = 0, any set of independent elements in the kernel ̂  • • • ? ̂ n-i,
will have constant Wronskian, that is, independent of the parameter Q.
Call the Wronskian W^ = detH^. Furthermore, if they evolve using
evolution (3.4), we get the following claim.

PROPOSITION 4.3.—In the SL(n,R) case {that is^ whenever Un-i = 0),
W^ is independent oft and 0 along the solutions of (3A).

Proof. — Indeed, if $ evolves following (3.4), due to the antiplectic
relation between A and £, u will evolve following the SL(n,R)-AGD
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evolution. It is known that the AGD evolution preserves the SL(n,IR)
conjugation class of any of the monodromies associated to L. (It preserves
the GL(n,M) class in the GL(n,R) case.) In fact, the conjugation class
of the monodromy is one of the invariants of the symplectic leaves of
the AGD Poisson bracket, the so called continuous invariant. The second
invariant is discrete (it does not change locally) and, as I remarked earlier,
it depends on the topology of the projective curves (see [12] for the
description of the invariants). That is, the determinant of the monodromy
is unchanged along flows of the ^-evolution for <^. This determinant
coincides with the Wronskian of ^ at 0 = T, the period. []

Thus, equation (3.3) restricted to Un-i = 0 is the restriction of the
evolution (3.4) to the ring B generated by n,, i = 0 , . . . , n - 2, whenever
one adds the extra condition to (3.4) of the Wronskian of^ being constant.
Notice that this is a restriction on the set of initial conditions that are
allowed in (3.4), rather than on the equation itself. The ^ evolution is, of
course, invariant under the real action of SL(n,M) (action on IR"), since
it is invariant under the real action of GL(n,IR).

I must say that a SL(n, R)-invariant evolution on ^ induced by the
AGD bracket was found in [7]; even though the approach used in that
paper was quite nice, it was completely different from the one used by
Wilson (and the one used in this paper) and it is not obvious that
both formulas coincide. In that paper the author also claims that it
suffices to take the restriction of the ^-evolution to the field generated
by ^ = <^/<^ i = l , . . . , n - 1 in order to obtain the so-called Ur-
KdV equations, which will also be SL(n,R)-invariant. In fact, if we write
the evolution for the proportions (^ induced by (3.4), these equations
will not be homogeneous. One needs to futher substitute the relationship

^ = ^0 n(^ i = 1,... ,n - 1 and $o = W^ to obtain an evolution
on (/). These relationships exist only under the condition W^ = 1, and not
simply constant.

Finally, I will describe the evolution induced on 0, on the projectivisa-
tion of the solution curve, by the evolution (3.4) in the SL(n,M) case.

Consider (3.4) restricted to curves with the condition W^ = 1 (we are
simply restricting further the possible initial conditions). Then, it is not
hard to see that, if <^ = ^/^o is the projectivisation of ^

W,0 =

4>[ i o ... o
01 0'1 ... 0n-l

^-1) ... ^1)
/ j.(^-l) An-1)
Z^n-l 01 / . . . <^_i /
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-so"

so
si

SO^
.(n-1)
so
si

n-1)

=^0

.(n-1)
Sn—1

^ ^/
I Sn-1 Sn-1

Therefore, the evolution (3.4) restricts to (j) as

(4.4) / s.
<^= -T

so
(so).

so

where the right hand side depends on (f) after the substitution

s.-^"^ % = ! , . . . , n-1 and ^^H^71.

LEMMA 4.4. — Let (3.4) 6e an evolution on ^, with W^ = 1, invariant
under the real action ofSL(n,R). Let (4.4) be the induced evolution on the
projectivisation of ̂ . Then, (4.4) is invariant under the projective action
ofSL(n,R) onR?^.

Proof. — The proof is very simple of course. We need to show that, if we
U>n—ldenote by M - 0 the projective action of SL(n, R) on (that is, the

projectivisation of MQ), then M • 0 is a solution of (4.4) whenever (f) is a
solution itself. But notice that M(1) = ̂ M, and so, the projectivisation
of M(^) coincides with the projectivisation of M^. If (f) is a solution of
(4.4), it is clear that ^ is a solution of (3.4); because of the invariance of
(3.4), M^ will also be a solution of (3.4) and its Wronskian will be 1 since
M € SL(n, R). Hence, M • 0 will be a solution of (4.4). Q

After these three steps I proceed now to state and prove the Main
Theorem, conjectured in [4].

