Bulletin de la S. M. F.

Cornelis KraAikamp Maximal S-expansions are Bernoulli shifts

Bulletin de la S. M. F., tome 121, no 1 (1993), p. 117-131
http://www.numdam.org/item?id=BSMF_1993__121_1_117_0
© Bulletin de la S. M. F., 1993, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

MAXIMAL S－EXPANSIONS ARE BERNOULLI SHIFTS

BY

Cornelis KRAAIKAMP（＊）

RÉSumé．－Nous montrons dans cette note que les systèmes sous－jacent à une classe de développement en fraction continue（les 《 S－expansions maximales 》）sont tous isomorphes，ce qui entraîne que ces systèmes sont de Bernoulli．En particulier，le système associé à la fraction continue optimale，qui est une S－expansion maximale，est de Bernoulli，donc K ，ce qui répond à une question de Pierre Liardet［L］．

Abstract．－In this paper it is shown that the systems underlying any two maximal S－expansions are isomorphic，and from this it follows that these systems are Bernoulli．This answers a question，recently posed by Pierre Liardet［L］，whether the《underlying» ergodic system of the Optimal Continued Fraction（OCF）forms a K－ system，since the OCF is a maximal S－expansion．

1．Introduction

Let x be an irrational number between 0 and 1 ．The expansion of x as a regular continued fraction（RCF）is denoted by

$$
\begin{equation*}
x=\left[0 ; B_{1}, B_{2}, \ldots, B_{n}, \ldots\right] \tag{1}
\end{equation*}
$$

where $B_{n} \in \mathbb{N}, n \geq 1$ ．Finite truncation in（1）yields the corresponding sequence of regular convergents $\left(P_{n} / Q_{n}\right)_{n \geq-1}$ ．

Define the RCF－operator $T:[0,1) \longrightarrow[0,1)$ by ：

$$
T x:=\frac{1}{x}-\left[\frac{1}{x}\right], \quad x \neq 0 ; \quad T 0:=0 .
$$

[^0]BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037－9484／1993／117／\＄5．00
（C）Société mathématique de France

Here [\cdot] denotes the so-called entier (or floor) function. Furthermore, if we define the function $B:[0,1) \longrightarrow \mathbb{N} \cup\{\infty\}$ by

$$
B(x):=\left[\frac{1}{x}\right], \quad x \neq 0 ; \quad B(0):=\infty
$$

then the regular continued fraction is the process (in the sence of [OW]) associated with T and B, i.e. $B_{n+1}=B\left(T^{n}(x)\right)$. Hence, if x has the expansion (1), then $T(x)=\left[0 ; B_{2}, \ldots, B_{n}, \ldots\right]$. Put

$$
T_{n}:=T^{n}(x), n \geq 0 ; \quad V_{n}:=\frac{Q_{n-1}}{Q_{n}}, n \geq 0
$$

then $T_{n}=\left[0 ; B_{n+1}, B_{n+2}, \ldots\right]$ and a simple calculation shows that

$$
V_{n}=\left[0 ; B_{n}, \ldots, B_{1}\right], \quad n \geq 1 ; \quad V_{0}=0 .
$$

Moreover, $\left(T_{n}, V_{n}\right)_{n \geq 0}$ is a sequence in $\Omega:=([0,1) \backslash \mathbb{Q}) \times[0,1]$.
Fundamental in the theory of S-expansions is the following theorem :
Theorem 1 ([NIT], 1977; [N], 1981). - Let \mathcal{B} be the collection of Borel-sets of Ω and let μ be the probability measure on (Ω, \mathcal{B}) with density $(\log 2)^{-1}(1+x y)^{-2}$. Define the operator $\mathcal{T}: \Omega \longrightarrow \Omega$ by:

$$
\mathcal{T}(x, y):=\left(T x, \frac{1}{[1 / x]+y}\right), \quad(x, y) \in \Omega .
$$

Then $(\Omega, \mathcal{B}, \mu, \mathcal{T})$ forms an ergodic system.
Notice that for each irrational number x one has :

$$
\mathcal{T}^{n}(x, 0)=\left(T_{n}, V_{n}\right), \quad n \geq 0 .
$$

Here and in the following

$$
\left[a_{0} ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \ldots, \varepsilon_{n} a_{n}, \ldots\right]
$$

is the abreviation of

$$
\begin{equation*}
a_{0}+\frac{\varepsilon_{1}}{a_{1}+\frac{\varepsilon_{2}}{a_{2}+\cdots+\frac{\varepsilon_{n}}{a_{n}+\cdots}}}, \tag{2}
\end{equation*}
$$

where $a_{0} \in \mathbb{Z} ; a_{i} \in \mathbb{N}, \varepsilon_{i} \in\{ \pm 1\}$, for $i \geq 1$. We call $\left[a_{0} ; \varepsilon_{1} a_{1}, \ldots\right]$ a semi-regular continued fraction (SRCF) in case $\varepsilon_{i}+a_{i} \geq 1, \varepsilon_{i+1}+a_{i} \geq 1$, for $i \geq 1$ and infinitely often $\varepsilon_{i+1}+a_{i} \geq 2$. Finite truncation in (2) yields the sequence of convergents $\left(r_{n} / s_{n}\right)_{n \geq-1}$, which converges to a unique irrational number x in case $\left[a_{0} ; \varepsilon_{1} a_{1}, \ldots\right]$ is semi-regular.

