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MINIMAL MODELS OF FOLIATED

ALGEBRAIC SURFACES

BY MARCO BRUNELLA

ABSTRACT. — We study holomorphic foliations on algebraic surfaces from the
birational point of view. We introduce a notion of minimal model and we classify
those foliations which do not have such a minimal model in their birational class. An
application to the dynamical study of polynomial diffeomorphisms is given.

RESUME. — MODELES MINIMAUX DES SURFACES ALGEBRIQUES FEUILLETEES. —
Nous etudions les feuilletages holomorphes sur les surfaces algebriques du point de vue
de la geometric birationnelle. Apres avoir introduit une notion de modele minimal^
nous classifions les feuilletages qui n'ont pas de modele minimal dans leur classe
d'isomorphisme birationnel. Comme corollaire on obtient un resultat concernant la
dynamique des diffeomorphismes polynomiaux.

A classical and important result in the birational theory of algebraic
surfaces (over C) says that every algebraic surface X which is not
(birationally) ruled has a minimal model, that is there exists a (necessarily
unique) smooth algebraic surface XQ, birational to X, with the following
property: if Y is any smooth algebraic surface and if f ' . Y - - - —> XQ
is a birational map then / is in fact a morphism, that is there are
no indeterminacy points. This means, in particular, that the birational
classification of nonruled surfaces is reduced to the biregular classification
of their minimal models. See [BPV], or [MP] for a wider perspective (but
take care that "minimal model" in [BPV] has a different meaning, allowing
nonuniqueness and classically denoted as "relative minimal model"; an
algebraic surface has a minimal model in the classical sense if and only if
it has a unique minimal model in the sense of [BPV]).
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290 M. BRUNELLA

Our aim is to give a ^foliated" version of this result. We shall work
in the class of holomorphic foliations (with singularities, which can be
supposed isolated without loss of generality) on smooth algebraic sur-
faces. Birational maps act in a natural way on these objects: if ^ is a
holomorphic foliation on X and if f'.Y • ' • —> X is a birational map, rea-
lizing an isomorphism between Zariski open sets YQ and Xo, then /*(.77)
is the unique foliation on Y coinciding with f*(^\xo) on ^o- Hence one
can study birational equivalence classes of foliations and look for special
representatives of these classes; these will be our foliated minimal models.

In order to give a precise definition, we have to translate in our
context the smoothness condition which appears in the absolute (that
is, non foliated) theory. The singularities of an algebraic surface can be
removed by a suitable sequence of blow-ups (Zariski, Hironaka), producing
a smooth algebraic surface [BPV]. The same is no^true for the singularities
of a foliation on a smooth algebraic surface: the best that we can do by
a sequence of blow-ups is to obtain a foliation with reduced singularities
(Bendixson, Seidenberg), that is isolated singularities generated (locally)
by a vector field whose linear part has eigenvalues 1 and A with A ^ Q4',
where Q"^" denotes the set of strictly positive rational numbers. If A = 0
the singularity is called a saddle-node^ otherwise nondegenerate. Such a
foliation will be called reduced. Remark that the blow-up of a reduced
foliation at any point (singular or not) is still reduced. More precisely, the
blow-up at a reduced singular point produces a foliation tangent to the
exceptional divisor and having there two reduced singular points. See [CS]
(and references therein) for these basic results, and [M] for the relevance
of reduced foliations in the birational theory of foliations.

DEFINITION. — Let T be a foliation on a smooth algebraic surface X. A
minimal model of (X,^) is a reduced foliation ^FQ on a smooth algebraic
surface XQ such that:

(i) (Xo^o) is birational to (X,^7);

(ii) ifQ is any reduced foliation on a smooth algebraic surface Y and if
f: (Y ,0) • • •—» (XQ,^)) 1s ^ birational map then f is in fact a morphism.

