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ORBIT THEOREMS FOR SEMIGROUP

OF REGULAR MORPHISMS AND

NONLINEAR DISCRETE TIME SYSTEMS

BY

ABDELKADER MOKKADEM (*)

ABSTRACT. — Let S be a semigroup generated by a parametrized family of bijective
regular morphisms on an algebraic variety W and G the group generated by 5'; we
prove that for any x in W, the orbits Sx and Gx have the same dimension. We give a
description of Gx and an orbit theorem for nonlinear discrete time systems.

RESUME. — Soient 6' Ie semi-groupe engendre par une famille parametrisee de
morphismes reguliers bijectifs sur une variete algebrique W et G Ie groupe engendre
par S; on montre que pour tout x dans W, les orbites Gx et Sx ont meme dimension.
On donne une description de Gx et un theoreme d'orbite pour les systemes non-lineaires
en temps discret.

1. Introduction
We consider a discrete time system defined by the following state

equation:

(1) X^l = ̂ (X^Un) Xn G W, Un C E,

where W is a real algebraic variety, E is a subset of a real algebraic
variety V and (p is a regular morphism; in the present paper a real
algebraic variety is a real irreducible algebraic set and a regular morphism
is a map with rational components P z / Q z where Qz has no zero in
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478 A. MOKKADEM

W x V (our reference for the notions of algebraic geometry used here,
is BOCHNACK, COSTE and ROY (1987)).

In the sequel the morphism ^ p { - , u) is noted (pu and the Zariski closure
of a set A is noted Z{A). We always assume that:

(HI) E contains a nonempty open subset of the regular part of V;

(H2) For each u in E, (pu is bijective and y^1 is continuous.

It would be noted that (HI) implies V = Z{E) and in (H2) we do not
assume that (pu is a diffeomorphism.

Let S be the semigroup generated by the maps y^, u € E (i.e. S is the
set of maps ^pui ° (Pu2 ° • • • ° ̂ uk with (14,..., u^) in E1^, where k > 0; note
that the identity map is not always in S). Let G be the group generated
by S. If x is in TV, we note Sx (resp. Gx) its orbit by 6' (resp. G').

Our first objective is to prove an analogue of the positive form of Chow's
lemma; we obtain:

THEOREM 1. — For any x in W, we have dimGx = dimSx.

(A precise definition of dim Gx and of dim Sx will be given in the next
section.) This theorem is important in control theory. It is true for the
analytic continuous time systems (see KRENER, 1974) and fails for general
discrete time systems.

However in a recent work JAKUBCZYK and SONTAG (1989) have proved
THEOREM 1 for discrete time systems when x is an equilibrium point, (p is
analytic, the control value set E is connected and for each fixed u, (pu is a
global diffeomorphism; in SONTAG (1986), it is proved that the assumption
that x is an equilibrium point cannot be relaxed in the analytic case;
this shows the great qualitative difference between the analytic and the
algebraic situation.

THEOREM 1 is related to our paper MOKKADEM (1989), where we proved
the following:

THEOREM 2. — If S is a semigroup of bijective bicontinuous regular
morphisms of a real algebraic variety W and G is the group generated
by 5', then for any x € W we have Z(Sx) = Z(Gx).

In MOKKADEM (1989), we used THEOREM 2 to prove THEOREM 1 in
some particular cases {x G Sx or ^^{x} is a regular morphism) and
asked about the general case; the present paper gives a positive response
to the general case.
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ORBIT THEOREMS 479

One consequence of THEOREM 1 for the system (1) is the following.
Let us call the system accessible in x if dimfi'a; = dim TV and weakly
controllable in x if dimG.r = dim TV (SONTAG, 1979), then:

COROLLARY 1. — The system (1) is weakly controllable in x if and only
if it is accessible in x.

Our second objective is to give a description of the orbits Sx and Gx:
PROPOSITION 3 in section 3 (a dichotomy proposition) asserts that there
is only two kinds of orbits Sx, periodic or foliation and that if Gx = Gy
then Sx and Sy are of the same type; THEOREM 3 in section 3 asserts
that Gx is a countable union of semialgebraic sets and this union is
disjoint if the (pu are diffeomorphisms: this theorem is an algebraic version
of the «orbit theorem » in the discrete time case. The orbit theorem is
important in understanding nonlinear systems and many papers deal
with this theorem, see for example NAGANO (1966), SUSSMANN and
JURDJEVIC (1972) and SUSSMAN (1973), for the continuous time systems,
SONTAG (1986) and JAKUBCZYK and SONTAG (1989) for the discrete time
systems.

