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ON THE HAUSDORFF DIMENSION OF JULIA SETS

OF MEROMORPHIC FUNCTIONS II

BY

JANINA KOTUS (*)

RESUME. — On considere dans ce travail les estimations de la dimension de
Hausdorff des ensembles de Julia pour certaines fonctions meromorphes transcendentes.
Le resultat principal contient une borne inferieure pour la dimension de Hausdorff
obtenue sous des hypotheses convenables portant sur la position des poles et sur le
comportement asymptotique de la fonction au voisinage des poles. Des applications du
theoreme sont donnees pour des fonctions elliptiques et trigonometriques.

ABSTRACT. — The paper deals with estimates of the Hausdorff dimension of
Julia sets of transcendental meromorphic functions. The main theorem gives a lower
estimate under some regularity assumptions on the location of the poles and the
behaviour of functions near their poles. Applications of this theorem include Julia
sets of trigonometric and elliptic functions.

1. Introduction
Let / : C —^ C denote a transcendental meromorphic function. For

n C N, denote by /n the n-th iterate of /, and /-n = (/n)-1. The Fatou
set F(f) is the set of all the points z G C such that (/n), n C N, is defined,
meromorphic, and formsji normal family in some neighbourhood of z. The
complement of F(f) in C is called the Julia set J ( f ) of /.

Every transcendental meromorphic function belongs to one of the
following classes :

(i) / is entire;
(ii) / is a self-map of the punctured plane, i.e. / = fo, where

/oO) = ZQ + {z - ZQ^ exp(^O))

(*) Texte recu le I61" mars 1993, revise le 5 mars 1994.
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34 J .KOTUS

with k C N and a non-constant entire function g ;
(iii) / is neither entire nor a self-map of the punctured plane (i.e. /

satisfies assumption A of [2], [3], [4], [5]).

We will consider functions belonging to the third class.
It was shown by GARBER [10, thm. 1] that for each rational function /

the Hausdorff dimension of the Julia set HD(J(/)) satisfies

0<HD(J( / ) ) < 2 .

The estimate of BROLIN [6, thm. 12.2] that for fc(z) = z2 — c with
c ^ 2 + 21/2 one has

HD(J(/J) <
log 2

log(2^(c))

where
^^(c-^-^c)1 /2)172

shows that the lower bound of Garber estimate is sharp. The upper bound
of this estimate can be also attained as there are rational functions / such
that J ( f ) = C, e.g. f(z) = ((z - 2 ) / z ) 2 .

For transcendental entire functions it is known that HD(J(/)) > 1.
This follows from Baker's result [1, cor. to thm. 1] : if f is transcenden-
tal entire, then J ( f ) contains a non-degenerate continuum. However, it
remains an open question whether there exists a transcendental entire
function whose Julia set has dimension exactly one. The upper bound for
the Hausdorff dimension of Julia set for these functions is 2, and it is
attained e.g. for f(z) = expz, since J(/) = C. Thus 1 < HD(J(/)) < 2.

For a transcendental meromorphic function satisfying assumption A
the estimate of HD(J(/)) is the same as for rational functions i.e.

0<HD(J(/)) < 2 .

The lower bound is sharp (a result announced by STALLARD) as well as
the upper bound since for f{z) = Tntan^, J(f) = C.

In this paper we give a lower estimate for HD(J(/)) for meromorphic
functions with infinitely many poles. Let

S = ̂ z G C : some branch of /^has a singularity at z\,
00

P= U^)-
n=0

TOME 123 — 1995 — N° 1



HAUSDORFF DIMENSION OF JULIA SETS 35

Equivalently one may write

P = {z : for some n C N some branch of f~n has a singularity at z\.

Denote the closure of P by P. Let :
• A = {a^ : f(dn) = oo, n e N} be the set of poles of /;
• bn denote the first non-vanishing coefficient of the principal part of /

of the Laurent expansion at the pole a^;
• D(a^ r) = {z : z — a\ < r}.