We observe that, as in the absolute case, if a minimal model exists then
it is unique: if / is a birational map and /, f~1 are morphisms then /
is a biregular map. We also observe that if (X,^7) is reduced and has a
minimal model (Xo, ̂ b) then the birational map (X, J^) • • '—> (Xo, ̂ o) is a
morphism (by ii)). In other words, the minimal model (when it exists) can
be found by firstly reducing the singularities of the foliation and secondly
contracting a curve.
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Let us note that "most" foliations have a minimal model. For example,
as the proof of the theorem below will clarify, a reduced foliation with
no invariant rational curves is a minimal model (in the same way as a
smooth algebraic surface with no rational curves is a minimal model).
Also, a foliation denned on a surface which is not birationally ruled has a
minimal model. On the other hand there are, of course, foliations without
minimal model, for instance linear foliations in CP2. To fix ideas, suppose
that such a linear foliation T is reduced. Then if a minimal model exists
it must be obtained by contracting a curve in CP2; but CP2 does not
contain contractible curves and therefore the minimal model must coincide
with (CP2, ̂ 7). Take now two singular points p, q of T and let L be the line
of CP2 through p and q. If we blow-up p and q and then collapse the strict
transform ofL (which is an exceptional curve, i.e. [BPV] a smooth rational
curve with selfintersection —1) we obtain a foliation Q on CP1 xCP1 and a
birational map /:CP1 x CP1 • • -^ CP2 sending Q to T. The foliation Q
is still reduced and / is not a morphism, hence (CP2,^7) cannot be a
minimal model. An easy variation of this argument shows that every linear
foliation, reduced or not, has no minimal model. Our intention is to give
a classification of these exceptional cases.

We shall say that a foliation on a smooth algebraic surface is ruled
if it coincides with a rational fibration, that is a fibration whose generic
fibres are rational curves (there can be singular fibres, trees of rational
curves). It is a Riccati foliation if it is transverse to the generic fibre of
a rational fibration. Moreover, a Riccati foliation is nontrivial if there is
a regular fibre which is invariant by the foliation and contains exactly
two singularities, both reduced. It is quite clear that ruled and nontrivial
Riccati foliations do not have minimal models, by a construction similar
to that previously used to show that linear foliations do not have minimal
models; but there is also a third, very special, exception. Take the
foliation Ho in CP2 generated, in an affine chart, by the vector field

z^-+ , ( l+z \ /3)w——oz 2 v / aw
There are three singular points, the origin Po and two points "at infini-
ty" Pi,P2. Take a projective transformation T of CP2 which cyclically
permutes Po,Pi,P2. One necessarily has T3 = id, and moreover T pre-
serves Ho- The quotient CP'2/T has some (mild) singularities, which can
be resolved giving a smooth rational surface HT, equipped with a folia-
tion HT arising from the projection of Ho on OP2/?". In fact the choice
of T is inessential (two such Ts are conjugate by a projective transforma-
tion preserving Ho), hence the final result will be simply noted {H,H).
Observe that H contains an 7^-invariant rational curve with a node L
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292 M. BRUNELLA

(arising from the three T^o-mvariant lines). The node is a reduced and
nondegenerate singularity of 7"^, and it is the only singularity of 7~C on L.
If we blow-up the node, the strict transform of L is an exceptional curve
and its contraction gives a still reduced singularity. This is the reason for
the absence of a minimal model of (H^ 7~i).

THEOREM. — Let T be a foliation on a smooth algebraic surface X.
Suppose that T is not birational to a ruled foliation or a nontrivial Riccati
foliation or (H ,H). Then (X ,T} has a minimal model.

The proof is parallel to that of the analogous absolute result. Firstly, a
sequence of blow-ups reduces the singularities of T'. The foliated surface
so obtained may contain some exceptional curves, whose contraction may
still give a foliation with reduced singularities. To obtain the minimal
model (Xo, ̂ o) we have to contract all these exceptional curves, but some
ambiguity appears if these curves are not pairwise disjoint. Hence the
main step of the proof will be to show that if such an ambiguity appears
then (X^) is in the forbidden list. Then it will be easy to prove that
when the ambiguity does not appear the contraction process leads to the
desired minimal model. The arguments are mostly taken from classical
birational geometry.