2. Preliminary results and notations
We start by introducing some notations and definitions. Let k >_ 1 and

^ = (e i ,62 , . . . 5 ejc) where ei = d=l; the map

(Peuf,o"'o(Peu\W

defined on W x E1^ is denoted by (//5/c'. When x is fixed, we obtain a
map defined on Ek and denoted by ̂ k. For £ = (+1, +1,... , +1) and
£ = (—1, — 1 , . . . , —1), we write respectively ̂  and ^ k '

We shall denote by Dk(x) the set ^{E^ of states accessible from x
in k steps, and by D-k(x) the set ( p ^ k ( E k ) of states controllable to a* in A;
steps. The set (^^(E^) is denoted by F^^(x) and we put:

(2) Fk(x) = (J F^(x).
^==(ei,...,efc)

The Zariski closures of these sets are denoted TV or W with appropriate
index:

Z(Dk(x)) = Wk(x)^ Z(D,k(x)) = W-k{x\

Z(F^(x)) = W^Or), Z{Fk(x)) = \J^(x) = W^),

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



480 A. MOKKADEM

(note that the Wk(x) are irreducible). Clearly,

Sx = |j Dk(x) and Gx = \J Fk(x).
k>0 k>0

We can state the following definitions (used implicitely in MOKKA-
DEM 1989):

DEFINITION 1.
dim Dk (x) = dim Wj, (x), dim D-k (x) = dim W-k (x),

d\mF^k{x) = dim W^/, (x), dimFk(x) = dim W/, (re).

DEFINITION 2.
dim Sx = sup dim Wk (x), dim Gx = sup dim W^; (x).

k>0 k>0

Now we give some properties of the above maps and sets.

PROPOSITION 1. — The sequences dimDk(x) and dimFk{x) are increa-
sing sequences.

This proposition is a consequence of the inclusions

^u(Wk(x)) C W^{X\ ^n(^k{x)) C Wfc+i(^)

and the bijectivity of the regular morphism (pu. []

In the following proposition we prove that the maps ̂ ^ are continuous
semialgebraic maps; this is not used in the sequel but the consequence
is that the set F^^(x) is a subset of the semialgebraic set ^^(V^) and
contains an open subset of the regular part of^'^^); according to (HI);
then the dimensions given in Definition 1 and Definition 2 are also the
topological dimensions.

PROPOSITION 2. — For any map ̂ k there exists a continuous semi-
algebraic map <S> defined on a semialgebraic set 8k D Ek, such that ̂ k is
the restriction of <1> ioEk. We can consider then ̂ k as a semialgebraic
map on 8k D E1^.

We prove the following result: (//'/c is the restriction of a continuous
semialgebraic map defined on a semialgebraic set Uk D W x Ek.

The PROPOSITION 2 is an immediate consequence of this result.
For k = 1 and £ = (1) the result is obvious and T^i = W x V; for k = 1

and^=(- l ) ,
^k{x,u)=^\x).

TOME 123 — 1995 — ?4



ORBIT THEOREMS 481

Let us put:
^{x,u) = ((p(x,u),u).

Then -0 is a regular morphism on W x V and is injective on W x E\
by the semialgebraic triviality theorem (see BOCHNACK, COSTE and ROY
1987, thm. 9.3.1, p. 195), there exists a finite partition of W x V by
semialgebraic sets T^, for 1 < i <, r, such that in each T^, all the fibers
are homeomorphic. Thus, for any Ti such that Ti H ^(W x E) -^ 0, '0 is
injective on '0-l(^^); denoting by T^i the union of such T^, it is easy to
see that ^ is a homeomorphism between ^~1(/R.-^_) and T^i; the inverse is
a semialgebraic map on T^i; clearly

TZi D ^(W x E) D W x E

(the last inclusion comes from the bijectivity of the maps (pu for u € -E');
now, taking TT the projection of W x V on W, it is easy to see that ̂ ^(x)
is the restriction of TT o '0~1 to H^ x E.