A SRCF-expansion (2) is a fastest expansion of x in case the growthrate of the denominators s_{n} is maximal. One can show that this means that these denominators grow asymptotically as fast as the denominators of the nearest integer continued fraction (NICF) expansion convergents of x, (see also [B, sect. 3]). Closest expansions are those expansions of x for which $\sup \left\{\theta_{k} ; \theta_{k}=s_{k}\left|s_{k} x-r_{k}\right|, k \geq 0\right\}$ is minimal. Every irrational number x admits an expansion for which $\theta_{k}<\frac{1}{2}$ and $k \geq 1$, given by Minkowski's diagonal continued fraction (DCF). In general the NICF does not yield closest expansions, while the DCF does not yield fastest expansions. An expansion which is always both fastest and closest for all irrational numbers x is the Optimal Continued Fraction (OCF), see [BK1], [BK2].

Now let x be an irrational number, and let (2) be some SRCF-expansion of x. Suppose that we have for a certain $k \geq 0$:

$$
a_{k+1}=1, \quad \varepsilon_{k+1}=\varepsilon_{k+2}=1
$$

The operation by which the continued fraction (2) is replaced by ${ }^{\dagger}$

$$
\left[a_{0} ; \varepsilon_{1} a_{1}, \ldots, \varepsilon_{k-1} a_{k-1}, \varepsilon_{k}\left(a_{k}+1\right),-\left(a_{k+2}+1\right), \varepsilon_{k+3} a_{k+3}, \ldots\right]
$$

which again is a SRCF-expansion of x, with convergents, say, $\left(c_{n} / d_{n}\right)_{n \geq-1}$, is called the singularization of the partial quotient a_{k+1} equal to 1 . One easily shows that $\left(c_{n} / d_{n}\right)_{n \geq-1}$ is obtained from $\left(r_{n} / s_{n}\right)_{n \geq-1}$ by skipping the term r_{k} / s_{k}. See also [K1, sect. 2 and 4$]$.

2. S-expansions

A simple way to derive a strategy for singularization is given by a singularization area S.

Definition 1. - A subset S from Ω is called a singularization area if it satisfies :
(i) $S \in \mathcal{B}$ and $\mu(\partial S)=0$;
(ii) $S \subset\left(\left[\frac{1}{2}, 1\right) \backslash \mathbb{Q}\right) \times[0,1]$;
(iii) $\mathcal{T}_{S} \cap S=\emptyset$.

[^1]

Figure 1.

Here and in the sequel we put :

$$
g:=\frac{1}{2}(\sqrt{5}-1), \quad G:=g+1=g^{-1} .
$$

Remark 1. - Consider the following singularization area S^{*}, where

$$
S^{*}:=\left[\frac{1}{2}, g\right] \times[0, g] \cup(g, 1) \times(0, g),
$$

and let S be some singularization area. Put $S_{1}:=S \cap S^{*}, S_{2}:=S \backslash S_{1}$ (see also figure 1). Then by invariance of μ, due to definition 1 (iii) and from the fact that $S^{*} \cup \mathcal{T} S^{*}$ covers the rectangle containing any singularization area it now follows that :

$$
\begin{aligned}
\mu(S) & =\mu\left(\mathcal{T} S_{1}\right)+\mu\left(S_{2}\right)=\mu\left(\mathcal{T} S_{1} \cup S_{2}\right) \\
& \leq \mu\left(\mathcal{T} S^{*}\right)=\mu\left(S^{*}\right)=1-\frac{\log G}{\log 2}
\end{aligned}
$$

Thus we see, that

$$
0 \leq \mu(S) \leq 1-\frac{\log G}{\log 2}=0.3057 \ldots
$$

$$
\text { tome } 121-1993-\mathrm{N}^{\circ} 1
$$

see also [K1, thm (4.7)]. A singularization area is called maximal in case

$$
\mu(S)=1-\frac{\log G}{\log 2}
$$

Definition 2. - Let S be a singularization area and let x be a real irrational number. The S-expansion of x is that semi-regular continued fraction expansion converging to x, which is obtained from the RCFexpansion of x by singularizing B_{n+1} if and only if $\left(T_{n}, V_{n}\right) \in S, n \geq 0$.

Remarks 2.
(i) We need the condition $\mu(\partial S)=0$ on S to draw the following conclusion. Let x be an irrational number, with RCF-expansion (1), and let $A(S, N)$ be defined by :

$$
A(S, N):=\sharp\left\{0 \leq j \leq N ;\left(T_{j}, V_{j}\right) \in S\right\} .
$$

Then we have for almost all x (see also [K1, 4.6 (ii)]) :

$$
\lim _{N \rightarrow \infty} \frac{1}{N} A(S, N)=\mu(S)
$$

(ii) It is impossible to singularize in the RCF-expansion (1) of an irrational number x a partial quotient greater than 1, and still obtain a SRCF which converges to x, (see [K1, cor. 1.10]). It is for this that each singularization area S must satisfy $S \subset\left[\frac{1}{2}, 1\right) \times[0,1]$.