THEOREM 4.5. — Let (l)(t,0) be a solution curve of the evolution

(4.5) ^=W^(Id+A)Z

defined in (2.15). Let u(t,0) be the vector of associated basic SL(n,R)-
differential invariants defined in (2.3). Then, there exists an invariant
and invertible matrix M. such that, if H = M.T and if H comes from
a gradient, then u(t,6) evolves following the SL(n,R)-AGD Hamiltonian
evolution

,6H
Ut=i——

bu
where H is the operator associated to H.
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Proof. — The proof is based on the analysis of (4.4) and its comparison
to (2.15). Recall that the ^-evolution can be written as

t Q*^
St = ^ -7——?ou

where 6'* = W^G is denned in (3.7), that is, where (7* = Du/Du and
where )% is the Wronskian matrix of 77. Let's call )%-1 = (^) and
C = (cij). Using this expression for ^ we can show that

1) In general, the revolution (4.4) does not depend on 6H/6un-\, even
if (3.3) was dependent of it.

2) In expression (4.4), the coefficients of Cn-ij, j = 1, 2 , . . . , n - 1 are
always zero.

Indeed this is true. The coefficient ofSH/Sun-i in (3.4) is (-l)71"1^-!
since, clearly, C is lower triangular and c^-in-i = (-I)""1. Now, it is
known (see [14]) that, if two basis are dual with respect to the bilinear
concomitant, then any of the basis form the last column of the inverse of
the Wronskian matrix of the other basis. Thus, the last column of )%~1

^s (^0^1,. ..,^-1)^ Therefore g^-i = ̂ . Finally, the 6Zi/6un-i term
in the 0-evolution has coefficient

l(-l)n-l^-^-l)n-l^=0.
so so

Also, the coefficient of the entry Cn-ij in evolution (3.4) is given by
9in-i = sz- Hence, as before, the coefficient of Cn-ij in evolution (4.4) is
given by

^-^^1=^^.^
so $o so so

In view of 1) and 2), we can deduce that the projective evolution (4.4)
can in turn be written as

(4.6) <f>t=BC6'H
bu

where

M (M/ew'
6u :

\6n/6un,^
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C is the upper (n - 1) x (n - 1) block of C,

C=

0 \
C \

0
^nl • • • Cym—l C"nn /

and where, if I denote by G the last n - 1 rows of )%~1 and by Go its
first row, then B can be written as

(4.7) B - ( G - ^ G o ) .
So

The final step is to realize what C = (c^) is. It is easy to see that, in
our notation,

^-(-ir1^)^ ^=l ,2 , . . . ,n - l .

That is, CR = T, where R = (r^-) is given by r^ = (-lp-i^\
(6 represents the Delta of Kronecker), and where T is defined in (2.17).
Up to R, a matrix changing the sign of every other row, the matrix Du/Du
and T such that 61-L/6u = TH are the same. (Notice that T = CR
and C2 = Id by definition. Hence T~1 = RTR.)

Finally, equation (4.4) can be written as

(4.8) ^=BTR8-H=BRH.
ou

This evolution is SL(n, IR)-projectively invariant for any gradient vector
61-L/6u. The vector TR6H/6u = RH depends on the u's and their
derivatives. It is, therefore, an invariant vector. Now, in [4] we showed that
such an evolution is invariant if and only if BRH is a relative invariant
for the action with weights as in (2.12), and this should be true for any
invariant vector H coming from a gradient. But if H is invariant we have

n-l

E-'
i=l

that, if v e sl(n,R) is an infinitesimal generator v = ^ ^((9^^)—/•>v^) 9^,

then,

prv(BRH) = prv(BR)H = ^BRH.
d(p

Running H through an appropiate independent family of vectors we
obtain that BR is indeed a relative invariant with the necessary weights,
that is

prv(BR) = J-BR^

for any infinitesimal generator v = ̂  rji —.
i
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The end of the proof of our theorem is now clear. Using the result
of Corollary 2.6 we can deduce the existence of an invertible matrix of
differential invariants M. such that

(4.9) ^(ld+A)=BRM.

