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EQUIVARIANT HOLOMORPHIC EXTENSIONS OF

REAL ANALYTIC MANIFOLDS

BY

PETER HEINZNER (*)

RESUME. — Soit G un groupe de Lie agissant proprement et analytiquement
sur une variete analytique reelle X. On construit un espace complexe X*, une
action holomorphe du complexifie G^ de G sur X* et une application analytique G-
equivariante L : X —>• X* qui possede les proprietes suivantes. Chaque application
analytique G-equivariante 0 : X -^ Z, ou Z est Pespace complexe avec 1'action
holomorphe de G^, est de la forme </> == <^*o^, ou 0* est une application holomorphe G^-
equivariante definie sur un voisinage G^-invariant de i(X) C X*. En outre, Ie quotient
Q* de X* par Palgebre 0{X*)° est un espace de Stein que 1'on peut considerer
comme une complexification naturelle de Pespace semi-analytique reelle X/G.

ABSTRACT. — Let G be a Lie group which acts properly and analytically on a real
analytic manifold X. Then there exist a complex space X*, where the complexified
group G^ acts holomorphically and an analytic G-map L : X —>• X* such that every
analytic G-map cj) from X into a complex space Z where G^ acts holomorphically
can be written as (j) = <^* o i where (/>* is a holomorphic G^-map defined on a G^
invariant neighbourhood of i{X) in X*. Moreover, the quotient Q* of X* with respect
to the algebra O^X*)0 is a Stein space which can be considered as the natural
complexification of the real semianalytic space X/G.

Real analytic manifolds can often be studied by using complex analytic
methods. One reason for this is the following result (see [W,B], [S]) : every
real analytic manifold X of dimension n can be embedded totally real and
closed into a complex manifold X* of dimension n.

Using this result along with his solution of Levi's problem and the
embedding theorem of Remmert, GRAUERT [G] showed that every real
analytic manifold may be realized as a closed analytic submanifold of
some RN.

(*) Texte recu Ie 15 septembre 1992, revise Ie 16 decembre 1992.
P. HEINZNER, Fakultat fur Mathematik der Ruhr-Universitat Bochum, Bochum
D-44780, Federal Republic of Germany.
AMS classification : 32 M.
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446 P. HEINZNER

In this paper we present analogous results on real analytic manifolds
equipped with a real analytic action of a Lie group G. In this « equivariant
case)) there are several possibilities for defining the notion of an equiv-
ariant complexification. We have choosen a definition which is given in
categorical terms (section 2). If an equivariant complexification exists in
this sense, then it contains information about any other kind of com-
plexification. Another motivation for our definition is the result that the
equivariant complexification of a real analytic (^-principal bundle is a
holomorphic ^-principal bundle over a Stein manifold where G^- denotes
the universal complexification of the Lie group G (section 1).

A real analytic G-principal bundle is an example of a real analytic
manifold X with a proper G-action. In this context we prove (section 6)
the following

THEOREM 1. — Lei G be a Lie group which acts properly and real an-
alytically on a real analytic manifold X. Then there exists an equivariant
complexification X* of X with a holomorphic G^-action.

In order to study actions of groups on a manifold X it is useful to
have information about the orbit space X/G. Under the assumptions
of THEOREM 1, we also prove (section 6) the following

THEOREM 2. — There exists an equivariant complexification X* such
that the quotient Q* of X* with respect to the smallest complex analytic
equivalence relation given by the G-orbits is a Stein space. Moreover, Q*
can be considered as a natural complexification of the quotient X/G which
is a semianalytic subset of Q* •

COROLLARY.— The algebra of G-invariant holomorphic functions on X
separates the G-orbits.

If in addition the group G is assumed to be a linearly reductive Lie
group, then X* can be choosen to be a Stein manifold. An application of
this result is the

EMBEDDING THEOREM. — If G is a linearly reductive Lie group which
acts properly on X and the G-orbit type of X is finite, then there exists a
linearly equivariant closed embedding of X into some R^.

1. Complexifications of Lie groups

To every Lie group G there exists a complex Lie group Gc and a
real analytic homomorphism L : G —^ G^ with the following property
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EQUIVARIANT EXTENSIONS 447

(cf. [Ho]) : to every continuous homomorphism (/) from G into a com-
plex Lie group H there exists an unique holomorphic homomorphism
^C ;^C __, ff ̂ ^ ̂  ^C o ^

If G is simply connected, then G^- is the unique simply connected Lie
group with Lie algebra Q^ = Q (g) C, where g denotes the Lie algebra of G.
The homomorphism is determinated by the Lie algebra homomorphism
0 —> 0Cx)C, ^1—^01. For a connected Lie group G the complexification G^
is a quotient of the complexification of the universal covering group G of G
by an appropriate closed normal subgroup of G^ (see the proof of the next
proposition). If G is general, then the complexification G^ is the complex
Lie group G^ = G XG^ G^ where G\ denotes the connected component of
the identity of G.

EXAMPLE. — The complexification of M* = R \ {0} is C x Zs where
Z2 = {-1,1}. The map L : R* -^ C x ̂  is given by :

i(x) = (\og\x ,x/\x\).