Some examples of singularization areas are :

1. $-S_{\text {nicf }}:=\left[\frac{1}{2}, 1\right) \times[0, g]$; this area, which needs some minor modifications in order to satisfy the above definition 1 , see S^{*} from remark 1, yields the nearest integer continued fraction (NICF). The area $S_{\text {nicf }}$ is maximal; see also [K1, sect. 4].
2.- $S_{\mathrm{dcf}}:=\left\{(T, V) \in \Omega ; \frac{T}{1+T V}>\frac{1}{2}\right\}$; this area yields the diagonal continued fraction (DCF) of Minkowski; it is not maximal, see [K2].
2. $-S_{\text {ocf }}:=\left\{(T, V) \in \Omega ; V<\min \left(T, \frac{2 T-1}{1-T}\right)\right\} ;$ this area yields the OCF and is maximal, see also [K1], [BK1].

Let S be a singularization area and let x be a real irrational number, with RCF-expansion (1) and RCF-convergents $\left(P_{n} / Q_{n}\right)_{n \geq-1}$. Furthermore, let $\left[a_{0} ; \varepsilon_{1} a_{1}, \ldots, \varepsilon_{k} a_{k}, \ldots\right]$ be the S-expansion of x, with convergents r_{k} / s_{k} for $k \geq-1$. Define the shift t by :

$$
t\left(x-a_{0}\right):=\left[0 ; \varepsilon_{2} a_{2}, \ldots, \varepsilon_{k} a_{k}, \ldots\right]
$$

For a fixed x and for $k \geq 0$ we put:

$$
\begin{aligned}
t_{k} & :=t^{k}\left(x-a_{0}\right)=\left[0 ; \varepsilon_{k+1} a_{k+1}, \varepsilon_{k+2} a_{k+2}, \ldots\right] \\
v_{k} & :=s_{k-1} / s_{k}
\end{aligned}
$$

One easily shows, see also [K1], (1.4) and (5.1), that

$$
v_{k}=\left[0 ; a_{k}, \varepsilon_{k} a_{k-1}, \ldots, \varepsilon_{2} a_{1}\right], \quad k \geq 1 ; \quad v_{0}=0
$$

We have the following theorem :
Theorem 2. - Let S be a singularization area and put:

$$
\Delta_{S}:=\Omega \backslash S, \quad \Delta_{S}^{-}:=\mathcal{T} S, \quad \Delta_{S}^{+}:=\Delta_{S} \backslash \Delta_{S}^{-}
$$

Then one has:
(1) The system $\left(\Delta_{S}, \mathcal{B}, \rho_{S}, \mathcal{O}_{S}\right)$ forms an ergodic system. Here ρ_{S} is the probability measure on $\left(\Delta_{S}, \mathcal{B}\right)$ with density

$$
((1-\mu(S)) \log 2)^{-1}(1+x y)^{-2}
$$

and the map \mathcal{O}_{S} is induced by \mathcal{T} on Δ_{S}.
(2) $\left(T_{n}, V_{n}\right) \in S \Leftrightarrow P_{n} / Q_{n}$ is not an S-convergent.
(3) If P_{n} / Q_{n} is not an S-convergent, then both P_{n-1} / Q_{n-1} and P_{n+1} / Q_{n+1} are S-convergents.
(4) $\left(T_{n}, V_{n}\right) \in \Delta_{S}^{+}$if and only if
$\exists k:\left\{\begin{array}{ll}r_{k-1}=P_{n-1}, & r_{k}=P_{n}, \\ s_{k-1}=Q_{n-1}, & s_{k}=Q_{n}\end{array} \quad\right.$ and $\quad t_{k}=T_{n}, \quad v_{k}=V_{n}$.
(5) $\left(T_{n}, V_{n}\right) \in \Delta_{S}^{-}$if and only if

$$
\exists k:\left\{\begin{array}{ll}
r_{k-1}=P_{n-2}, & r_{k}=P_{n}, \\
s_{k-1}=Q_{n-2}, & s_{k}=Q_{n}
\end{array} \quad \text { and } \quad t_{k}=\frac{-T_{n}}{1+T_{n}}, \quad v_{k}=1-V_{n} .\right.
$$

(See also [K1, thm (5.3)].)
In view of Theorem 2 we define the map $\mathcal{M}: \Delta_{S} \rightarrow \mathbb{R}^{2}$ by :

$$
\mathcal{M}(T, V):= \begin{cases}(T, V) & \text { if }(T, V) \in \Delta_{S}^{+} \\ \left(\frac{-T}{1+T}, 1-V\right) & \text { if }(T, V) \in \Delta_{S}^{-}\end{cases}
$$

