Abdelkader Mokkadem
 Orbit theorems for semigroup of regular morphisms and nonlinear discrete time systems

Bulletin de la S. M. F., tome 123, no 4 (1995), p. 477-491
http://www.numdam.org/item?id=BSMF_1995__123_4_477_0
© Bulletin de la S. M. F., 1995, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

ORBIT THEOREMS FOR SEMIGROUP OF REGULAR MORPHISMS AND NONLINEAR DISCRETE TIME SYSTEMS

BY
Abdelkader MOKKADEM (*)

AbSTRACT. - Let S be a semigroup generated by a parametrized family of bijective regular morphisms on an algebraic variety W and G the group generated by S; we prove that for any x in W, the orbits $S x$ and $G x$ have the same dimension. We give a description of Gx and an orbit theorem for nonlinear discrete time systems.

Résumé. - Soient S le semi-groupe engendré par une famille paramétrisée de morphismes réguliers bijectifs sur une variété algébrique W et G le groupe engendré par S; on montre que pour tout x dans W, les orbites $G x$ et $S x$ ont même dimension. On donne une description de $G x$ et un théorème d'orbite pour les systèmes non-linéaires en temps discret.

1. Introduction

We consider a discrete time system defined by the following state equation:

$$
\begin{equation*}
X_{n+1}=\varphi\left(X_{n}, u_{n}\right) \quad X_{n} \in W, u_{n} \in E \tag{1}
\end{equation*}
$$

where W is a real algebraic variety, E is a subset of a real algebraic variety V and φ is a regular morphism; in the present paper a real algebraic variety is a real irreducible algebraic set and a regular morphism is a map with rational components P_{i} / Q_{i} where Q_{i} has no zero in

[^0]$W \times V$ (our reference for the notions of algebraic geometry used here, is Bochnack, Coste and Roy (1987)).

In the sequel the morphism $\varphi(\cdot, u)$ is noted φ_{u} and the Zariski closure of a set A is noted $Z(A)$. We always assume that:
(H1) E contains a nonempty open subset of the regular part of V;
(H2) For each u in E, φ_{u} is bijective and φ_{u}^{-1} is continuous.
It would be noted that (H1) implies $V=Z(E)$ and in (H2) we do not assume that φ_{u} is a diffeomorphism.

Let S be the semigroup generated by the maps $\varphi_{u}, u \in E$ (i.e. S is the set of maps $\varphi_{u_{1}} \circ \varphi_{u_{2}} \circ \cdots \circ \varphi_{u_{k}}$ with $\left(u_{1}, \ldots, u_{k}\right)$ in E^{k}, where $k>0$; note that the identity map is not always in S). Let G be the group generated by S. If x is in W, we note $S x$ (resp. $G x$) its orbit by S (resp. G).

Our first objective is to prove an analogue of the positive form of Chow's lemma; we obtain:

Theorem 1. - For any x in W, we have $\operatorname{dim} G x=\operatorname{dim} S x$.
(A precise definition of $\operatorname{dim} G x$ and of $\operatorname{dim} S x$ will be given in the next section.) This theorem is important in control theory. It is true for the analytic continuous time systems (see Krener, 1974) and fails for general discrete time systems.

However in a recent work Jakubczyk and Sontag (1989) have proved Theorem 1 for discrete time systems when x is an equilibrium point, φ is analytic, the control value set E is connected and for each fixed u, φ_{u} is a global diffeomorphism; in Sontag (1986), it is proved that the assumption that x is an equilibrium point cannot be relaxed in the analytic case; this shows the great qualitative difference between the analytic and the algebraic situation.

Theorem 1 is related to our paper Moккаdem (1989), where we proved the following:

Theorem 2. - If S is a semigroup of bijective bicontinuous regular morphisms of a real algebraic variety W and G is the group generated by S, then for any $x \in W$ we have $Z(S x)=Z(G x)$.

In Mokkadem (1989), we used Theorem 2 to prove Theorem 1 in some particular cases ($x \in S x$ or $\varphi_{u}^{-1}(x)$ is a regular morphism) and asked about the general case; the present paper gives a positive response to the general case.

One consequence of Theorem 1 for the system (1) is the following. Let us call the system accessible in x if $\operatorname{dim} S x=\operatorname{dim} W$ and weakly controllable in x if $\operatorname{dim} G x=\operatorname{dim} W$ (Sontag, 1979), then:

Corollary 1. - The system (1) is weakly controllable in x if and only if it is accessible in x.

Our second objective is to give a description of the orbits $S x$ and $G x$: Proposition 3 in section 3 (a dichotomy proposition) asserts that there is only two kinds of orbits $S x$, periodic or foliation and that if $G x=G y$ then $S x$ and $S y$ are of the same type; Theorem 3 in section 3 asserts that $G x$ is a countable union of semialgebraic sets and this union is disjoint if the φ_{u} are diffeomorphisms: this theorem is an algebraic version of the «orbit theorem» in the discrete time case. The orbit theorem is important in understanding nonlinear systems and many papers deal with this theorem, see for example Nagano (1966), Sussmann and Jurdjevic (1972) and Sussman (1973), for the continuous time systems, Sontag (1986) and Jakubczyk and Sontag (1989) for the discrete time systems.