Minimal models of algebraic surfaces are related to "positivity" pro-
perties of the canonical line bundle [BPV], [MP]: a smooth algebraic sur-
face X has a minimal model if and only if K^ has nonnegative Kodaira
dimension, and the minimal model XQ is then characterized by the nef-
ness of K^Q. One may ask for similar relations in the foliated case, where
the role of K\ is played by TJ-, the cotangent line bundle of a redu-
ced foliation [B], [M]; but the example of linear reduced foliations, for
which TJ- is trivial, shows that one has perhaps to work with stronger
positivity conditions. The difference between the absolute and the foliated
case is, essentially, the following one: in the absolute case the obstruction
to minimality is represented by curves over which Kx has negative degree,
whereas in the foliated case the same obstruction is also represented by
(some) curves over which TJ- has zero degree. On the other side, it is pos-
sible that a minimal foliated surface contains a curve over which TJE- has
negative degree {e.g. a smooth rational curve of self-intersection —2, inva-
riant by T and containing only one reduced nondegenerate singularity);
in order to obtain a coherent theory one has probably to contract these
curves and to work with singular surfaces, as in the absolute higher dimen-
sional case [MP]. A remarkable theorem of Miyaoka [MP], [SB], stating
the pseudoeffectivity of TJ- for nonruled ^r, should be of valuable help in
this type of questions.

TOME 127 — 1999 — ?2
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As a corollary to our theorem (and [BS]) we will prove in the last section
the following result, answering a question of D. Cerveau [C]. Recall that a
polynomial diffeomorphism of C2 is said to be nonelementary if it is not
conjugate to a diffeomorphism of the type

0, w) i—> (az + P(w), bw + c), a, b <E C*, c e C, P <E C[w].

Nonelementary diffeomorphisms are precisely those polynomial diffeomor-
phisms exhibiting a complicated dynamics [BS].

COROLLARY. — A nonelementary polynomial diffeomorphism of C2

cannot preserve a holomorphic foliation generated by a polynomial vector
field.

In this paper we have choosen to work in the algebraic setting. We note
however that our theorem applies also to foliations on compact complex
analytic surfaces: a surface over which there exists a foliation without
minimal model is necessarily bimeromorphically ruled, and therefore
algebraic.

1. Characterization of the exceptions
Let X be a smooth algebraic surface and let T be a foliation on X.

It is defined by an open cover {Uj} of X and holomorphic vector fields
with isolated singularities Vj on Uj, satisfying ^ = g^Vj on Ui D Uj,
with g,j e 0"(Ui U Uj}. The cocycle {g^1} defines a line bundle Ty
on X, called tangent bundle of J-'. We shall need the following two
formulae [B] concerning the computation of the degree of Ty over an
algebraic irreducible curve C. If C is invariant by T then

ci(7y).C7=x(^)-WC7)

where \{C) is the virtual Euler characteristic of C and Z(JT, C) is the
sum of the multiplicities of the singularities of T along C [B, lemme3].
If C is not invariant by T then

ci(7y).C=C2- tang(^,C)

where C2 is the selfintersection of C and tang(^, C) is the sum of the
multiplicities of the tangency points between T and C [B, lemme 2].

Suppose now that C C X is a smooth rational curve with vanishing
selfintersection: C2 = 0. It is well known [BPV, p. 142] that C is a regular
fibre of a (unique) rational fibration 7r:Jf-^S, where S is an algebraic
curve; of course, TT may have singular fibres, which are trees of rational
curves.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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LEMMA 1. — Suppose that C is a smooth T-invariant rational curve
with C2 = 0, then:

(i) ifZ(T\C) = 0 then T coincides with the rational fibration TT;

(ii) if Z^^C) = 2 then T is a Riccati foliation with respect to TT.

Proof. — If C is .^-invariant, the previous formula gives

ci(7y).C7=2-Z(^C7).

