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ON THREE-DIMENSIONAL VORTEX PATCHES

PAR

PASCAL GAMBLIN and XAVIER SAINT RAYMOND (*)

RESUME. — Nous etudions, en dimension trois d'espace, 1'existence et la regularite
de la solution du systeme d'Euler incompressible pour une donnee analogue aux poches
de tourbillon definies en dimension deux d'espace par A. Majda [7]. Nos resultats sont
comparables a ceux obtenus dans Ie cas bidimensionnel par J.-Y. Chemin [4], mats
1'existence de la solution est seulement locale en temps (globale cependant dans Ie cas
axisymetrique).

ABSTRACT. — We study in three space dimensions the existence and smoothness
of the solution of the incompressible Euler system for data analogous to the patches
of vorticity defined in two space dimensions by A. Majda [7]. Our results are similar
to those obtained in the two-dimensional case by J.-Y.Chemin [4], but the existence of
the solution is only local in time (global in the axisymmetric case).

Introduction
The movement in R^ of an ideal incompressible fluid is described by

the so-called incompressible Euler system. For this system, the short
time existence of a solution of the Cauchy problem with smooth data
has been known for a while. In his survey paper [7], MAJDA shows that
this elementary result leads to several important problems as the global
existence of a solution for smooth data or the (short time or global)
existence of a solution for singular data. Here, we consider the Cauchy
problem for merely Lipschitzian data.

In the two-dimensional problem, MAJDA [7] introduced constant patches
of vorticity, which remain such constant patches thanks to a result of
YUDOVITCH [9], and asked whether the boundary of such a patch remains
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376 P. GAMBLIN AND X. SAINT RAYMOND

smooth when it is initially smooth. This question was recently solved by
CHEMIN [4], and we also refer to the survey of GERARD [6] for an account
on recent two-dimensional results.

In this paper, we still consider the problem of patches of vorticity,
but for higher space dimensions. Actually we chose the space dimension
d = 3 for the sake of simplicity, but it is clear that similar results hold
when d > 3. It is easy to see that, as soon as d > 2, compact patches
of vorticity cannot be constant patches, and therefore we introduce some
spaces of vorticity naturally related to the geometry of compact patches.

Adapting the method of CHEMIN [4], we establish the same results as
when d = 2, but we get only a short time existence theorem as could be
expected. However, our results are also global in time when the initial
velocity field is axisymmetric as in MAJDA [7]. Finally, we have been
informed that a chapter of SERFATI'S thesis [8] is also devoted to this
problem of muhi-D vortex patches, but it is considered there from a
Lagrangian point of view.

1. Notation and statement of the main result

l.a. Vectorial notation.
In this paper, we call vector field any K^-valued distribution defined on

M3. The components of the vector field v are denoted by ^i, 2:2 and ^3.
When the products of the components are well defined, the scalar product
of the two vector fields v and w is

(v, w) = ViWi + V^W^ + Z»3W3

while their vector and tensor products are respectively :

^2^3 — V3^2\ ( V\W\ V^W\ V^W-i

V A W = I ^3Wi — V-iWs j , V (g) W = ( Z»iW2 V^W^ V^W^

\^lW2 — V^W-i j \VlW3 ^2^3 V^W^

Using the notation 9j = Q/Qxj and the formal «vector)) V with
«components)) <9i, 9^ and ^3, the expressions (V,'y), V A v and V <^> v
defined formally as above will denote respectively the divergence, the curl
and the gradient (i.e. the Jacobian matrix) of the vector field v. Similarly,
we will use

(v^ V) w = ̂ ^ ̂ jQ^ ^d (V, v 0 w) = ^> 9j {vjw)
3 3
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ON THREE-DIMENSIONAL VORTEX PATCHES 377

which satisfy, when all the products are well defined,

(V, v 0 w) = (V, v) w + (v, V) w.

Finally, in expressing the Biot-Savart law (LEMMA 2.2), we will use the
notation :

(v^w)(x)= v ( x - y ) Aw(y)dy = v(y)/\w(x - y)dy.

With this notation, we can write the incompressible Euler system, which
provides a model for the movement of a non-viscous liquid in the space M3,
as follows :

{ <9^+(^V)^=-Vp,
(V,^}=0,
v\t=0=VO^

where the unknown v is a function of the time variable t e M+ valued in
the space of vector fields (for short, we will say that v is a vector field, even
when it is time-dependent), and v° is a divergence free data belonging to
the Lebesgue space U" for some 1 < p < oo. The equation

OtV + (v, V)v = -Vp

simply means that the curl of the left side is identically zero, or equiva-
lently, that the left side is the gradient of a scalar distribution — p ^ S ' ,
but it can be proved that this distribution p (called the pressure) is com-
pletely determined by the problem up to a function of t only, and our first
step will be to get rid of it.

Our paper discusses existence and uniqueness results for the solution v
of this incompressible Euler system. To be able to state precise results, we
now introduce the functional spaces where we will look for these solutions.

l.b. Holder spaces and dyadic analysis.
For all the objects and estimates we describe here, we refer to BONY [2]

and CHEMIN [4]. When s C M \ Z+ (resp. when s € Z+), we denote by C8

(resp. by C^) the Holder space with exponent 5, and in both cases the
corresponding norm is denoted by \\v\\s. The letter r will always denote a
real number from the open interval (0,1), so that the space C^ is the usual
space of bounded functions v satisfying

yW-v^^dx-y^
for some constant C and all x,y <E R3. More generally, if Q is an open

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



378 P. GAMBLIN AND X. SAINT RAYMOND

subset of R3, the space C^^), with the norm ||'y||r(f2)5 ls ^ne space of all
v 6 L°°(^l) satisfying the previous estimate for all x,y G ^ (we take this
unusual definition — without requiring that x and y stay in the same
component of fl — just to simplify the proofs below : actually, we could
have used everywhere the standard definition).

We have the standard interpolation estimate

IHI^+(i-^< M^ IHÎ  for 0 < ^ < 1 ,

and the L°° norm can also be estimated by interpolating between G°
and (7s, 5 > 0 : it is the logarithmic interpolation estimate

IMk- <c,L(|M|o, IHI.) for 5>o ,

where the function b)L[a,b) =aLogf2+ -)
a )

is an increasing function of both variables a and b e R+.
When v and w are two Holder distributions, we denote by TyW the

paraproduct of w by v, for which we have the estimate

\\TyW\\s < Cs,tM-t |H|,+t for s C R and t > 0,

which is still true for t = 0 provided that |H|-t is replaced with ||^||L00-
When t > 0, v € C8 and w € C^"5, the product of the two distributions v
and w is well defined and we have

vw = TyW + TujV + R(v^ w),

where the remainder operator R satisfies

||-R(^,^)||^ < C^IHIs |H|t-s for 5 6 M and t > 0,

so that we have the useful estimate

||(^ - T^w\\^^^ < CsMs \\w\\t-s for s € R and t > 0,

where ||w||t-s must be replaced with ||w||i/oo when s = t.
Next, we will say that the pseudodifferential operator a{D) has a

homogeneous symbol if a G (^(M3) satisfies, for fi > 1 and large S, G M3,

0(^=^0(0.
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ON THREE-DIMENSIONAL VORTEX PATCHES 379

If a{D) is such a pseudo differential operator with homogeneous symbol
of order 0, then it is continuous on the Lebesgue spaces Lp provided
that 1 < p < oo (see COIFMAN and MEYER [5]). If a(D) is an m-th
order pseudodifferential operator with homogeneous symbol, we have the
estimate

||a(D)w||^ < Ca,s\\w\\s+m for s C R,

and the commutator [a(D)^Ty} = a(D)Ty — Tya(D) satisfies :

||[a(D),rJw||^ <Ca,sMr\\W\\^m-r for S G M, 0 < T < 1.

This last estimate is still true when r = 1 provided that \\v\\r is replaced
with

IMlLip = |M|L- + ̂  \\QjV\\L-,

3

which is the norm associated with the space

Lip={vcL°°; V(g)^eL00}.

We will often use the elliptic pseudodifferential operators A5 = Xs (D) for
s C R defined by

\SW=W+\^Y/2

where \ € (^^(M3) is a nonnegative function with value 1 near 0. They
obviously have homogeneous symbols and satisfy A^A* = A5^ for all s
and t C M.

Finally, our time dependent vector fields will be taken in the spaces

L°°([0,r]; LP or 0s orLip)

of bounded functions of t € [0, T} valued in LP or C8 or Lip, and simi-
larly we will write v € Lip([0,T]; LP) when v e ^([O.r]); LP) and
c^eL°°([o,r];^).

I.e. Patches of vorticity.
As explained in section 2 below (see THEOREM 2.9), there is a classic

existence result when the initial velocity field is smooth enough, precisely
when v° € C8 for some s > 1. But there are serious motivations (see
MAJDA [7]) to study the case of more singular data.

In the two-dimensional case, YUDOVITCH [9] proved the existence of a
solution for initial velocity fields v° satisfying

^=a^-9^eL^.
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



380 P. GAMBLIN AND X. SAINT RAYMOND

The scalar distribution uj = Q\v^ — Q^v\ is called the vorticity, and it is
clear that when the initial vorticity c^° is a constant patch of vorticity, i.e.
satisfies „

^ . r ^ for^e"0 ,
l0 fora;^0,

where u> is a constant and 0° is a bounded region of R2, then Lu(t) remains
a constant patch of vorticity at any time t > 0, i.e.

. , \ u j for x€^(t),
^^=[0 foro-^W,

where ^l(t) is still a bounded region ofR2 . Then, answering a question of
MAJDA [7], CHEMIN [4] proved that ^(t) has a smooth boundary at any
time t > 0 as soon as f2° has a smooth boundary.

Now in the three-dimensional case, the vorticity uj = V A v is a
divergence free vector field, and the situation is rather different : first,
we do not have constant patches supported in a bounded region n°
because (V.o;0) = 0 implies that the constant a) must be tangent to the
boundary of f2°, and second, we have the three-dimensional phenomenon
of stretching of the vorticity (see MAJDA [7]). Therefore, we must find
some more suitable vorticity patterns, and our choice is motivated by the
result of CHEMIN [4].

DEFINITION 1.1.—Let 0 < r < 1, and let S be a (714'7', two-dimensional,
compact submanifold of M3. For all e > 0, we set

S^ = [x e M3 ; dist(^, S) < e}.

Then we say that the vector field uj belongs to the space C7'^ if uj G L°°,
if (V,w 0 UJ) G C^"1 for all C^, divergence free vector fields w tangent
to S, and if for some constant C

IM|r(]R3\s,) < Ce^ for all 0 < e < 1.

Here, since (V, w) = 0, the vector field (V, w 0 uj) is a substitute
for the w-directional derivative of uj (indeed, (w, V) uj cannot be directly
written since the products of Qjuj by Wj are not well defined), and
therefore uj 6 C^ means that uj has some conormal smoothness. We
will see below that it is very easy to construct sufficiently many C^,
divergence free vector fields w tangent to any C^^, two-dimensional,
compact submanifold ofM3 (see PROPOSITION 3.2). Finally, our space C^
generalizes the two-dimensional situation of constant patches of vorticity
since the corresponding two-dimensional definition with the boundary of
the patch in the place of S would clearly allow initial data of that form.

TOME 123 — 1995 — N° 3



ON THREE-DIMENSIONAL VORTEX PATCHES 381

The main result of the paper is then the following existence theorem.

