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MELLIN TRANSFORMS OF

WHITTAKER FUNCTIONS

BY

SOLOMON FRIEDBERG (*) and DORIAN GOLDFELD (**)

RESUME. — Soit G un groupe algebrique reductif connexe defini et quasi-deploye
sur M. Dans cet article, on etudie la transformee de Mellin de la fonction de Whittaker
associee a G. On montre que cette transformee de Mellin se prolonge en une fonction
meromorphe et satisfait a certaines equations de differences. On obtient un algorithme
pour ces equations de differences, et on Pillustre dans Ie cas G = GL(n) pour n petit.

ABSTRACT. — Let G be a connected reductive algebraic group defined and
quasi-split over R. In this paper the Mellin transform of the Whittaker function
associated to G is studied. It is shown that this Mellin transform has a meromorphic
continuation and satisfies certain explicit difference equations. An effective algorithm
for obtaining these difference equations is presented, and is illustrated in low rank cases
for G = GL(n).

1. Introduction
Let G be a simply connected Chevalley group defined over a local

field A:, and let A be a maximal A;-split torus of G. In his thesis, JACQUET [J]
showed how to define a Whittaker function W associated to the unramified
principal series of G(k). In this paper we shall study the Mellin transform
of Jacquet's Whittaker function when k is archimedean. This Mellin
transform, which is by definition the integral of W against a character of A,
converges absolutely in a subspace which is, after identifications, a product
of right half-planes. We show that it has a meromorphic continuation
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92 S. FRIEDBERG AND D. GOLDFELD

to the full space of characters and satisfies certain explicit difference
equations. Our method provides an effective algorithm for obtaining these
difference equations which has been implemented by 0. MCGUINNESS in
some low rank cases. We thank him for allowing us to incorporate his
calculations in section 5.

We shall present our argument in detail when G = GL(n + 1,R), for
simplicity, and then (in section 6) indicate the modifications to be made
for a general connected reductive algebraic group G defined and quasi-
split over R. Archimedean Whittaker functions in this generality were
first studied by SCHIFFMANN [Sc]. It is our pleasure to thank H. JACQUET
for many helpful and enlightening conversations. The first named author
would also like to express his thanks to the Columbia University mathe-
matics department for its hospitality during the 1990-1991 academic year.

2. Notation and statement of results
Let G = GL(n + 1,R), with n > 1. Let N < G be the sub-

group of upper-triangular matrices with diagonal entries equal to 1.
Set K = 0(n + 1,K), the standard maximal compact subgroup of G. The
Iwasawa decomposition identifies the symmetric space H = G/K^
of G with the set of matrices of the form z = xy with x G N and
y = diag(^/i • • • y^ V2 • ' • Vn, • • • , Vn, 1) with ^ > 0 for all 1 < i < n.

Let us recall the definition of JACQUET'S Whittaker function [J]. Let
v = (z/i, • • . , Un) G C". Define a function Yy : H -^ R~^ by

n n

^ /-,\ TT TT ,..̂ ,.̂ .7-\r f \ TT TT bi - j l ^ iY^)=[[[[yz J 3

i=lj=l

with
' i j if i -\- j < n + 1,

(n + 1 - i)(n + 1 - j ) if i + j ^ n + 1.\3 =

Let T> denote the algebra of G-invariant differential operators on H, which
is known to be commutative and isomorphic to a polynomial ring in n
variables. Then Yy is an eigenfunction of T>. Let Xy denote the resulting
character of P (the Harish-Chandra homomorphism) :

6Y^=\^(6)Yv (^eP).

Fix m = (mi,..., rrin) G Z72, with m\' • • rrin ^ 0. Define a character ^
of TV by

^(x) = exp(27n(mi^2 + • • • + m^n,n+i))

TOME 121 —— 1993 —— N° 1



MELLIN TRANSFORMS OF WHITTAKER FUNCTIONS 93

for x = (xij) C N . Then Jacquet's Whittaker function

W^ : H -. C

is characterized (up to scalars) by the properties

' SW^=\^(6)W^ fora lUeP;
W^(xz) = ̂ (x)W^(z) for all x G N ;
W^(z) decays exponentially as yi —> oo for each 1 < i < n.