THEOREM. — Let f be a meromorphic function satisfying :
(i) A is infinite and dist(A, P) == d > 0 ;
(ii) there exist f3 > 0 and $ > 0 such that for On € A one has dn ^ n^

and \bn ^ n~^ ;
(iii) there exist m G N,7 < (/^+^)/m, and Tn such that rn ~ n~^, and

| f l ( \ ^\bn\ .( x | \bn

\f ̂  ~ \,_a ̂  ^l ̂  z - a ^1^ Lin\ /^ On

for z G D(an,rn).
Then HD(J(/)) > m/(^ + (m + 1)/3).

Above and in the sequel \dn\ ̂  n^ (analogously \bn\ ~ n~^ etc.) means

C~1 ^ la^ln-^ ^ C7

for some constant C > 0 and all n > no.
Roughly speaking, the assertion (iii) enables us to replace // by its

principal part in a r^-neighbourhood of the pole On uniformly with respect
to n. Observe that the condition on / in (iii) implies

f(z) ~^+^(z-a^) - m +•• •

in Dn = D(an, rn) with Cn controlled uniformly in n. In other words, when
we reconstruct / from // in Dn this condition says that the « constants of
integration » Cn are not too large.

Of course, the hypothesis (iii) is satisfied for periodic functions when
we can, however, substantially simplify the formulation of this theorem.
On the other hand, the assumption (iii) is satisfied for some non-periodic
functions (see examples 4 and 5). In the proof we use this to control the
geometry of a hyperbolic Cantor set of points escaping to infinity through
neighbourhoods of poles.

In section 2 we prove the theorem, while in section 3 we indicate its
applications to certain families of functions.
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36 J.KOTUS

2. Proof of the theorem
Let

^'-^
be the distortion of / on a domain D. It is clear that if / is a homeomor-
phism of a domain D onto f{D), then L(f,D) = L(/~1,/(.D)). In the
proof we apply the following propositions.

PROPOSITION 2.1 (cf. [9, p. 32]). — For every 0 < s < r and for every
univalent map g : D(z, r) -^ C, the distortion of g in the disc D = D(z, s)
is bounded by the constant L

L^D)^L=L(s-}=(r-±^)\
\r / \r — s /r / \ r — s >

PROPOSITION 2.2 (cf. [13]). — Let E be a compact subset of C and
a be a positive number. Suppose that there exist a probability measure fJi
supported on E, and constants K, TO > 0, such that for each z G E and
r < TO we have ^(D(z,r)) < Kr^. Then RD(E) > a.

For an e A let Dn be the disc D(a^,r^), where rn is given in
THEOREM (iii). There exists 0 < t < 1 such that Dj, C f(Dn) if k ^ r^
and n is very large. Indeed, from (iii)

I^-^F for zeDn
\^ an\

uniformly with respect to n. As dn\ ~ n0, \bn\ ~ n~^ and r^ ~ n~7 we
have that

K r^T = 0^-^).

Thus if 7 < {(3 + ^ ) / m , then

l^lrT^o^).

It follows that Dk C f{Dn) since \dk\ - k^ > n^ = o(n^). Let
0 < t < 1, HI e N be very large and

Af = {n <E N : n\ ̂  n ̂  n^}.

Then Dk C f(D^) if k, n e W . Define the sets :