We now collect some properties of the pair (G, i) which will be used
later on.

PROPOSITION.
(i) G^ is the smallest complex Lie subgroup of G^ which con-

tains i(G}.

(ii) G^ with the inclusion is a complexification of i{G).

(111) b(G) is contained in the set of fixed points of an anti-holomorphic
group involution uj : G^ —^ G^. In particularly^ i(G) is a totally real closed
submanifold of Gc of maximal possible dimension.

(iv) G^ is a Stein manifold.

Proof. — We may assume that the group G is connected. Let G*
denote the smallest complex Lie subgroup of G^ which contains u(G).
By definition of Gc^ there exists a unique holomorphic homomorphism
'0 : Gc -^ Gc such that ^01 = L and '0(6^) = G*. This implies ^ = id^c.

Property (ii) is a direct consequence of the definition of G^.
Now we may assume that G = i{G). Let TT : G —> G be the universal

covering of G and (G^, I ) the complexification of G. We denote by G the
image of G in Gc and by F the image of F = kerpr in G^. From the
construction of G^ it follows that Gc = G^A^, where N denotes the
smallest complex normal closed subgroup of G^ which contains F. The
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448 P. HEINZNER

injectivity of L implies that N H G = ^Tr-1^-1^))) = p. Since G is a
connected component of the set of^ fixed points of the involutive anti-
holomorphic homomorphism uj : G^ -^ G^ which is induced by the
involution on 0(g)C, it is a^losed subgroup of Gc. In particular, F = NnG
is ajiiscrete subgroup of G^. Moreover, since F is contained in the center
of G, the identity principle shows us that P lie-in the center of Gc Thus
we have N = F. Consequently, G = i(G) = G/F = G / F . Furthermore,
the involution uj induces an anti-holomorphic involution u : G^ -^ G^
and the Lie algebra of Gc is the complexification of the Lie algebra of G.

It remains to prove that G^ is a Stein manifold. It is sufficient to prove
that the center Z(G^ of Gc is a Stein manifold (see [M,M]), i.e. we have
to show that the connected component Z-i(GC) of the identity of Z(GC)
is isomorphic to C71 x (C*)772 = (M x I^/Z771)^'.

The center ^(G^) of G^ is stable with respect to uj. Since G^ is simply
connected, it follows that Z^G^) is isomorphic to C^. This implies that
Z^Gf is contained in Zi^). But Z^G^is stable with respect to Z.
Consequently, it follows that Z^Gf = Zi^); i.e. Zi(G) is isomorphic
to M^. Finally, from f C 1{Z(G}) C Z{GC} and Z^) = ^((5C)/^,
it follows that :

Zi^) = ̂ l(^€)/^n^l(GC) = (z^/rnz^f
^(Rnx(Sl)rn)c=Cnx(C^m^ e=n^m. [}

REMARK. — It may happen that the kernel of i : G -^ Gc is of positive
dimension. The easiest examples are obtained as quotients of G x M, with
G = SL(R2), by discrete central subgroups with a dense projection on M.

The situation is simpler if the group G is compact. The complexification
of a compact Lie group is a complex reductive group and the given
compact Lie group is a maximal compact subgroup of G^. Conversely,
every complex reductive group is the complexification of a maximal
compact subgroup.

A Lie group G is called holomorphically extendable if L : G -^ Gc

is injective. In this case we call Gc a holomorphic extension of the Lie
group G.

If G is a Lie subgroup of some complex group H, then G is holomorphi-
cally extendable. In particularly, every Lie subgroup of a holomorphically
extendable group is holomorphically extendable. Also every solvable or
linear Lie group is holomorphically extendable.
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EQUIVARIANT EXTENSIONS 449

2. Equi variant extensions of real analytic manifolds
By definition, a real analytic G-space is a reduced real analytic space X

with countable topology equipped with a fixed real analytic action of a
Lie group G. If X is a complex space and G acts on X by biholomorphic
maps, then we say that X is a complex (7-space. A complex space with
a holomorphic action of a complex Lie group H is called a holomorphic
H-space.

For the next definition we fix a continuous homomorphism 7 from the
Lie group G into a Lie (resp. complex Lie) group H. Note that every
H -space is also a (7-space via 7.

A complex (resp. holomorphic) Jif-space X* is said to be a H-
complexification (resp. holomorphic H-complexification) with respect to 7
of a real analytic G-space X if there exists a real analytic G-map
L : X -> X* such that :

(i) to every real analytic G-map (/) from X into a complex (resp.
holomorphic) ^f-space Y there exists an open ^-neighborhood T* of i(X)
in X* and a holomorphic Tit-map 0* : T* -^ Y such that (j) = <^* o </, and

(ii) if ^ is a holomorphic H-msip from an open ^-neighborhood
of i(X) into Y with the property of) = ^ o L, then 0* == ^ in a H-
neighborhood of ^(X).

If in addition the map L '. X —> X* is a closed embedding, then X* is
called a H-extension (resp. holomorphic H-extension) of X.