Let C' C X be another regular fibre of TT, and suppose that it is not
^-invariant. Then

ciCr^.C^- tang^G').

But we have
C^YC^C^YC',

because C and C' are homologous, and so

tang(.F, C ' ) =- Z(^, C) - 2.

It follows that:
(i) if Z(^F^ C) = 0 then every (regular) fibre of TT is ^-invariant,

because tang^, C") cannot be negative, and so T coincides with the
rational fibration;

(ii) if ^(.F, C) = 2 then every regular fibre which is not ^-invariant is
transverse to .77, which consequently is a Riccati foliation. []

The next lemma provides a characterization of {H^ J~L) along the same
lines.

LEMMA 2.—Suppose that there exist two T'-invariant exceptional curves
C\^C^. C X intersecting transversely at two points p^q. Suppose that p^q
are reduced nondegenerate singularities of J-', and that they are the only
singularities ofT on C\ U C^. Then (X ,̂ ) is birational to (H,H).

Proof. — We shall use some basic facts from the deformation theory of
(rational) curves on algebraic manifolds, which can be found, for instance,
in [MP, led. I]. The main fact is the following: the space of irreducible
rational curves of a fixed degree (with respect to a fixed ample divisor) on
a projective variety is a quasi-projective variety, which can be compactified
to a projective variety by adding some chains of rational curves.
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Let us analyze the structure of this projective variety near the chain
C\ U (72. If we "forget" the intersection point p, we may see C\ and 62 as
two exceptional curves intersecting only at q.

Figure 1

More precisely, see Fig. 1, glueing two tubular neighbourhoods of C\
and 62 along their intersection around q (but not along their intersection
around p) we obtain an open complex surface W with a natural holomor-
phic immersion W -^ X, and W contains two exceptional curves (7i, C^
with

W = C, (j = 1,2), Ci H C2 = {9}, i(q) = q.

After contracting C\, the curve 62 becomes a smooth rational curve C^
with zero selfintersection, and on a neighbourhood of such a curve (which
is trivial [U]) we may find a submersion onto the disc D whose fibres
are smooth rational curves parallel to C^. Therefore we may find on a
neighbourhood of C\ U 62 in W a holomorphic map onto the disc whose
fibres are C\ U 62 and smooth rational curves parallel to C\ U 62. This
one-parameter family of rational curves exhausts all the rational curves
on a neighbourhood of C\ UC2, by the maximum principle. The projection
on X by i gives a one-parameter family of rational curves which are close to
C\ U C-z and which have a node near p. In a similar way we see that C\ U 62
deforms to a one-parameter family of rational curves with a node near g,
see Fig. 1. These two one-parameter families of rational curves contain
all the rational curves close to C\ U C^\ if in the deformation of C\ U 62
we smooth the two nodes p and q we obtain smooth elliptic curves, not
rational ones.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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This shows that the compactified space of rational curves is one-
dimensional near C\ U 62, and C\ U C^ is a nodal point of that space
belonging to two local components: one which parametrizes rational curves
with a node near p and the other which parametrizes rational curves with
a node near q. Of course, these two local components of the compactified
space of rational curves may belong to the same global component, and
in fact we will see that they actually do.

Let E be the global component containing the rationale curves with
a node near q and let S be its normalization. If t e S is a point
corresponding to a curve Df^ we may decompose

Df = mi(7i U 77^(72 U Df
where 7711,7712 are nonnegative integer numbers and Dt does not contain C\
nor (72. Because Dt is homologous to C\ U 62, we have

D t ' C7i = Cf + C72 • Gi = 1 = D t ' C2
and therefore

Dt ' Ci = 1 + 777i - 27712, Dt ' 62 = 1 + 7712 - 2777i.