00

T = \J Dn, E = [z : /n^) e r for all n e N}.
n=l

TOME 123 — 1995 — ?1



HAUSDORFF DIMENSION OF JULIA SETS 37

PROPOSITION 2.3. — We have E C J(f)-

Proof. — First we prove K = intr l/ 'l > 1. By assumption (iii) if
z C Dn then

, „ m\bn m\bn\ ^+i^_^
I7 I l ._ . im+i ^ -̂ TT ^ un- "^rl1 . > -^— > Cn^

z - an rn^1 - r^+1 -

Shrinking, if necessary, the neighbourhoods of poles in (iii) we may assume
that Tn > (Gn7)-1 with some 7 € (^/(m + 1), {f3 + Q/m) and C > 0.
Then K === inf^ l/ ' l > 1 for all n > n^ and we may assume n^ = n\
for suitably chosen C > 0. Suppose ZQ e E D ^(/). By the definition of
the Fatou set there exists disc D = D(zo,r) such that (fn\D)^ ^ ^ N,
is defined, meromorphic and forms a normal family. Thus there exists
a subsequence of iterates (/nfc) holomorphic on D and converging to
a holomorphic function g . Hence g ' { z ) ~^=- oo in D. On the other hand
g\zo) = lim^oc^y^o) = oo, as K71 = infr KD' ^ oo, so we arrive
at a contradiction. Thus, ZQ G J(/). D

Take a disc Df for some t G A/". We introduce the following collection
of sets :

Bo = {Bo = DJ,
B\ = {Bi^ : -Bi,n is a component of /"^(D^)

for some n G A/", Bi,n C Bo},

^/c = {^,n •• Bk,n is a component of f~k(Dn)
for some n e A/", Bfe,n C Bk-i^ C 23/c-i}.

Moreover, we define

(X)

A = |j B/c,n and B = Q A.
Bk,nCBk k=l

Of course, ^ is contained in £1.

PROPOSITION 2.4. — r/iere are constants ^ = 7 + /?(m + l)/m and
v = ̂  — ^ / m > 0 5HC/1 ^/la^ /or each k € N, n e A/" and B^ € %

diam B^^^fc^ ^ n-^r
diamB/e-i^

w^/i Bk-\^ € B/c-i and B^^ C Bfc-i^-

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



38 J.KOTUS

Proof. —We may again increase slightly 7 to have 7 > ^/m, and assume
that Tn < d =dist (A,P) for all n e A/". Thus //c-l is a homeomorphism
of Bk-i^ onto fk~l(Bk-l^) = Da. Let L{fk~l,Bk-l^) be the distortion
of the function /fc-l in Bk-i^. Clearly

L(fk-\Bk-^)=L(f-^-l\D,)^

and by PROPOSITION 2.1,

w-<-',^<^H^)4^.
Thus

diamBfc^ ^ diam^-1^^)
diamBfc_i^ - diam/^'^^-i^)

^^.idiamC-1^)^^^
diam D^

> (LCr^n^supf-i^^^ I/I)"1.

For z C ̂  we have I / 7] ~ m |^|/|/z - a^7^1, so

supl/^)! ̂ n^^1)771^^

i f z e /-l(^)nD^. This implies that for some ^ > 0, ^ = 7+/3(m+l)/m,
z/ = 7 — $/m > 0

diamB/,^ ^ ^-(^+^(^4.i)/^)^_^/^ ^ S n " 1 ^ ^ .
diamJ3/c_i^ —

Similarly we have

Uiam -O/.TT, r,.^/ '-y • c | p / l \ — l ^ —K,W
diamB,_i,, ^ ̂ (^^mf/-,(^)^ |/ |) ^ ̂  -F

for some universal 77 > 0. []

Proof of the theorem. — Let a < /^-1, A^ be an integer such that
n-\_ > N > n^ > n\ -\-1 and

N

Y^ n-^ > max^-0', {6 diamBo)"0}.
n=ni^

TOME 123 — 1995 — ?1



HAUSDORFF DIMENSION OF JULIA SETS 39

Now, inspired by an idea in [II], we define a probability measure [i
on B such that for r < ro and z C B, ^(D(z,r)) < Kr^ with some
constant K > 0. The measure ^ is the limit of probability measures ^5
as k —^ oo. Let ^o be the suitably scaled Lebesgue measure on Bo,
i.e. ^o(Bo) = 1. We put /^i = 0 on BQ \ Ai and ^i(Bi^) = 0 for n (E A/"
and n > N. If n € .V and n < N