In this paper we are mainly interested in the case where 7 is the map
from G into its complexification G^ and in this case we do not mention 7
explicitly. Also if H = G, then unless otherwise stated, we assume 7 to
be the identity. There is another important case, namely H = {1}.

A {l}-complexification of a real analytic (7-space X is called a com-
plexification of the quotient X/G.

REMARK. — The notion of a holomorphic ^-complexification makes
sense if X is a complex G-space. In this case one require all maps
to be holomorphic and T* = X*. If X* exists, then it is called the
complexification of the complex G-space X (cf. [H2]).

The concept of an extension is more restrictive than that of a complex-
ification.

EXAMPLE. — The group SL^7^1) acts transitively on the projec-
tive space Pn(R). The usual 2 : 1 covering 5^ -^ ?n(M) for even n is
a SL^-^-map and the SL^-^-complexification as well as the holo-
morphic SL(Cn+l)-complexification of 6^ and of Pn(M) is the complex
projective space Pn(C) (see [Ak] for more details).
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^^ P. HEINZNER

More generaly, if H is a closed subgroup of a Lie group G, then G C / H f

is a holomorphic G^-complexification of G / H , where H* denotes the
smallest closed complex subgroup of Gc which contains the image of H
in Cr .

REMARK. — Every Lie group G is an analytic G-space, where the G-
action on G is given by the multiplication on the left. A recent result of
Winkelmann shows that there exists a (^-extension G* of G which is a
Stein manifold.

3. Actions of compact groups

Let K be a compact Lie group and X a Stein K-space. We denote
by X / / K the quotient of X with respect to the algebra O^X^ of
^-invariant holomorphic functions. We denote the quotient map by
TTX : X -^ X / / K . The quotient X / / K is a Stein space whose structure
sheaf is given by the presheaf U -^ O^x1^)^ (see [H2]).

We denote by B(x) the smallest analytic ^-subset of X which contains
a given point x e X and by E(x) the intersection over all ^-invariant
analytic ^-subsets ofTT^^^)). The analytic K-set E(x) depends only
on the point p = 7Tx(x) e X / / K and is non-empty.

If (f) : X -> [0, oo) is a J^-invariant different table strictly plurisub-
harmonic exhaustion function on X , then we set :

M^ = [x G X ; (f)\B{x) has a minimal value in x}.

The JC-subset M^ is closed in X. To see this, note that K^ acts on X
in the infinitesimal sense. For an element v of the Lie algebra ^c = t (g) C
of K^, denote by v the induced vector field on X. Then one has (cf. [H2]) :

M^ = [x G X ; v((f))(x) = 0 for all v e ^c}.

Using this description of M^, it is clear that it is closed.

LEMMA. — The natural map M^ -^ X / / K is proper and the induced
map M^/K -^ X / / K is an isomorphism of topological spaces.

Proof. — For r G M let D^(r) denote the open J^-subset of x e X such
that (j)(x) < r. It is proven in [H2] that :

(i) 7rx(D^(r)) = 7rx(D^(r) n M^) is open in X / / K ,
(ii) for every x e X one has E(x) n M^ = K . XQ for some XQ G M^

(iii) for every x e M^ one has E(x) = B(x).
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EQUIVARIANT EXTENSIONS 451

For this one uses the fact that X is an orbit convex subset of its
complexification. One can then apply the results of sections 5.4 and 6.3
in [H2]. The lemma is an immediate consequence. []

The next result will be used later on.

PROPOSITION. — Let K be a compact Lie group and X a Stein K-
manifold of finite K-orbit type. Let uj '. X —> X be a K-equivariant
anti-holomorphic involution on X with a non-empty set X^ of uj-fixed
points. Then the natural map X^ -^ X//K is proper and induces a closed
topological embedding X^ /K -—> X / / K .

Proof. — If we realize X^ as a closed subset of some M^, then the
conclusion of the proposition follows from the lemma.

Let Xc be the complexification of the J^-space X (see [H2]). Since
^c ^ j^c . ̂  -^ holomorphic Stein J^-space X^ is of finite K-orbit
type. Hence there exists a holomorphic linearly equivariant embedding
f : Xc -^ C71. The map g : X -> C2^ defined by g(x) = (f(x), f{^(x)))
is a linearly equivariant holomorphic immersion and g{X^) is contained
in the totally real K-subspace V = {(z,w) e C71 x C71; w = z} of C271.
Let ( , ) be a positive definite Hermitian JC-invariant product on C2^
which is an extension of a scalar product on V. Then V C M^ for the
function 6 : C271 -^ R, 6(z) = ( z , z ) . Pulling everything back to X one
obtains X^ C M^ with the function (j) = 6 o g . Q

REMARK. —In the proof of proposition we used one part of the following
result : a holomorphic Stein J^-manifold X can be embedded linearly
equivariant into some (CN if and only if the X-orbit type of X is finite.

This result is proven in [HI]. The formulation of the statement there is
in terms of J^-orbit type. This is not correct since it gives only a sufficient
condition.