Therefore, if T^SH/Su = H = MI, evolutions (2.15) and (4.4) are
identical. Finally, the basic differential invariants u, which coincide with
the coefficients of the Lax operator L, evolve following the SL(?2,]R)-AGD
Hamiltonian evolution (3.3). []

A short comment on the meaning of this theorem. From Theorem 2.2
we see that the matrix j£ = W^Id+A)^"1 is a relative invariant of
the SL(77,,IR) action, since M. is a nondegenerate matrix of differential
invariants. Thus, from Theorem 2.2, the most general invariant evolution
of projective curves can also be written as

(4.10) ^=/^

where T is any general vector of differential invariants. If 1 comes from a
gradient, then (4.10) can be view as an alternative definition for the AGD
bracket, written in projective coordinates. They are the same evolution
whenever one identifies Z, the invariant vector, with the pseudodifferential
operator associated to a functional 7i, the Hamiltonian.

The last part of this chapter is dedicated to show that M. is indeed
of the form (2.18). This is the result of the following two lemmas and
their projective counterparts. As before, I will call W^ the Wronskian of ^
and H^ its Wronskian matrix. Analogous notation is used for rj.

LEMMA 4.6. — Let {^i} and {rjz} be basis for kernel(L) and kernel(L*),
respectively, and assume they are dual with respect to the bilinear conco-
mitant. Then

W ^ M r 0 if k < n - r - l ,
^ ll \(-1Y if fe=n-r-l,r=0,l,...,n-l.

Proof. — This lemma is a simple consequence of the relationship

v- Ak) _ f 0 if 0<k<n-l,
^ ^" f l if k=n-\

which holds since rj conforms the last column of the inverse of the
Wronskian matrix of ^. The result of the lemma is obtained by simply
applying Leibniz's rule.
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LEMMA 4.7. — IfW^ = 1, then W^ = (-I)7711, where mi = jn(n - 1).

Proof. — The previous lemma implies that W^)% is triangular along
the transverse diagonal. Hence, W^ is the product of entries in the
transverse diagonal, namely (-I)7711, mi as in the statement. Q

LEMMA 4.8. — Let {(/),} be the projectivisation of {^}, and let {^} be
such that W^=l. Let {rji} be as in Lemma 4.6. Then

V-^) (.) f ° z f 0 < k < n - r - l ^y ^ ̂  ) = { i
U \(-lYWy if A;=n-l-r,r=0,l, . . . ,n-2.

Proo/. — The proof is straightforward from Lemma 4.6. Namely, if
0 < k < n - r - l , then

E^^^E^)^
1=1 j=i so

=ElE(')^-l)(fc-^(\(r)=o
j=0 s=0

since 0 < 5 < A ; ^ n - r - l , while, if k = n - r - 1 one gets

E\|)(\(r>'I:lE(>.•)(t^M,,M
J=l j=0 s=0

=^\-iy=^)rw^ D
LEMMA 4.9. — Let )% &e ^e ^^er right (n - 1) x (n - 1) MocA; o/W.

, 7 . . ' • - ' Y / J ' If 7

^a^ 25,

(__ ^1 ^72 . . . 77n-l

W,= .: : : :

^-2) ^-2) ... ^-l2^

/ / l^=l, ^enH^=(-i)^2^-^^ ^herem^= j (n - 2)(n - 1).