N

A4(£?i,n) = (diarnBi,,)" / ( ̂  (diamB^)").
n=n^

N
Thus /^i(Bi,n) > 0 and ^ ^i(Bi,n) = ^o(-So). By PROPOSITION 2.4 and

n=n^

the choice of N,
N N

^ (diam^i^ > ̂  (^diamBon-^)"
+ t Nn=n\ n=n\ J"

^ (SdiamBo)" ̂  n-"0 ^ 1,
n=nt

so ^i(Bi^) < (diam^i^)" for n e A/',n ^ A^. Assume that we have
defined /^_i on Bk-i^ € Bfc-i. We define /^ by letting ^ = 0 on
Bk-i^ \ Ak, l^k(Bk,n) = 0 if n C A/" and n > N. For n G A/" and n < N

N

^k(Bk,n) = {di^mBk^^k-^Bk-i^ I ( ̂  (diamB^)^).
n=n^

Now, we apply PROPOSITION 2.4 to -B/^n e ^5 n € A/',n ^ A^, that is,

./V TV

^ (diamBfc^)^ > ̂  (diam^-i^^-^r)^
n=n^ n=n^

N

^(diam^-i,,)^ ̂  (^-^
n=n^

> (diamB/,-!^)0

by the choice of N. This, together with the assumption /^_i(Bfc_i^) <
(diam^-i^)0^, implies

N

^-i(Bk-^) I ̂  (diamB^,)" < 1,
n=n^
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40 J.KOTUS

hence /^(-S^n) < (diamB/^)". The sequence p.k converges to the
limit probability measure ^ supported on a set B' contained in B. By
the construction /^(B^) = ^k(Bk^n) for all k C N and n € A/", so
^(Bk,n) < (diamB^)^.

Take z e B' and r > 0. Define

£k,n = inf{dist(^, QB^n) '. z1 e B' H 5^},
and observe that if B^^n C B^-i^ then ^n < ^fc-i,^- Moreover Ck,n -^ 0
when A; —^ oo. Hence there exists k G N such that £/c^ < r < ek-i^i so

D(^,r) C D(^^-i^) C Bfc_i^.
But the diameter of Bk-i^ is also comparable with r. To see this observe
that

diam^_i^ < asupK/-^"^)7] ^ asupK/^-1)' -1
-D^ Bk,{.

with
cr = max{diam^ : n\ < £ <, N}.

On the other hand, for some zf e B/ H B^.n

r > Ck,n = dist(z^9Bk,n)

^dist^-1^),^-1^^))^^/-^^/
^ T i n f K^-1/!"1

Bk—i,e

with
T = min{dist(9£?i^,9£?2,p) '. n\ < m, p < N}.

Finally we obtain

diamBfc_i^ a (supg,_^ IC^"1/!) a ^ a
——————- < - 7 — p — — — , . , , . .^i. ^ - supL(/ ,2^) ^ -Lr T (mf^.i,, K/^1)7!) T- n T

by PROPOSITION 2.1 and dist(A,P) = d > 0. Consequently we get

^{D(z,r)) < ̂ ^{B^n) =Y^f^k{Bk,n) ̂  ^(diamBfc^)^
n n n

< N(Nl'r])oi{dl9imBk-l^)a

^ N { N v r ] L a / T ) a r a .

By PROPOSITION 2.2 (with the constant K = N^^^ria/r)0') we have
HDf^) ^ a. As we have chosen arbitrary 7 C {^/rn^ {f3 + <^)/m) we may
write

HD(J(/)) > HD(ff') > m/(^ + (m + I)/?). Q

TOME 123 — 1995 — N° 1



HAUSDORFF DIMENSION OF JULIA SETS 41

3. Examples
Let / be a meromorphic map on C. For A C C let

A(z) = \f(z).

We consider further only these A for which dist(A{f\),P{f\)) > 0.
Recall that for meromorphic functions / with finitely many singular
values (i.e. card5'(/) < oo) the Fatou-Sullivan classification of periodic
components of F(f) holds. This is a consequence of the general version of
the Sullivan theorem proved in [5].