COROLLARY 1. — If K is a compact subgroup of a Lie group (7, then
the image H of Kc in G^ is closed and H is the complexification of the
image K of K in G^. The holomorphic Gc-space G^/H is a holomorphic
Gc-complexification ofG/K and a holomorphic 6?° -extension of i(G)/K.
Moreover, i(G)/K is a closed totally real submanifold of the Stein mani-
fold G^ / H. In particular^ if G is a holomorphically extendable Lie group,
then GC/KC is a holomorphic Gc-extension ofG/K. Q

If <p is a non-negative differentiable strictly plurisubharmonic K-
invariant function on a complex 7^-space X , then the set of zeros of (f)
has a basis of open Stein K- neighborhoods in X. The proof of this fact
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452 P. HEINZNER

for the trivial JC-action and smooth X is given in [H,W] and generalizes
with only minor changes to this more general situation. In particular,
under the assumptions of the Proposition we have the following

COROLLARY 2. — Identifying X^ (resp. X^/K) with its image in X
(resp. X//K), it follows that:

(i) X^ has a basis of open Stein K-neighborhoods in X , and

(ii) X^ IK has a basis of open Stein neighborhoods in X / / K .

Proof. — The quotient X ^ / K is a closed subset of X / / K and X / / K
can be identified in a natural way with X C / / K C (see [H2]). The proof
of the proposition shows that X^ / K is a closed subset of V / K which is
a closed subset of V C / / K C , Vc = C2^ Hence we can identify V ^ f / K ^
with a closed subset of some C9 such that V / K becomes a closed subset
ofR9 (cf. [P,S]). I f ^ / i , . . . , ^ denote the imaginary parts of the coordinates
z\,..., Zq of Cq, then < ^ ( ^ i , . . . , Zq) = y^ + • • • + y^ defines a strictly
plurisubharmonic function on every open neighborhood of X^ / ' K in X / / K
which vanishes on X^ / K . This proves part (ii) of COROLLARY 2. Part (i)
is proven with similar arguments. []

REMARK. — In sections 5 and 6 the following slightly more general
version of COROLLARY 2 is needed.

Let K be a compact Lie group and X a complex JC-space. Let Q be a
J^-subset of X and {U^} an open covering of Q. Suppose that for each a
the open subset Ua of X can be identified with a locally analytic subset
of some C^ such that Q D Ua becomes a subset of R^. Then Q has a
basis of open Stein J^-neighborhoods in X.

This result is also contained in [H,W] since one can use a partition
of unity argument to obtain a non-negative strictly plurisubharmonic K-
invariant function <j) which is defined on a neighborhood U of Q in X
with Q c {x € U ; (/)(x) = 0} (cf. [G]).

4. Proper actions

A real analytic action of a Lie group G on a real analytic manifold X is
said to be proper if the map G x X -^ X x X defined by {g, x) i-̂  (g ' x, x),
is proper.

For a proper action the orbit space X/G is a locally compact Hausdorff
space with countable topology. In particularly, every G-orbit is closed.
Since a G-action on X is proper if and only if {g € G\ g • C\ D C^ 7^ 0} is
compact for any two compact subsets (7i, C^ofX, each isotropy group Gx
of G is compact (cf. [P]).
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EQUIVARIANT EXTENSIONS 453

Let x 6 X and let V be a Ga.-stable subspace in the tangent space T^X
which is complementary to the tangent space of the orbit G ' x. Then
there exists an open Ga;-neighborhood S of 0 € V and a real analytic
G-isomorphism from G XG^ S onto an open G-neighborhood of x in X. In
other words, the G-action in a G-neighborhood of x is determinated by
the action in a G-neighborhood of the zero section in the normal bundle
A = G XG^ V over the orbit G • x ^ G/Gx. Consequently, the orbit
space X/G has locally the structure of the orbit space S/Gx which is an
open subset of the semialgebraic set V/Gx (see [Sch]).

EXAMPLE. — Let G act freely on X; i.e. Gx = {1} for all x e X.
Then X is a G-principal bundle over X/G in the category of real analytic
manifolds if and only if the G-action on X is proper.

5. Extensions of homogeneous bundles
The local model of a proper action is given by an open G-subset of a

G-vector bundle A = G x K V over G/K where K is a compact subgroup
of G which acts linearly on the vector space V. The vector bundle A is
obtained as the quotient of G x V with respect to the 7^-action which is
defined by h- (g, v) = {gh~1, h-v) for all h G K, g G G, v G V. This action
extends holomorphically to a J^-action on the Stein manifold Gc x V^.
Consequently, A* = {G^- x V^f/K^- is a holomorphic Stein G^space.

In order to describe the image A of A in A* we introduce the following
notation. Let K (resp. G) be the image of K (resp. G) in Gc and denote
the kernel of the homomorphism K —> K by L. It follows that L^ is the
kernel of the homomorphism K^- -^ K^. Hence the quotient V^ = V C / / L C

is a holomorphic Stein T^-space and the quotient map q : V^ —> V(c is
a holomorphic J^-map. Since Gc is the holomorphic extension of G, the
group Kc is closed in Gc (section 3, COROLLARY 1). Thus the quotient
(^c ^ y ^ l / K ^ is the homogeneous G^bundle Gc x^ V^. Finally, we
set V = V / L . Note that V is a closed semialgebraic subset of V^ which
can be described by inequalities in terms of the L-invariant polynomials
on V (see [P,S]). With this notation the proof of the next result is
straightforward.