For c G M, define the half-plane Re(^) > c to be the set of s e C71

such that Re(^) > c for all i = 1 , . . . , n. Consider an arbitrary continuous
function F : H —> C . For s = ( s ^ , . . . , Sn) G C^ we formally define the
Mellin transform of I7',

/•oo /*oo n 7

^CO- / • • • / y?•"ysnnF(y)Tl^•
Jy^=Q Jy^=0 ^ Vi

If F has sufficient decay as each y^ -^ oo and at worst slow growth as each
Vi —> 0, the above integral converges absolutely in a half-plane Re(5) > c
for some fixed constant c.

The primary purpose of this paper is to obtain the meromorphic con-
tinuation and growth properties of the Mellin transform of the Whittaker
function W^, regarded as a function of s and v.^M is known that there ex-
ists a real number N(y) such that the integral Wy{s) converges absolutely
for Re(s) > N(u). We shall prove :

THEOREM 1. — Let n > 1. The Mellin transform W^(s) has a
meromorphic continuation to all s^y € C77'.

Let s = ( ^ i , . . . , Sn)^ v = (^i, • • . , v-n} be complex variables. For brevity
let C[s] = C[s^ . . . ,^] and C[s^} = C[s}[^,... ̂ n}. If f(s^) e C[s^],
then /(s, v} may be written as a sum f(s^) = ̂  /^(z/); where the f^
are homogeneous polynomials of order /x in the variables v\,..., v^ with
coefficients in C[s]. We define deg^(/(5, v)) to be the largest integer fi such
that f^, is not identically zero. Also, we write Z+ for the set of positive
integers.

THEOREM 2. — Let n > 1 and let 6^,..., 6n be a set of generators for V
over C. Then for all sufficiently large positive integers M, there exist

(1) a finite set of shift vectors AM C (2Z+)7^;
(2) polynomials pa(s) G C[s] for a e AM ;

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



94 S. FRIEDBERG AND D. GOLDFELD

(3) a polynomial q(s, v) G C[5][A^(^i),..., \y{6n)\ satisfying

, deg^O,^)) > M,

and q{s, v} = 0 w/^en ̂  == ̂  . ̂ ,j^- for all z, 1 < i <^ n such that:

(2.1) W^s)=1— ^ pa(s)W^s+a) for all 5,^ e C71.
(A5?^ ^AM

REMARKS. — When n < 2 it is known (see [B, chap. X] and [BF1] for
the case n = 2) that W^{s) is a ratio of products of Gamma functions.
Similarly, in the non-archimedean case for n < 2 the p-adic Mellin
transform of the j?-adic Whittaker function is a ratio of products of
Gauss sums. In the non-archimedean case, this phenomenon breaks down
when n > 3. By analogy, one does not expect W^(s) to be a ratio of
products of Gamma functions when n > 3. Motivated by their integral
representation of the exterior square L-function, BUMP and FRIEDBERG
[BF2] have conjectured that for n > 3, W^{s) should restrict to a ratio
of products of Gamma functions on a certain subspace of s e C71 of
dimension two. This conjecture was recently verified by STADE [Sta] in
the case n = 3. __

The continuation of W^{s) for fixed u was first proved by JACQUET and
SHALIKA [JS1] using difference equations. The proof of THEOREM 1 given
here, while also utilizing difference equations, differs in that it is based on
an elementary counting argument involving integer partitions. This allows
us to obtain the quantitative form of THEOREM 2 which appears to be new.
It follows from (2.1) that for any fixed 5, W^(s) has polynomial decay
in v. Our methods are completely constructive, and hence, for any n > 1,
M sufficiently large, the set of shift vectors A^ and the polynomials pa-
(for a € AM), q{s,i^) can be effectively determined. Some examples are
given in section 5. Our method may also be used to give analogous results
for the partial Mellin transforms of Wy.

Since q(s^ v) vanishes when Si = ] » • • biji^j for 1 < i < n, THEOREM 2
supports the conjecture [G] that Wy{s) has poles when si = ̂  • b^ji^j. It
may also be shown that the polynomial q(s, v) has zeros at

s + a = Y^bjjj^j
j

for a in a certain finite set of shift vectors. See the proof of THEOREM 2
for details.