EXAMPLE 1.
Let fx{z) = A^an^, m C N, A e C. Then

A ( A ) = { a n = ( n + ^ ) 7 ^ : n e Z }

is the set of poles. It is easy to see that f3 = 1, ^ = 0, so

m
HD(J(A)) >

~ m+ 1

In particular, HD(J(/A)) ^ | for m = 1.

Now, we compare the above estimate with an upper bound for the
Hausdorff dimension of Julia set for f\(z) = Atanz.

PROPOSITION 3.1. — Let f\(z) = Atan/2, with A e R and 0 < |A| <^ 1.
Then

HD^/^^+IAI^+^IAI).

Proof. — For |A| < 1 we have /^(O) = A, so 0 is an attracting
fixed point. If additionally A > 0, then there is a repelling fixed point
z\ € (0, - TI-) C R, which belongs to the boundary of the basin of attraction
of 0. Analogously, for —1 < A < 0 there is a repelling periodic point of
order 2 with the same property. The functions f\ have poles at the points
of the set

A= {an= (n+ |p7r:nGZ}.

Let 6\ = do - z\\, and In = {an - 6\,dn + 6\) C K. Then J(f\) is a
00

Cantor subset of R and J(f\) C IJ Jn, see [8]. Take It, t G Z. As in
n=—oo
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42 j. KOTUS

the proof of THEOREM we define the following family of sets.
Bo={Bo=It}^
B-i = {Bi^ : Bi^is a component of /-l(7^)

for some n G Z, 2?i^ C Bo},

B/c = {B/c^ : Bk,n is a component of f~k(In)

for some n C Z, B^ c Bk-i^ e B/c-i},

Thus
A = |j ,̂n

Bfe,nG23fc

is a covering of J(f^) and diamB^ < d/, -^ 0 if k -> oo. To prove that
HD(J(/^)) < a it is sufficient to show that, for each k C N,

^ (diam^^)" ^ ^ (diamB^i^)0,
Bk^^Bk Bk-i,eCBk-i

or equivalently that for each k G N and each B/p_i ^ c ̂ -i

^ (diamB^^diamB^i^,
Bfc,^€G'(Bfc_i^)

where
G(^_i^) = [B^n e ̂  : Bfc^ c Bk-i^}.

By PROPOSITION 2.1 the distortion ^(/-(/c-l),/^) is bounded by

^(A)=(4^)4,
4^-^

(diam5, i <)« ^ (diam^^)0

' / Bfc^€G(Bt_i,,)

< L0^-1 a _ 'i ̂ ."e^^-i <)(diam^-l(Bfc,"))Q
- v ' f c - l ' ' / (d iam^- i (5,_^))"
^ ̂ ^-(fc-i) . ^ E^-oJdiamO-W n/,))"

v ' < / ( d i a m ^ ) 0

00

< 2^(^(2^)-° ̂ (2^ sup K/-1/!)"
n=0 Jn

oo , , ,=2La(\)y(——^-__Y
^ovA2+((n+^)^-^)2y
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HAUSDORFF DIMENSION OF JULIA SETS 43

since (/^(w))7 = (arctanw/A/ = A/^+w2] and sup^/^/ is attained
at the left edge of 7^ i-e. at w = dn — 6\. Thus

-———1———— V" (diam BknT
diam^-i^ ^ v

-Dfc,TieU-(^±?fc_l^;

^(lAl^A^^+^Tr-^)2)-0

00

+^{A2+((n+i)7^-^)2}-Q]
n=l

oo

^ 2(|A|L(A))° [(ITT - ̂ )-2a + ̂ (mr)-2"]
n=l

= 2(|A|L(A))a [(^ - ̂ r2" + ̂ -2QC(2a)],

where C is the Riemann zeta function. If A > j then C(2^) < ^° a^d for
I A I ^ ^ ^Tr^^a))-1