LEMMA 1.
(i) The natural map from A into G^ x _^ Vc is a closed embedding

and the natural map from A onto A ̂  G x -; V is open.

(ii) The natural map from A* = (GC x V^I/K^ onto Gc x_^ V^
an isomorphism of holomorphic G^-spaces. \\

ZS
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454 P. HEINZNER

REMARK. —It was already shown that there exists an anti-holomorphic
group involution u; : Gc -. Gc which fixes G. From this it follows
that K is ^-stable. Moreover, if K^ -. GL(V) is the extension of a real
representation K -^ GL(V), then there is an involution a : V^ -^ V^ such
that a(h • v) = ̂ (h) . a(v) holds for all h e K^ and v G Vc. In particular,
there is an induced involution 7 = [^, a] on A* ^ G^ x- ^ such that
the image of A is 7-stable. It can also be shown that the real dimension of
the semialgebraic set A is equal to the complex dimension of A*. Hence A
is a totally real semialgebraic subset of A* of maximal possible dimension.

If X is a complex G-space, then we denote by X / / G the quotient of X
with respect to the equivalence relation which is defined by the algebra
of invariant holomorphic functions on X. Since A*//^ is isomorphic
to V ^ I / K ^ the quotient A^/GC is a Stein space. Moreover, we have the
following lemma.

LEMMA 2. — The image of A in A*//^ is A/G which is regarded
as a semianalytic subset ofA^//GC. The involution 7 on A* induces an
involution 7 on A*//^ whose set of fixed points contains A/G. Q

Let T be anjopen ^-subset of A = G XK V and f the corresponding
image in A = G x^ V^ Note that f is an open (^-subset of the closed
semianalytic ^-subset A of A* = G^ x^ t^. We also identify T / G with
an open subset of A/G which is a closed semianalytic subset of A*//^ =
VC//KC = V^I/K^.

The following technical lemma is used in the next section.

LEMMA 3. — Every open Stein G^ -neighborhood T* of f in A* is a
holomorphic G^- complexification of T and T*//^ is a complexification
of the quotient T / G . A given T* can be shrink so that:

(i) T* is saturated with respect to the quotient map A* —> A*//^
i.e. the inclusion T* -^ A* induces an open embedding of Q* = T*//^
into A*//^,

(ii) T* (resp. Q*) are stable with respect to the involution on A*
{resp. A*//^),

(iii) T* H A = f, T* n A = f,

(iv) Q* n A/G = f/G and Q* n A/G = ¥/G,
where the closure is taken with respect to A* (resp. A*//^).

Proof. — Since T is an open G-subset of G XK V, it can be written
as G XK S where S is an open ^-subset of V. Let <S> be a real analytic
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EQUIVARIANT EXTENSIONS 455

G-map from T into a holomorphic G^space Y. Denote by (f) the real
analytic JC-map from 5 into V, which is denned by (f)(x) = ̂ {[l,x]) for
all x ^ S. Note that ^ is invariant with respect to the kernel L of the
homomorphism K —> K. The map (f) can be extend to a holomorphic K-
map <j) from an open JC-neighborhood 5' of S in Vc which is L-invariant.
After shrinking S we can assume that :

(a) S n V = S ,

(b) S is an open Stein JC-subset of V^ ^ and

(c) 6' is stable with respect to the involution on V^.

The inclusion a : S -^ V^ induces a holomorphic map a : S / / K —>
V C / / K C . Note that the image of S in S / / K (resp. V C / / K C ) can be
topologically identified with S / K (section 3, PROPOSITION) and that a
maps S / K topologically onto S / K . Since a is locally biholomorphic in
a neighborhood of S / K in S / / K (see [H2, 6.3]), there exists an open
neighborhood P of S / K in S / / K which is mapped by a biholomorphically
onto an open neighborhood of S / K in V^ / / K ^ . Replacing, if necessary,
6' by the inverse image of P of the map S —^ S / / K , one can assume
that a and a are open embeddings. Hence, P = S / / K is an open subset
of V C / / K C . From this it follows that the complexification of the complex
.FC-space S is the open ^-subset 5'* = K^ • S of V^ (see [H2, 6.3]). In
particular, 0 extends to a holomorphic J^-map 0* : S* -^ Y which
is ^-invariant. The holomorphic map ^ : G^ x S* -^ Y which is
defined by ^{g,x) = g • ^{x) is ^-invariant. The induced G^-map ^*
from the open subset T* = (G* x S " ) / / ^ of A* into Y is therefore
the complexification of the map <I>. This argument proves that r* is a
holomorphic ^-complexification of T.

If the map ^ is assumed to be a G-invariant map into a complex
space V, then the map <I>* induces a holomorphic map (^//G^ from
T*//^ into V. From this it follows that T*//^ is a complexification
of the quotient T / G .