TOME 121 —— 1993 —— N° 1



MELLIN TRANSFORMS OF WHITTAKER FUNCTIONS 95

Let z = xy e H be as above, and let f(y) be a rapidly decreasing
function of ?/i, • . • , ̂ . Extend the character -0 to a function on H by the
formula ^(z) = ̂ (x)f(y). Also let 7V(Z) = N n SL(n + 1,Z). Recall that
a meromorphic function G(s) in a tube domain Re(s) > c has polynomial
growth if there exist two polynomials p(s), q(s), such that G(s)q{s)/p(s)
is holomorphic and bounded in the tube domain. As an application of
THEOREM 2, we have :

COROLLARY l.—Lets G C". Then the Poincare series [BFG, F, G, Ste]

P(z'^s^)= ^ Y^z)^z)
7€^V(Z)\SL(n+l,Z)

has a meromorphic continuation to all s e C71, and has at most polynomial
growth in s in any tube domain Re(s) > c.

Here the condition that f(y) be rapidly decreasing in y guarantees
that P(z', s,^) C L^SUn + 1,Z) \ H). COROLLARY 1 is proved by com-
puting the spectral expansion of P(z\ s, -0). We briefly indicate the contin-
uation of the cuspidal projection; the arguments for the continuous and
residual projections are similar. Let (f)(z) be a cuspidal automorphic form
in L2(S^n + 1, Z) \ H), and let v € C71 be chosen such that 6(/) = A^)^
for all 6 e P. Following [BFG], the Petersson inner product (P, 0) is the
Whittaker-Fourier coefficient of (j) corresponding to ^(x) times a sum of
shifts of the Mellin transform Wy (the shifts arise from doing a Taylor
expansion of f(y)). The continuation and polynomial growth of the cuspi-
dal projection follows from this and from (2.1) after summing over a basis
of cusp forms. Here we strongly use the fact that Wy{s) has polynomial
decay in the variable v and at most polynomial growth in the variable s.

3. Proof of theorem 1
Let s = (5 i , . . . ,5^) be variables. In order to prove THEOREM 1, we

shall study the action of P on the function

W=^(x)ysil"•ys^ (z=xy)

as s ranges over C71. First, we must develop some basic information on
the differential operators in V. We shall refine this to give an explicit
construction of a basis for V in section 5 below. However, this is not
needed for the proofs of the Theorems.

Write B for the standard Borel subgroup of G of upper triangular
matrices. Denote the Lie algebras of G, SL(n+ 1, R), B, and K by G , G i,
B , and K, respectively. Given an arbitrary Lie algebra £, we shall denote

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



96 S. FRIEDBERG AND D. GOLDFELD

its universal enveloping algebra by U{£), and its subalgebra of right K-
invariant elements by U^C^. Then the G-invariant differential operators
on H are naturally identified with the quotient space

U{G,)K/{U{G,)K^U{G,)K)

(cf. [H, chap. II, thm 4.6]). Elements of U{G^)K operate on C°°{H) in
the standard manner by successive application of the formula

(3.1) Xf{z) = -^f{zexp{tX))^ (X C G) .

Let us extend (3.1) to an action of U{G) on C°°(H) (even though
the action is no longer compatible with the passage from group to
symmetric space). Then since a function on H is right J^-invariant, the
left ideal U(G )K acts trivially.

LEMMA 1. — Suppose u e U{G ).
(1) There exists an element of U{B ) whose action on C°°{H) is the

same as that of u.
(2) The action of u on C°°{H) is given by a {non-commutative)

polynomial in the operators

9 9
Vn^-l-i a—————— — Vn-i+2: Q b/n—z+z r^

OVn+l-i Oyn-i+2

for 1 :< i < n + 1 {with yo = yn^-i = 0), and

\- 9
/ , Vn-j-^2 • • • yn-^l-i Xk
k=l

9x kj

for 1 < i < j ^ n + 1 {with x^i = 1).

Proof. — By the Iwasawa decomposition,

G = B C K .

Consequently
U { G ) = U { B ) ( S ) U ( K ) .