^ (diamBfc^)0 < (diamBfc-i^)^.
Bk,^eG{Bk-i,^

The inequality I A I ^ ^ ̂ ^(^a))-1 implies that

a ̂  \ + IAI^/TT + 2|A|/^2 = ^ + |A|1/^ + (9(|A|). D
Thus for f\{z) = Atan^, A G M, the estimate in THEOREM is sharp

when A —>• 0.
EXAMPLE 2.
Let f\ be a simply periodic function with finitely many poles in each

strip of periodicity. Then /3 = 1, and ^ = 0, thus

""W^i^l'
and HD(J(y\)) -^ 1~ as m ̂  oo.

The assumptions concerning f3, $ and m in THEOREM are fairly general.
In some cases PROPOSITION 3.1 shows that the conclusion of THEOREM is
precise. However, for

gx{z} = A+exp(-2.)
with A > 0 , / 3 = l , ^ = 0 , m = l (like for f\ in Example 1, m = 1) we
have proved in [12, thm. 2] that

HD(J(^))^ l -C(log | logA|)~ 1

for some C > 0 and A -^ C^. Hence the lower bound for HD(J(^)) tends

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



44 J. KOTUS

to 1 when A —^ 0. This estimate has been shown by studying the dynamics
of these maps. So, the estimate in THEOREM is not optimal for these g\^s.

EXAMPLE 3.
Let f\ be a doubly periodic function of order m G N of the poles

(e.g. an elliptic function). Clearly, ^ = 0 and we show that for all these
functions /3 = - Let a i , . . . , ON be all the poles belonging to 1^(0, r). The
number of poles in D(0, r) is proportional to the number of fundamental
parallelograms contained in D(0,r), i.e. N w 7^r2/a2^ where a2 is the area
of a fundamental parallelogram. Thus r ^ N 1 / 2 and \(IN\ ^ r ^ N 1 / 2 .
By THEOREM

^W) ̂  r^h ̂  1 ?

and HD(J(A)) -^ 2- if m -^ oo.

Now we apply THEOREM to non-periodic functions.

EXAMPLE 4.
Let

Uz)={\+exp(-z2k))~\ ^ e N U { ^ } .

For A > 0 we have dist(A(f\),P(f\)) > 0 and J{f\) is a Cantor set.
If k = j , A is periodic, so f3 = 1, ^ = 0, and HD(J(/;0) ^ j • For k ^ 1
we have f3 = 1/(2A;), ^ = 1 — 1/(2A;), 772 = 1, which implies that

HD(J(A)) > 2k
2k +1

For second order differential equations of the form /// + h{z)f = 0,
where h(z) is an entire function, it is known from the elementary theory
of differential equations in complex domain that all solutions / of this
equation are entire functions, and that the zeros of any / ^ 0 are simple.
Let h(z) be a polynomial of degree k. Obviously, for k = 0 the equation
possesses two linearly independent solutions, each of which has no zeros. In
the case k > 1, it follows from the Wiman-Valiron theory (see [14, p. 281])
that the order of growth of / ^ 0 is ^ (k + 2). Hence, when k is an odd
integer, the Hadamard factorization theorem and the Borel theorem on
roots of entire functions (e.g. [7]) imply that the exponent of convergence p
of the sequence {dn : f{dn) =0, n € N} is equal to j (A;+2). Let g = I//,
then

A(g) = {an : n e N}, |a,| = 0(n1/^)

for any e > 0 and \bn = l/7^

TOME 123 — 1995 — ?1



HAUSDORFF DIMENSION OF JULIA SETS 45

EXAMPLE 5.

If h(z) = —z, then one of solutions of /// — zf == 0 is the Airy function

Ai(^)= L ( expazC'+zC^dC.Z7r JimC=^>o °

The zeros of Ai are at the points

an=^(n-1^2/3+0(n-^).

Set fx = A/ Ai, then m = 1, f3 = j , <^ = ^ , and HD(J(A)) ^ j •
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