Since Q* = T*/^ is an open subset of ^ / / G C = V C / / K C and
T/G = S / K is an open subset of A/G = V / K , we can shrink Q* so
that Q* n A/G = f/G and Q^ n A/G = T/G.

This purely topological fact can be seen by choosing a covering of T/G
which consists of open balls Br^(x^) (with respect to some continuous
metric on A^/G^ of radius r^ around points x^ G T/G such that :

(a) lim^_oo r^ = 0,

(b) B^(^)nA/GcQ*, and
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(c) A{ao) = {a; r^ ^ r^} is finite for all OQ,
and then by replacing Q* by |ĵ  ̂ c, (^a)-

Shrinking further, if necessary, we can also assume that Q* is an open
Stein subspace of A* //G^ (section 3). We may also assume that Q* ls

invariant with respect to the involution on A*//^. Since T* is the inverse
image of Q* with respect to the quotient map A* —> A*//^, T* is an
open Stein subset of A*. The properties (i)-(iv) for T* follow from the
corresponding properties of Q*' D

6. Extensions of proper actions

In the previous section we have complexified the local models for a
proper action of a Lie group G on a real analytic manifold X. In order to
obtain a global holomorphic G^-complexification of X, we have to glue
the local complexifications together. One difficulty is to ensure that the
resulting space X* is a Hausdorff space. This can be carried out as in the
non equivariant case (see [W,B]), except that one has to do every step
in the proof simultaneously for X and X/G. In order to be complete, we
shall write this down in detail. This is the first long step in the proof of the

COMPLEXIFICATION THEOREM. — Let X be a real analytic manifold
endowed with a proper real analytic action of a Lie group G. Then there
exist holomorphic G^-complex! fications X* {resp. Q*) of X {resp. the
quotient X/G) such that:

(i) Q* ana ̂  are normal complex spaces^

(ii) Q* is a Stein space which is isomorphic to X* //G^,

(iii) the image of X {resp. X/G) in X* {resp. Q*) is a closed totally
real semianalytic subset of X* {resp. Q*) of maximal possible dimension^

(iv) if G is a holomorphically extendable Lie groups then X* is smooth
and X —> X* is a closed embedding.

Proof. — There exist locally finite coverings {A^}^j, {5^}^j and
{C',}i^ of X/G such that :

(a) C[ ^ B[ and B[ (^ A[ for all i G J,
(b) to every i G I there exists a real analytic open G-embedding

(f)i : Tr^A^) -^ G XK, ̂ ni where Ki is a compact subgroup of G which
acts linearly on R711 and TTX '• X —> X/G denotes the quotient map.
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The following notation will be used :

T[ = ̂ (A^), U[ = ̂ (BO, V/ = ̂ (CQ,

T, = 0,(^), ^ = ̂ ([/;), V, = ̂ (V/),

r^=(^nrj), ^=^(^n^), y,, =^(y/ny;).
Furthermore, let A^ denote the G-bundle G Xj^ R72' and TT^ : A^ —^ A^/G
the quotient map. The map T^/G —> ^i(Ti), which is induced by the open
G-embedding (j)i: T[ —> A^, is denoted by ^. We also set :

A, = W,) = ̂ (T,), B, = ̂ (B[) = ̂ (U,\

c, = W,) = 7r,(y,), A,, = W, n A^.) = 7r,(r^),
^ = W, n B;.) = 7r,(^) c^ = W, n c^) - 7r,(^).

The identity T^ n T' = T' D T[ induces a real analytic (^-isomorphism
(f)ij : Tji —> Tij and an isomorphism ̂  : A^ ^ A^-. There exists holo-
morphic ^-complexification T- of T^- and holomorphic Gc-isomorphisms
(j)^ : T^ -> ̂ . which extend ̂  : T^ -^ T^.

We can identify T^ with an open ^-subset of A,* = (G^ x C^)//^
which is saturated with respect to the quotient map TT̂ * : A^ ^ A ^ / / G C .
Furthermore, we always assume that :

(1) 0^-1 = ̂ . and T^ = 0 if and only if 7^ = 0.

The (^-isomorphism (f)^ : T^ -^ T^ induces an isomorphism ̂  :
A^ -^ A- where we set A^. = 7^*(T^). After shrinking, if necessary, we
may assume that :

(2) T^ n A, = r^, A^. n A,/G = A^- and ̂ .-1 = ^*,, using notation
analogous to that in section 5. For every pair (z,j) we choose an open
subset B^ of A,*/̂  such that :

(3) B:, «i A;,, ^(B^,) = B ,̂ B ,̂ n A,/G = ̂ , ̂ . H A,/6 = ̂ .

Since Ci n ^-{Cj n B^) is a compact subset of Bij, there exists an
open subset D^ of A^y/G^ such that :

(4) 2 .̂ «1 ̂ ,, ,̂(D^) = ̂ , and Q n ̂ (^- n B~^ C ̂ ,.

The sets Ci \ D^ and ^-(Cj- H ^•i) \ ̂ . are compact and disjoint
subsets ofA^Y/G^. Hence there exist open and disjoint subsets E^ and F^
of A^//GC such that :
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(5) Q C E^ U D^ and ^(5, U J^ ) C D^ U *̂,.