2. Preliminary results and notations

We start by introducing some notations and definitions. Let $k \geq 1$ and $\ell=\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ where $e_{i}= \pm 1$; the map

$$
\varphi_{u_{k}}^{e_{k}} \circ \cdots \circ \varphi_{u_{1}}^{e_{1}}(x)
$$

defined on $W \times E^{k}$ is denoted by $\varphi^{\ell, k}$. When x is fixed, we obtain a map defined on E^{k} and denoted by $\varphi_{x}^{\ell, k}$. For $\ell=(+1,+1, \ldots,+1)$ and $\ell=(-1,-1, \ldots,-1)$, we write respectively φ_{x}^{k} and φ_{x}^{-k}.

We shall denote by $D_{k}(x)$ the set $\varphi_{x}^{k}\left(E^{k}\right)$ of states accessible from x in k steps, and by $D_{-k}(x)$ the set $\varphi_{x}^{-k}\left(E^{k}\right)$ of states controllable to x in k steps. The set $\varphi_{x}^{\ell, k}\left(E^{k}\right)$ is denoted by $F_{\ell, k}(x)$ and we put:

$$
\begin{equation*}
F_{k}(x)=\bigcup_{\ell=\left(e_{1}, \ldots, e_{k}\right)} F_{\ell, k}(x) \tag{2}
\end{equation*}
$$

The Zariski closures of these sets are denoted W or \mathcal{W} with appropriate index:

$$
\begin{aligned}
Z\left(D_{k}(x)\right) & =W_{k}(x), \quad Z\left(D_{-k}(x)\right) \\
Z\left(F_{\ell, k}(x)\right) & =W_{\ell-k}(x) \\
& =\bigcup_{\ell}(x), \quad Z\left(F_{k}(x)\right)
\end{aligned}
$$

(note that the $W_{k}(x)$ are irreducible). Clearly,

$$
S x=\bigcup_{k>0} D_{k}(x) \quad \text { and } \quad G x=\bigcup_{k>0} F_{k}(x)
$$

We can state the following definitions (used implicitely in МоккаDEM 1989):

Definition 1.

$$
\begin{aligned}
\operatorname{dim} D_{k}(x) & =\operatorname{dim} W_{k}(x), \quad \operatorname{dim} D_{-k}(x) & =\operatorname{dim} W_{-k}(x) \\
\operatorname{dim} F_{\ell, k}(x) & =\operatorname{dim} \mathcal{W}_{\ell, k}(x), \quad \operatorname{dim} F_{k}(x) & =\operatorname{dim} \mathcal{W}_{k}(x) .
\end{aligned}
$$

Definition 2.

$$
\operatorname{dim} S x=\sup _{k>0} \operatorname{dim} W_{k}(x), \quad \operatorname{dim} G x=\sup _{k>0} \operatorname{dim} \mathcal{W}_{k}(x)
$$

Now we give some properties of the above maps and sets.
Proposition 1. - The sequences $\operatorname{dim} D_{k}(x)$ and $\operatorname{dim} F_{k}(x)$ are increasing sequences.

This proposition is a consequence of the inclusions

$$
\varphi_{u}\left(W_{k}(x)\right) \subset W_{k+1}(x), \quad \varphi_{u}\left(\mathcal{W}_{k}(x)\right) \subset \mathcal{W}_{k+1}(x)
$$

and the bijectivity of the regular morphism φ_{u}.
In the following proposition we prove that the maps $\varphi^{\ell, k}$ are continuous semialgebraic maps; this is not used in the sequel but the consequence is that the set $F_{\ell, k}(x)$ is a subset of the semialgebraic set $\varphi_{x}^{\ell, k}\left(V^{k}\right)$ and contains an open subset of the regular part of $\varphi_{x}^{\ell, k}\left(V^{k}\right)$, according to (H1); then the dimensions given in Definition 1 and Definition 2 are also the topological dimensions.

Proposition 2. - For any map $\varphi_{x}^{\ell, k}$ there exists a continuous semialgebraic map Φ defined on a semialgebraic set $\mathcal{E}_{k} \supset E^{k}$, such that $\varphi_{x}^{\ell, k}$ is the restriction of Φ to E^{k}. We can consider then $\varphi_{x}^{\ell, k}$ as a semialgebraic map on $\mathcal{E}_{k} \supset E^{k}$.

We prove the following result: $\varphi^{\ell, k}$ is the restriction of a continuous semialgebraic map defined on a semialgebraic set $\mathcal{R}_{k} \supset W \times E^{k}$.