From this it follows that the coset u+U{G )K in U{G )/U{G )K has a coset
representative u' in U{B ). Since every function in C°°{H) is annihilated

TOME 121 — 1993 — ?1



MELLIN TRANSFORMS OF WHITTAKER FUNCTIONS 97

by the left ideal U(G )K, the action of u is the same as that of u ' . Part (1)
is then established.

As for part (2), let X e B . Since exp(tX) c B, we may explicitly
compute the action ofX on C°°(H) by applying the chain rule to compute
the derivative (3.1). Let Eij denote the elementary matrix with 1 at the
(z,j')-th position and 0 elsewhere. Then a basis for B is given by the
elementary matrices Eij with l < i < j < n - \ - l . The action of these
basis elements is computed as follows. For 1 < i < n + 1, one has

exp^^diag^,...,!,^, 1,...,1)

with the e* in the %-th position, while for 1 < i < j <^ n + 1,

exp(tEij) = I - } - tE i j .

If f{z) € C°°(H) and z = xy in Iwasawa coordinates, let us write
f{z) = f{x; y) = f{x^ y,). Then for 1 < i < n + 1,

f(z exp(^,)) = f(x\ ̂ /i, . . . , yn-i, Vn-i+l e^ Vn-W e"^ Vn-W, • • • , Vn) •

Similarly, for 1 < i < j < n + 1, one has f(zexp(tEij)) = f ( x ' ' , y ) with

{ ^kj = xk,3 + tyn-j-^-2 ' ' • 2/n-i+l.T/^, k = 1, . . . , Z;

,̂m = x^m r n ^ j or m = j, £ > i.

The proof of part (2) immediately follows.

LEMMA 2. — Suppose 6 C P. Then

6Is(z)= ^ c(5;a,^)J^O),
<r(E6'(6)

where the sum is over a finite set S(6) of shift vectors a = (o-i,... ,a^)
with each a^ a non-negative integer, and c(,s; a, 6) C C[5i,.... Sn]-

Proof. — Since the action of 6 is given by an element of U(G), this
follows immediately from LEMMA 1.

REMARKS:
(1) LEMMA 2 defines the set S(6) for 6 € V.
(2) Using the explicit description for V to be presented in sec-

tion 5 below, one may sharpen LEMMA 2 by showing that if a e S{6),
then a-i = 0 or 2.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



98 S. FRIEDBERG AND D. GOLDFELD

(3) Let N-t be the subgroup of N of matrices (xij) with a^+i = 0
for 1 < i <, n, and N i denote its Lie algebra. Since the function Is(z)
is constant on TVi, one finds that giving a precise description of the shift
vectors S(6) for all 6 6 V is equivalent to giving a description of

U(G ^/(U^G i)^ n U(G i )K) (U(G i)^ n U(G i)N i).

Let L = C(5i , . . . , Sn)' Define S to be the infinite dimensional vector
space over L freely generated by the set of all shift vectors a G S(6)
with 6 G P. By LEMMA 2 there is a natural map

M :V-^S

which assigns to each 6 C T> the sum of shift vectors (S)a(E:s(6} ̂ ^ cr? ^) ' a -
This map extends to a map, again written M, from V (g) L to <S.

LEMMA 3. — 77?, e map M \T> (^) L —^ S is injective.

Proof. — If f^g are A^(Z)-invariant functions on H such that
f(z)~g(z) G ^^^(Z) \ 7f), let us write (/,^) for the integral

(f.9}= I f(z)W)^
JNCL^H/NW\H

where dxz denotes the (unique up to a constant) smooth G-invariant
measure on H. If 6 G P, let ^* be the adjoint of 6 with respect to ( , Y
Extend the adjoint map anti-linearly to a map * : P ( g ) L — ^ P ( g ) L ,
where L = C ( s ] _ , . . . , Sn)'

If LEMMA 3 is false, then there exists 6 6 V (g) L such that 6{Is) = 0
for all s C C^. Choose a basis {61,62^3,...} for V as a complex vector
space, and set ^* = Spj^5)^' ^h Pj(5) e ^' ^t follows that for Re{s)
sufficiently large,

0={W^6Is)=(^W^Is)

=(^p,(.)A,(e,))(^,J,).