PTW/. — From Lemma 4.8 we have that H^)% is upper triangular
along the tranverse diagonal. Hence, W^ equals W^ times the product
of the elements on the transverse diagonal. That is

W^ = W^W^ (-1)^ = (-i)-2^-^

m-z as in the statement. []
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Also, we have the following expected result

LEMMA 4.10. — Let B be defined as in (4.7). Then B = (-l)71-1^1

Proof. — Following the notation in (4.7), the {k^j + 1) entry in B is
given by

Qk+ij+i - 0^1.7+1 = (-i)7711 [c^+i^+i - 0^^7+1, iL
where, in general, I denote the cofactor (z,j) of the Wronskian of the

. This entrvector function ^ by C " . This entry can be rewritten as

r]o + (f)krjk^o+

^+

(n-l) ,
% +

^k^]k

W

^^"-1)

111

^)

^-1)

... ^

r^• • • ^

-(n-l)
• • • %

• • • r]n-i

^)
• • • ln-1

^-1)
• • • 'ln-1

where, again, " signs the deletion of the term. Using the fact that all rjj
can be expressed in terms of cofactors of W^, one can easily prove that

n-l
rjo = — ^ <piT]i- This fact, together with Lemma 4.8, implies that deter-

minant (4.11) has, in fact, zeros along the first column, except for the last

entry, which is equal to ̂  (^(-l)7'^ • Since n^ {n~,l)(-^)r = 0,
r=0 r=0

we get that (4.11) equals

(_l)2n+l(_l)m^_^+J^ ^')

m

^

^-2)

rfk

•'- ^

.'.. ^-2)

• • • rfn-1

^)
'/n-l

(n-l)fi
' • • ln-1

The use of the result of Lemma 4.9 leads as to the conclusion of the
proof. []

At last we can analyze the shape of M.. We can directly obtain it from
the relationship (4.9), rewritten as

M = (-l^-^y^H^Id+A).
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We know from Lemma 4.8 that )%H^ is lower triangular along the
transverse diagonal. Since Id+A is upper triangular along the main
diagonal, we have that M must be lower triangular along the transverse
diagonal, as conjectured (notice that R~1 = R is a diagonal matrix).

Furthermore, one can calculate the entries of the diagonal strictly below
the transverse diagonal of M. Let (s^n-i ̂ -2 ... Sn-i2) be the diagonal
strictly below the transverse diagonal in }%Wj\ Using Lemma 4.8 one
can find explicitly Skn-k+i, for all k.

First of all, ^ ^n-l)^ = W^ and so

E^^^^^^-E^-j=i j=i
But, since rj, = C^ = W^^C^ (again, Q, is indicating the
cofactor of the Wronskian matrix of the superindex), we have that

n-l

T,^\,=W^W^
j=i

and so

w^—"-^-^^.
Assume that

^rr)r,?=Wn-^-W-^W,.

Again, differentiating the relationship in Lemma 4.8

E1^-1^^-!)^
j=i

we can easily see that the same relationship holds for r + 1. Therefore

S.n-^ = E ̂ -k+l)^ = (-l)'-^-±tl ̂  ̂ .

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



390 G. MARI BEFFA

In [4], we found that

(T)._, k+iw,
^=——^p, =——^-^.

Finally, ignoring the action of the matrix R, the diagonal in M strictly
below the transverse diagonal is given by

(_1)A+1^ rn,kn-k+l + Skn-k+l

= (-D^ n-^1 ̂  + (-i)-̂ ±l w-,^ w, = o,

concluding the proof of the fact that the shape of the matrix M is the
one conjectured in [4].

To finish the paper I will point out at some of the advantages of regar-
ding AGD evolutions as evolutions of basic differential invariants. Apart
from the obvious connection between two apparently unrelated subjects,
there are some extra advantages about viewing the AGD evolution in the
terrain of differential invariants. Namely, it opens a road to generaliza-
tions of Schwarz derivatives and KdV evolutions to the case of several
independent variables. These generalizations might have a strong rele-
vance in various subjects such as the theory of solitons, inverse scattering
and other topological branches. In fact, in [8] we found and classified a
complete set of basic differential invariants for projective surfaces. We
also described the generalizations of the Schwarz derivative to two inde-
pendent variables and the generalization of KdV to this same case. Of
course, these generalizations assume that the SL(?2,IR) symmetry is also
held in the generalized case. It is not clear yet what connection this might
have with the Poisson Geometry of PDEs and the Theory of integrable
systems.
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