The Proposition 2 is an immediate consequence of this result.
For $k=1$ and $\ell=(1)$ the result is obvious and $\mathcal{R}_{1}=W \times V$; for $k=1$ and $\ell=(-1)$,

$$
\varphi^{\ell, k}(x, u)=\varphi_{u}^{-1}(x)
$$

[^1]Let us put:

$$
\psi(x, u)=(\varphi(x, u), u)
$$

Then ψ is a regular morphism on $W \times V$ and is injective on $W \times E$; by the semialgebraic triviality theorem (see Bochnack, Coste and Roy 1987, thm. 9.3.1, p. 195), there exists a finite partition of $W \times V$ by semialgebraic sets T_{i}, for $1 \leq i \leq r$, such that in each T_{i}, all the fibers are homeomorphic. Thus, for any T_{i} such that $T_{i} \cap \psi(W \times E) \neq \emptyset, \psi$ is injective on $\psi^{-1}\left(T_{i}\right)$; denoting by \mathcal{R}_{1} the union of such T_{i}, it is easy to see that ψ is a homeomorphism between $\psi^{-1}\left(\mathcal{R}_{1}\right)$ and \mathcal{R}_{1}; the inverse is a semialgebraic map on \mathcal{R}_{1}; clearly

$$
\mathcal{R}_{1} \supset \psi(W \times E) \supset W \times E
$$

(the last inclusion comes from the bijectivity of the maps φ_{u} for $u \in E$); now, taking π the projection of $W \times V$ on W, it is easy to see that $\varphi_{u}^{-1}(x)$ is the restriction of $\pi \circ \psi^{-1}$ to $W \times E$.

Assume the result true for $n \leq k$ (i.e. $\varphi^{\ell, n}$ is continuous and semialgebraic on \mathcal{R}_{n}); we can write in $W \times E^{k+1}$

$$
\begin{equation*}
\varphi^{\ell, k+1}\left(x, u_{1}, \ldots, u_{k+1}\right)=\varphi^{e, 1}\left(\varphi^{h, k}\left(x, u_{1}, \ldots, u_{k}\right), u_{k+1}\right) \tag{3}
\end{equation*}
$$

with $h=\left(e_{1}, \ldots, e_{k}\right), e= \pm 1$ and $\ell=(e, h)$. Now, define:

$$
\begin{equation*}
\Lambda\left(x, u_{1}, \ldots, u_{k+1}\right)=\left(\varphi^{h, k}\left(x, u_{1}, \ldots, u_{k}\right), u_{k+1}\right) \tag{4}
\end{equation*}
$$

Clearly Λ is a semialgebraic map on $\mathcal{R}_{k} \times V$ and its range is $W \times V$. Denote the semialgebraic set $\Lambda^{-1}\left(\mathcal{R}_{1}\right)$ by \mathcal{R}_{k+1}; it is easy to see that

$$
\Lambda\left(W \times E^{k+1}\right)=W \times E
$$

(because the maps $\varphi_{u_{k}}^{e_{k}} \circ \cdots \circ \varphi_{u_{1}}^{e_{1}}$ are bijective) and then $W \times E^{k+1} \subset \mathcal{R}_{k+1}$. The map $\varphi^{e, 1} \circ \Lambda$ is continuous and semialgebraic on \mathcal{R}_{k+1} and it follows from (3) and (4) that $\varphi^{\ell, k+1}=\varphi^{e, 1} \circ \Lambda$ on $W \times E^{k}$; the result is then proved.

Other Properties. - Because φ_{x}^{k} is a regular morphism and E^{k} contains an open subset of the regular part of V^{k}, it follows that $D_{k}(x)$ contains an open subset of the regular part of $W_{k}(x)$. This property holds for $F_{\ell, k}(x)$ by Proposition 2 and is more precise if we add one of the following assumptions (used also in Jackubczyк and Sontag (1989) and in Mokкadem 1989):
(i) $\varphi_{u}^{-1}(x)$ is a regular morphism;
(ii) E is semialgebraic;
(iii) E is contained in the closure of its interior (i.e. $E \subset \operatorname{clos}(\operatorname{int} E)$).

In the case (i) $\mathcal{W}_{\ell, k}(x)$ is irreducible; for (ii) from Proposition 2, $\varphi_{x}^{\ell, k}\left(E^{k}\right)$ is semialgebraic and then contains an open subset of the regular part of its Zariski closure $\mathcal{W}_{\ell, k}(x)$; for (iii) we use Proposition 2 and Corollary 9.3 .2 in p. 198 of Bochnack, Coste and Roy (1987); $\varphi_{x}^{\ell, k}$ is semialgebraic on \mathcal{E}_{k}, then $S=\left(\varphi_{x}^{\ell, k}\right)^{-1}\left(\mathcal{W}_{\ell, k}(x)\right)$ is semialgebraic; denote by T_{i}, for $i=1, \ldots, r$, the partition of $\mathcal{W}_{\ell, k}(x)$ given by the Corollary 9.3.2. and denote by S_{i} their inverse images; clearly $E^{k} \cap\left(\cup S_{i}\right) \neq \emptyset$ (otherwise $\left.Z\left(F_{\ell, k}\right) \neq \mathcal{W}_{\ell, k}\right)$; now, because S_{i} is open, by (iii) E^{k} contains an open subset of some $S_{i}, Z\left(T_{i}\right)=\mathcal{W}_{\ell, k}(x)$ and $\varphi_{x}^{\ell, k}$ is an open map on S_{i}.