Since for Re(s) sufficiently large {Wy.Is) converges absolutely to a func-
tion which is not identically zero, this implies that

^p,(s)\^e,)=0.

But for j > 1 the functions A^(e^) e C[^i, . . . , Vn} are linearly indepen-
dent over C. Indeed, if not, one would have a non-zero 6 G T> such that

TOME 121 —— 1993 —— N° 1



MELLIN TRANSFORMS OF WHITTAKER FUNCTIONS 99

6(Yj,) = 0 for all y. This would contradict the injectivity of the HARISH-
CHANDRA homomorphism [HC]. Consequently, the pj(s) all vanish iden-
tically and <5* = 6 = 0.

The key to the proof of THEOREM 1 is that there are more differential
operators than shift vectors which do not shift some particular coordinate.
To state this precisely, given a shift vector a = (o-i, . . . ,a^), define its
weight to be w{a) = Y^^ cr^. For a positive integer k, let Sk denote the
finite dimensional subspace of«S generated by all shift vectors S(6), 6 e P,
satisfying w(S(6)) < k. For 1 < j < n, let S(j) denote the subspace
of S spanned by all shift vectors a = (o-i , . . . ,(T^) with aj = 0. Also,
recall that P is isomorphic to a polynomial ring in n variables. Choose
a set of generators ^ i , . . . , 6n for P as an algebra over C. Define P/c to
be the subspace of V spanned by the monomials 61^1 " ' 6^ whose total
degree ̂  ki is less than or equal to k.

LEMMA 4. — Let m = maxw(cr), where a ranges over Ui<i<n5'(^)-
Then fork >n(n!) •m71-1,

dimc(Pfc) > dimc(Smk H S(j))

for each j = 1 ,2, . . .n.

Proof. — If n = 1 the Lemma is trivial, so suppose that n > 1. Let
P(a, b) denote the number of partitions of a non-negative integer a into
at most b parts, with the convention that P(0, b) = 1. Then

dimc(Pfc)^^P(a,n).
a=0

On the other hand, each vector a of weight a with o-j = 0 gives a partition
of a into (n — 1) pieces. Thus

mk

dimc(<Smfc H5(j)) < (n - 1) !^P(a,n - 1).
a=0

To compare these sums, recall the asymptotic formula of ERDOS and
LEHNER [EL] for the partition function

^n-l
P(a,n) ~ —————— (a —> oo,n fixed).

n\ (n — 1 ) !

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



100 S. FRIEDBERG AND D. GOLDFELD

Combining this with the trivial bound P(a,n) = C^a71"1), we see that

f^n

dimc(Pfc) ^ T—^ as k -^ oo,[n.)

while

dime (Smk n <S(j)) ^ v / as k -> ex).
I77' -U •

The result follows.

We now prove THEOREM 1. Observe first that M(Rk} C Smk- It then
follows from LEMMAS 3 and 4 and elementary linear algebra that for k
sufficiently large there are differential operators dj e P/c 0 L, 1 ̂  j < n,
such that M(dj) has no components in 5'(j). In other words, for 1 < j < n,

^s) = ^ c{s',a,dj)I^a
a€S{dj)

where c(s;a,^-) e L>< and all shift vectors a G S{dj) have cr^ > 0. Then
for s G C71 with Re(s) > A^(z/) and fixed j, 1 < j < n,

\^)(I^W^=(I^d]W^}
={d,I^W^)

= ^ c(s;a,dj)(I^a,W^).
creS{dj)

(In the above equation, \y has been extended L-linearly to a map on V(^L.
Since d^ is a function of ~s, A^(dJ) is thus a function of 5.) But the right
hand side is a meromorphic function in the larger region

{(5,z/) e C71 x C71 | Re(^) > N^) - Cj,Re{si) > N(i^)
for 1 < i ^ j <n},

where cj > 2 is the coefficient of the lowest shift in sj which occurs.
Iterating, this gives the meromorphic continuation of W^(s) to C^ x C72'.