Assume the result true for n < k (i.e. (//'n is continuous and semialge-
braic on T^n); we can write in W x E^1

(3) (/'fc+l {x, HI, . . . , Hfc+i) = ^e'1 ((^(.r, m , . . . , nfc), ̂ +1)

with /i = ( e i , . . . , efc), e = ±1 and £ = (e, /i). Now, define:

(4) A(a ; ,^ i , . . . ,HA;+i ) = ((^'A ;(^,^l, . . . ,Ufc)^A;+l)•

Clearly A is a semialgebraic map on 7 ;̂ x V and its range is TV x V.
Denote the semialgebraic set A'^T^i) by 7^+i; it is easy to see that

A(W x £^+1) = W x E

(because the maps (^ o- • -o^ are bijective) and then WxE^1 C T^^+i.
The map y?6'1 o A is continuous and semialgebraic on T^^+i and it follows
from (3) and (4) that (/^+1 = (p^1 o A on TV x E'^; the result is then
proved.

Other Properties. — Because (/^ is a regular morphism and E1^ contains
an open subset of the regular part of V^, it follows that Dk(x) contains an
open subset of the regular part of Wk{x). This property holds for F^(;r)
by PROPOSITION 2 and is more precise if we add one of the follo-
wing assumptions (used also in JACKUBCZYK and SONTAG (1989) and in
MOKKADEM 1989):

(i) ^^(rc) is a regular morphism;

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



482 A. MOKKADEM

(ii) E is semialgebraic;

(hi) E is contained in the closure of its interior {i.e. E C clos(int£1)).
In the case (i) W^ k(x) is irreducible; for (ii) from PROPOSITION 2,

^^(E^ is semialgebraic and then contains an open subset of the regular
part of its Zariski closure 'W^(a;); for (iii) we use Proposition 2 and
Corollary 9.3.2 in p. 198 of BOCHNACK, COSTE and ROY (1987); ̂ k is
semialgebraic on 8k, then S = ((^'^'^('W^^a;)) is semialgebraic; denote
by Ti, for % = 1,. . . , r, the partition of'W^(rc) given by the Corollary 9.3.2.
and denote by Sz their inverse images; clearly E^' H (USi) ̂  0 (otherwise
Z{Fi ̂ ) 7^ W^fc); now, because Si is open, by (iii) Ek contains an open
subset of some 5^, Z(Ti) = W^(^) and ̂ k is an open map on Sz.

3. Main results
The lemmas and propositions in this section give information about

the orbits and are used to prove THEOREM 1.
LEMMA 1. —Ify € Gx then dim Sy = dim5'*r, i.e. the dimension of Sy

is the same for all y in Gx.

Proof. — Let
no = max dim Sy

yCGx

and yo be such that dim Syo = no. The set

N = {y e Z(Gx) ; dimSy < no}

is the set of zeros of a family of regular morphisms (minors of jacobians
of the morphisms (^fc); then N is an algebraic subset of Z(Gx). It is
a proper subset because yo ^ N. Assume that N D Gx ^ 0 and pick
y C N H Gx\ clearly Sy C N because y ' G Sy implies S y ' C Sy and then
dimSy' < no; it follows that Z(Sy) C N; there is a contradiction because
by THEOREM 2, Z(Sy) = Z(Gx). Q

Now we can state our dichotomy result.
PROPOSITION 3. — In any orbit Gx there are only two exclusive

possibilities:
1) the periodic case: for any y in Gx the sequence Wk(y) is periodic

(i.e. there exist integers ko andr^ such that Wk(y) = Wk+r(y) fork > ko).
2) the foliation case: for any y in Gx, the sets

Mk(y)=Wk(y)nGx^ A ; € N ,
are disjoint (here Wo(y) = {y}).