3. Main results

The lemmas and propositions in this section give information about the orbits and are used to prove Theorem 1.

Lemma 1.- If $y \in G x$ then $\operatorname{dim} S y=\operatorname{dim} S x$, i.e. the dimension of $S y$ is the same for all y in $G x$.

$$
\begin{aligned}
& \text { Proof. - Let } \quad n_{0}=\max _{y \in G x} \operatorname{dim} S y
\end{aligned}
$$

and y_{0} be such that $\operatorname{dim} S y_{0}=n_{0}$. The set

$$
N=\left\{y \in Z(G x) ; \operatorname{dim} S y<n_{0}\right\}
$$

is the set of zeros of a family of regular morphisms (minors of jacobians of the morphisms φ_{y}^{k}); then N is an algebraic subset of $Z(G x)$. It is a proper subset because $y_{o} \notin N$. Assume that $N \cap G x \neq \emptyset$ and pick $y \in N \cap G x$; clearly $S y \subset N$ because $y^{\prime} \in S y$ implies $S y^{\prime} \subset S y$ and then $\operatorname{dim} S y^{\prime}<n_{0}$; it follows that $Z(S y) \subset N$; there is a contradiction because by Theorem $2, Z(S y)=Z(G x)$.

Now we can state our dichotomy result.
Proposition 3. - In any orbit $G x$ there are only two exclusive possibilities:

1) the periodic case: for any y in $G x$ the sequence $W_{k}(y)$ is periodic (i.e. there exist integers k_{0} and r, such that $W_{k}(y)=W_{k+r}(y)$ for $k \geq k_{0}$).
2) the foliation case: for any y in $G x$, the sets

$$
M_{k}(y)=W_{k}(y) \cap G x, \quad k \in \mathbb{N}
$$

are disjoint (here $\left.W_{0}(y)=\{y\}\right)$.

$$
\text { tome } 123-1995-\mathrm{N}^{\circ} 4
$$

Proof. - We note that if the sequence $W_{k}(y)$ is periodic then

$$
\begin{equation*}
\operatorname{dim} S y=\operatorname{dim} Z(S y) \tag{5}
\end{equation*}
$$

because

$$
\begin{equation*}
Z(S y)=\bigcup_{0<j<k_{0}+r} W_{j}(y) \tag{6}
\end{equation*}
$$

Note also that if $W_{k_{0}}(y)=W_{k_{0}+r}(y)$ for some k_{0} and r, then the sequence $W_{k}(y)$ is periodic: this follows from the construction of the varieties $W_{k}(y)$.

Now we claim that if there exists y_{0} such that the sequence $W_{k}\left(y_{0}\right)$ is periodic, then we are in the periodic case. Let y in $G x$; using Lemma 1, Theorem 2 and (5) we obtain

$$
\operatorname{dim} S y=\operatorname{dim} Z(S y)
$$

by Proposition 1 there exists k_{1} such that $\operatorname{dim} W_{k}(y)=\operatorname{dim} Z(S y)$ for $k \geq k_{1}$; but $Z(S y)$ has a finite number of components and then $W_{k_{0}}(y)=W_{k_{0}+r}(y)$ for some integers k_{0} and r; the claim is proved.

We conclude the proof of the Proposition 3. Let y in $G x$; assume that we are not in the periodic case and that for some $\left(r, k_{0}\right) \in \mathbb{N}^{2}$,

$$
\begin{equation*}
M_{k_{0}}(y) \cap M_{k_{0}+r}(y) \neq \emptyset \tag{7}
\end{equation*}
$$

It follows that:

$$
\begin{equation*}
Z_{k_{0}}=W_{k_{0}}(y) \cap W_{k_{0}+r}(y) \neq 0 \quad \text { and } \quad \operatorname{dim} Z_{k_{0}}<\operatorname{dim} S y \tag{8}
\end{equation*}
$$

Let us denote respectively by N_{k} and Z_{k} the sets $M_{k}(y) \cap M_{k+r}(y)$ and $W_{k}(y) \cap W_{k+r}(y)$; using (8) and the non periodicity we obtain:

$$
\begin{equation*}
Z_{k} \neq \emptyset \quad \text { and } \quad \operatorname{dim} Z_{k}<\operatorname{dim} S y \text { for any } k \geq k_{0} \tag{9}
\end{equation*}
$$

Now we pick y_{0} in $N_{k_{0}}$; it is easy to see that $S y_{0} \subset \bigcup_{k \geq k_{0}} N_{k}$ and then from (9), $\operatorname{dim} S y_{0}<\operatorname{dim} S y$; this contradicts the Lemma 1 .

Remark 1. - We notice in the above proof, that $G x$ satisfies the periodic case if and only if $\operatorname{dim} S x=\operatorname{dim} Z(S x)$. Note also that, in the foliation case, the sets $D_{k}(x)$ are disjoints.

Lemma 2. - Let x in W; there exists an integer n_{0} such that for any y in $G x, \operatorname{dim} D_{n_{0}}(y)=\operatorname{dim} S y$.