TOME 121 — 1993 — ?1



MELLIN TRANSFORMS OF WHITTAKER FUNCTIONS 101

4. Proof of theorem 2
Let s i-̂  5' denote the linear transformation of C"' such that

^ * " V^ = Y s f ' Suppose that the algebra V is generated by ^ i , . . . , 6n.
Then the algebra P (g) L is generated over L by

<^l - A,^i), ̂  - A,/^), . . . ̂ n - A./((U

The set of shifts associated to 6i-\s'(6i) acting on Is does not contain the
trivial shift (0 , . . . , 0). (Note that the set of shifts associated to ̂  - As/ (^)
acting on 1^ for some other w G C71 may contain the trivial shift, but by
LEMMA 2 will not contain any negative shifts.) The proof of THEOREM 1
thus shows that there are differential operators di = c^(s), given by
polynomials in these generators with no degree zero term, such that for
all s C C^ with Re(s) > N(v}

A,K*)(J.,^)= ^ c(^;a,^)(J^,^)
cr^S{di}

where a G S(di) implies o-i > 0.
To prove THEOREM 2, one must apply successively the differential

operators di{s + a^), i = 1,. . . , n, with a^ ranging over a set of relevant
shift vectors. First apply di. Then, inductively, we may assume that after j
steps one obtains

(4.1) q,(s^){^W^}= ^ p^{s){I^^)
aesu)

where the S^ are finite sets of shift vectors such that a = (ai , . . . , o~n)
in S^ implies that (TI > 0 for 1 < i <^ j ' , pj^ e C[s}; and qj{s,v)
is a polynomial in C[s} [A^(^ i ) , . . . , A^(^)] with qj(s,sf) = 0. To this
expression we apply the operator

JJ d,+i(5+a^),
aU)eSW

thereby obtaining an expression similar to (4.1) but with j replaced
by j + 1. The set S^3^ is the set of all shifts obtained by adding
shifts in S^ and \S^\ shifts arising from the action of dj+i. Continuing
inductively, one obtains the desired equation (2.1), with a particular M.
But then iterating (2.1), we see that we may make the degree in y of q{s, v)
as large as desired. Since v = s ' if and only if Si = ̂  • biji^j for all z,
1 < i <: n, THEOREM 2 is proved.

Observe that there are additional zeroes of the polynomial q(s^ v)
at v = (s + o-^y for a^ G S^, 1 ̂  j < n - 1.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



102 S. FRIEDBERG AND D. GOLDFELD

5. Explicit computations
In this section we shall illustrate THEOREMS 1 and 2 with some

explicit examples when n is small. These examples are based on computer
calculations done with the help of Oisin McGuiNNESS. The calculations
are based on an explicit set of generators for the algebra P of G-invariant
differential operators on H, which we now describe.

Recall that the algebra P may be naturally identified with the quotient
space

u(G,)K/(u{G,)Knu(G^).
In the case at hand, the natural map to this space from the center Z of
the universal enveloping algebra of G is surjective (see [H, chap. II]). The
algebra Z may be described as follows.

Let m be a positive integer, and write Sm for the symmetric group on m
elements. For a monomial M = Xi • • • Xm € U(G), with the X, G G , let
s(M) denote its symmetrization s{M) = 1/m! Z^-e5m xr^ ' ' '^(m)-
For g e G, 0 < r < n, put ujr(g) = trace /^^g, the sum of the principal
(r + 1) x (r + 1) minors of g. Define Zr G Z as Zr = 5(^(^,j));
that is, apply u^r to a formal matrix g = (^j), substitute for each
entry gij the elementary matrix Eij e G , and symmetrize. Then (see for
example [JS2]) Z ^ C[zo,..., ̂ ]. We shall write the differential operators
on H associated to the Zr as 6r. The action of 60 is easily seen to be trivial;
we have

P^C[^i , . . . ,^] .