We have the following theorem :

$$
\text { томе } 121-1993-\mathrm{N}^{\circ} 1
$$

Theorem 3. - Let S be a singularization area and put $\Omega_{S}:=\mathcal{M}(\Delta)$. Let \mathcal{B} be the collection of Borel subsets of Ω_{S} and let μ_{S} be the probability measure on $\left(\Omega_{S}, \mathcal{B}\right)$, defined by :

$$
\mu_{S}(E):=\rho_{S}\left(\mathcal{M}^{-1}(E)\right), \quad E \in \mathcal{B}
$$

Furthermore, if we define the map $\mathcal{T}_{S}: \Omega_{S} \rightarrow \Omega_{S}$ by

$$
\mathcal{T}_{S}(t, v):=\mathcal{M}\left(\mathcal{O}_{S}\left(\mathcal{M}^{-1}(t, v)\right)\right), \quad(t, v) \in \Omega_{S}
$$

then \mathcal{T}_{S} is conjugate to \mathcal{O}_{S} by \mathcal{M} and we have :
(1) For each irrational number x and for each $k \geq 0$

$$
\left(t_{k}, v_{k}\right) \in \Omega_{S} \quad \text { and } \quad \mathcal{T}_{S}\left(t_{k}, v_{k}\right)=\left(t_{k+1}, v_{k+1}\right) .
$$

(2) $\left(\Omega_{S}, \mathcal{B}, \mu_{S}, \mathcal{T}_{S}\right)$ forms an ergodic system. The entropy of \mathcal{T}_{S} equals

$$
h\left(\mathcal{T}_{S}\right)=\frac{h(\mathcal{T})}{1-\mu(S)}=\frac{1}{1-\mu(S)} \frac{\pi^{2}}{6 \log 2}
$$

(3) ρ_{S} has density $((1-\mu(S)) \log 2)^{-1}(1+t v)^{-2}$.

Remarks 3.

(i) Due to the way in which it is constructed it follows that ($\left.\Omega_{S}, \mathcal{B}, \mu_{S}, \mathcal{T}_{S}\right)$ is the two-dimensional ergodic system underlying the corresponding S-expansion. Now let the map $f_{S}: \Omega_{S} \rightarrow \mathbb{R} \cup\{\infty\}$ be defined by :

$$
f_{S}(t, v):=\left|\frac{1}{t}\right|-\tau_{1}(t, v), \quad(t, v) \in \Omega_{S}
$$

where τ_{1} is the first coordinate function of \mathcal{T}_{S}. Among other things we then have (see [K1, thm (5.11) and cor. (5.12)]) :

$$
\begin{aligned}
& f_{S}(t, v) \in \mathbb{N} \text { for }(t, v) \in \Omega_{S} \text { and } t \neq 0 \\
& \mathcal{T}_{S}(t, v)=\left(\left|\frac{1}{t}\right|-f_{S}(t, v), \frac{1}{\operatorname{sgn}(t) \cdot v+f_{S}(t, v)}\right) \text { for }(t, v) \in \Omega_{S} \\
& a_{k+1}=f_{S}\left(t_{k}, v_{k}\right) \text { for } k \geq 0, \quad \text { where }\left(t_{0}, v_{0}\right)=\left(x-a_{0}, 0\right)
\end{aligned}
$$

Thus we see that the S-expansion is the process associated with \mathcal{T}_{S} and f_{S}.
(ii) It is not always possible to give a closed expression in t and s of the function f_{S}, but in some cases, when ∂S is sufficiently smooth, this turns out to be possible. For example, let the singularization area S_{α} for $\frac{1}{2} \leq \alpha \leq 1$ be given by ${ }^{\ddagger}$

$$
S_{\alpha}:=[\alpha,(1-\alpha) / \alpha) \times[0, g) \cup[(1-\alpha) / \alpha, 1) \times[0,1]
$$

for $\frac{1}{2} \leq \alpha<g$ and

$$
S_{\alpha}:=[\alpha, 1] \times[0,1], \quad g \leq \alpha \leq 1
$$

For each $\alpha \in\left[\frac{1}{2}, 1\right]$ we now have, see also [K1, sec. 6] :

$$
f_{S_{\alpha}}(t, v)=\left[\left|\frac{1}{t}\right|+1-\alpha\right], \quad(t, v) \in \Omega_{S_{\alpha}}
$$

The S-expansions generated by the singularization areas S_{α} are the so-called α-expansions. These α-expansions were introduced and studied by H. Nakada in [N$]$. For a closed expression in t and v of $f_{\text {dcf }}$ (resp. $f_{\text {ocf }}$) the reader is referred to [K2] (resp. [BK1]).

3. Each maximal S-expansion is Bernoulli

For some S-expansions it is known that properties stronger than ergodicity hold; In [N], H. Nakada showed that for each α-expansion, with $\frac{1}{2} \leq \alpha \leq 1$, the «underlying» system $\left(\Omega_{S(\alpha)}, \mathcal{B}, \mu_{S(\alpha)}, \mathcal{T}_{S(\alpha)}\right)$ is Kolmogorov.