Proof. - Let m be the common dimension of the orbits $S y, y \in G x$; we define:

$$
\begin{equation*}
T_{n}=\left\{z \in Z(G x) ; \operatorname{rank} \varphi_{z}^{n}<m\right\} . \tag{10}
\end{equation*}
$$

Clearly:

$$
\begin{equation*}
T_{n}=\left\{z \in Z(G x) ; \operatorname{dim} D_{n}(z)<m\right\} . \tag{11}
\end{equation*}
$$

From (10) it follows that T_{n} is an algebraic set; Proposition 1 and formula (11) imply:

$$
\begin{equation*}
T_{n+1} \subset T_{n} \tag{12}
\end{equation*}
$$

By the Hilbert's basis theorem (see e.g. Bröcker 1975), there exists an integer n_{0} such that:

$$
\begin{equation*}
T_{n}=T_{n_{0}} \quad \text { for } n \geq n_{0} \tag{13}
\end{equation*}
$$

Using (11) and (13) we obtain

$$
\begin{equation*}
T_{n_{0}}=\{z \in Z(G x) ; \operatorname{dim} S z<m\} \tag{14}
\end{equation*}
$$

and Lemma 1 implies that $T_{n_{0}} \cap G x=\emptyset$; Lemma 2 is then proved. \square
Remark 2. - From Lemmas 1 and 2 it follows that: for any x in W, there exists n_{0} and m such that $\operatorname{dim} W_{k+n_{0}}(z)=m$ for any z in $G x$ and $k \in \mathbb{N}$.

Proof of Theorem 1. - Let x in W; there are two cases.

- The periodic case. In this case $\operatorname{dim} S x=\operatorname{dim} Z(S x)$; Theorem 1 is then a consequence of Theorem 2.
- The foliation case. For h and k in \mathbb{N}, we define:

$$
\left\{\begin{array}{l}
W_{h, k}(x)=Z\left\{\bigcup_{\left(u_{1}, \ldots, u_{h}\right) \in E^{h}} \varphi_{u_{1}}^{-1} \circ \cdots \circ \varphi_{u_{h}}^{-1}\left(W_{k}(x)\right)\right\} \tag{15}\\
W_{0, k}(x)=W_{k}(x)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
M_{h, k}(x)=W_{h, k}(x) \cap G x, \tag{16}\\
M_{0, k}(x)=M_{k}(x)
\end{array}\right.
$$

We begin by proving the following claim:

$$
\left\{\begin{array}{l}
\text { Let } n_{0} \text { be the integer of the Lemma 2, then } \tag{*}\\
\text { for any }\left(u_{1}, \ldots, u_{h+n_{0}}\right) \text { in } E^{h+n_{0}}, \\
\varphi_{u_{h+n_{0}}} \circ \ldots \circ \varphi_{u_{1}}\left(M_{h, k}(x)\right) \subset M_{k+n_{0}}(x) . \\
\text { In particular, for any } u \text { in } E \text { we have: } \\
\varphi_{u}\left(M_{h, k}(x)\right) \subset M_{h+n_{0}-1, k+n_{0}}(x) .
\end{array}\right.
$$

We set:

$$
A=\bigcup_{\left(u_{1}, \ldots, u_{h}\right) \in E^{h}} \varphi_{u_{1}}^{-1} \circ \cdots \circ \varphi_{u_{h}}^{-1}\left(W_{k}(x)\right)
$$

Let y in A; there exists $\left(u_{1}, \ldots, u_{h}\right)$ such that

$$
\begin{equation*}
z=\varphi_{u_{h}} \circ \cdots \circ \varphi_{u_{1}}(y) \in W_{k}(x) ; \tag{17}
\end{equation*}
$$

then

$$
W_{n_{0}}(z) \subset W_{k+n_{0}}(x)
$$

and by the Remark 2

$$
\begin{equation*}
W_{n_{0}}(z)=W_{k+n_{0}}(x) ; \tag{18}
\end{equation*}
$$

but $W_{n_{0}}(z) \subset W_{h+n_{0}}(y)$ and then $W_{h+n_{0}}(y)=W_{k+n_{0}}(x)$; this proves that $D_{h+n_{0}}(y) \subset W_{h+n_{0}}(x)$. Then for any $\left(u_{1}, \ldots, u_{h+n_{0}}\right)$ in $E^{h+n_{0}}$,

$$
\varphi_{u_{h+n_{0}}} \circ \cdots \circ \varphi_{u_{1}}(A) \subset W_{k+n_{0}}(x)
$$

and this leads to

$$
\varphi_{u_{h+n_{0}}} \circ \cdots \circ \varphi_{u_{1}}(Z(A)) \subset W_{k+n_{0}}(x)
$$

it is now easy to conclude the proof of the first part of the claim (*).
For the second part of the claim, we have according to the first part:

$$
\varphi_{u_{h+n_{0}}} \circ \cdots \circ \varphi_{u_{2}} \circ \varphi_{u}\left(M_{h, k}(x)\right) \subset M_{k+n_{0}}(x) .
$$

Therefore

$$
\varphi_{u}\left(M_{h, k}(x)\right) \subset \varphi_{u_{2}}^{-1} \circ \cdots \circ \varphi_{u_{h+n_{0}}}^{-1}\left(M_{k+n_{0}}(x)\right) \subset W_{h+n_{0}-1, k+n_{0}}(x)
$$

as $M_{h, k}(x) \subset G x$, we conclude the proof of the claim.