THEOREM 1.2. — With l<p<oo,Kq<3 and 0 < r < 1, let S° be
a C'14"7", two-dimensional, compact submanifold ofR3, and v° be an L^,
divergence free initial velocity field with vorticity a;0 = VA'y° € Lq^Cr^ .
Then, the incompressible Euler system

( 9tV + {v, V)v = -Vp,
(V,^=0,

^o^0

/ia5 a nm^e solution v e L°° ([0, T]; Lip) nLip([0, r]; LP) for some T > 0.
Moreover, if^t ^ the associated flow, i.e. the solution of

9^t{x) = v(t, ̂ t(x)), ^o(x) = x,

T]. the set r.(t} = ̂ .(T°} is a r71+rthen for all t G [0,r], the set S(^) = ̂ (S0) is a C1^, two-dimensional,
compact submanifold ofR3, and uj(t) G L9 U C^'1^.

l.d. Coniments, example and organization of the paper.
(i) Our result is only local in time (i.e. the solution exists in [0,r]

for some T > 0) : indeed, this is linked to the unsolved question on the
global existence in three space dimensions of a smooth solution for any
smooth data. However, when the initial velocity field has some symmetry,
it is possible to improve the previous result : in the axisymmetric case
(see DEFINITION 2.10 below), the results of THEOREM 1.2 are true for
all T > 0 (see THEOREMS 5.4, 6.1 and 6.4 below).

(ii) We can probably also improve THEOREM 1.2 by considering smoo-
ther initial submanifolds S°, but we will not discuss this question in this
paper to avoid too long developments.

(iii) The conditions (V,w 00;°) € C'7'"1 for all C 7 ' , divergence free
vector fields w tangent to S° (see DEFINITION 1.1) already imply an
estimate

||^°||r(R3\^) < C£~1.

Therefore, our assumption < Ce~r (contained in DEFINITION 1.1) is only
a strengthened form of this estimate. It actually plays no role in the proof
of our existence result (see THEOREM 5.4 below) : in the paper, we use
this estimate only to prove the propagation of the C7'^ smoothness in
THEOREM 6.4.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



382 P. GAMBLIN AND X. SAINT RAYMOND

Indeed, in stating THEOREM 1.2, we have preferred the C^'^ smooth-
ness because it is more intrinsicly related to S than the C^'^ smoothness
considered in sections 3 through 5. We also point out that our proofs es-
tablish the C^^ smoothness of the scalar vorticity in the two-dimensional
problem^ and therefore this completes the result of CHEMIN [4] who proved
its C^'^ smoothness only.

(iv) As a conclusion of this presentation, we now describe an example
that is very close to the two-dimensional problem of constant patches of
vorticity. Choose a bounded region D° of M+ x M with smooth boundary
such that D° C M^ x M, and set

( x^\ /0\
cj°(x) = \-x^ \ for x € !̂ °, uj°(x) = 0 for x ^ f2°,

V o / W
where uj is a constant, and fl° = {x G R3 ; ((.rf+^j)172,^) € D°}. Then,
for all T > 0, the incompressible Euler system has a unique solution

v G L°° ([0, T]; Lip) H Lip ((0, T]; Q L^
p>3/2

with V A z»(0) = uj° (THEOREM 5.4). Moreover, this solution satisfies for
all t > 0

I x^\ /0\
uj(t, x) == -Xi uj \ for x (E ̂ ), c^, a:) = 0 for a; ^ f2(^),

\ 0 / W

where ^(^) = [x e M3; ((.r2 + rr2)1/2,^) e P(^)} and ^(t) is a bounded
region of M+ x M with smooth boundary (THEOREM 6.1).

(v) Our paper is organized as follows.
In section 2, we collect all the classic material on the incompressible

Euler system that is related to our problem. The specialist will not need
to read it, but it is a convenient reference for us.

In sections 3 through 5, we prove a variant of THEOREM 1.2 where the
spaces C7'^ ofconormal distributions are replaced with larger spaces C^51^
of striated distributions. Section 3 is devoted to a static estimate, while
dynamic estimates are obtained in section 4. These results are put together
in section 5 to prove the existence THEOREM 5.4.

Finally, section 6 is devoted to complements : smoothness of the sub-
manifold S(t) and conormal smoothness of the vorticity field uj(t}.
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ON THREE-DIMENSIONAL VORTEX PATCHES 383

2. Elementary results concerning the
incompressible Euler system

The results of this section are somewhat classic. However we collect
them here because we do not know any complete reference for them. As
stated here, they will provide a convenient base for the rest of the article.
Some proofs are given, but the other ones are only sketched.

We begin with a couple of technical lemmas.
LEMMA 2.1. — Let v be a vector field satisfying

(V,v)=0, V A v = 0 and 2;=^^,

with ̂  e LP\ p^ < oo for all v. Then v = 0. ^N

Proof. — We have

0 = V A (V A v) = V(V, v) - A^ = -Av

and therefore, v is a harmonic polynomial. But the only polynomial
satisfying

^E^
y<N

is v = 0 : indeed, v = 0 is the only polynomial satisfying

meas{a;; \v(x)\ ^ 5} < oo
for all e > 0, and here we have

meas{a;; \v(x)\ > e} ^ V^ meas^a;; |^(aQ| > -£L } < co
i/<N

since ̂  e L^ with p^ < oo . Q

This result immediately gives the classic «Biot-Savart law)).
COROLLARY 2.2. — Let p < oo and q < 3. Then, if we have v C L^,

(V, v} = 0 and uj = V A v e L9, it follows that

v = uj * VF

Wiere F(a;) = —l/47r|a;| z5 the standard fundamental solution of the
laplacian.

Proof. — Let us set v = uj * VF. Since

VF = ̂ VF + (1 - x)VF

with ^VF e L1 and (1 - ^)VF G L^A3?-1), if is easy to check
that v is an element of L9 + L49/^-^) Moreover, writing that uo is the
limit of a sequence ujn G ^^omp^ we see tnat w^ have (V,i)) = 0 and
V A v = uj. Therefore (v — v) satisfies the assumptions of LEMMA 2.1,
and we have v = v. []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



384 P. GAMBLIN AND X. SAINT RAYMOND

Next, we examine the effect of a useful change of variables.

PROPOSITION 2.3. — Letv e L°°([0, T]; Lip) be a divergence free vector
field and ̂  be the corresponding/low, i.e. the solution of

9t^t(x)=v(t,^(x)), ^o(x)=x.

Then the transformation w ̂  w* defined by w"(t,x) = w(t, ̂ t(x)) maps
L°°([0,T] ;L^) onto itself, and we have

<%{w*} = [QtW^r (V,v^w}Y

whenever w and QfW + (V,v 0 w) belong to L°°([0,T]; L^). Moreover,
this transformation maps L°°([0, T]; LP) onto itself for all 1°< p < oo and
also L°°([0, T]; C^ onto itself for all 0 < r < 1, with the estimates

IKWIL.- 11^)11^
e-^llw^ll^llw^^ll^e^llwMl^

where V(t) = f^\v(s)\\^ds.

Proof. — Since (V, v) = 0, the Lebesgue measure is invariant under the
transformation ̂  for every t, so that w ̂  w* maps L°°([0, T]; L} ) onto
itself and also L°°([0,T] ;LP) onto itself with ||w*(^)||^ = \\w(t)hp. To
see that

9t{w*} = {^w+(V,v(g)w)}*,

we first observe that it is obviously true when w is smooth with respect
to x (it is the chain rule); then the result follows by taking the limit
of a convolution (in x) with a Friedrichs mollifier thanks to a Friedrichs
lemma. Finally, the flow ̂  classically satisfies

^t(x)-^(y)\<evW\x-y\

(see e.g. BAHOURI and DEHMAN [1]) so that w ̂  w* maps L°°([0, T]; CT
onto itself with the given estimate. []

COROLLARY 2.4. — Let v be as in Proposition 2.3 and A be a L°°
function of t e [0, T] valued in the space of continuous linear operators
on L? (resp. on C^. Then the problem

! 9tW + (V, v 0 w) = Aw,

w\t=o = w° e L^ (resp. e C7')

has a unique solution w e L°°([0,r] ;LP) (resp. w C L°°([0,r]; CU).
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ON THREE-DIMENSIONAL VORTEX PATCHES 385

Moreover if a(s) is the norm of the continuous linear operator A(s) and
A(t) = JQ a(s) ds, we have the estimate

IK^ll^e^liw0!!^
(resp. \\w(t)\\r < e^+^Hw0!!,, where V{t) = [ t \\v{s)\\^ds\

JQ /

Proof. — Thanks to PROPOSITION 2.3, the given problem is equivalent
to the following

J(9,{w*}=.4*w*,
\^\t=0=W°

where the operator A*, defined by A*w* = {Aw}\ is still a L°° function
of t valued in the space of continuous linear operators on Lp (resp. on C7').
Then the existence and uniqueness of a solution follows from the classic
theory of ordinary differential equations.

Since the transformation w ̂  w* is an isometry on L°°([0, T]; L^), the
estimate in L9 norms also follows from the ordinary differential equation
structure. In the case of C7' norms, we can write

w^t,x)=w°(x)+ I Os{w^}(s,x)ds=w°(x)+ I {Awy(s,x)ds
JQ Jo

so that

w^x)=w^t^,-\x)) =wo(^-l(rr))+ [\Aw}^ ̂  o ̂ \x)) ds.
Jo

This expression gives the estimate

\\w(t)\^ < ery(t)||wo||,+ ( t e^-^a^llwO,)!!^.
J0

Next we define
m=e-AW-rvW\\w(t)\^

and the multiplication of the previous estimate by e-^^-^W gives

f(t) < e-^^O) + f e^-^a^f^ds
Jo

<e-^)/(0) +(1-0-^)) sup/.
[0,T]

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



386 P. GAMBLIN AND X. SAINT RAYMOND

We now multiply by e'4^ to get for any t C [0, T]

sup/^/W+e^sup/-/^)}.
[0,T] [0,T]

Finally, we can use this estimate for a sequence tn such that f(tn) tends
to supro^r] /, and this gives supro^j / < /(O) which simply means

llw^ll^e^^^llw0!!,

for all t G [0,T]. D

This result directly implies the following classic estimates on the
vorticity field.

COROLLARY 2.5. — Let v 6 L°°([0,r]; Lip) be a solution of the
incompressible Euler system (see section 1). If c<;° = V A v\t==o belongs
to some L9 with 1 < q ̂  oo, then uj = V A v C L°°([0, T]; L9) with

v(5)-y(t) ^ 11^)11^ < pVW-vW
- ||̂ )||̂  -

for all 0 < s < t < T (here V(t) = jj ||?;(5)||Lipd5 as above).

Proof. — It is known (see e.g. BAHOURI and DEHMAN [1]) that the
vorticity field a; of a solution of the incompressible Euler system satisfies
the equation

QtUJ + (V,^ (g) uj) = {uj, V) v.

The operator A: uj i—> (c<;, V)v is a L00 function of t valued in the space
of continuous linear operators on L°° and on Lq D L00 since for all q

11-M^IL - \\W^}v(s)\\^ ^ \\v(s)\\^s-)\\^.