The 6r may be obtained as explicit differential operators as follows.
Find the Zr € Z as above; each Zr is a sum of products (in the universal
enveloping algebra) of elementary matrices. To compute the action of Zr,
observe first that if u e U(G ), 1 < i,j < n + 1, then

(5.1) uE,j = uE^i (mod U{G )K) ;

this holds since Eij - Ej^ e K. Hence for any i and j, uEij and uEj^
give the same action on C°°(H). Applying repeatedly the commutation
relations

- ^p,q^s,t — Es,tEp^q = 6q^sEp^ — 6p^Es,q (Kronecker 6)

and using repeatedly (5.1) when i > j, one may obtain an element
br € U(B ) whose action on C°°{H) is the same as Zr. (This is an
alternative, algorithmic, proof of LEMMA 1 part (1).) Then writing br in
terms of the basis {Eij, 1 < i < j < n + 1} of B , and using the formulas
given in LEMMA 1 part (2), one obtains the differential operators 6r.
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This procedure may be carried out in practice to obtain explicitly the
ingredients used in the proofs of THEOREMS 1 and 2. For example, the shift
vectors occurring in S(6r) are given by :

n=l: ^i)-{(0),(2)}.

n= 2 : S{6i) = 5(^) = {(0,0), (2,0), (0,2)}.

n=3 : S(6i) = S(6^) = {(0,0,0), (2,0,0), (0,2,0), (0,0,2)}.
S(6s) ={(0,0,0). (2,0,0), (0,2,0), (0,0,2), (2,0.2)}.

n = 4 : S(6i) = S(6^) = {(0,0,0,0), (2.0,0,0), (0,2,0,0),
(0,0,2,0), (0,0,0.2)}.

S{63) = S{6^ = {(0,0,0,0), (2,0,0,0), (0,2,0,0),
(0,0,2,0). (0,0,0,2), (2,0,0,2),
(0,2,0,2), (2,0,2,0)}.

One may also give the shift coefficients. For economy, we shall take
all m-i = 1 in the definition of V>(a;), list the coefficents each divided
by ('2m)2, and omit the formulae for the coefficients c(s; (0),6i) = \s'{6i)
of the (0) shift vector.

n = l : c(si;(2),^i)=-l.

n = 2 : c(si.S2;(2,0),(5i) = c(si,S2; (0,2)A) =-1.
c(si,S2;(2,0),^) = 1 -S2.

c(si,S2;(0,2),(?2) =Si- l .

n= 3 : c(si,S2,S3;(2,0,0),<?i) = c(si, s-z, 83; (0,2,0), &i)
= c(si, S2, S3; (0,0,2), <5i) = -1,

c(si, ,S2, S3; (2, 0, 0), 62) = 2 - S2,

c(si,S2,S3;(0,2,0),(?2) = Sl -S3,

c(si,S2,S3;(0,0,2),^) =S2 -2,

c(si,S2,S3;(2,0,0),^3) = -I +S3(S3 - 1) + JS2 -52^3,

c(si. S2, S3; (0, 2, 0), 63) = ̂  + SlS3 - |(S1 + S3),

c(si, S2, S3; (0, 0, 2), 63) = -j + Sl(si - 1) + JS2 - S2Si,

c(si,S2,S3;(2,0,2).^) =(27TZ)2.

For n = 1, the difference equation (2.1) is given by

~ 47T2 ~

wv^=^^(^)wv(sl+^
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while for n = 2, it takes the form

—— (47T2)2 ——
w^8^ = q(s^) (2 ~ 81 ~ S2)(sl + 82) •w^81 + 2? 52 + 2)'

where

^^) = [(^i - l)(A,(<5i) - A((2.2-.i)/3,(2.,-.2)/3)(^))

+ (X((^2) - A((252-5l)/3,(2sl-52)/3)(^2))j

X [(l - 52)(A^l) - A((252-5i-2)/3,(2^-52+4)/3)(^l))

+ (A^2) - A((252-5l-2)/3,(25l-S2+4)/3)(^2))j.

Here
A^(^l) =^l + ^2 + ^1^2 - ̂  - ̂ J,

^((^2) =(^2 - ̂ l)(l - ̂ 1 - ̂ 2 +^1^2).

6. Generalization to other groups
In this section we shall indicate the generalizations of THEOREMS 1

and 2 to a connected reductive algebraic group G denned and quasi-split
over R.

Let B = AN be a Borel subgroup defined over R, with unipotent
radical N and Levi factor A. Let T be the maximal R-split torus contained
in A, and let Z denote the center of G. Write X(T) for the Z-module of
rational characters of T which are trivial on Z D T, and let X(T)c =
X(T) 0z C. If the semisimple real rank of G is n, then X(T)c has a
canonical structure as a complex analytic manifold of dimension n.