From the claim (*) and the bijectivity of the morphisms φ_{u} it follows that:

$$
\begin{equation*}
\operatorname{dim} Z\left(M_{h, k}(x)\right) \leq \operatorname{dim} S x \tag{19}
\end{equation*}
$$

To conclude we prove the following assertion: each $F_{\ell, k}(x)$ is contained in some $M_{h, k^{\prime}}(x)$.

We proceed by induction on k. For $k=1$; if $\ell=(1), F_{\ell, k}(x) \subset M_{1}(x)$ and if $\ell=(-1), F_{\ell, k}(x) \subset M_{1,0}(x)$. Now assume the assertion true for the integers smaller than k and write

$$
\begin{equation*}
F_{\ell, k}(x)=\bigcup_{u \in E} \varphi_{u}^{e_{k}}\left(F_{\ell^{\prime}, k-1}(x)\right), \tag{20}
\end{equation*}
$$

where $\ell=\left(e_{1}, \ldots, e_{k}\right)$ and $\ell^{\prime}=\left(e_{1}, \ldots, e_{k-1}\right)$; by the induction hypothesis, there exists $M_{h, k^{\prime}}(x)$ such that:

$$
\begin{equation*}
F_{\ell^{\prime}, k-1}(x) \subset M_{h, k^{\prime}}(x) \tag{21}
\end{equation*}
$$

If $e_{k}=1$, by the claim (*) and (20) we have

$$
F_{\ell, k}(x) \subset M_{h+n_{0}-1, k^{\prime}+n_{0}}(x)
$$

If $e_{k}=-1$, the definition of the $M_{h, k}(x)$ and (20) give:

$$
F_{\ell, k}(x) \subset M_{h+1, k^{\prime}}(x)
$$

The assertion is then proved and Theorem 1 follows from (19).

Orbit Theorem

We give now more precision on the structure of the orbit $G x$. We consider the two cases.

1. The periodic case.

In this case $\operatorname{dim} G x=\operatorname{dim} Z(G x)$ and clearly, $G x$ contains an open subset of the regular part of $Z(G x)$. Because the morphisms φ_{u} are homeomorphisms, it follows that $G x$ is an open subset of $Z(G x)$ with dimension $\operatorname{dim} Z(G x)$ at each of its points (we do not know if $Z(G x)$ contains or not a branch with smaller dimension than $\operatorname{dim} Z(G x)$). One can see also (using Proposition 2) that $G x$ is locally semialgebraic; we can prove that it is semialgebraic; it is easy to see that $Z(G x)$ is invariant by G and that the set L of $z \in Z(G x)$ such that $\operatorname{dim} G z<\operatorname{dim} G x$ is a proper

$$
\text { томе } 123-1995-\mathrm{N}^{\circ} 4
$$

algebraic subset of $Z(G x)$; we define $U=Z(G x)-L$, (U is the set of locally weakly controllable points of the system (1) restricted to $Z(G x)$). The set U is an open semialgebraic subset of $Z(G x)$ with a finite number of semialgebraic connected components; because any such component is contained in an orbit by G, it follows that $G x$ is the union of some of this components.

If the φ_{u} are diffeomorphisms and W is smooth (i.e. without singularities) then $G x$ is an open subset of the regular part of $Z(G x)$ and consequently $G x$ is an embedded analytic subvariety of W .

2. The foliation case.

We have the following.
a) If $k-h \neq k^{\prime}-h^{\prime}$ then $M_{h, k}(x) \cap M_{h^{\prime}, k^{\prime}}(x)=\emptyset$. Assume that $y \in M_{h, k}(x) \cap M_{h^{\prime}, k^{\prime}}(x)$; then the claim $\left(^{*}\right)$ in the proof of the Theorem 1 implies:

$$
\begin{equation*}
D_{h+n_{0}}(x) \subset M_{k+n_{0}}(x) \quad \text { and } \quad D_{h^{\prime}+n_{0}}(x) \subset M_{k^{\prime}+n_{0}}(x) \tag{22}
\end{equation*}
$$

If $h^{\prime}<h$ write $h=h^{\prime}+\eta$, we obtain

$$
D_{h+n_{0}}(x) \subset M_{k^{\prime}+n_{0}+\eta}(x)
$$

and because we are in the foliation case, it follows that $k+n_{0}=k^{\prime}+n_{o}+\eta$; this gives a).