In [FO], N.A. Friedman and D.S. Ornstein proved that each invertible transformation on a probability space, which has a weakly Bernoulli generator, is a Bernoulli-shift. Here we apply this result to the transformation

$$
T_{1 / 2}:\left[-\frac{1}{2}, \frac{1}{2}\right) \rightarrow\left[-\frac{1}{2}, \frac{1}{2}\right)
$$

defined by

$$
T_{1 / 2}(x):= \begin{cases}|1 / x|-\left[|1 / x|+\frac{1}{2}\right] & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

[^2]$$
\text { томе } 121-1993-\mathrm{N}^{\circ} 1
$$

For each irrational number x this transformation yields a unique SRCFexpansion of x, the nearest integer continued fraction (NICF) expansion of x.

In 1979, G.J. Rieger [R] showed that the generator of this NICFtransformation $T_{1 / 2}$, equipped with the probability measure with density $d(x)$, where

$$
d(x)= \begin{cases}(\log G)^{-1}(x+G+1)^{-1} & \text { if } x \in\left[-\frac{1}{2}, 0\right] \\ (\log G)^{-1}(x+G)^{-1} & \text { if } x \in\left[0, \frac{1}{2}\right)\end{cases}
$$

is weakly Bernoulli. Hence, the natural extension of this transformation to an invertible one is a Bernoulli-shift. In view of Theorem 3 we therefore see that :
(3) the dynamical system $\left(\Delta_{\text {nicf }}, \mathcal{B}, \rho_{\text {nicf }}, \mathcal{O}_{\text {nicf }}\right)$ is Bernoulli.

Rieger's result can easily be obtained for any α-expansion; thus we see that the systems $\left(\Omega_{S(\alpha)}, \mathcal{B}, \mu_{S(\alpha)}, \mathcal{T}_{S(\alpha)}\right)$ are all Bernoulli. This raises the natural question whether more generally properties stronger than ergodicity can be obtained; for instance, P. Liardet [L] recently posed the question whether the OCF is Kolmogorov, or even Bernoulli.

We have the following theorem :
Theorem 4. - Each maximal S-expansion is a Bernoulli-shift.
This theorem is now an immediate consequence of (3) and of the following isomorphism theorem :

Theorem 5. - The systems $\left(\Delta_{S}, \mathcal{B}, \rho_{S}, \mathcal{O}_{S}\right)$ and $\left(\Delta_{\text {nicf }}, \mathcal{B}, \rho_{\text {nicf }}, \mathcal{O}_{\text {nicf }}\right)$ are isomorphic for each maximal singularization area S.

Proof. - In [K1, sect. 4] (for the NICF) and in [BK2] (for the OCF) it is shown, that in order to obtain the NICF (resp. the OCF), one must singularize (in a certain manner) exactly $\left[\frac{1}{2}(m+1)\right]$ partial quotients in each block

$$
\ldots, B_{n} \neq 1, B_{n+1}=1, \ldots, B_{n+m}=1, B_{n+m+1} \neq 1, \ldots
$$

of m consecutive regular partial quotients equal to 1 (here $m \in \mathbb{N}$; in case $n=0$ we do not need to assume that $B_{n} \neq 1$). We will show here, that after removing a certain set of measure zero from Ω, the same property holds for any S-expansion with a maximal singularization area S. Once this property is established, an isomorphism follows in a natural way.

Define for each $m \in \mathbb{N}$ a sequence of m consecutive rectangles \mathcal{R}_{m}, $\mathcal{T} \mathcal{R}_{m}, \ldots, \mathcal{T}^{m-1} \mathcal{R}_{m}$, where :

$$
\mathcal{R}_{m}:= \begin{cases}{\left[F_{m} / F_{m+1}, F_{m+2} / F_{m+3}\right) \times\left[0, \frac{1}{2}\right)} & \text { if } m \text { is even } \\ {\left[F_{m+2} / F_{m+3}, F_{m} / F_{m+1}\right) \times\left[0, \frac{1}{2}\right)} & \text { if } m \text { is odd }\end{cases}
$$

Here $\left(F_{k}\right)_{k \geq 0}$ is the Fibonacci sequence

$$
0,1,1,2,3,5,8, \ldots
$$

The rectangles \mathcal{R}_{m} (with $m \in \mathbb{N}$) are introduced here to characterize points at the beginning of a sequence of m consecutive partial quotients equal to 1 . The intervals $\left[F_{m} / F_{m+1}, F_{m+2} / F_{m+3}\right.$) (in case m is even) and $\left[F_{m+2} / F_{m+3}, F_{m} / F_{m+1}\right.$) (in case m is odd) give the number of 1 's, while the interval $\left[0, \frac{1}{2}\right.$) expresses the fact that we are at the beginning of such a string of m consecutive 1 's. Put

$$
\mathcal{R}_{m, i}:=\mathcal{T}^{i} \mathcal{R}_{m} \quad(0 \leq i \leq m-1)
$$

and notice that by invariance of μ one has :

$$
\mu\left(\mathcal{R}_{m, i}\right)=\mu\left(\mathcal{R}_{m, j}\right) \quad(0 \leq i, j \leq m-1)
$$