TOME 123 — 1995 — ?4



ORBIT THEOREMS 483

Proof. — We note that if the sequence Wk(y) is periodic then

(5) dimSy=dimZ(Sy)

because

(6) Z(Sy) = \J W,(y).
0<J<A;o+r

Note also that if W^y) = H^o+rQ/) for some ko and r, then the
sequence Wk(y) is periodic: this follows from the construction of the
varieties Wk{y)'

Now we claim that if there exists yo such that the sequence Wk(yo) is
periodic, then we are in the periodic case. Let y in Gx\ using LEMMA 1,
THEOREM 2 and (5) we obtain

dim Sy = dim Z(Sy) ;

by PROPOSITION 1 there exists A-i such that dimWk{y) = dimZ(Sy)
for k >, A;i; but Z(Sy) has a finite number of components and then
^ko{y) = Wko-^-r(y) for some integers ko and r; the claim is proved.

We conclude the proof of the PROPOSITION 3. Let y in Gx\ assume that
we are not in the periodic case and that for some (r, ko) C N2,

(7) M^(2/)nM^+,Q/)^0

It follows that:

(8) Zk, = Wk, {y) H Wk^r{y) + 0 and dim Z^ < dim Sy.

Let us denote respectively by Nj, and Zk the sets Mk (y) D M^r (y) and
Wk(y) H Wk-^-r(y)', using (8) and the non periodicity we obtain:

(9) Zk ^ 0 and dim Zk < dim Sy for any k > ko.

Now we pick yo in A^o; it is easy to see that Syo C Ufc>^ ̂  and then
from (9), dim 5^/o < dimSy, this contradicts the LEMMA ~1. Q

REMARK 1. — We notice in the above proof, that Gx satisfies the
periodic case if and only if dimSx = dimZ{Sx). Note also that, in the
foliation case, the sets Dk(x) are disjoints.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



484 A. MOKKADEM

LEMMA 2. — Let x in W\ there exists an integer no such that for any y
in Gx, dimDno(y) = dimSy.

Proof. — Let m be the common dimension of the orbits Sy, y c Gx\
we define:

(10) Tn = [z € Z(Gx) ; rank^ < m}.

Clearly:

(11) Tn = {z e Z(Gx) ; dim^(^) < m}.

From (10) it follows that Tn is an algebraic set; PROPOSITION 1 and
formula (11) imply:

(12) r,+i c Tn.
By the Hubert's basis theorem (see e.g. BROCKER 1975), there exists

an integer no such that:

(13) Tn = Tn, for n > no-

Using (11) and (13) we obtain

(14) Tn^ = {z e Z(Gx) ; dimSz < m}

and LEMMA 1 implies that Tno H Gx = 0; LEMMA 2 is then proved. Q

REMARK 2. — From LEMMAS 1 and 2 it follows that: for any x in W,
there exists no and m such that dimWk-^-no^) = r^ for any z in Ga;
and k e N.

Prw/ o/ Theorem 1. — Let a; in TV; there are two cases.
• The periodic case. In this case dim5a; = d[mZ(Sx); THEOREM 1 is

then a consequence of THEOREM 2.
• The foliation case. For h and k in N, we define:

\W^x)=z{ U^10---0^^^))},
(15) ^ (ui,...,uh)eE"

[ Wo,k[.x) = Wk(x),

and

fl6) <f ̂ •^ = ̂ ^(a;) n Ga;'
[ Mo,k(x) = Mk(x).

TOME 123 — 1995 — ?4
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We begin by proving the following claim:

( Let no be the integer of the Lemma 2, then
for any (ni, ...,^+^o) ^ E^"0,

(*) ^+no ° • • • ° ̂ i (^kW) C Mk+no(x).

In particular, for any u in E we have:

^u(Mh,kW) C Mh^no-l^no(x).

We set:
A= U ̂ •••^(WW).

(m,...,nh)eE'1

Let y in A; there exists (ui, ...,u?t) such that

(17) Z = ̂  o • . • o y^ (y) £ Wk{x) ;

then
W^(z)CWk+n.(x)

and by the Remark 2

(18) ^,(^)=^+^(^);

but Wno{z) C l^+^(^/) and then Wh^no(y) = Wk-^no(x); this proves
that D^no(y) C ^+^(a;). Then for any (m,..,^+^) in ^^^^

^+no 0 • • • ° ̂ i (A) c ^+no (•r)

and this leads to

^+no ° • • • ° ̂ 1 (Z(A)) c ̂ 4-^^)

it is now easy to conclude the proof of the first part of the claim (*).