We shall denote by

$$
\mathcal{M}_{\alpha}=\bigcup_{k-h=\alpha} M_{h, k}(x)
$$

and notice that for fixed α,

$$
M_{h, k}(x) \subset M_{h^{\prime}, k^{\prime}}(x) \quad \text { if } k \leq k^{\prime} \text { and } k-h=k^{\prime}-h^{\prime}=\alpha
$$

(the same inclusion holds for the $W_{h, k}$). If $\alpha \neq \alpha^{\prime}$, then $\mathcal{M}_{\alpha} \cap \mathcal{M}_{\alpha \prime}=\emptyset$ and as each $F_{\ell, k}(x)$ is contained in some $M_{h, k^{\prime}}(x)$, we have:

$$
G x=\bigcup_{\alpha \in \mathbb{Z}} \mathcal{M}_{\alpha}
$$

b) Let us call Y_{n}, where $n \in \mathbb{Z}$, the countable family of irreducible components of the $W_{h, k}$ whose dimension is $\operatorname{dim} G x$; we claim that $G x$ is contained in $\bigcup Y_{n}$. To prove this, assume that some y in $G x$ is contained only in components of dimension smaller than $\operatorname{dim} G x$; we pick z in $G x$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
such that z is also in the regular part of Y_{n} (this is always possible). There is φ in G, such that $\varphi(z)=y ; \varphi$ is an homeomorphism of a neighborhood of z in Y_{n} into a space of smaller dimension; this is impossible by the Theorem on the invariance of domain (see Hurewicz and Wallman 1941).

Now arguing like in the periodic case, it is not difficult to see that the properties obtained without the diffeomorphism hypothesis continue to hold in the foliation case for $Y_{n} \cap G x$ in Y_{n} (instead of $G x$ in $Z(G x)$).
c) Now we assume that the morphisms φ_{u} are diffeomorphisms and W is smooth.

We take $Y_{n} ; G x$ contains an open subset U of the regular part of Y_{n}. We claim that there exists y in U, such that y is not in a proper intersection of Y_{n} with some Y_{m}, otherwise Y_{n} would be a countable union of proper algebraic subsets; this is impossible.

Now we fix such y. Let z in $G x$ such that z is in a proper intersection; there exists $\varphi \in G$ such $\varphi(y)=z$. Let B be an open neighborhood of y such that $H=Y_{n} \cap B$ is smooth; denote by B^{\prime} and H^{\prime} the sets $\varphi(B)$ and $\varphi(H)$; because φ is a diffeomorphism it follows that H^{\prime} is included in one Y_{m}. Let Y_{k} such that z is in the proper intersection $Y_{m} \cap Y_{k}$; then $\varphi^{-1}\left(Y_{k} \cap B^{\prime}\right)$ is also contained in an $H^{\prime \prime}=Y_{s} \cap B$; clearly $H^{\prime \prime} \neq H$ and $H^{\prime \prime} \cap H \neq \emptyset$ (because $\left.Y_{m} \cap Y_{k}\right) \neq \emptyset$); $y \notin H^{\prime \prime} \cap H$ but $\varphi^{-1}(z) \in H^{\prime \prime} \cap H$, there is a contradiction. We conclude that the algebraic varieties $Y_{n}, n \in \mathbf{Z}$, are disjoint. Now, it is easy to see that $Y_{n} \cap G x$ is an open subset of the regular part of Y_{n}.

We summarize the above discussion in the following theorem.
Theorem. - Let x in W and $m=\operatorname{dim} G x$.

- In the periodic case, $G x$ is an open semialgebraic subset of $Z(G x)$ with pure dimension m (i.e. the dimension is the same in each point).

If W is smooth and the morphisms φ_{u} are diffeomorphisms, then $G x$ is a smooth semialgebraic subset; in particular, $G x$ is an embedded analytic subvariety of W.

- In the foliation case, $G x$ is a countable union of semialgebraic subsets with pure dimension m and each of these subsets is open in its Zariski closure.

If W is smooth and the morphisms φ_{u} are diffeomorphisms, then $G x$ is a countable disjoint union of smooth semialgebraic subsets (with dimension m); in particular, $G x$ is an embedded analytic subvariety of W.

Examples

Example 1 (periodic case):

$$
\begin{aligned}
& x_{n+1}=x_{n}\left(z_{n}^{2}+1\right), \\
& y_{n+1}=y_{n}\left(z_{n}^{2}+1\right), \\
& z_{n+1}=\left(z_{n}-u\right)^{3} \\
& W=\mathbb{R}^{3}, \quad E=\mathbb{R}
\end{aligned}
$$

Note that ϕ_{u} is not a diffeomorphism. Let $\tilde{x}=\left(x_{0}, y_{0}, z_{0}\right)$.

- If $x_{0}=y_{0}=0$ then

$$
S \tilde{x}=G \tilde{x}=D_{1}(\tilde{x})=Z(S \tilde{x})=\{x=y=0\} .
$$

- Otherwise it is easy to see that

$$
Z(G \tilde{x})=Z(S \tilde{x})=Z\left(D_{2}(\tilde{x})\right)=\left\{y_{0} x-x_{0} y=0\right\}
$$

and that

$$
\begin{aligned}
& G \tilde{x}=\left\{y_{0} x-x_{0} y=0 ; x^{2}+y^{2}>0, x_{0} x \geq 0 ; y_{0} y \geq 0\right\} \\
& S \tilde{x}=\left\{y_{0} x-x_{0} y=0 ; x_{0} x \geq 0, y_{0} y \geq 0\right. \\
& \left.\qquad x^{2} \geq x_{0}^{2}, y^{2} \geq y_{0}^{2}, x^{2}+y^{2}>0\right\}
\end{aligned}
$$

Example 2 (foliation case):

$$
\begin{gathered}
x_{n+1}=u x_{n}^{3}, \\
y_{n+1}=y_{n}+1 ; \\
W=\mathbb{R}^{2}, \quad E=\mathbb{R}-\{0\} .
\end{gathered}
$$

Let $\tilde{x}=\left(x_{0}, y_{0}\right)$.