Therefore it follows from COROLLARY 2.4 that uj is the unique L00 solution
of the previous equation with cj\t=o = ^°. If ^° 6 Lq, COROLLARY 2.4
also implies the existence of a solution uj G L°°([0,r] •,Lq D L00) which
must satisfy uj = V A v thanks to the uniqueness of the L°° solution.
Finally, the estimate immediately follows from the estimate given in
COROLLARY 2.4. [)

Our last technical step before giving the main existence and uniqueness
results of this section consists in the construction of bilinear operators
which will allow us to find a «pressure free » form of the incompressible
Euler system and to write easily the estimates needed in the next sections.
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ON THREE-DIMENSIONAL VORTEX PATCHES 387

With the notation introduced in section l.b, we set for v,w G L°°,

D(v, w) = (V,v <g) w) - T^^w - T^(V, v),

K(v,w) = (V,^(g)w) -A'^V^^Aw),

n(^w) ^n^z^+n^z^+ir^w)
where

n1^, w) = -VA'^V, (V, v (g) w))

n2^, w) = V^QD) A'^V, (V, xF * (?; (g) w)))

^3(^w)=x(^)A-2^{(V9^(l-x)^)*(^w,)}.
J/C

(Here ^(a*) = —1/47T a;| is the standard fundamental solution of the
laplacian, and II2 and II3 are well defined since \F and V<9j(9fc(l — \)F
are elements of L1.) The operator II is just a variant of that introduced
by CHEMIN [3], [4], and we will also use the following other variant

7r(v, w) = Il(v, w) + VA-2(V, v (g) (V, w))

which satisfies 7r(v, w) = ̂ (v, w) + ̂ 2('?;, w) + II3 (v, w) with

Tr1^, w) == -VA-2(V, (w, V)?;).

The following statement lists some properties of these operators.

PROPOSITION 2.6. — We have :
• D(v, w) = (V, v (^ w) as soon as (V, v) = 0 ;
• II('y, w) = 7r{v^ w) as soon as (V, w) = 0.
The operator II satisfies :
• n(^,w) = ~n.(w,v);
• v Aii(^w) =o;
• (v,n(^w)) = (v,(v,^0w)).
Finally, there are constants C depending only on 0 < r < 1 and on the

subscripts s or p such that for all v^w 6 L°° :
(i) For allr < s < 1,

ll^^'^IL-l ^ C^IHIr-s |H|s.

This estimate is still true for s == r provided that \\v\\r-s ^ replaced with
H^ll^oo, and still true for s = 1 provided that \\w\\s is replaced with ||w|| LIP-
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(ii) (V, v) == 0 implies, for all 0 < s < 1,

\\K(v,w)^<CM\\w\\^i-s

and this estimate is still true for 5 = 1 provided that \\v\\s is replaced
with IHlLip-

(iii) For all 1 < p < oo,

\\^^)\\^<C^\\V\\^\\W\\LP

and (V,v) = 0 implies

\\7r(v,w)\^<C\\v\\^\\w\\r.

(iv) (V, w) = 0 implies

||n(^)ILi<c'IHkiplH|._i.

Proof. — All the algebraic identities easily follow from the definitions.
To get the estimate (i), we just rewrite D(v^w) as

D(^w)=^{r,,^w+ra,^+a^(^,w)}
3

and use the estimates of section l.b. Similarly, when (V,f) = 0 we can
write

K(v, w) = (v - 7^ V) w + A-^V, [A, T^\ 0 w)

d-A^V, (7^-^)0 Aw)

to get the estimate (ii).
The estimates on II2 and II3 are easy to obtain, and therefore are left

to the reader. We have

K(^W)||^ < C^\\{W^)V\\^ < ̂ IHlLipHiLP

which proves the estimates (iii) in Lp norms. When (V, v) == 0, we also
have (^/,9jv) = 0 and

Tr^w) = -VA^^V^^w^) = -VA~<2^D(9jV,Wj)
3 3

so that (iii) follows from the estimate (i) with s = r. Finally, when
^V, w) = 0 we can write

n^.w) ^—VA'^V^V.w^v)) =-VA-2<V,D(w,v))

and (iv) now follows from the estimate (i) with 5 = 1 . Q
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Now, we are ready to transform the incompressible Euler system into
a pressure free system.

THEOREM 2.7. — Let 1 < p < oo and v° e LipDL^ be a divergence free
data. Then the vector field v is a L°°([0, T]; Lip) nLip([0, T]; LP) solution
of the incompressible Euler system

( 9tV + (v, \7}v = -Vp,

<V,^=0,

V\t=0=V°

if and only if it is a L°°([0, T]; Lip) solution of the pressure free system

( 9fV + (V, v (g) v) = n(v, v),

\V{t=0=V°.

Moreover, if such a solution v satisfies v e L°°([0, T]; (7s) /or 5ome 5 ^ Z+,
^en we a^o have v e ̂ ([O.r] x R3).

Proof. — In three parts.
(i) Assume that -y e ^°°([0, T]; Lip) D Lip([0, T]; L^) is a solution of

the incompressible Euler system. Since (V, v) = 0, we have

(v, \^)v = (V, v (g) v) and H(v,v) = 7r(v,v),

and thanks to the smoothness of v and to PROPOSITION 2.6 (iii), we see
that -V;) and H(v,v) belong to L°°([0,r] 5^).

Next we find

(v, -v^) = (v(v, ̂  (g) ̂ )) = (v, n(^ ̂ ))
by taking the divergence of the Euler equation and using PROPOSITION 2.6,
and since V A (-Vp) = V A H(v,v) = 0, it follows that H(v, v) + Vp
satisfies the assumptions of LEMMA 2.1. We can therefore conclude that
—Vp = II(^, v) and that v is a solution of the pressure free system.

(ii) Assume that v G ^^([O, T]; Lip) is a solution of the pressure free
system. We find 9f(V,v) = 0 by taking the divergence of the equation,
so that (V, v°) = 0 implies (V, v) = 0. Thus this equation can also be
written

9tV + (v, V}^ = n(i;, v) ,

and H{v,v) is a gradient since its curl vanishes. Therefore, v is a solution
of the incompressible Euler system.
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Now the property (V, v) = 0 has the following two consequences : first
that Il(v,v) = 7r(v,v) so that w == v is a L°°([0,r] ;Lip) solution of the
problem

{ 9tW + (V, v (g) w) = 7r(v, w),
Wj^o =v°^ LipDL^;

and second, that the operator A : w i—>- 7r(v, w) is continuous on C^ and
on G7' H L^ thanks to PROPOSITION 2.6 (iii), so that it follows from
COROLLARY 2.4 that the problem written above has at most one solution
w C L°°([0,r] '.C^ and at least one solution w <E L°°([0,T]; C^ H L^).
Since v is a L°°([0,r]; C7') solution of this problem, we get that v is an
element of L°°([0, T]; 27), and this also implies that

9tV = TT(^) - {v^)v e L°°([0,r] 5^).

(iii) Finally, the proof of v € ^([O.T] xR3) is in CHEMIN [3] : it follows
from the fact that Q^v e L°°([0,r]; C5-^-1) for all k < s, which is
easily obtained by differentiating the equation. []

Thanks to this theorem, we will always study the incompressible Euler
system through its pressure free form. For example, we have the following
uniqueness result.

THEOREM 2.8. — For any divergence free data v° C LipDL^, where
1 < p < oo, the incompressible Euler system has at most one solution
v e L°°([o,r] ;Lip) nLip([o,r] ;L^).

Proof. — We take the incompressible Euler system in its pressure free
form. If v and v are two solutions with the same data v°, we get by
subtraction

9t(v - v) + (V, v (g) (v - v)} = H(v +v,v -v) - (V, (v - v) (g) v}

so that u = A"^ — v) is a solution of

f QtU + (V, v (g) u) = A ÎÎ  + v, Au) - A-^Au, v) + K(v, u),
\u\t=o=0,

and since the right side is a continuous linear expression of u G C^ (see
PROPOSITION 2.6), it follows from COROLLARY 2.4 that u = 0 is the only
solution of this problem. This just means that v = v. []

Next, we establish the classic existence result for smooth data.
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THEOREM 2.9. — Let v° € C8 H 27' /or some s > 1 anc? 1 < p < oo,
wz'̂ /i (V,v°) = 0. Then the incompressible Euler system has a (unique)
solution

^^([o.Tl^nLip^o.r];^)
for some T > 0. Moreover, if v e ̂ ([^ T) 5 c5) n ̂ PiocQ0.r);Lp) /or

a T > 0 such that
[T
/ |K5)| |Lipd5<00,

Jo
then this solution can be continued as a solution

v e L°° ([o, T + e\; (7s) n Lip([o, r + £]; 77)
/or 5ome e > 0.

Proof. — The proof is in CHEMIN [3]. However, since our operator 11
is slightly different from that of CHEMIN, we now sketch this proof.

We take VQ(t) = v0, then we solve

f <9^n+i + (V^n^n+l) = 7r(-^,^+i),

i^nl^O^^0-

Assuming that (V,^) = 0 and that Vn is in L°°([0,r]; (7s), it follows
from PROPOSITION 2.6 (hi) and COROLLARY 2.4 that this problem has
a solution Vn-^-i G L°°([0,T]; C^) for any r < 1. Next, we apply the
operator A^^,-) to the equation and find that u = A"1^,'^^)
satisfies

f 9tU + (V, Vn^u) = ̂ (D)A-3(V, ̂  (g) An) + ̂ (^n, U),

[^o-A-^V.^^O.

Since the right side is a continuous linear expression of u G C1' (see PROPO-
SITION 2.6 (ii)), it follows again from COROLLARY 2.4 that (V,z^+i) =
An = 0. We also show that 2^+1 e L°°([0,r]; 07s) by differentiating
the equation with respect to x as many times as needed, and by using
(V^n) = (V^n+i) = 0 to get the right estimates, and thus the
sequence Vn is well defined by induction.

From these estimates, it is easy to see that for a sufficiently small T > 0
depending only on ||^°[|s, Vn is a bounded sequence in L°°([0, T]; (7s) and
a Cauchy sequence in L°°([0,T]; C'7"'"1) for some r < 1. It follows (see
e.g. LEMMA 5.1 below) that this sequence has a limit v C L^^O^T] -,C8)
which is a solution of the pressure free system. Thanks to THEOREM 2.7
it is also a Lip([0,T]; L^) solution of the incompressible Euler system as
claimed.
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Finally, any ̂ ([0, T) ; (7s) solution of the pressure free system can be
estimated on [0, T) by

11^)11. ̂ m.e^)
where V^) = jj ||v(5)||Lipds, and this implies the last part of the
statement (see CHEMIN [3] for more complete details). []

We end this section with MAJDA'S global existence result for axisym-
metric flows that we now define.

DEFINITION 2.10. —We say that the vector field v has an axisymmetric
structure if it satisfies

X2Vl - X^ = ̂ l - 9iV2 = (^2<9l - X^)v^ = 0

and if the function

a(x) = {xl + ̂ ir^^iCr) - x^(x))

is bounded, compactly supported and has a constant sign (here, the o;/s
are the components of the vorticity uj = V A v). Introducing cylindrical
coordinates (p, 0, xs), and at x = (p cos 0, p sin (9, x^) the three base vectors

<°p= (cos (9, sin (9,0), ee = (sin (9, - cos (9,0), 63= (0,0,1),

then our conditions on v mean that
v = ̂ p^p + ̂ 3^3 and uj = UJQ CQ

where V p , v^ and uje = QpVs - Q^Vp are functions of p and ^3 only
(independent of 0), while our conditions on uj (i.e. on the function a)
mean that ^ e / P = a e ^mp and has a constant sign.

For flows of such axisymmetric vector fields, we have the following
variant of a result of MAJDA (see [7, p. S 202-S 203]).