But Dt ' Cj :> 0, hence either 7711 = 7722 = 0 or 7711 = 7712 = 1. In
the latter case Df is homologous to zero and therefore empty, that is
Dt = C\ U 62. In the former case Dt does not contain C\ nor C^ and
therefore the equality Dt ' Cj = 1 implies that Dt cuts Cj in exactly one
point, transversely. Hence we have two maps /^:S —> Q, ij= 1,2, defined
by fi (t) = Dt H Ci if Df 7^ C\ U C^ and extended to all of S by continuity.

Figure 2

By compactness of S, there exists 5 C S such that fi(s) = p. We claim
that Ds = C\ U C2. If A? 7^ Gi U (72 then Dg cuts transversely Ci and
(72 at p and we can find s' G E near s such that D^ is irreducible and
cuts C\ and 62 in two points near p, see Fig. 2.

TOME 127 — 1999 — N° 2
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This curve Ds' is not invariant by J-', and D^, = (Ci + C^)2 = 2, hence

ci(7y) • D^ = 2 - ta^(^ D,/).

On the other hand,

c iC7>) .Q=2-Z(^ ,Q)=0,

and from the cohomological equality Dg' = C\ + 62 we obtain

tang(^D,/)=2.

The nodal point of Ds' is a point of non transversality with J-', and one
verifies immediately, by applying the definition of tang given in [B], that its
contribution to tang^, Dg/) is at least 2. Moreover, ifs' is sufficiently close
to s then there will be near p an additional tangency point between Ds'
and J-'. Hence

tang(^,^)>3,

a contradiction.
This proves that if fi{s) = p (or /2(s) = p) then necessarily

D^=C,UC^

in particular t)/,"1^) = 1 and fi'.T. —> Ci are diffeomorphisms.
In other words, if we take a rational curve with a node near q and

we "move" it in such a way that its intersection point with C\ (or 62)
approaches p^ then we finally obtain the rational curves with a node near p.
As a consequence of this, the curve E is in fact a rational curve with a
node, corresponding to C\ U £2, the two local branches of which are the
parameter spaces of rational curves with a node near q or p.

Glueing together these (chains of) rational curves, we finally obtain
an algebraic surface V, ruled over S ̂  CP1 (notation TT:Y —> S), and a
rational morphism

f:Y^X

with the following properties (see Fig. 3):
(i) Tr'^O) (resp. Tr"^!)) is a nonmultiple fibre composed by two

exceptional curves 7?i, R^ (resp. 5'i, 62) intersecting at a point r (resp. s);

(ii) / is an immersion near Tr'^O) and Tr'^l), and it maps ^i,S'i
to Ci; R'z, 62 to (72; r to p and s to g.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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To

r^/ iTr-^t) ^-^n V,

^U ^ ^ A

/^-l(t/)) ^2 /(^(t))

0 ^ i' 1

Figure 3

Let us consider /^(Ci): it contains Ri,S^, and a curve Ti which
intersects R^ at a point r^ mapped by / to q. This curve cuts a generic
fibre at a single point, hence it is a section of TT and cuts every fibre
at a single point. In particular it cuts 62 at a point s^ mapped by /
to p. Similarly, /"^(Cs) contains a section T^ cutting R^ at a point 7*1
mapped to q and S\ at a point 5i mapped to p. We may assume that
/ is an immersion near 7i and T^. Observe that f\^ = /^, modulo the
identification of the section T, with the base S.

The restriction of / to a suitable tubular neighbourhood U of the cycle

|j RiUSiUT,=Q
z=l,2

is a regular covering, of order 3, of a neighbourhood V of the cycle
Ci U 62. The covering action of Zs on U extends (birationally) to all
of Y: the open surface Y \ Q is pseudoconvex, because Q2 > 0, and
therefore every biholomorphism defined outside a compact set extends
to a bimeromorphism of the full Y \ Q (Levies theorem). In order to
complete the proof we need to show that the lifted foliation Q = j^T
is birational to HQ and that the Zs-action is birational to that generated
by the projective transformation T C Aut(CP2).