- If $x_{0}=0$, then

$$
\begin{aligned}
& D_{n}(\tilde{x})=\left\{\left(0, y_{0}+n\right)\right\}, \quad Z\left(D_{n}(\tilde{x})\right)=D_{n}(\tilde{x}), \quad \operatorname{dim} D_{n}(\tilde{x})=0, \\
& S \tilde{x}=\left\{\left(0, y_{0}+k\right) ; k \in \mathbb{N}^{\star}\right\} \\
& G \tilde{x}=\left\{\left(0, y_{0}+k\right) ; k \in \mathbb{Z}\right\} \\
& Z(S \tilde{x})=Z(G \tilde{x})=\{x=0\}
\end{aligned}
$$

- If $x_{0} \neq 0$, then

$$
\begin{aligned}
D_{n}(\tilde{x}) & =\left\{\left(x, y_{0}+n\right) ; x \neq 0\right\}, \\
S \tilde{x} & =\left\{\left(x, y_{0}+k\right) ; k \in \mathbb{N}^{\star}, x \neq 0\right\}, \\
G \tilde{x} & =\left\{\left(x, y_{0}+k\right) ; k \in \mathbb{Z}, x \neq 0\right\}, \\
Z(G \tilde{x}) & =Z(S \tilde{x})=\mathbb{R}^{2} .
\end{aligned}
$$

Example 3 (periodic and foliation case):

$$
\begin{gathered}
x_{n+1}=u x_{n}+v y_{n}, \\
y_{n+1}=v x_{n}-u y_{n} ; \\
W=\mathbb{R}^{2}, \quad E=\left\{u^{2}+v^{2}=\alpha^{2}\right\},
\end{gathered}
$$

where α is a constant different from 1 and 0 . Let $\tilde{x}=\left(x_{0}, y_{0}\right)$, then $D_{n}(\tilde{x})$ is the circle

$$
x^{2}+y^{2}=\alpha^{2 n}\left(x_{0}^{2}+y_{0}^{2}\right) .
$$

If $x_{0}^{2}+y_{0}^{2}=0$ the orbit is $\{0\}$, if $x_{0}^{2}+y_{0}^{2} \neq 0$ the orbit and forward orbit are disjoint union of circles.

BIBLIOGRAPHY

[1] Bochnack (J.), Coste (M.) et Roy (M.F.). - Géométrie algébrique réelle. - Springer-Verlag, Berlin, 1987.
[2] Bröcker (Th.). - Differentiable Germs and Catastrophes. Cambridge, 1975.
[3] Hurewicz (W.) and Wallman (H.). - Dimension Theory. Princeton, 1941.
[4] Jackubczyck (B.) and Sontag (E.D.). - Controllability of Nonlinear Discrete Time Systems: a Lie-algebraic approach, Siam J. Cont. Opt., t. 28, 1989, p. 1-33.
[5] Krener (A.). - A Generalization of Chow's Theorem and the BangBang Theorem to Non-Linear Control Systems, Siam J. Cont. Opt., t. 12, 1974, p. 43-52.
tome $123-1995-\mathrm{N}^{\circ} 4$
[6] Mokkadem (A.). - Orbites de Semi-groupes de Morphismes Réguliers et Systèmes Non Linéaires en Temps Discret, Forum Math., t. 1, 1989, p. 359-376.
[7] Nagano (T.). - Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan, t. 18, 1966, p. 398-404.
[8] Sontag (E.D.). - Polynomial Response Maps. - Springer Verlag, Berlin-New York, 1979.
[9] Sontag (E.D.). - Orbit Theorem and Sampling, in Algebraic and Geometric Methods in Nonlinear Control Theory. - M. Fliess and M. Hazewinkel, Eds., Dordrecht, 1986, p. 441-486.
[10] Sussmann (H.J.). - Orbit of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., t. 180, 1973, p. 171-188.
[11] Sussmann (H.J.) and Jurdjevic (V.). - Controllability of nonlinear systems, J. Differential Equations, t. 12, 1972, p. 95-116.

[^0]: (*) Texte reçu le 12 mai 1993.
 Abdelkader Mokkadem, Université Paris-Sud, Bât. 425, Mathématiques 91405 Orsay Cedex et Université de Valenciennes, ISTV, B.P. 311, F59304, Valenciennes (France).

 AMS classification: 93B27, 93C55, 14P10.
 Keywords: controllability, algebraic varieties, regular morphisms, nonlinear discrete time systems.

[^1]: томе $123-1995-\mathrm{n}^{\circ} 4$