Define moreover

$$
\mathcal{U}_{m, i}:=\mathcal{R}_{m, i} \cap S, \quad \mathcal{W}_{m, i}:=\mathcal{R}_{m, i} \cap S^{c} \quad(0 \leq i \leq m-1)
$$

then $\left\{\mathcal{U}_{m, i}, \mathcal{W}_{m, i}\right\}$ forms a «partition» of $\mathcal{R}_{m, i}$ (notice that one of $\mathcal{U}_{m, i}$, $\mathcal{W}_{m, i}$ might be empty). Now let $i \in\{0,1, \ldots, m-1\}$, then each one of

$$
\begin{aligned}
&\left\{\mathcal{T}^{i} \mathcal{U}_{m, 0}, \mathcal{T}^{i} \mathcal{W}_{m, 0}\right\}, \ldots,\left\{\mathcal{U}_{m, i}, \mathcal{W}_{m, i}\right\}, \ldots \\
& \ldots,\left\{\mathcal{T}^{i-(m-1)} \mathcal{U}_{m, m-1}, \mathcal{T}^{i-(m-1)} \mathcal{W}_{m, m-1}\right\}
\end{aligned}
$$

forms a «partition» of $\mathcal{R}_{m, i}$. Put:

$$
\begin{aligned}
& \mathcal{P}_{m, i}:=\left\{\mathcal{T}^{i} \mathcal{U}_{m, 0}, \mathcal{T}^{i} \mathcal{W}_{m, 0}\right\} \vee \ldots \vee\left\{\mathcal{U}_{m, i}, \mathcal{W}_{m, i}\right\} \\
& \vee \ldots \vee\left\{\mathcal{T}^{i-(m-1)} \mathcal{U}_{m, m-1}, \mathcal{T}^{i-(m-1)} \mathcal{W}_{m, m-1}\right\}
\end{aligned}
$$

Then $\mathcal{P}_{m, i}$ forms a finite partition of $\mathcal{R}_{m, i}$, and for each i, j in the set $\{0,1, \ldots, m-1\}$ one has that (with a slight abuse of language)

$$
\mathcal{T}^{j-i}: \mathcal{P}_{m, i} \rightarrow \mathcal{P}_{m, j}
$$

[^3]forms a bijection. Now let $A \in \mathcal{P}_{m, 0}$ be such that $\mu(A)>0$ and put :
\[

A_{k}:= $$
\begin{cases}\mathcal{T}^{k} A & \text { if } 0 \leq k \leq m-1 \\ \emptyset & \text { if } k \geq m\end{cases}
$$
\]

Notice that the definition of $\mathcal{P}_{m, 0}$ implies that $A_{k} \cap S \neq \emptyset$ is equivalent with $A_{k} \subset S$. But then it follows from definition 2 that we have, in case $\left(T_{n}, V_{n}\right) \in A$ and $0 \leq k \leq m-1$:

$$
\text { singularize } B_{n+k+1} \text { if and only if } A_{k} \cap S \neq \emptyset .
$$

Now suppose that $\kappa_{A}<\left[\frac{1}{2}(m+1)\right]$, where

$$
\kappa_{A}:=\#\left\{k ; 0 \leq k \leq m-1, A_{k} \cap S \neq \emptyset\right\} .
$$

Putting

$$
S^{*}:=\left(S \backslash \bigcup_{k=0}^{m-1} A_{k}\right) \cup\left(\bigcup_{k=0}^{\infty} A_{2 k}\right)
$$

one easily verifies that S^{*} satisfies all three conditions of definition 1, i.e. S^{*} is also a singularization area. Due to $\mu(A)>0$ we moreover have, that

$$
\mu\left(S^{*}\right)-\mu(S)=\left(\left[\frac{1}{2}(m+1)\right]-\kappa_{A}\right) \mu(A)>0
$$

which is impossible, since S is a maximal singularization area. Thus we see, that for each $m \in \mathbb{N}$:

$$
A \in \mathcal{P}_{m, 0}, \mu(A)>0 \Rightarrow \kappa_{A}=\left[\frac{1}{2}(m+1)\right]
$$

(Inequality $\kappa_{A}>\left[\frac{1}{2}(m+1)\right]$ is impossible due to condition (iii) from definition 1.) Put:

$$
\begin{aligned}
& E_{\infty}:=\{g\} \times[0,1] \\
& E_{m}:=\left\{\mathcal{T}^{k} A ; k \in \mathbb{Z}, A \in \mathcal{P}_{m, 0}, \mu(A)=0\right\} \quad(m \in \mathbb{N}) \\
& E:=E_{\infty} \cup\left(\bigcup_{m=1}^{\infty} E_{m}\right)
\end{aligned}
$$

Clearly one has $E \in \mathcal{B}, \mu(E)=0$.

Figure 2. (We have depicted G_{1}, \ldots, G_{4} in case $S=S_{\text {nicf }}$.)