For the second part of the claim, we have according to the first part:

^u^o ° • • • ° ̂ 2 ° ̂ u{Mh,k(x)) C Mk^no(x).

Therefore

<^(A4,fc(^)) C ̂  0 . • • 0 ̂ ^ (Mfc+no(;r)) C Wh+no-l,k^no(x)

as Mh,k(x) C Gx, we conclude the proof of the claim. Q

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



486 A. MOKKADEM

From the claim (*) and the bijectivity of the morphisms (pu it follows
that:

(19) dimZ(Mh,k(x)) < dimSx.

To conclude we prove the following assertion: each F^^(x) is contained
in some Mh,k'(x).

We proceed by induction on k. For k = 1; if £ = (1),I^^(^) C M\{x)
and if£= (—1), F^^(x) C M\ft{x). Now assume the assertion true for the
integers smaller than k and write

(20) F^(x)= IJ^(F^-i^)),
ueE

where £ = (ei , . . . ,^) and V = (ei , . . . ,6^-1); by the induction hypo-
thesis, there exists M^^i{x) such that:

(21) F^,k-i(x)cM^{x).

If ejc = 1, by the claim (*) and (20) we have

F^k(x) C Mh+no-l,k'+no(x).

If ek = —1, the definition of the Mh,k(x) and (20) give:

F^k(x) C M^i.k^x).

The assertion is then proved and Theorem 1 follows from (19).

Orbit Theorem
We give now more precision on the structure of the orbit Gx. We

consider the two cases.

1. The periodic case.
In this case dim Gx = dim Z(Gx} and clearly, Gx contains an open sub-

set of the regular part of Z(Gx). Because the morphisms ipu are homeo-
morphisms, it follows that Gx is an open subset of Z(Gx) with dimension
dimZ{Gx) at each of its points (we do not know if Z(Gx) contains or
not a branch with smaller dimension than dimZ(Gx)). One can see also
(using PROPOSITION 2) that Gx is locally semialgebraic; we can prove
that it is semialgebraic; it is easy to see that Z(Gx) is invariant by G
and that the set L of z € Z(Gx) such that dim Gz < dim Gx is a proper

TOME 123 — 1995 — N° 4
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algebraic subset of Z{Gx}\ we define U = Z(Gx) — L, (U is the set of
locally weakly controllable points of the system (1) restricted to Z(Gx)).
The set U is an open semialgebraic subset of Z(Gx) with a finite number
of semialgebraic connected components; because any such component is
contained in an orbit by G, it follows that Gx is the union of some of this
components.

If the tpu are diffeomorphisms and W is smooth (i.e. without singu-
larities) then Gx is an open subset of the regular part of Z(Gx) and
consequently Gx is an embedded analytic subvariety of W.

2. The foliation case.
We have the following.

a) If k - h -^ k1 - h1 then M^^(x) D M^'^(x) = 0. Assume that
y e Mh,k{x)r\Mh^k'(.x}\ then the claim (*) in the proof of the THEOREM 1
implies:

(22) D^na{x) C Mk^no(x) and D^^x) C M^+^o^).

If h' < h write h = h' + ?7, we obtain

D^na(x) CMk^n^x)

and because we are in the foliation case, it follows that k+riQ = k1 +7^0+77;
this gives a).

We shall denote by
Ma = |j Mh,k(x)

k—h=a

and notice that for fixed a^

Mh,k{x) C Mn^k'^x) if k < k ' and k - h = k ' - h' = a

(the same inclusion holds for the Wh^k)' If a 7^ a', then Ma D Ma/ = 0
and as each F^^(x) is contained in some Mh,k/(x), we have:

Gx= JM^.
aEZ

b) Let us call Yn, where n G Z, the countable family of irreducible
components of the W^,k whose dimension is dimGcC; we claim that Gx is
contained in IJ^n- To prove this, assume that some y in Gx is contained
only in components of dimension smaller than dimGa;; we pick z in Gx

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



488 A. MOKKADEM

such that z is also in the regular part of Yn (this is always possible).
There is ip in G, such that ^p(z) = y, (p is an homeomorphism of
a neighborhood of z in Yn into a space of smaller dimension; this is
impossible by the Theorem on the invariance of domain (see HUREWICZ
and WALLMAN 1941).