LEMMA 2.11.— Ifv e ^°°([0,T] ;Lip)nLip([0,r] ;L^) for some p < oo
is a solution of the incompressible Euler system such that v° has an
axisymmetric structure, then v(t) has an axisymmetric structure for all
t in [0,r]. Moreover, the functions

^)=VA^) and R(t)=\\\x\^^\\^

satisfy for all 1 < q < oo and all t € [0, T]

||̂ )|L <R(t)\\a°\\^ and R(t) < 7?(0)(l + R^a^t)^2

where a°(x) = (^ + o-j)-1^^?^) - x^(x)).
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Proof. —The proof that v(t) has an axisymmetric structure is left to the
reader : it suffices to use the symmetry of the equation, and the equation
for uj I p we give below. With p = {x^ + x^)~1^ as above, we have

^ f^ )+ /V^0 a ; \=0
\ p / \ o i

so that
^)

P Hl/9 P NL9
= \\^\\L.

thanks to COROLLARY 2.4, and therefore we can write

|̂ )||̂  <R(t)
^(t)

P IIL9
=R(t)\\a°h^

On the other hand, the Biot-Savart law v(t) = uj(t) * VF (LEMMA 2.2)
implies that

JR/^) ^ II^^HL- < ^P l\^(t^-y}\ x IVFQ/) d^.
a;GM3 J

With r(t) = ̂ (O)5/3^^)-2/3, we have

/, (t,x-y)\ x \^F(y)\dyUJ
\y\<r{t)

W\\L- I \^F(y)\dy<R(t)r(t)\\
J\y\<r(t}

)r[t)\\a-\\L^
J\y\^r{t)

while by the Cauchy-Schwarz inequality

[ \uj(t,x-y}\ x \^F{y)\dy
J\y\>r{t)

<-{L uj(t,x-y)\
\y\>rW P { x - y )

^F^dy}
1/2

x { \ P(x-y)\(^(t,x-y)\dy
(J\y\>r{t)

1/2

<
^(t) r ' } 1/2 I r

/ IVFQ/)!^ / y r /\^(t,y)dy
J\y\^r(t~} ) |JR3P \\L-J\y\^r{f}

1/2

< {W / ^^II^H^172

\. 1"'(.t-^ J Jsuppa;0

1/2

\y^dyY/2^(R(0)5_)l/2

l\y\<RW ^W J I ^(^ J
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where we used that 9t [f y A u(t^ y) dy) = 0. Therefore we get

R\t)< j^o)5/3!^0!!^^)173

and it follows that R(t) can be estimated as claimed. \\

Finally, from THEOREM 2.9 and LEMMA 2.11 we can deduce the
following global existence result.

COROLLARY 2.12.—Keep the same assumptions as in Theorem 2.9, and
assume that v° has an axisymmetric structure. Then^ the incompressible
Euler system has a {unique) solution v 6 L°°([0, T]; C8) n Lip([0, T]; 27)
for all T > 0.

Proof. —From THEOREM 2.9, we already have a solution defined in [0, T]
for some T > 0. Then it follows from LEMMA 2.11 that the corresponding
vorticity field uj satisfies

/ Mt)\\^dt < J (1 + ̂ lla^oor)572 < oc.
Jo °

Now, it is shown in BAHOURI and DEHMAN [1] that under this condition
any solution v G L^([0,r); 0s) U Lip^c([0,T); LP) can be continued
as a solution v <E L°°([0,r + e\; C8) H Lip([0,r + e\\ LP) for some
e > 0. Therefore, we have a solution v e ^°°([0, T]; 0s) D Lip([0, r]; L^
for all T > 0. D

3. Velocity fields with striated vorticity
The goal of sections 3 through 5 is to prove THEOREM 5.4 below which is

a variant of THEOREM 1.2 where the spaces C^ ofconormal distributions
are replaced with spaces ̂ ^ of striated distributions that we now define.

DEFINITION 3.1. — Any system W = (w1, w2 , . . . . wN) ofN continuous
vector fields is said to be admissible if the function

llv|-•={N(Ab)I>''A•c•'l2^/'v / ^,<v

is bounded. If 0 < r < 1 and if W is an admissible system of C7' vector
fields, we define the space C^'^ as the space of all vector fields LJ such
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that ̂  G L°° and (V, w" (g)o;) e C7'"1 /or all y <N. The associated norm
is defined as

Mr,w =E{(1+ l^r'lL-iKii^iHi^0

+l|[wrllUI<v,wl/®a;)|^}
= -^V|H|L°°

+l|[Ty]-lL»E{llwl/ll'-ll'J^O°+ll<v'wl/0^L-l}•
v

REMARK. — We point out that our vector fields w^ are not assumed
here to be divergence free and that all our results in sections 3 through 5
hold without the restriction (V, w^) = 0. We will use this property in the
proof of THEOREM 6.4 below.

Here we can observe that this space C7'^ always contains the
Holder space C^. Our first result shows the link between this space and
the space C^ introduced in section 1.

PROPOSITION 3.2. — For any C1"^7", two-dimensional^ compact subma-
nifold S o/R3, we can find an admissible system W of five C^, divergence
free vector fields tangent to S, and we have (7^ C C^'^.

Proof. — Let / <E C^ be such that f\^ = 0 and V/|s + 0. By
continuity, this function still satisfies V/ 7^ 0 on S^ for some e > 0. Then,
we choose a function \ e C°° such that ^ = 1 on R3 \ Eg and \ = 0
near S. The five vector fields

/ 0 \ /cV\ (-9^
^- -%/ , ^= 0 , w 3^ [ 9,f

\ ^f] \-9ifj \ 0

/ %(X^3) \ /-92(X^l)\

w^=[ 0 , ^5= 9i{xxi)
\-9i(xx3)j \ 0 7

have C1" components and are divergence free and tangent to S. Moreover,
|w4 A w5 2 = 1 on R3 \ S^ while

|w1 A w2]2 + |w1 A w3!2 + |w2 A w3]2 = |V/[4

is positive on the compact set Sg. Thus we have [W] ^ 6 > 0, or
[IV]"1 < 1/6 < oo. Finally, since the w^'s are divergence free and tangent
to S, we immediately have C^ C C^. Q
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The rest of this section is devoted to the proof of the following result.

PROPOSITION 3.3. — There exists a constant C\ depending only on
1 < 9 < 3 ^d 0 < r < 1 such that for all admissible system W of C^
vector fields^ and for all v e Lp, p < oo, such that (V,z') = 0 and
c j ^ V A ^ e - L ^ n C^'^, we have v G Lip with the estimate

IHlLip < C'l|M|g,'r,lV

where we have set

|Mlg,r,W = |M|L9 + |M|L°° Log{2 + „ rfw ) '
\ JMJL00 /

Its proof is based on the following geometric results.

LEMMA 3.4. — Let w1 and w2 be two C1^ vector fields and Q be an open
subset ofR3 where w1 Aw 2 ] " 1 / 2 is bounded. Then we can find functions
djk € L°°(^) and b^ and b^ e C7'^) such that

^k - a^x)^2 = ̂ b^^w^x}^}
i,v

for (x,^) G ^2 x R3, with the estimates \\ajk\\L°°W < 1 ana

11^11^) < ^(11^11. + llw2]!,)15 |||w1 A w2]-1/2!! °̂W

where the constant C depends only on r.

Proof. — At every point x € fl we define the transformation ^ i—> rf
from R3 to K3 by

/(wl^w2,ii)\
r j = [ {w1 ,^ ,

\ (w2^) /

and we observe that this transformation can be inverted by the formula
^ = Arj where the matrix A is

A = ————— (w1 Aw 2 , ^ 2 A (w1 Aw 2 ) , (w1 A w 2 ) Aw 1 ) .
j^i /\ ^2 2 \ ' )

Then we consider the quadratic form Qjk(^) = ̂ j^k and we choose the
coefficient

qjk(w1 Aw2 )
Cijk = -|——T————o-T-Iw1 A w 2 2
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(this choice clearly gives ||o^||^oo(^) < 1) so that ^ = w1 A w2 is an
isotropic vector for the quadratic form qjk(^) — aj /cl^l2 . In the rj variables
we get

q^kW - djk\Ar]\2 = S^AQ^A - a^AA}^

where Qjk is the matrix of the quadratic form q^ (in the ^ variables). An
elementary computation shows that

1 /1 ° °
tAA = | 1 . 212 ° l^l2 -(W\W2)

1 ? / ; 1 A ? / ; 2 1 2 ' o -(w\w2) |w1 ]2\w± A w

and by observing the homogeneity degrees of the columns of the matrix A
we see that

1 /A h ^
-AQ,,A-a^AA=^^^ ^ ^ ^

V/-53 /̂ 5 ^6,

where the f3j's are homogeneous polynomials in (w1,^2) : /3i of degree 4,
/^2 and /^3 of degree 5, and ^4, (3^ and ̂  of degree 6. Moreover, f3i = 0 since
^ = w1 A w2 is an isotropic vector for the quadratic form qjk(^) — a^|<^|2.
Coming back to the ^ variables, we can write

^ - ajk\^\2 = | 1 . 2|4(2^! + /^4^2 + /?5^3)^2w1 A w2

+ 1^1 ^2 ̂ ( l̂ + /?5% + /36%)%

^ 2/?2<W1 AW2 ,^ +/?4(W1,^ +/?5(W2^) i

}W1^W2\4 {u' 's/

, 2/?3<W1 A w2,Q +/35(W1,Q + /^W2^) 2
+ —————————————W^W^——————————— {W ^

=^+b^2+b^3)(w1^}

+(^1+^2+^3)(W2^)

where the b^ are homogeneous polynomials of (w1, w2) of degree 7 divided
by the quantity |w1 Aw 2 4. Therefore we have got the required expression
for ^6; - ̂ fcl^l 2 , and it is elementary to check that

II^II.W ^ C7(||w1 , + Hw2!!,)15 |||w1 A w2!-1/2!!^^.

Our proof is complete. []
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LEMMA 3.5. — Let W be an admissible system of N C7' vector fields.
Then we can find functions a^ e L°° and b^ c C^ such that

^k - a^W2 =^b^(x)^(x)^)
i,v

for (x^) C M6, with the estimates ||a^|[^oo < 1 and

II^H, ̂ CN^M^W]-^^

where M^w = ̂ {W}-^^ E IMIr, and where the constant C depends
only on r. v

Proof. — On each

^ = [x C M3 ; \w^ A w-|-1/2^) < 2||[TV]-1||^},

LEMMA 3.4 gives coefficients a^ in L°°(^^^) and 6^, 6^ in Gr(^/2^')
solving our problem. Then it suffices to combine these^locaf constructions
with a partition of unity 1 = ^ ̂ v satisfying :

(i) supp^c^" and ^
(ii) II^H, ̂ CN^^.