Remark that Q is tangent to Rz.Si, Ti and its only singularities on these
curves are r, ri, r2, s, 5i, 52, all reduced and nondegenerate. By contracting
R2iS'z,T^, which are permuted by the Zs-action, the curves R^,S^_,T^
become a cycle of 3 rational curves R ' , S ' , T ' of selfintersection +1,

TOME 127 — 1999 — ?2
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permuted by the Zs-action. The foliation Q becomes a foliation Q ' tangent
to R ' . S ' ^ T ' and having reduced nondegenerate singularities at the 3
crossing points. It is well known that such a configuration of rational
curves is locally isomorphic to a configuration of 3 lines in CP2: that is,
there exists a birational map to CP2, biregular near R ' ^ S ' ^ T ' ^ mapping
-R', S'\T' to 3 lines. This birational map is constructed as follows. Firstly,
there exists a rational function g such that

g-^O^R', g-l(oo)=T>

and g \ s ' has degree one (remark that if we blow-up R' D T ' the strict
transforms of R' and T ' will be disjoint rational curves with zero selfin-
tersection, therefore they will be fibres of a rational fibration and 5" will be
a section of such a fibration). Similarly, there exists a rational function h
such that

h~•l(0)=Sf, h-^oo)^^

and h\f^' has degree one. The quotient k = h / g satisfies
^-i(O) = 5", AT^oo) =R^

k\rj-' has degree one. Then ( g ^ h ) , as a map to CP2, is the required
birational map, mapping 5" to the re-axis, R' to the ^/-axis and T ' to
the line at infinity.

Under this map G' becomes a linear foliation (because Q ' has on the
line at infinity only two singularities, both reduced and nondegenerate)
and the Z3-action becomes a linear one. Finally, one easily verifies that TYo
is the only linear foliation invariant by a Zs-action which permutes its 3
singularities. []

2. Proof of the theorem
Let T be a foliation on a smooth algebraic surface X. By Seidenberg^s

theorem we may assume, up to birational morphisms, that the singularities
of T are reduced. We shall say that an exceptional curve C C X is
F- exceptional if its contraction produces a foliation which still has only
reduced singularities. By looking at blow-ups of reduced singularities, we
see that this is equivalent to the following two conditions (see Fig. 4):

1) G is ^-invariant
2) either C contains only one singularity of ^r, of the type z Q / Q z —

w9/9w (so that the contraction of C gives a nonsingular point), or C
contains two nondegenerate reduced singularities of F (so that the
contraction of C gives a nondegenerate reduced singularity), or C contains
one nondegenerate reduced singularity and one saddle-node whose strong
separatrix [CS] is in C (so that the contraction of C gives a saddle-node).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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contr.

regular

reduced
nondegenerate

saddle-node

Figure 4

LEMMA 3. — // X contains two ^-exceptional curves C\^C^ whose
intersection is nonempty, then F is birational to a ruled foliation or a
nontrivial Riccati foliation or (H,H).

Proof. — Intersection points between C\ and C^ are singularities of J-',
for which C\ and 62 are local separatrices [CS]. A reduced singularity has
either a single separatrix or a pair of two transverse separatrices [CS], so
these intersection points are transverse. Because each ^-exceptional curve
contains at most two singularities we have only two possibilities:

(i) C\ D C'2 = {p}. The singular point p has two transverse sepa-
ratrices, one in C\ and the other in 62, and hence it is nondegenerate
(because an ^-exceptional curve never contains the weak separatrix [CS]
of a saddle-node). If C\ does not contain other singularities of F then
p is of the type z 9 / 9 z — w9/9w, and so also C^ does not contain other
singularities of T (the singularities that appear by blowing-up a reduced
singular point are never of the type z 9 / 9 z - w9/9w). If Ci contains a
saddle-node then 62 does the same (because the nondegenerate singula-
rity that appears by blowing-up a saddle-node is never conjugate to one of

TOME 127 — 1999 — ?2
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the two singularities that appear by blowing-up a nondegenerate reduced
singularity). Hence we are left with three cases (Fig. 5).