Now arguing like in the periodic case, it is not difficult to see that the
properties obtained without the diffeomorphism hypothesis continue to
hold in the foliation case for Yn Fl Gx in Yn (instead of Gx in Z(Gx)).

c) Now we assume that the morphisms ^pu are diffeomorphisms
and W is smooth.

We take Yn', Gx contains an open subset U of the regular part of Yn. We
claim that there exists y in U, such that y is not in a proper intersection
of Yn with some Yrm otherwise Yn would be a countable union of proper
algebraic subsets; this is impossible.

Now we fix such y . Let z in Gx such that z is in a proper intersection;
there exists (p € G such ̂ (y) = z. Let B be an open neighborhood of y such
that H = YnF}B is smooth; denote by B' and H ' the sets <^(B) and ip(H);
because (p is a diffeomorphism it follows that H ' is included in one Ym.
Let Yk such that z is in the proper intersection Ym,r\Yk; then (p~l(Yk^\Bf)
is also contained in an H" = Ys D B; clearly H " -^ H and H " H H ^ 0
(because Ym U Yk) / 0); y ^ H" U H but ^-1G^) 6 H " H H, there is
a contradiction. We conclude that the algebraic varieties Yn.n G Z, are
disjoint. Now, it is easy to see that YnF\Gx is an open subset of the regular
part of Yn.

We summarize the above discussion in the following theorem.

THEOREM. — Let x inW and m == dim Gx.
• In the periodic case, Gx is an open semialgebraic subset of Z(Gx)

with pure dimension m {i.e. the dimension is the same in each point).
IfWis smooth and the morphisms ipu ^^ diffeomorphisms, then Gx is

a smooth semialgebraic subset; in particular, Gx is an embedded analytic
subvariety ofW.

• In the foliation case, Gx is a countable union of semialgebraic subsets
with pure dimension m and each of these subsets is open in its Zariski
closure.

If W is smooth and the morphisms (pu ^^ diffeomorphisms, then Gx is
a countable disjoint union of smooth semialgebraic subsets (with dimen-
sion m); in particular, Gx is an embedded analytic subvariety ofW.

TOME 123 — 1995 — ?4
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Examples
Example 1 (periodic case)'.

xn-\-l = xn(zn ~^~ L)^

2/n+l = yn{^ + 1),^n+1 — yn\^n

Zn-^-1 = (Zn - U)3 ;

W = R3, E = R.

Note that <f)u is not a diffeomorphism. Let x = (a*o, yo i zo)-
• If a:o = Vo = 0 then

Sx = Gx = D^x) = Z(Sx) = {x = y = 0}.

• Otherwise it is easy to see that

Z(Gx) = Z{Sx) = Z(D^(x)) = {yox - x^y = 0}

and that

Gx = {yox - xoy = 0 ; x2 + y2 > 0, XQX > 0 ; yoy > 0},

Sx = {vox - xoy = 0 ; XQX > 0, yoy ^ 0,

x2>x^ y^y^ x2^y2>Q}.

Example 2 (foliation case)'.

q

^n+l — ^^n?

Vn-}-! = Vn + 1 ;

W=R2, E=R-{0}.

Let ^ = (xo.yo).
• If XQ = 0, then

Dr,(x) = {(0,^o + ^)}, Z(D^x)) = Dn(x), dimDn(x) = 0,
Sx={^yo+k); A :GN*} ,
G.r= {(0,^/0 + k) ; A - e Z } ,
Z(5'.r) = Z(Gx) ={x= 0}.
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• If XQ 7^ 0, then

Dn(x)={{x,yo+n)', x ^ O } ,
S x = { ( x , y o + k ) ; ke^\ x ^ 0},
Gx= {(a:, 2/0 + A;) ; f c C Z , a; ̂  0},

Z{Gx) = Z(Sx) = R2.

Example 3 (periodic and foliation case):

Xn-^-l =UXn+VVn,

Vn+1 = VXn - Uyn ;

W=R2, E={u2-^v2=a2},

where a is a constant different from 1 and 0. Let x = {xQ^yo), then Dn(x)
is the circle

x^y^a^^+y2,).

If x^ + y^ = 0 the orbit is {0}, if x^ + y^ ^ 0 the orbit and forward orbit
are disjoint union of circles.
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