To construct such a partition of unity, we choose a nonnegative function
X ^ C§° with I I ^ H ^ i = 1 and supp^ contained in the unit ball, then we
set for jji < v

F ^ = { x e R 3 ; w^Aw"2(a : )>inf [Ty] 4 },

F^ = {x G M3 ; dist(a;, F^) < e},

^{x)=e~~3^(x/e),

^F W = / Xe/2 (x - y) dy, and
JF^

^=^ n (i-^r),
(/2^)<(^,^)

where (/2, ^) < (^, v) means ^2 < ^ or (fl = ̂  and v < u). Since

^E^-II^-^r),
^<v ti<v

since y^ = 1 on F^ and since R3 = \J F^, this is a partition of unity.
^<V
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Moreover, the estimate

iî 'n. ̂  E ii^n- < cw2£-r
(/2,^)<(/2,I/)

implies estimate (ii) above if we chose e = (2M^^)-4/'r. Finally, on
F^ D supp (^ we have

\w^ A w" ^rc) > inf [TV]4 - e^^ A w^l2^

^^[^-^'(ElKII-)4

v

>j^^4 ^i^t^4)

thanks to our choice for £, and this proves that

KAwT^v^llWILoo
on supp^?^. This implies the inclusion (i) above. \\

COROLLARY 3.6.— With any admissible system W of N C7' vector fields^
we can associate functions ajk G L00 with \\cijk\\L00 < 1 such that for all
uj e C ,̂

\\9j9k^ - A(a^o;)||^_3 < CN^M^Mr^w

where Mr^w = \\[^}~l\\^oo S 1 1 ^ 1 1 ^ ana w^ere the constant C depends
only on r. v

Proof. —Let us quantify the algebraic relation of LEMMA 3.5 by putting
the coefficients on the right and the differentiations on the left. We obtain
for uj G C^

0,9^ - A(a,^) = ̂  9A(^<^)
£,m,v

so that it suffices to estimate the Cr~l norm of sums ^9m(bwm^)' For
this, we use the paraproduct operator T^ and write m

^9m(bwm^) = Y^9m{(b-Tb)wm^}Jrn^^m
m m

+ ̂  [9m, Tb]Wm^ + U E 9m(w^).
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The first term can be estimated by

\\9m{(b-T,)w^}\\^ < \\{b-n)w^

< C\\b\\r\\Wm^\\L00

^c^M^II^]-1!!^!!^!!,^!!^,
and similarly, the second term can be estimated by

\\[9m,Tb]Wm^\\^ = \\TQ^Wm^\\r-l

< C'||(9^||,._i||w^||z/oo

^C^M^II^-^l^llwll.llc.ll^.

Finally, the third term can be estimated simply by

\\Tb^Om(w^) _ <C\\b\\^\\(\/,w^)^)\\^
m

^C^M^II^-^I^IKv.w^^ll^,

and this implies our estimate after summation in £ and v. \\

Proof of Proposition 3.3.— The elliptic pseudo-differential operators A5

constructed in section l.b satisfy A^A = x(D)A-2 - 1, and therefore the
elementary formula V A uj = -Av immediately gives for high frequencies

(l-x(D)A-2)v=A-2^^^).

For low frequencies, we use the Biot-Savart law v = uj * VF (see
LEMMA 2.2) to get the estimate

IHk- < ̂ (IMlz^ + II^HL-)
since VF e Lql^-^ + L1. Then we can write

IM|Lip=|MI^+^||^||L-

< ML^ + Ell̂ W^ILoo + Ell^(1 - X(D)A-2)W^)^ ^\\r^+> W^-XWA-^M^
3 3

^^II^+EII^A-^VA^II^
3

< ̂ (iHk. + ML^ + E IIA-^c^lk-).
jk
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Next, we use the a^ coefficients of COROLLARY 3.6 to write

IIA-^M^oc

< ||(1 - xWA-2)^^^ + [lA-2^-^ - A(a^))||^

< CM^ + \\K-\Q,9^ - A(a,^)) ||̂ .

Since the pseudo-differential operators A~2, A"2^^ and A-2A have
homogeneous symbols, we have the following estimates in Holder norms

1 -2 {9j9k^ - A(a^^))| Q < C\\UJ\\L^, and

||A-2(<^,9^-A(a^))[|^ < [|9^^-A(a^)||^

^CN^M^^w

thanks to COROLLARY 3.6, and the logarithmic interpolation estimate
gives

||A-2^,^ - A(a,^))||^ < CM^ Log(2 + N3Mr9w Mrfw ).
V 11^'llL00 /

Finally, we conclude by observing that

^ ^ N^M^M^
||^||z,<»

= 2 + N^M^ + N^M^

+ ̂ M^W}-^ ̂  ll(v'w.0^1r-l

^/ II II -L/

^{2+^+M^+||[TV]-^^^11<V '^^)11^}23

„ ll^lll/00 J

_;g , ll^llr^l23

1 ML- f '

and this completes the proof of our proposition. []
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4. Estimates for smooth solutions
The main result of this section is the following.

PROPOSITION 4.1. — Let v c L^QO.r];^^) be a solution of the
incompressible Euler system and w° be a C^ vector field. Then the problem

[ 9tW + (V, v (g) w) = (w, V}v,

[w\t^o=w°

has a unique solution w e L°°([0,T]; C^) and we have

^, , Il(v,w(f)0^))||^ ^ ̂ ^r...o, ^ IKv^0^0)!!^
r 11^)11^ I ||̂ °||L- f

where V(t) = ̂  \\v(s)\\^(^s, and C^ depends only on 0 < r < 1.

Proof. — The existence and uniqueness of the solution w in the space
L°°([0,r] 5C7') follow from COROLLARY 2.4 since the operator A : w i-̂
(w,\/)v is continuous on C^, and therefore, we only have to prove the
estimate given in the statement.

For this, we set u = A-^V, w (g) a;) e L°°([0, T]; C^). Using the trans-
formation w ̂  w* described in PROPOSITION 2.3, we observe that

^{w*}={(w,V)2;}* and <9,{^*} = {(a;,V)^}*,

so that

<9f{(w (g) G^)*} = 9,{W* (g) 0;*} = (9f{w*}) 0 €<;* + W* (g) (9f{^*})

= {(w,V)'y}*(g)a;*+w* 0 {(cx;,V)v}*,

that is

9t(w(g)a;)+(V,^(g)(w(g)o;)) = {(w,V)v} (g)o;+w(g){(a; ,V)v}.

When applying the operator A-^V, • ) to this equation, we find

9tU = A-^V, {(w, V)v} (g) a; + w (g) {(a;, V)v})

- A'^V, <V, v (g) (w (g) a;)))

= A-^V, {(w, V)?;} 0 a; + w (g) {(a;, V)?;})

- A'^V, (V, w (g) (v (g) a;))).
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Since (V, w 0 (v (g) a;)) = {(w, V)v} 0 a; + v (8) (V, w (g) c^), we get

9tU=A~l{V,w(S) {{^,V)^}) -A'^V^^V.w^^))

and finally

9tU+ (V,^(g)n) = A'^V^w^ {(cc;,V)^}) +^(^,n)

where the operator K is that of section 2. Using the operator D of
section 2, we now define linear operators A, 23, C and P as

B-u = A'^VAn),

Aw = {w,\7)v - ̂ A'^V.w^a;},

Vu = K(v, u) + A^D^, Bu) + A-^An, 2;),

Cw = A'^V, w (g) {(c^, V)v})

^^(^.A'^V.w^a;}) -'DA'^V,^^^),

and observe that, by construction of A and C, the vector fields w and
u = A'^V, w (g) uj) are solutions in I/^dO, T]; C7') of the system

( 9tW + (V, v ^) w) = Aw + 0'u,

<9^ + (V, v (g) n) = Cw + PZA.

As in COROLLARY 2.4, our estimate will follow from estimates on these
operators A, B, C and V. In the statement of LEMMA 4.2, the time does
not appear because it is assumed to be fixed.

LEMMA 4.2. — There exist constants C depending only on r such that:

(i) \\Bu\\r^C\\U\\r;

(ii) The linear operators A and T> depend linearly on v and satisfy

[\Aw\\r < C\\V\\Up\\W\\r, \\Aw\\r/2 < C\\V\\^/2\\W\\r,

\\Du\\r ^ C\\V\\u^\\U\\r, ||25u||^/2 ^ C\\V\\^,Mr.

(iii) The linear operator C depends bilinearly on (ui, v) and satisfies

\\Cw\\r^C\\UJ\\L"\\V\\Up\\W\\r,

\\Cw\\r/2 ^ C\\UJ\\_r/2Mup\\W\\r,

\\Cw\\r/2 <: C\\UJ\\L^\\V\\l-r/2\\W\\r.
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Proof.
(i) The estimate for the operator B is obvious.
(ii) The operator A satisfies

Aw = (w, V)^ - A^V A (V, w 0 uj)

=(w- r^ v)v + (r^ v) x(^)A~2^ - (r^ v)A-2A^
+ A-2 (V A (V, (T^ - w) 0 a;)) - A-2V A (V, T^^uj).

The C7' norm (resp. the C7'/2 norm) of the first, second and fourth terms
can be estimated by C (|H|Lip + IH|L-)|H|^ (resp. by C(\\v\\^^ +
IMI-r/2)IH|r). Moreover, the relation /\v = -V A uj allows to write the
other two terms in the form

(T^ ̂ A-^V A uj) - A-2V A (V, T^ (g uj}

( 0 9, -9^
=^ T^,9,A-2 -% 0 (9i

3 _ \ Q^ -(9i 0

so that the C^ norm (resp. the C^2 norm) of these terms can be estimated
^ ^IHMMiL- (resp. by C'||w||^||a;||_^/2) and this gives our estimates
for the operator A. The estimates for the operator V easily follow from
PROPOSITION 2.6 (i) and (ii).

(iii) Finally, we can write

(V, w 0 {(a;, \7)v}) = (V, (V, uj 0 (w 0 v))) - (V, (V, a; (^ w) (g) v}

= (V, (V, w (g) (^ (g) v))) - (V, (V, uj (g) w) 0 ?;)

= (V,a;(g){(w,V)v})

+ (V, (V, w (g) a; - uj 0 w) (g) v}

= D(^, (w, V)?;) + -D((V, w 0 ̂  - uj (g) w), v)

= D(uj, Aw + ̂ n) + D{Au - D(uo, w), v)

since (V, a;) = (V, (V, w 0 a; - uj (g) w)) = 0. It follows that

Cw = A"1^, Aw + ̂ n) + A^D^Au - D{uj, w), v)

- A-1! ,̂ ̂ ) - A-^A^, z;)
= A-1! ,̂ Aw) - A-1^! ,̂ w), ̂ ),

and this implies the estimates (iii) thanks to PROPOSITION 2.6 (i) and to
the estimates obtained above for the operator A. []
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End of the proof of Proposition ^.1. — We now get the required
estimates as in the proof of COROLLARY 2.4. We can write as there

M||, < e^llw0!!, + / e^-^dlAwOOH, + \\Bu(s)\\^ds
Jo

w^ll^e^^llw0!!^ / e^^-^dlAw^lL + \\Bu(s

< e^^llw0!!— T

J-n f ̂ (V{t)-V(s}}\\..,^\\ f | | , , / M | , ^{^r
^ "̂'"'-'"•"II-MII.̂ II-OIÎ ^ }̂̂

and similarly

'1^)11, <. ervW\\uo^+ [ter(VW-v(s)\\\Cw(s)^+ \\Vu(s)\\r) ds
Jo

which gives

K^llr < rV(t) \\^\\L^ \\U°\\r

Mt)\\^ - Mt)\\L^> H^HLOO

+C/ter(v(t)-v(s))IM^||.(.)
Jo \\^>[t) L00

xflWII^"^}^x {1^)11^^

< ̂ +i)^)hT +c7/lte(r+l)^)-y(s))||^(
ll^°lk00 Yo

1 ll^(^)lll/-j
,. ,.,. ,^_u_^_ +(7/lp(^+l)(vW-^^))||.,^^||_.