Now define the bijection $\psi: \Delta_{S} \backslash E \rightarrow \Delta_{\text {nicf }} \backslash E$ by

$$
\psi(\xi, \eta):= \begin{cases}(\xi, \eta) & \text { if }(\xi, \eta) \in G_{1}:=\left(\Delta_{S} \cap \Delta_{\text {nicf }}\right) \backslash E, \\ \mathcal{T}(\xi, \eta) & \text { if }(\xi, \eta) \in G_{2}:=\left(\Delta_{S} \backslash \Delta_{\text {nicf }}\right) \backslash E,\end{cases}
$$

and define moreover (see figure 2) :

$$
G_{3}:=\left(\Delta_{\text {nicf }} \backslash \Delta_{S}\right) \backslash E, \quad G_{4}:=\left(S \cap S_{\text {nicf }}\right) \backslash E .
$$

Notice that due to the assumption that S is maximal and the definition of E one has that $\mathcal{T} G_{2}=G_{3}$.

With the above notations we have the following lemma :
Lemma. - $\psi\left(\mathcal{O}_{S}(\xi, \eta)\right)=\mathcal{O}_{\text {nicf }}(\psi(\xi, \eta)), \quad(\xi, \eta) \in \Delta_{S} \backslash E$.
Proof. - We discern the following five cases :

- $(\xi, \eta) \in G_{1}$ and (i) : $\mathcal{T}(\xi, \eta) \in G_{1}$, (ii) : $\mathcal{T}(\xi, \eta) \in G_{2}$, (iii) : $\mathcal{T}(\xi, \eta) \in G_{4}$;
- $(\xi, \eta) \in G_{2}$ and $(\mathrm{j}): \mathcal{O}_{S}(\xi, \eta) \in G_{1},(\mathrm{jj}): \mathcal{O}_{S}(\xi, \eta) \in G_{2}$.

We will show here only the case (jj) ; the other cases are proved in the same vein.

```
тOME 121-1993- N
```

Let $(\xi, \eta) \in G_{2}$, then $\mathcal{O}_{S}(\xi, \eta)=\mathcal{T}^{2}(\xi, \eta)$, and due to $\mathcal{O}_{S}(\xi, \eta) \in G_{2}$ one has by definition of ψ that

$$
\psi\left(\mathcal{O}_{S}(\xi, \eta)\right)=\mathcal{T}\left(\mathcal{O}_{S}(\xi, \eta)\right)=\mathcal{T}^{3}(\xi, \eta)
$$

Moreover $(\xi, \eta) \in G_{2}$ implies that $\psi(\xi, \eta)=\mathcal{T}(\xi, \eta) \in S$, hence

$$
\mathcal{T}(\psi(\xi, \eta))=\mathcal{T}^{2}(\xi, \eta)=\mathcal{O}_{S}(\xi, \eta) \in G_{2} \subset S_{\text {nicf }}
$$

and one finds

$$
\mathcal{O}_{\text {nicf }}(\psi(\xi, \eta))=\mathcal{T}^{3}(\xi, \eta)=\psi\left(\mathcal{O}_{S}(\xi, \eta)\right)
$$

Since $\psi: \Delta_{S} \backslash E \rightarrow \Delta_{\text {nicf }} \backslash E$ is a bijection, it at once follows from the Lemma and from $\mu(E)=0$ that ($\left.\Delta_{S}, \mathcal{B}, \rho_{S}, \mathcal{O}_{S}\right)$ and ($\Delta_{\text {nicf }}, \mathcal{B}, \rho_{\text {nicf }}, \mathcal{O}_{\text {nicf }}$) are isomorphic.

4. Some corollaries of the proof of Theorem 5

An easy calculation shows, that for $m \geq 1,0 \leq i \leq m-1$,

$$
\mu\left(\mathcal{R}_{m, i}\right)=\frac{1}{\log 2}\left|\log \left(\frac{F_{m+1} F_{m+5}}{F_{m+3}^{2}}\right)\right|
$$

where $\left(F_{k}\right)_{k \geq 0}$ is again the sequence of Fibonacci numbers. For $i \geq m$, put

$$
\mathcal{R}_{m, i}:=\emptyset .
$$

Now let S be some singularization area. Then the set $B_{S} \in \mathcal{B}$, defined by

$$
\begin{equation*}
B_{S}:=\left(\left[\frac{1}{2}, 1\right) \times[0,1] \cap \Omega\right) \backslash\left(S \cup \mathcal{T}^{-1} S \cup \mathcal{T} S\right) \tag{4}
\end{equation*}
$$

is called the area of the preservation of 1 's. It at once follows from definitions 1 and 2 that for any number x with R.C.F.-expansion (1) one has :

$$
\left.\begin{array}{l}
\text { the partial quotient } B_{n+1} \text { of } x \text {, equals } 1 \text { and } \\
\text { is unchanged by the } S \text {-singularization }
\end{array}\right\} \Leftrightarrow\left(T_{n}, V_{n}\right) \in B_{S} \text {. }
$$

We have the following corollary of the proof of Theorem 5, see also [K1, thm (4.11)] :

Corollary. - Let S be a singularization area, and let B_{S} be defined as in (4). Then :

$$
S \text { is maximal } \Rightarrow \mu\left(B_{S}\right)=0 .
$$

One could wonder whether the converse of this corollary holds; i.e. does $\mu\left(B_{S}\right)=0$ («with probability 1 no partial quotient equal to 1 survives») imply that S is maximal? We have the following proposition, which easily follows from the tools developed in the proof of Theorem 5.