Figure 5

By contracting d the curve 62 becomes a smooth rational curve C
of zero selfintersection which either is free of singularities or contains two
reduced singularities which are both nondegenerate or both saddle-nodes
with strong separatrices contained in the curve. Hence Z(^, C) = 0 or 2,
and lemma 1 shows that J=- is (birational to) a ruled foliation or a nontrivial
Riccati foliation.

(n) Ci H 62 = {p,q}. As before, p and q are nondegenerate, and
we are exactly in the situation considered in lemma 2: ^ is birational
t o ( H ^ H ) . Q

As a consequence of lemma 3, if (X,J=-) satisfies the hypotheses of
the theorem then all its ^-exceptional curves are pairwise disjoint. We
contract all these curves, but it may happen that the new reduced foliation
F ' so obtained contains new ^'-exceptional curves. These curves will be
again pairwise disjoint, we contract them, and so on. This process stops
after a finite number of contractions, because each contraction reduces
by one the rank of the second homology group of the surface. Hence we
finally have a birational morphism

(X^)——?^0)

(a composition of blow-ups) with (Xo.^o) free of ^-exceptional curves
We claim that (Xo,Jb) is the desired foliated minimal model.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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By the factorization theorem of birational maps [BPV, p. 86] it is
sufficient to look at the following situation. Let Q be a reduced foliation
on a smooth surface V, and let f:(Y^G) • • • —> (XQ,^)) ^e a birational
map which becomes a morphism after only one blow-up at some point
p € V; we have to prove that / itself is a morphism. If H:Z —^ Y is the
blow-up at p, with exceptional divisor E C Z, and if g:Z —> XQ is the
morphism covering /, then this is equivalent to prove that g contracts E.
By contradiction, suppose that this is not true. Let G be the reduced
foliation on Z derived from Q via II (or, equivalently, from ^o via 9 ) '

Firstly, observe that E is ^-exceptional, because Q is reduced. The
birational morphism g is a composition of blow-downs, and it contracts
a curve C C Z whose connected components are trees of rational
curves. This curve C is completely ^-invariant, because FQ has reduced
singularities. The curve E does not belong to (7, and so either it is disjoint
from it or it cuts C transversely at singular points of Q (and in particular
^(E H C) < 2). If E H C = 0 then g is biregular near E and then J^o would
contain the ^-exceptional curve g(E)^ contradiction. If E D C ^ 0 then
g(E) is either smooth rational (if (}(£' D C) = 1) or rational with a node
(if (t(^ H C) = 2). In the first case g(E)2 > 0 and JFo has on g(E) at most
two singularities; perhaps saddle-nodes, but with strong separatrices in
g(E). If Sing^o) H g(E) = 0 then necessarily g(E)2 = 0 and ^o is ruled
(lemma 1), contradiction. If Sing^o) n 9(^) 7^ 0 we may blow-up one
of the singular points until we obtain a smooth rational curve of zero
selfintersection, and this will show that J^o is birational to a nontrivial
Riccati foliation (lemma 1), contradiction. Finally, a similar argument
(see Fig. 6) proves that if g(E) is rational with a node (this node will be
the only singularity of J^Q on g(E)^ of nondegenerate type) then ^o would
be birational to a nontrivial Riccati foliation or to 7^, still a contradiction.

C

This completes the proof. []
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3. Proof of the corollary
Suppose, by contradiction, that the nonelementary polynomial diffeo-

morphism F:C2 —> C2 leaves invariant a polynomial foliation J- ' . The
diffeomorphism F induces a birational map F : C P 2 ' ' ' —>• CP2 and the
foliation F extends to CP2 as a holomorphic foliation J-'. Of course, we
still have P*(.F) = F.

Recall that [BS] given a nonelementary diffeomorphism F one can
construct two closed positive (1, l)-currents /^+, fJ,~ which are projectively
invariant by P, i.e.

F^p^ = Cle"^, 0 < Cte"^ < 1, Cte" > 1.