11/ ,?0 | | ,_ 1 / I I ^^J I lL ip

x{lK.)||.+^^-}d.
1 1 1 ^ ( 5 ) 1 1 ^ 0 0 J

thanks to the estimate of ||^(s)||^oo/||cc;(t)||^oo obtained in COROLLARY 2.5.
If we sum these two estimates, we get

{i^i^^:}^^^^"-^}
"̂•"̂ •"IÎ U 1"M 1^ ̂ }^,

and we can conclude as in the proof of COROLLARY 2.4. []

This result leads us to the estimate of the C^ norm of the vorticity.
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COROLLARY 4.3.— Let v C L°°([0, T]; C1^) be a solution of the incom-
pressible Euler system and W° = (w1'0^2'0,... ,w^°) be an admissible
system ofC7' vector fields. We set W(t) = (w1 (t), w2 ( t ) , . . .,wN(t)) where
the vector fields w" e L°°([0,T]; C^ are obtained by solving the problems

( <W + (V,?; (g) w") = {w^ V)v,

[w-i^=^°

05 m Proposition 4.1. T/^n ^e 5^^771 W(t) is admissible, and we have
the estimates

ll^^-^l^^e^)/2!!^]-!!!^,
^W\\r,W{t) (C2+JOV(f)ll^°lk^o

II^(^)I|L- - ||a;o||̂  ?

where V(t) = ̂  \\v{s)\\^ds and C^ is the constant in Proposition 4.1.

Proof. — In order to prove that W(t) is admissible, we just have to
prove the estimate of ̂ (t)}-1^. Denoting by *(V(g)^) the transpose
of the Jacobian matrix of v, we have for all /^ < v

9t(w^ A w") + (V,v (g) (w^ A w^))

= {(w^, V)^} A w" + w^ A {(w^ V)v}

= {(V^)- t(V(g)^)}(w / 'Aw")

= -^V^^w^A^).

For every fixed a; e M3, standard estimates for solutions of ordinary
differential equations then give

K^Aw^v^))! > e-^Kw^Aw^'0)^)!,

and by summing such estimates, we get

[W(t)]\^(x)) > e-2^) [W°]4^).
Since this is true for every x <E R3, we have obtained

lir^r^l^^e^)/2!!^]-^^.
Finally, the last estimate of the statement follows from this one and

that of PROPOSITION 4.1 since

^-'E{^IIW-IL-(II»'̂ "^^)}
by definition of ||a;[|^^. []
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We end this section with a second corollary that provides an estimate
of the lifetime of the solutions constructed in THEOREM 2.9. As in PROPO-
SITION 3.3, we set

M^w = ML. + |M|LocLogf2+ Mr^)'
\ H^lli/00 /

and we can state :

COROLLARY 4.4. — There are constants Co and C\ depending only
o n l < q < 3 a n d 0 < r < l such that for all data v° G C^ H LP,
1 < p < oo, satisfying (V.v0) = 0 and (^° = V A v° e -L9, and all
admissible system W° of C1" vector fields^ the incompressible Euler system
has a (unique) solution v G L°°([0, T\; C^) H Lip([0, T]; LP) with

T=-^————— ^d \\v(t)\\ <CoC^°\\^o forte[W
^Oll1^ ||g,r,lV°

Proof. — From THEOREM 2.9, we know that the incompressible Euler
system has a solution defined in [0, To] for some TQ > 0. Then it follows
from COROLLARY 2.5 that uj = V A v G L°°([0,To]; I/7 H C7') with the
estimates

l^l^orLoo^^^ll^ll^orLoo

where Y(^) = J^ ||?;(s)||Lipd5. Therefore, using the results of PROPO-
SITION 3.3 and COROLLARY 4.3, we can write

V'(t)=\\v(t)\\^^C^(t)\\^^

< de^dio;0 ||̂ o + (C2 + ̂ V(t) II^H^}

^C'le^^MH^II^H.o

where €3 = C^ + j. If we also set

Co=l+C,C3, r=(Go||^°||^,iyo)-1,

this estimate implies that when t < To < T, then

CsV'(t) e-^W ^ CiC3\\^°\\g,r,w'>

=^ 1 - e-^W ^ C^t\\^\\q^w»

^),(,_^)-,^

=^ V^^^0^ and V'(t)<CoCi\\uj°\\^wo.
€3

Therefore, the solution v € -L°°([0,ro] sC'^7') n Lip([0,ro] i^) can be
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continued thanks to THEOREM 2.9 as long as To < T, and the estimate of
IK^)||Lip=^) is proved. D

5. Construction of solutions for data with striated vorticity

We are going to construct our solutions by taking limits of smooth
solutions. These limits are obtained thanks to the following classic conse-
quence of interpolation estimates in Holder spaces.

LEMMA 5.1. — Let Vn be a bounded sequence in L°°([0, T] ; C8) that is a
Cauchy sequence in Z/°°([0, T]; (7*) for some t < s. Then this sequence has
a limit v C L°°([0,T]; C8) and the convergence holds in the sense of the
norm o/Z/°°([0, T]; (7^) for all t < s. This lemma is still true when s = 1
and C8 is replaced with Lip.

Our next statement is a typical application of this lemma.

PROPOSITION 5.2. — With 1 < p < oo, let Vn € L°°([0,r] ;(71+r) D
Lip([0,r]; L^) be a sequence of solutions of the incompressible Euler
system for a sequence v°^ of data. We assume that the sequence Vn is
bounded in L°°{[0,T] ;Lip) and that v°^ tends in Cr~l to a limit v° (E L^.
Then the incompressible Euler system with data v° has a (unique) solution
v G L°°([0, T]; Lip) H Lip([0, T]; 27).

Moreover, if w° is a C1" vector field and if uj^ = V A v°^ is such that the
sequence (V,w° 0 c^) is bounded in C7""1, then the L°° solution of the
problem

( 9tW + (V, v (g) w) = (w, V)v,

W\t=0=W°

actually satisfies w G ^°°([0, T]; G7') and (V, w (g) uj) 6 L°°([0, T]; C7'-1)
wz^ ^e 5ame estimate as in Proposition 4.1 where V(t) now stands for a
common bound off^ \\Vn(s)\\up^-s.

Finally, if W° is an admissible system of C1" vector fields and if ̂  is
bounded in C7'^, then for all t e [0,T], the system W(t) defined as in
Corollary 4.3 is an admissible system of C^ vector fields, and uj{t) =
VA^) eC^^.

Proof. — Our proof will be divided in several steps.

(i) Construction of the solution v.

Thanks to THEOREM 2.7, we can consider the incompressible Euler
system in its pressure free form. By subtraction, we can write

9t(Vn - Vm) + (V, Vn ̂  (^n - Vm)}

= H(Vn + Vm, Vn - Vm) + (V, (Vrn - Vn) ̂  V-m}
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so that the quantity Unm = ^~l{vn — v-m) satisfies

QtUnm^ (^,Vn^Unm)

= K(Vn, Unm) + A"1!!^ + Vm, ^Unm) - ^~1 D(KUnm, Vm)'

Thanks to PROPOSITION 2.6, the right side can be written Anm^nm where
the linear operator Anm satisfies

||^^||,<C7(||^||Lip+||^||Lip)||^||..

Now, the integrals f^ \\Vn{s)\\^[pds have a common bound V(t) inde-
pendent of n by assumption, and therefore it follows from COROLLARY 2.4
that

II?; (+} 7; mil -II?/ mil < p^'^^ii?;0-?;° ii iH^nV1^ — ^TnV6^!!^-! — [l^nm^^lly, 1: € ||̂  V^\\r-l-

Since ̂  is a Cauchy sequence in CT'"1, this estimate implies that Vn is
a Cauchy sequence in L°°([0,r] ;(7r-l), and it follows from LEMMA 5.1
that Vn has a limit v € L°°([0,T] ;Lip) and that the convergence holds
in the sense of the norm of L°°([0,r]; C8) for all s < 1. Using this last
property, we can take the limit in the equation

9tVn + (V, Vn ̂  Vn) = H ,̂ Vn)

to see that v is a solution of the pressure free system with data v°.

(ii) A lemma on the flows associated with the sequence Vn •

If ^nt is the flow associated with v^ we set

^n(t,x)= {t^nt(x)).

Then, we have the following result.

LEMMA 5.3.—Assume that Vn is a bounded sequence in L°°([0, T]; Lip).
Call V(t) a common bound of L ||fn(5)||Lipds and set

Vnm(t) = / \\Vn(s) - Vm(s)\\L- ds.
J o

Then for all w 6 L°°{[0, T}; C7') we have

||(w o ̂ ) - (w o ̂ )||̂  < 20^11^11, v^.

In particular, this quantity tends to zero when m and n tend to infinity
as soon as the sequence Vn is convergent in L°°([0,r]; C8) for some s.
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Proof. — Since ^nt is the solution of the ordinary differential equation
9t^>nt = Vn o ̂ , ̂ o = Id, we get the estimate ||̂  - ̂ ||^oo < evVnm
by standard arguments. Therefore we have

|| (wo^)-(w o^)[|^

< ||(w o ̂ ) - (w o ̂ H;^ ||(w o ̂ ) - (w o ̂ H^)172

^ (2||w||,ery)l/2(2||w||,||^ - ̂ ||^)1/2 ^ 2ery|H|,^2

which is our conclusion. Q

(iii) Smoothness of w and u = A~1 (V, w (g) cc;).
Using the C7' vector field w°, we construct a sequence Wn G ^°°([0, T]; C1")

by solving the problems

f 0iw^ + (V, ̂  (g) w^) = (w^, V)^,

\Wn\t=0=W°

as în PROPOSITION 4.1. Since Vn is bounded in L°°([0,r] ;Lip) and < =
A'^V^w0 (g)^} is bounded in C^ it follows from PROPOSITION 4.1 that
w^ and Un = A'^V, w^ (g) o;n) are bounded sequences in L°°([0, T]; C7').
Moreover, these sequences satisfy

r 9tWn + (V, ̂  (g) Wn) = AnWn + ̂ n ,

9tUn + (V, ̂  (g) ̂ ) = C^W^ + V^Un ,

^n|t=0=W°, ^|^o=^,

where An, Cn and P^ are the operators A, C and P (see the proof of
PROPOSITIOH 4.1) associated with Vn'

Thanks to PROPOSITION 2.3, the vector fields w^ = Wn o ^n and
u'n= UnO ̂ n are solutions of the system

• QtW^ = (AnWn) 0 ̂ n + (BUn) 0 ̂ n ,

9t< = (CnWn) 0 ̂ n + (^^) 0 ̂ ^ ,

.<\t=0=W°^ U^o=U°,,

and we claim that we also have

w.Qi{< - 0 = -4:(w: - o + ̂ ;« - <) + ̂ ,
Wn - 0 = c:(w: - <) + p;« - <) + ̂ ,
« - Oit=o= o, « - o,̂  = ̂  - ̂ ,
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where the linear operators A^, B^, C^ and T)*^ satisfy for some constant C
independent of n

ll^>llr/2 + 1|C>||,/2 ^ C|H|r/2,

\\B^U\\r/2 + \\W\r/2 ̂  C\\U\\^

and where
. lim (l|ymn||r/2 + ||^mn||r/2) = 0.

nun(m,n)—>oo

Indeed, we can write by subtraction

<9(« - <J = (AnWn) 0 ̂  + (Bu^) 0 '&„

- (AmWm) 0 ̂ m - (0"m) 0 ̂  rn

^A^-OO^^O^

+(ff{«-0o^ l})o^

+ (-4n{(<z 0 ̂ 1}) 0 ̂  - (^W^) 0 ̂

+ (ff{< 0 ̂ 1}) o ^r^ - (5U^) 0 ̂

= ̂ (w^ - w^) + B;« - <) + ̂  + ̂

provided that we set

A^w = (An{w o ̂ }) o ̂ ^ , B^u = (6{u o ̂ 1}) o ̂  ,

^m = {^n{w*m 0 ̂ ,,-1}) 0 ̂  - (AmWm) 0 ̂ m ,

^ = (ff{< 0 ̂ 1}) o ̂  - (B^) 0 ̂ ^ .