Let ^* be an open subset of A^//GC such that :

(6) E^ U Ai/G = d, E^ n A,/(7 = Q and E^ C ̂  U D^ for all j
with Tij ^ 0.

Since £^ H 5^ is a compact subset of A- it follows that :

.̂(£;n5;,) c v>;,(̂  n BJ,).
Thus we have :

.̂(^* n 5;,) n A,/G = ̂ (Ej n ̂ ) n ̂ . n A,/6
=^.(E;*n^)n^

=^(Ej,nBj,n^)

=^,(^n^).
This implies that :

(7) ,̂(̂ ; n B;,) n A,/G c ̂ ,(^ n ̂ ).
For every point p ^ Bz we may choose an open neighborhood B ,̂ of p

which satisfies the following four conditions :

(Cl) B^ (^ B^ for all j such that p G ̂  ,

(C2) B^ (^ D^ U F^ for all ^ such that p e ̂ ,(C, U ̂ ,),

(C3) 5^ U ̂ (^* n BJJ = 0 for all j such that p is not the image of a
point in C^ .

Note that this is possible, since B^ -^ 0 for only finitely many j and
the condition on p implies p ^ ̂ AE". H B^) by virtue of (7).

(C4) 5:p «i ̂ .(BJ, n B^) n ̂ (%n ̂ ,) and ̂  = ̂  o ̂ , on B^
for all pairs (j, /i") such that p € B -̂ D ̂ /c.

Let B^ denote the union of the sets B^ with p e Bi. Let C7̂ * be a
relatively compact open subset of B^ such that Cz C C^ C E^. It follows
that C^nA./G = C, and C^nA,/6 = Q. We set C^ = ̂ n^.(C;n5;J
and C^ = C^ n %. Note that C^ C ^ and ^(C7;J = C^..
Furthermore, the relation ~ which is given on the disjoint union |JicJ ^?
by the isomorphisms ̂  : C^ —^ C- is an equivalence relation. This
can be seen as follows.
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If q S C^fe, then q € B^y for some p € Bi. This implies :

B;p n ̂  (E; n fi;,) + 0, f?;p n ̂  (^ n %) ̂  0.
Consequently g € 5,*,. n % by (C3) and ^(q) 6 % n C^ and
^?(9)) = ^(9). It follows that ^(g) € C; n ̂ (^ n B^) and
analogously ^(g) € ^((^ n B^.). This shows that ^(g) € (7;̂ .
Hence, ^(C^) C C;̂  ^-(C;^) C C^ and ̂  : q,, - C^ is
an isomorphism.

Let Q* denote the quotient of |J C^ with respect to the equivalence
relation ~. We have to show that Q* is a Hausdorff space. In order to do
this we first show that C^ is contained in B^.

Since D* C B\,, it suffices to prove C^ C D^. If q e C^- is given, then
C^- C C7 C B; implies 9 G B^ for some p C B,. From 9 e ^-(C"; n BJ,)
it follows that q G ^•(^J n B^) and (C3) implies that p lies in the
image of C'.. Thus we have p G ^j(Cj D 5^). From condition (C2), we
see that q C D^. U F^. Since C; C E^ C E^ U D^. (5), E^ U ̂  = 0
implies g G D-.

Let p ' , q ' C Q* be two different points. We denote by p G C^
(resp. q e C7*) representatives of p' (resp. (/). If it is not possible to
separate p ' and q' by open subsets of Q*, then there exist sequences (pa)
in A ' [ / / G C and (^) in A^y/G^ which converges to p (resp. 9) such that
Pa ^ C^, q^ G C^ and p^ = ^-(^a). Since C^- C B^, we have p = ̂ (q).
From this it follows that q € C; U B;, and p G C^ H ^•(Cf; H B^) = C^..
Hence, p ' = q ' .

We can now build up X* over the complex space Q*. For this set V^ =
(Tr,*)-1^) and V^ = (O"1^)- The holomorphic Gc-space X* is then
the quotient of the disjoint union U^ ^* wlt^ resPect to tne equivalence
relation which is given by the ^-isomorphisms <^- : V^ —>• V-

The statements (ii), (iii) and (iv) in the theorem are consequences of
the results in section 5 and the remark in section 3.

Now we prove that X* is a holomorphic G^-complexification of X.
Let 0 be a real analytic G-map from X into a holomorphic G^-space Y.
There exist a locally finite and star finite covering {Ua} of X consisting
of open subsets of X* which are saturated with respect to the natural
map TT* : X* —^ Q* and complexifications ̂  : U^ —^ Y of the maps
0|^. Let {V^} be a refinement of {U^} consisting of 7r*-saturated open
subsets such that V^ C U^. For x (E X denote by 1^ the set of a e I such
that x e V^ and set J^ = {f3 G I \ 4 ; U^ H n^J. ̂  + 0}- The sets ̂
and Jx consist of finitely many elements. Hence, to every x G X there
exists a TT*-saturated open neighborhood T^ of x such that :
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(a) T;cn,eJ^*and

(b) T^ H V^ = 0 for all /3 G / \ 4.