The supports of these two currents are two P-invariant closed subsets
J"^, J~, which are (roughly speaking) "laminated subsets" so that ^± can
be described as "laminar currents". The diffeomorphism has infinitely
many hyperbolic saddle periodic points, and J^ (resp. J~~) coincides with
the closure of the stable (resp. unstable) manifold of any such periodic
point. Such a manifold is abstractly isomorphic to C, but its immersion
in C2 is rather wild, and in particular it is recurrent, in the sense that
it accumulates onto itself. One of the subsets J"*", J ~ must be invariant
by F, that is its "leaves" (or, more precisely, the (un)stable manifolds
it contains) must be leaves of ^r, by the following argument of [C]. The
foliation F has finitely many singularities whereas the diffeomorphism F
has infinitely many hyperbolic saddle periodic points, hence we may find
such a periodic point p, of period m, with F regular at p. The leaf of F
through p is then invariant by F171 and therefore it coincides either with
the stable manifold of F at p or with the unstable one.

Now the existence of a recurrent immersion C —> C2 tangent to F (and
hence to F) shows that T cannot be birationally ruled nor birational
to 7^. Similarly, if T is birational to a Riccati foliation Q then Q must
have exactly two invariant fibres and the monodromy of Q around these
two fibres must be an irrational rotation of CP1. One then easily verifies
that F must have some invariant rational curve different from the line at
infinity, and so T has some invariant affine curve C C C2. That curve must
be preserved by (a power of) P, contradicting its nonelementarity [BS].

These arguments and our theorem imply that F has a minimal
model ^o? o11 some rational surface X. If G:CP2 • • ' —> X is a biratio-
nal conjugation between T and ^o? then G o F o G~1 is a birational
automorphism of X which preserves fo. By definition of minimal model,
G o F o G~1 is in fact a biregular automorphism of X. The proof is then
completed by the following lemma, of independent interest.
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LEMMA 4. — If F:C2 —> C2 is a nonelementary polynomial diffeomor-
phism and P:CP2 • • • —> CP2 is its birational extension to CP2, then F
is not birationally conjugate to a biregular map.

Proof. —Let F be a polynomial diffeomorphism and let G: CP2 • • • —> X
be a birational map such that G o F o G~1 is biregular. Let

P-O^.-.^rJCCP2

be the indeterminacy points of G and let

S={.Ri , . . . , JUcCP 2

be the collection of rational curves contracted by G (more precisely, every
Rj \ (Rj H P) is contracted by G to a point). It is easy to see that the
biregularity of F and G o F o G~1 implies the P-invariance of the affine
curve E D C2. As remarked before, if S H C2 7^ 0 then F is elementary.
On the other hand, if S H C2 = 0 (i.e. S coincides with the line at
infinity) then G is the composition of two birational maps (Fig. 7): a
first map Gi: CP2 • • • —^ Y which is biregular on C2 and a second map
G^: Y • • ' —^ X which blows-up points in G\ (P D C2) C Y and is biregular
near T = Y \ Gi(C2). Clearly, F = Gi o F o G^1 is a biregular map
of y, biregularly conjugate to F on (7i(C2) and to G o F o G~1 on a
neighbourhood of T.

Pnc2

G,

•G,[pnc2)

G2

G2(T) ,

G(Pnc2)
CP2 Y X

Figure 7

In other words, there exists a rational compactification Y of C2

over which F extends as a biregular map F. The curve T C Y is
preserved by P, and up to taking a power of P (this does not change
its elementary or nonelementary character) we may suppose that P
preserves each irreducible component of T. These irreducible components
generate Jf^V.Z), therefore P acts trivially on that cohomology group.
A classical result of Blanchard [K, p. 107] says that P is projectively
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induced: there exists an embedding of Y in CP^ such that F is realized
as the restriction to Y of a (projective) automorphism of CP^. Hence
the dynamics of F is extremely simple and so F is an elementary
diffeomorphism. \\
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