For A!^, it follows from LEMMA 4.2 that we have the estimate

IKwllr/2 ^ e^llA^o^1}!!,^
^ Ge'-^H^IlLipllw o ̂ 1||,/2 ̂  C'e^ll^llLipllwll^ ,

and similarly
1|6>||,/2 < Ce^||u||,/2.

For y^i we can write

^n = (Az{< 0 ̂ »1}) 0 ̂  - (A,{< 0 ̂ ,,1}) 0 ̂

+ (Az{(w^ 0 ̂ 1) - w^}) 0 ̂  + ({An - Am}Wm) 0 ̂  .
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The quantity
|| (A.{< o ̂ 1}) o ̂  - (A.{< o ̂ ,1}) o M |̂|̂

tends to zero thanks to LEMMA 5.3 since the C77' norm of An{w^ o ^r^1}
is bounded. The third term can be estimated in C^72 norm by

Ce-^KHLiplKw^ o ̂ ) - w^| ̂

< C^KHLiplK^ o ̂ ) - (w^ o ̂ )||,/2

and again tends to zero thanks to LEMMA 5.3. Finally, the C r / c 2 ' norm of
the fourth term can be estimated by

e^KA. - Am}Wm\i^ < Ce^Vn - Vm\\l-r/2\\Wm\\r

thanks to LEMMA 4.2, and this also tends to zero since Vn is convergent in
L°°([0,r] ;Cl--r//2). All these estimates prove our claim for A^ B^
and ^4^, and it is clear that the other estimates can be obtained along
the same lines.

Since u^ is bounded in (77' and is obviously convergent in C^/2, it
is also convergent in C7"/2 by interpolation, and it follows from our claim
and standard ordinary differential equation estimates that w^ and u^ are
Cauchy sequences in L°°([0, T]; (77"/2). But this also implies that Wn and
Un are Cauchy sequences in L°°([0,T]; C^/2) since

\\Wn - Wm ||r/2 < e l̂K - Wm 0 ̂ J|r/2

^e^lK-w^H^

+ e^^lKw^ o ̂ ) - (w^ o ̂ )||,/2
where the last term tends to zero thanks to LEMMA 5.3.

Finally, it follows from LEMMA 5.1 that Wn and Un have limits w and
u € ^([O.r];^) and that the convergence holds in L°°([0,r]; 0s)
for all s < r, and this allows us to take the limit in the equations
9t^n + (V.^n ^ Wn) = (w^V)^ and Un = A'^V.Wn 0 o;n). We also
get the estimate for \\w\\r + (IMIr/IMk0 0) by taking the limit of such
estimates for Wn and Un-

(iv) Admissible systems.

Using the previous arguments for each element w^'° of the admissible
system W°, we see that we only have to show that the system W(t) is
admissible, and this is proved by taking the limit in the estimate

IKWnMI-^l^^e^)/2!!^0]-1!)^
which follows from COROLLARY 4.3, where V(t) is a common bound of
Jo'KOOIlLipcb. D
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Then we can prove our main result.

THEOREM 5.4. — With 1 < p < oo, 1 < q < 3 and 0 < r < 1, let W°
be an admissible system of C7' vector fields, and v° be an LP, divergence
free data such that c^0 = V A 'y0 e L9 H C^0. Then the incompressible
Euler system has a unique solution v e L°°([0,T} ;Lip) H Lip([0,T] -,LP)
for some T > 0. Moreover, for all t e [0,T], the system W(t) defined as
in Corollary 4.3 is an admissible system of C7' vector fields, and we have
uj(t) = VA^(^) e L^nC^^. Finally, ifv° has an axisymmetric structure
{see Definition 2.10), then the previous results are true for allT > 0 (global
existence and smoothness result).

Proof. — Take a nonnegative function \ e (^(M3) with \\x\\L1 = 1
and set

Xn(x) ̂ n^^nx).

Then the vector fields v°, = ̂  * v° satisfy ̂  e C^ H LP, (V,^) = 0,
^ = V A v°, = ̂ n * ̂  e L^ and lim^_^ ||̂  - v°\\s = 0 for all s < 1
since v0 C Lip thanks to PROPOSITION 3.3.

Moreover, since ̂  = ̂  * a;0, we have ||^||^orL- < ||^°||^orL-.
Now, from the elementary estimate

07 ^(Xn^^-Xn*^0^^0)!^Gllw^ll.ll^ll^

we can deduce that ̂  is a bounded sequence in L9 D C7'^0. Then it
follows from COROLLARY 4.4 that the incompressible Euler system with
data v°, has a solution Vn e L°°{[0, T]; C^) n Lip([0, T]; LP) where the
lifetime T > 0 is independent of n, and that the sequence Vn is bounded
in L°°([0,T] ;Lip). Therefore the result follows from PROPOSITION 5.2.

When v° has an axisymmetric structure, we need a lemma.

LEMMA 5.5. — There exists a nonnegative function \ e (^(M3) with
\\X\\L1 = 1 such that for all v C Lip n Lp, p < oo, with an axisymmetric
structure, the vector fields Vn = \n * v, where \n{x) = n^^nx), have an
axisymmetric structure and satisfy, with x'\ = (x^ + .rj)1/2,

rp\\ |
^l lsupp UJn \\L00

^n || [ |^n

IT ' I T- i k7
\tJb I I Li \ I \Ju. 'I r l ' \^1\

<c

for some constant C independent of n.

Proof. — We choose \{x} = \\(p\\^(p(x) where ^p(x) = f(\x\2 - 1) and

m = { e1/* onM_,
0 on R+.
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This function x e Co^K3) is nonnegative and satisfies

ML. = 1,
\x < \y\ =^ x{x) > x(y) ^
Qj^{x) = -2xjx{x)

where ^ € (^(M3) is defined by

W = INZiMM2 -1) and g(t)= f f(s)ds.Jt
Now, assume that v has an axisymmetric structure, and let us show

that Vn = Xn *^ ^so has an axisymmetric structure. The conditions on Vn
(see definition 2.10) are obtained as follows :

X2(Xn *^l) -^ l (Xn*^2)

= (x2Xn) * ̂ 1 + Xn * (^2^l) - (^iXn) * ̂ 2 - Xn * (^1^2)

^
= Xn * (a^l - a'1^2) - —— * ((92^1 - 9lV2) = 0,

92(Xn *^l) -9l(Xn *^2)

= ̂ n * (92^1 - 9lV2) = 0,

(^^l -a;1^2)(Xn *^3)

=9l{^2(Xn*^3)} -^2{^l(Xn*^3)}

= 5l(^2Xn) * ̂ 3 + Xn * ̂ (^^s) - ̂ (^iXn) * ̂ 3 - Xn * ̂ (^l^)

= {(a;2<9l - ̂ 1^2)Xn} * ̂ 3 4- Xn * {(^2<9l - X^Q^} = 0

since (^2^1 — x^Q^Xn == 0 by symmetry.
Next, we show that ujn/\x'\ is bounded. When [^ > 1/n, then

c^(rr) = / ^(y)xn(x-y)dy= / ^(^/) ̂ (.r - y)dy
J J\y/\<2\x/\\<2\x'\

and therefore we have

^n(x) ^ r \^(y)\ \y1

^1 - J\v'\<2\x'\ 1^1 X1
j ] X n { x - y ) d y < 2

\y'\<2\x'\ l^'l x

On the other hand, at a point x such that x' = 0 we have

^n(x) = y o;(^/) ^n(^ - y) dy = 0
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by symmetry, and therefore we can write for \x'\ < 1/n,

\^n(x)\
< ||V(g)^||^(<^||^

< llvxjkilhi^i^lLo
'2 | | ujMvxMf-< (n
\ Ti

v " " / \ n l l \x'\ I lL 0 0 ^

Thanks to these two estimates, we have proved
UJn

X'\ \\L°° <2||VxM
UJ

X'\ \\L00

which is a bound independent of n.
Then, we mention that ujn is compactly supported since supper C

supper + supp^, and this gives

^n = ||M|suppc^ |^oo < H l ^ l l s u p p c ^ H ^ o o +" = R-}- — < R-\- 1
I I I i l l

which is again a bound independent of n. This computation also provides
a bound independent of n ior \\ujn/\x'\\\L1 since

^n

\X'\ \\L,<t^ll X̂'\ IlL00 ^JTr^+^HVxIlLi
UJ

X'\ \\L00

Finally, we have to show that if

0-2^1 (x) — X\UJ^[x} > 0

for all x, then this is also true for ujn' For this, we set x = { — x ' , x ^ )
for all x = (x1\x^) e M3. Since x - y\2 = \x' - y ' 2 + (.2:3 - ys)2 while
\x — y\2 == \x' + y'\2 + (a'3 — ys)2^ it is clear that x — y\ < x — y\ if and
only if (a/, y ' } ^ 0. Now

X2(Xn *^i)(^) -^i(Xn *^2)(^) == / (^2^1 (y) - x^^(y))-)(n(x - y) dy

:^(x^y)^xn(x-y)dy.
J ' ^ / \V1

This integral is over the domain Dn{x) = [y; \x — y\ < 1/n} that we
divide in three parts :

D^(x)={y; \x-y\<^< x - y\^

Dl(x)= \y; \x-y\ < -,\x-y\ < - and {x^y') ^ o},
I n n )

D^(x)= { ^ / ; \x-y\ < -,\x-y\ < - and (x'\y'} < o}.
I n n )
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On D^{x) we can use the symmetry uj{y) = -uj(y) and the change of
variables y \—> y to get

L (x'^^^-y)dy=-[ {.',y')^f^-y)dyJD3,{x) \y \ JD^{X) \y\
so that we have

f^^^Xn^-y^y

=/ {^y'^Xn^-y^yJo\(x) \y\

+ [ (x'^'}]US)l(Xn(x-y)-^(x-y))dy,JD^{x) \y I

and finally these integrals are nonnegative since on D^(x)

\x-y\ < \x-y\ ==> { x ' , y ' } > 0

while on D^(x)

{x^y^X) =^ \x-y\ < x-y\ =^ Xn(x - y) > ̂ (x - y).

This completes the proof of the lemma. []

End of the proof of Theorem 5.4. — When v° has an axisymmetric
structure, we choose v°, = ̂  * v° as in LEMMA 5.5 and we obtain thus
from COROLLARY 2.12 a sequence Vn C L°°([0,T]; C^) of solutions of
the pressure free system with data v°, for all T > 0. Therefore all we
need to prove, before using the result of PROPOSITION 5.2, is that this
sequence Vn is bounded in L°°([0, T]; Lip) for all T > 0.

From PROPOSITION 3.3 and COROLLARY 4.3, we know that the functions
y^) = Jo 11^(5) IlLipds satisfy

V^t) = \\v^t) |̂

< C, [M)|̂ + K(^ {Log(2 + ̂ J )̂ + (^ +,)^)}].

On the other hand, it follows from LEMMAS 2.11 and 5.5 that

K^IL < ^3(1 + C,t)3/2 and ||̂ )||̂  < C,(l + C,t)3/2
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for some constant €3 independent of n. Therefore, again for some
constants £4 then C^ independent of n, we have

V^t)< 64(1 ̂ C^^l^-V^t))

=^ l+^(^<expj ( l+C74^ 5 / 2

^ IM^ILp^e^572,

and this implies that Vn is bounded in L°°([0, T]; Lip) for all T > 0 as
required. []

6. Other smoothness results
The existence result stated in THEOREM 1.2 directly follows from

PROPOSITION 3.2 and THEOREM 5.4. As a first complement, we establish
the smoothness of the submanifold S(f) described in THEOREM 1.2.