Proposition. - Let $\mathcal{R}_{m, i}, m \geq 1, i \geq 0$, be defined as before. Put

$$
S^{*}:=\bigcup_{m=1}^{\infty}\left\{\left(\bigcup_{i=0}^{\infty} \mathcal{R}_{m, 3 i+1}\right) \cup \mathcal{R}_{m, m-m^{*}}\right\}
$$

where

$$
m^{*}=m^{*}(m):=\left[\frac{1}{3}(m+2)\right]-\left[\frac{1}{3}(m+1)\right], \quad \text { for } m \geq 1
$$

Then S^{*} forms a non-maximal singularization area such that $\mu\left(B_{S^{*}}\right)=0$ and one has :

$$
\begin{equation*}
\varrho:=\mu\left(S^{*}\right)=\frac{1}{\log 2} \sum_{m=1}^{\infty}\left[\frac{1}{3}(m+2)\right]\left|\log \left(\frac{F_{m+1} F_{m+5}}{F_{m+3}^{2}}\right)\right| \cdot \tag{5}
\end{equation*}
$$

Moreover, if $S \in \mathcal{B}$ is a singularization area for which $\mu\left(B_{S}\right)=0$, then:

$$
\mu(S) \geq \varrho
$$

Remark 4. - Using (5) one finds with the aid of a computer, that :

$$
\varrho=0.2776 \ldots
$$

Apart from this nothing is known about the constant ϱ. Compare this with the case S is maximal. One has :

$$
S_{\mathrm{nicf}} \doteq \bigcup_{m=1}^{\infty}\left(\bigcup_{i=0}^{\infty} \mathcal{R}_{m, 2 i}\right)
$$

which yields that for S maximal one has

$$
\begin{aligned}
\mu(S) & =\frac{1}{\log 2} \sum_{m=1}^{\infty}\left[\frac{1}{2}(m+1)\right]\left|\log \left(F_{m+1} F_{m+5} / F_{m+3}^{2}\right)\right| \\
& =1-\log G / \log 2=0.3057 \ldots
\end{aligned}
$$

томе $121-1993-\mathrm{N}^{\circ} 1$

Acknowledgements. - This paper was partly written during a stay of six months at the University of Washington, Seattle. I would like to thank the Department of Mathematics of the University of Washington for their hospitality. I also would like to thank the referee for many helpful suggestions concerning the presentation of this paper.

BIBLIOGRAPHY

[B] Bosma (W.). - Optimal Continued Fractions, Indag. Math., t. 50, 1988, p. 353-379.
[BK1] Bosma (W.) and Kraaikamp (C.). - Metrical Theory for Optimal Continued Fractions, J. Number Theory, t. 34, 1990, p. 251-270.
[BK2] Bosma (W.) and Kraaikamp (C.). - Optimal approximation by continued fractions, J. Austral. Math. Soc. Ser. A, t. 50, 1991, p. 481-504.
[FO] Friedman (N.A.) and Ornstein (D.S.). - On isomorphisms of weak Bernoulli transformations, Adv. in Math., t. 5, 1970, p. 365-394.
[K1] Kraaikamp (C.). - A new class of continued fraction expansions, Acta Math., t. LVII, 1991, p. 1-39.
[K2] Kraaikamp (C.). - Statistic and ergodic properties of Minkowski's Diagonal Continued Fraction, Theoret. Comput. Sci., t. 65, 1989, p. 197-212.
[L] Liardet (P.). - Question posed at the public defence of the dissertation of C. Kraaikamp, Amsterdam, 1990, April 23.
[NIT] Nakada (H.), Ito (Sh.) and Tanaka (S.). - On the invariant measure for the transformation associated with some real continued fraction, Keio Eng. Rep., t. 30, 1977, p. 159-175.
[N] Nakada (H.). - Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math., t. 4, 1981, p. 399-426.
[OW] Ornstein (D.S.) and Weiss (B.). - Statistical Properties of Chaotic Systems, Bull. Amer. Math. Soc., t. 24, 1991, p. 11-116.
[R] Rieger (G.J.). - Mischung und Ergodizität bei Kettenbrüchen nach nächsten Ganzen, J. Reine Angew. Math., t. 310, 1979, p. 171-181.

[^0]: （＊）Texte reçu le 17 juin 1991，révisé le 4 mai 1992.
 Cornelis Kraaikamp，Technische Universiteit Delft，Fac．TWI，vagroep SSOR， Mekelweg 4，2628CD Delft，Netherlands．
 Research supported by the Netherlands Organization for Scientific Research（NWO）．
 Classification AMS ：11K50，28D05．

[^1]: ${ }^{\dagger}$ In case $k=0$ this comes down to replacing (2) by $\left[a_{0}+1 ;-\left(a_{2}+1\right), \varepsilon_{3} a_{3}, \varepsilon_{4} a_{4}, \ldots\right]$.

[^2]: \ddagger In case $\frac{1}{2} \leq \alpha \leq g$ the definition of S_{α} needs some minor modification in order to satisfy definition 1 . Notice that $S_{1 / 2}=S_{\text {nicf }}$.

[^3]: tome $121-1993-\mathrm{N}^{\circ} 1$