After shrinking T^, if necessary, we have <%|r* = 0^|r* f011 a^ a^ ^ ^r-
If x,y € X are such that T^ H T* 7^ 0, then it follows from (a) that
T^HV^ ^ 0 for some (3 with ^/ <E V^*. This implies /3 G J^. Thus, for a ^ 1^,
0*j^* = (^|j^ defines a holomorphic G^^-map <^* from T* = Ua;GX ̂
into Y which is a complexification of 0. []

REMARK. — The proof shows that X* can be choosen to be smooth if
for every isotropy group K of the G-action on X the kernel of K —^ G^
is trivial. This is not always the case.

EXAMPLE. — Let G denote the quotient of SL2(R) x S1 with respect to
a discrete central subgroup F of SL2(K) x S1 which projects onto a dense
subgroup of 5'1; i.e. the image of {1} x S'1 in G is a compact group which
is isomorphic to 6'1 and Gc = SL^(C). The C*-action on C4 which is
defined by t ' (^1,^25^3^4) = (tz\^tz^^t~lz^^t~lz^) is a complexification
of the real S^-invariant subspace V = {(^ i , 2:2, ^3, z^) ; /zi, z^ e C}. Thus
X* = SL2(C) x (CV/C*) is a non smooth complexification ofX=GxsiV
whose set of singular points intersects the image of X in X* non trivially.

7. Stein extensions

In this section G denotes a Lie group which acts properly on a real
analytic manifold X. Let X* denote a holomorphic ^-complexification
of X with the properties which are stated in the complexification theorem.
Thus Q* ^ X* //GC is a Stein space (section 3, remark) which is the
complexification of the quotient X/G. Note that the fibers and the base
of the fibering TT* : X* —> Q* are Stein spaces. It is natural to ask if X*
is a Stein space.

EXAMPLE. — If X is a real analytic G-principal bundle, then X* is
a holomorphic G^-principal bundle over Q*. In particular, X* is a Stein
manifold (see [M,M]).

Before we state the main result of this section we give a definition.
A Lie group G is said to be holomorphically reductive if G^ is the
complexification of a compact Lie group; i.e. Gc is a complex reductive
group.

Note that a holomorphically reductive group is a Lie group such that
a kind of an abstract unitary trick holds.
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THEOREM. — If G is a holomorphically reductive Lie groups then X* is
a Stein space.

Proof. — There exists a covering {%} of Q* consisting of open Stein
subsets of Q* such that U^ = {^)~1{Q^) are open Stein subsets of X*.
Furthermore, since G^ is the complexification of a compact Lie group,
we can assume that each U^ can be properly and linear equivariantly
embedded into some C^" (cf. [H2] and section 3).

If G^ acts linearly on C71, then the sheaves of germs of :
(a) holomorphic maps,
(b) holomorphic maps which vanish on X*,
(c) holomorphic maps which vanish on X* at least of order two,

from X* into C72 are coherent analytic G^-sheaves in the sense of ROBERTS
(see [R]). Hence the corresponding sheaves of invariants are coherent
analytic sheaves over Q* (see [R]). Since Q* is a Stein space, an application
of THEOREM B shows that to every point p C Q* there exists a holomorphic
G^-map from X* into some C^ which is an immersion along X^ and
whose restriction to X* is a closed embedding. The rest of the proof is
the same as the proof of the complexification theorem in [H2]. []

REMARK.—An analysis of the proof shows that X* is a holomorphically
separable complex space if G is assumed to be a Lie subgroup of a general
linear group. In general, there is no known example of an analytic G-
space X such that X* can not be choosen to be a Stein space.

If X is assumed to be only a differentiable G-manifold, then more
can be said. Assume that the group G is connected. By Abel's theorem
(see [A]) the G-manifold X is diffeomorphic to G x^ S where K denotes
a maximal compact subgroup of G and S is a J^-invariant submanifold
of X. The manifold S is J^-equivariantly diffeomorphic to a real analytic
JC-manifold which we also denote by S. Here we use an equi variant
version of a theorem of Whitney, whose proof can be modified such that
it also applies to differentiable I^-manifolds. Thus X ^ G Xj< S has a
structure of a real analytic manifold so that G acts reall analytically on X.
In particular, in the differentiable case there exist some complexification
X* = (G^ x S ^ I / K of X, which is a Stein space.

As a corollary we have the :

EMBEDDING THEOREM. — Let G be a holomorphically reductive and
extendable Lie group which acts properly and real analytically on a real
analytic manifold X. Then there exists a linearly equivariant closed em-
bedding of X into some ̂ N if and only if X is of finite K-orbit type with
respect to some maximal compact subgroup K of G.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



462 P. HEINZNER

Proof. — If X is of finite K-orbit type, then it is also of finite K-
slice type (see [HI]). From the construction of X* it follows that X*
is a holomorphic Stein G^-manifold of finite G^-slice type. Hence there
exists a linearly equivariant closed embedding of X* into some CM

(see [HI, Einbettungssatz 1]).
On the other hand it follows from the slice-theorem that every ^-subset

of M^ is of finite ^-orbit type. []
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