Let N be the group opposed to N , and ^ be a linear character of N(R)
which is nondegenerate, i.e. such that -0 is nontrivial on TV^n^A^M).',
for each s in the normalizer ofA(IR) in G(R) but not in A(M). Let K denote
a maximal compact subgroup of G(R). For each v C X(T)c, there is a
right JC-invariant Whittaker function W^ e Ind^('0) with trivial central
character (see [Sc]). Let °T denote the topologically-connected component
of the identity of r(IR). Then the Mellin transform of W^ is the function
on X(T)c defined by

(6.1) W,(a)= [ a(a)W^a)^a,
JoT/QTnZ(R')

where d^ denotes a choice of Haar measure on "T/^T n Z(R). Let
A = { a i , . . . , On} be the set of positive simple roots of G with respect
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to B. Then one may show that for each v € X(T)c there exists a real
number N(^) such that the integral (6.1) converges if a = ̂ ^=1 o^ 0 Si
with Re (si) > N(y) for each i. We have :

THEOREM 3. — Suppose that G is a connected reductive algebraic group
defined and quasi-split over R. Then the Mellin transform W^{a) has a
meromorphic continuation to all a, v € X(T)c-

Let H = G(R)/KZ(R) be the symmetric space for G(R). Let P denote
the algebra of G(R)-invariant differential operators on H. This algebra
is again isomorphic to a polynomial algebra in n variables. Let \y be
the associated Harish-Chandra homomorphism. Then regarding v as a
function on H which is one on the cosets of A^(R), 6{v) = A^(^) • v
for all 6 G V. As a function of v, the map \y(S} is a Weyl-invariant
morphism from X(T)c to C. Identify X(T)c with C71 via the map
a = Y,^ Oii (g) Si ̂  s = ( ^ i , . . . , 5n ) . We may then regard the \^(6) as
polynomials in n complex variables. Also, define a linear transformation
v ̂  v ' of C71 by the condition 6W^ = 6{Y[ <1) for all 6 € P.

THEOREM 4. — Suppose that the hypotheses of Theorem 3 hold. Let
61 , . . . , 6n be a set of generators for V over C. Then for all sufficiently
large positive integers M\ there exist

(1) a finite set of shift vectors AM C (Z"^)71,
(2) polynomials pa{s) e C[s} for a G AM,
(3) a polynomial q(s, u) G C[5][A^i),..., A^n)] satisfying

deg,(9(5^))>M, q^sf)=0

such that

^ 0 0 = — — . E P^^(s+a)
q{ ' / (TCAM

for all s,v G C71 ^ X(T)c.

The proofs of these results may be obtained by the same method as
that used above for GL(n+1, M). Namely, by the Iwasawa decomposition,
elements z of H may again be represented as z = xy, with x € ^(R),
y C°r. Then one studies the action of V on the function

W^Wa^^-'-a^^).

Write the Lie algebras associated to G(R), B(M), T(R), N(R) and
J^ as G , B , T, N and K respectively. Then LEMMA 1, part (1) holds
if one replaces U(B ) by U{T) (g) L^(N ), with a similar proof (note that
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G(M) = KT(R)N(R) even though in general B(R) ^ T(R)7V(R)). One
may deduce from this that LEMMA 2 holds in general.

The proof of LEMMA 3 in the present case is similar to that given for
GL(n + 1,K). One introduces an inner product on functions on r \ H,
where F is a discrete subgroup of 7V(M) such that '0 is trivial on r,
and then follows the proof above. Key use is made here of Harish-
Chandra's theorem [HC], which asserts that the characters \^(d) defined
above are linearly independent as d ranges over a basis of V. Since the
algebra of G-invariant differential operators on H is again isomorphic to a
polynomial algebra in n variables, one may employ the counting argument
above to establish LEMMA 4 in this generality. With the lemmas in place,
the proofs of THEOREMS 3 and 4 then follow by the same arguments used
to prove THEOREMS 1 and 2.

If ^ is a degenerate but nontrivial linear character, then a similar
method may be used to establish the meromorphic continuation of a
suitable Mellin transform of the Whittaker function associated to ^, and
to give finite difference equations for such a Mellin transform.
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