THEOREM 6.1. — Under the assumptions of Theorem 1.2, let us set
^(t) = ^t(S°) where ^ is the flow associated with the velocity field
v (E L°°([0,r] ;Lip) constructed in Theorem 5.4. Then for all t G [O.T],
S(f) is a C1^, two dimensional, compact submanifold ofR3.

Proof. — Let / <E C1^ be such that f^o = 0 and V/j^o ̂  0. Then, an
equation of S(f) is ^p(t, x) = 0 where ^ is the solution of the problem

f(9^+(V,^(g)^) =0,
[ ^\t=Q = f,

and we just have to prove that (p e ^°°([0, T]; C^7') near S(^).
Thanks to COROLLARY 2.4, we already know that (p e ^^([O.T] -.C8)

for all s < 1. By taking the gradient of the equation, we find that Vy? is
a solution of the problem

f Qt^^p + (V, v 0 V(^) + *(V 0 v)\/(p = 0
"[v^^o-V/,

and again COROLLARY 2.4 shows that V(^ G ^°°([0, T]; L00).
As in PROPOSITION 3.2, we now introduce the three'^ vector fields

/ 0 \ /%/ \ /-^
^^ -%/ , w2'^ 0 , w^= 9/f

\^fl \-9,f] \ 0
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they are divergence free and tangent to S°, and therefore the assumption
uj° e C^0 implies that (V,w^° (g) ^°) e C7'-1. Then it follows from
THEOREM 5.4 that the corresponding w^(t) satisfy w" e L°°([0,r] ;(7r).
Moreover, if (A,^,;/) is any circular permutation of (1,2,3), the vector
field ux =w^ /\ w" is a L°°([0, T]; C^) solution of the problem

f 9^ + (V, v (g) ^A) = -*(V (g) v)^,

Kl^O-(<9A/)V/

(see the proof of COROLLARY 4.3). By using the transformation u \-> n*
introduced in PROPOSITION 2.3, we can see that {(9\f) o ^~l}\/(p is a
L°°([0, T]; L00) solution of that very same problem, and therefore we have

{(^HO^-^V^)^^^)

thanks to the uniqueness result of COROLLARY 2.4. Therefore we have

^^^^^
and finally ^ e Z/°°([0, T]; C1^) follows from the fact that the right side
is a L°°([0,T}; C7') vector field (at least near S(t) where (V/) o ̂ -1 does
not vanish). []

To complete the proof of THEOREM 1.2, we just have to establish that
uj(t) £ L9 H C^^ for all t e [0,T] : this is our THEOREM 6.4 below for
which we need some preparation. In our next statements, the constants C
may depend on various quantities such as the time, hut they are always
independent of 0 < e < 1.

LEMMA 6.2. — Let v° be a data such as in Theorem 1.2, and v in
L^QO.r] ;Lip) be the corresponding solution constructed in Theorem 5.4.
Then for all 0 < e < 1 and all vector fields w° G C7' vanishing in S^ ,
the L°° solution w of the problem

{ 9tW + (V, v (g) w) = (w, V)v,

w\t=o=w°

satisfies w e L°°([0,r]; C7') and (V,w(g)cj) e L°°([0,r]; G7-1) with an
estimate

[ 1 ^ 1 ] |KV,w(^q;(f))||,.i ( Î ÎL/.II I
\\w(t)\\r+ [[^)||̂  <C[\\W ^+^^\^ ll.(R3\^)}.
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Proof.—Let us define v°^ = ̂ n*'y° as in the proof of THEOREM 5.4. Then
the solution v constructed in THEOREM 5.4 is the limit of the solutions Vn
with data ̂ , and our lemma simply follows from PROPOSITION 5.2 since
we can write for large n

||(V,w° 0^)||^ <||w°0^||,

<||W°||, ||̂ oo +||W°||^ ||̂ ||̂ 3 )̂

< \\W°\\r H^HL- + ll^llL-H^llr^YS^ )•

Our proof is complete. []

PROPOSITION 6.3. — Let v° be a data such as in Theorem 1.2, and
v G L°°([O^T}; Lip) be the corresponding solution constructed in Theorem
5.4. Then, for all vector fields ̂  6 C^, the problem

{ 9tW + (V, v (g) w) = (w, V)zs

w\t=T=wT

has a unique solution w G L°°([0,r]; L00) and we have

HO)!!^^)^"'
for all 0 < e < 1.

Proof.—The existence and uniqueness of a solution w e L°°([0, T]; L°°)
easily follow from COROLLARY 2.4.

For any 0 < e < 1, let \ e C°° and (p e C°° satisfy

f O in S°

"'{l ,n^E?, MT£c£-r;

f O in S ° ,

^= 1 i n f f i \ E ° IMI^^""-^ 1 m K \ Lg^,

We set

/y\ /o \ / o \
w1-0 = 0 , w2-0 = y , w3-0 = 0 , v 1 = (x o ̂ ^w71

W W W

where ̂  is the flow associated with v. The vector fields w^'° vanish in S°
so that we can use the result of LEMMA 6.2 and the assumption uj° 6 C7'^
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(see DEFINITION 1.1) to get three vector fields w^ G L°°([0,r]; (77") with
an estimate

KcniL < CMr + n^ii^v^)} < ce-^
The matrix W(t} = (w1 (t), w2 (t), w3 (t)) satisfies

f ^(det W) + (V,v 0 (det W)) = 0,

\ detW\t=o=detW(0)

(see the proof of COROLLARY 4.3), and since W(0) = Id in M3 \ S^/^, we
have detl^(T) = 1 in R3 \ ^(S^)- The vector field ^T is supported
in IR3 \ ^T(S^^) and therefore, the vector field ^(T)-1^ has G7'
components with the estimates

lim'n- l̂Loo < c, ^{T^U^ ̂  c{\\x\\r + imr)ii.) <. ce-.
Using the transformation u i-̂  u* considered in PROPOSITION 2.3, we can
see that the L°°([0, T]; C^) vector field

u(t) = WW^WW1^} o^o ̂ -1)

is the solution of the problem

( QtU + (V, v 0 u) = (n, V)i;,
T

^|t=T=^

so that we have u(t) = (x° ^'frl)w(t)• For t = 0, this gives

^w(O) = n(0) = ̂ ^({^(r)-1^} o ̂ r)

which clearly satisfies

||xw(o)||^ ^ llwwiljl^r)-1^!!^
+llly(0)||£oc||^(T)-lUT||J|V^TrLoo

^ c(Mr + limr)-1^)).) < Ge-'-,

and this proves our result since \ == 1 in R3 \ E^. []
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THEOREM 6.4. — Let v° be a data such as in Theorem 1.2, and v in
L^OO.T] ;Lip) be the corresponding solution constructed in Theorem 5.4.
Then we have uj(t) G L9 D C^^ for all t e [O.T] w/iere S(f) z'5 ^e
submanifold considered in Theorem 6.1.

Proof. —It already follows from COROLLARY 2.5 that G^ is an element of
L°°([0, T]; L9 D L°°). Therefore, we just have to prove that (V, wt (g) uj{t)}
belongs to C^"1 for all C^, divergence free vector fields w* tangent to S(^),
and that, for all 0 < e < 1,

M ̂ ll^^^^-.l l r(IR3\E(t)e) -

(i) The estimate in R3 \ S(t)^.
For a fixed t 6 [0,T], we choose a ^ G (7°° satisfying ^ = 0 in E(^/2

and ^ = 1 in R3 \ S(t)g, then we set

'x\ /o \ /o '
0 , w2'* = X , w3-* = 0w1.* = 0 , w2'* = X , w3-* = 0
o/ W u,

Using the result of PROPOSITION 6.3, the corresponding w^(0) satisfy
w^O) = 0 in ̂ (S^)^) 3 S^/2, ^ = ee-^O, and'/2'

llw-wii^iiw^o)!!^^^)^^'-
Thanks to LEMMA 6.2, it follows that

II^^^II^^IKv.w^®^))!^^^^-'-,
and this gives x^W ^ C1" with ||^a;(^)[|y. < C e ' 7 ' ' , which is the required
estimate since ^ = 1 in IR3 \ S(^)e.

(ii) The differentiation in the direction of any tangent vector field.
Again for a fixed t C [0, T], we consider the C^ vector field w°^ = V(^(t)

constructed in the proof of theorem 6.1, and the C77' values w1^, w2'*
and w3'^ at time t of the vector fields with C^ initial values

/ 0 \ /cV\ (-9^
^fl= [-Q,f 1 ^0= o , w3-^ 8,f

W} \-9if} \ 0
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as in the proof of PROPOSITION 3.2. These four vector fields generate R3

at any point of a neighborhood of E(t), and we can complete this system
with the vector fields

/x\ /o \ / o '
w^ = 0 , w2^ = X L w3^ = 0w w \x.

where ^ = 1 outside this neighborhood and \ = 0 near S(^) : now R3

is generated at any point of R3 by this system of seven C" vector fields.
The initial values w1'0, w250 and w3'0 corresponding to w1^, w2^ and w3^
have C^ components thanks to the arguments given in part (i) above, but
the initial value w°'° e L°° corresponding to w°^ == V(^) only satisfies

Ik0'0!!^^)^^
thanks to PROPOSITION 6.3.

If we now take a C7', divergence free vector field wt tangent to S(^), we
can find C77' coefficients dy and by such that

wt = aiw1^ + 02 w2^ + asw3^ + 60^°^ + hw1^ + 62 w2'* + b^w3^.

Using the transformation w ^ zy* considered in PROPOSITION 2.3, it is
easy to see that the corresponding initial value of this vector field is then

w° = y\a, o ̂ )w^0 + ̂ (6, o ̂ )^° = ̂ (a, o ̂ )w^0 + ̂ (by o ̂ )w^°.

This vector field w° has C7' components. Indeed, it is clear that

(ay o ̂ t)w^° + (by o ̂ t)w^° e ̂  for v > 1,

and this is also true for (60 o ̂ )w°'° thanks to the following arguments :
since w0^ is the only non tangent vector field in our system, we have
60 = 0 on S(^) and this implies that the C^ coefficient 60 ° ̂  vanishes
on S°; therefore, if 0 < 2e = dist(x, S°) < dist(2/, S°), we have

|(6oo^)wo 'o(^-(6oo^)wo 'o(^|

<\(boo^t)(x)\ x \wo-o(x)-wo-o(y)\

+ l^o o ̂ t)(x) - (60 o ̂ t)(y)\ x w°-°(y)\

< (||6o o ̂ ||,2^) (Hw0'0!!^^^ - y^

+(||6oo^||^-^|r)||wo'o||^

<||^oo^||,(2rG+||wo'o||^)|.^-^|r,

so that (60 o ̂ )w°'0 e C7'.
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Next, we observe that w° is divergence free and tangent to S0. Indeed,
when applying the operator A'^V, •) to the equation

OfW + (V, ̂  0 w) = (w, V)'y,

we find that u = A-^V.w) e L°°([0,r]; C7') satisfies

QtU^r (\/,v(S)u) = K(v,u),

where the operator K is continuous on C^ (see PROPOSITION 2.6 (ii)),
and therefore (V.w^) = 0 implies (V,w°}=0. Similarly, the scalar
distribution u = (w,V)<^ e L°°([0, T]; C^), where ^(^ is the equation
of S(^) constructed in the proof of THEOREM 6.1, is a solution of

OtU+ (V,^(g)n) =0

(see the proof of THEOREM 6.1), and therefore w1 tangent to S(^) im-
plies w° tangent to S°.

Finally, the result
(V,^/(g)c^)) eC7-1

simply follows from THEOREM 5.4 since we can include the (7^, divergence
free vector field w° tangent to S° in the admissible system W°. Q
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