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ON A PROBLEM OF TAMAS VARGA

BY

P. ERDOS, M. JOO AND I. JOO (*)

RESUME. — Dans la premiere partie, on considere des proprietes quantitatives des
nombres q ou un developpement en base q de 1 possede un nombre non borne de
chiffres 0 consecutifs. Dans la seconde partie, on etudie la distribution des sommes
finies Y e ^ g S ou ei = 0 ou 1 pour des valeurs speciales de q. La troisieme partie
est consacree a P etude de la distribution des chiffres dans les developpements gloutons
des nombres x presque partout dans [0,1]. Finalement, on pose des problemes ouverts.

ABSTRACT. — In the first part we investigate the quantitative properties of the
numbers q for which there exists an expansion of 1 in base q where the length of
consecutive 0-digits is not bounded. In the second part we study the distribution
of the finite sums Y^ £zQ\ £i = 0 or 1 for special values q. The third part is devoted to
the study of the digit distribution of the greedy expansion of a.e. x 6 [0,1]. Finally we
give some open problems.

Dedicated to academician Vera T. S6s
on the occasion of her birthday

During his marvellous mathematical teaching activity Tamas VARGA
found a lot of deep new problems. We mention the following one : in a
heads or tails game repeated n times how long sequences of consecutive
heads can be found? In other words, if we consider the dyadic expansion

00 / \^£k(x)
x ~ L^ ^k

of a randomly chosen number 0 < x <^ 1, what can be asserted about the
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508 ERDOS (P.), JOO (M.) AND JOO (I.)

longest sequence of consecutive D-digits (resp. 1-digits) between the first n
digits ? This problem has thoroughly been investigated by many authors,
see e.g. [1] and [2].

1.—In the paper [4], one of the authors modified the problem as follows.
Let 1 < q < 2 be an arbitrary number and consider the expansions of the
number 1 of the following type :

oo ^
(1) 1 = V^ —-5 HI € N are different (natural numbers).

i=l q

For some values q this expansion is not unique so the uniqueness
problem can be investigated as well (see [5], [6]). Recently the second
and third author proved in [7] that in the case q = v^2 there exists an
expansion 1 with the property :

(2) sup(n^+i - rii) = oo.
i

The authors of the present paper, V. KOMORNIK and M. HORVATH
solved the uniqueness problem of the expansion (1) in [5] and [6],
further P. ERDOS and I. Joo studied in [8] the properties of the se-
quence (n^+i — rii).

In this paper consider the following properties of the expansion (1)

(2') sup nl = oo,
i 1

(3) lim (r^+i — ni) = oo,
i

(3') lim ̂  = oo.
i 1

Obviously (2') =^ (2) and (3) ==^ (37), further the reverse statements do
not hold in general.

THEOREM 1 (cf. [8]). — The set

A := < q e ]1, 2[: there exists an expansion (1) satisfying (2) ^

is residual and of full measure in ]1 ,2[ .

Problem 1. — Does the statement of the THEOREM 1 remain true after
substituting (27) in place of (2) in the definition of A ?

TOME 120 — 1992 — N° 4



ON EXPANSIONS 1 = ̂  q^ 509

THEOREM 2. — The set

B := ^q e ]1,2[ : ^/iere e:m^5 an expansion (1) satisfying (37) ^

Z5 of first category and of measure zero.

Proof. — It is enough to make the proof for the sets

B H ] 1 + ^ 2 [ , 6>0.

Consider arbitrary numbers l + ^ < ^ i < ^ 2 < 2 , and sufficiently
large t € N :

(4) i-ES-E^-Tr^i 9i ^ Q2 Q2

It follows from 1 -\- 6 < q\ that there exists k <, c(6) with Ek = 1.
Consequently

1 v^ / 1 1 \ 1 1-E^b-,.)^+t S ^1 q^ ~ q^ ^

^ [<7i+((72-gi ) ] -^1 ^ fe(g2 - gi) ^ ^2 -gi
9i^ - Qi^ ~ ^+1

i.e.

(5) q2-qi < n+t-/c-l ^ n+*-c(6) ^ (1 + ^n+t-c(<$) '

Denote Bn the set of those 1 + 6 < q < 2 for which there exists an
expansion of 1 satisfying rii/i > t for ni > n. Take a number TV > 2n.
We see that between ^N and N there exist > ^t consecutive zeros for— 1any q G Bn. Indeed, assume the contrary. Then between ^N and N there
exist

^N _ 3 N
^ -Vi = 2 T ̂ ^

and then z > ^ N / t and rii < N would imply that r^/z < j^. The
contradiction shows that there exists > ^t consecutive zeros between
^N and N ; hence q can be covered by an interval of length

< (l_p^)-^/2-t/3+c(6)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



510 ERDOS (P.), JOO (M.) AND JOO (I.)

see (5) above. For any q G Bn and N we get an interval; the number of
such intervals is not greater than N times the number of the sequences
£ 1 , . . . , EN with Hi > it and ni > n. In particular e\ + . . . + e^ ^ N / t
(if N > nt). The number of choices of N / t digits from e\,..., EN is

N ^ N(N - 1) • - (n - [ N / t ] + 1)
N / t } ) ~ pV/^t,[N/t}j [ N / t } \

^[N/t]
< c

{{N/^e-^^N/t}

N [ N / t ]
< c m^N/w)^
<cV /V^(2^)A^

<cVt2C^^N/t

<cVt 2^0 (e(t) -^ 0 when t -^ oo).

Hence the sum of the length of the above intervals covering Bn is not
greater than cVt(l + (5)c^)-t/3 • N (2^ / V]~T6)N. Given 6 > 0 we can
choose t ^ t(6) satisfying 2 E ^ / ^ / 1 +6 < 1. If we fix t and let N tend to
infinity, we see that the set Bn can be covered by finite systems of intervals
of arbitrary small length sum. Consequently Bn is nowhere dense and of
measure zero.

00

Since B C |j Bn the proof of THEOREM 2 is complete. []
i

Remark. — By (3) =^ (3') the same statement holds with (3) instead
of(3Q.

THEOREM 3. — Define the set

C := ^q G ]1 ,2 [ : there exists an expansion (3) satisfying (1) ^,

For any interval I C ]1, 2[ ^e intersection I H C has 2^° many points.

Proof. — Take any value 1 < qo < 2 and any expansion 1 == ]C^/^o-
The set of <7 for which there exists an expansion of 1 starting with
^ i , . . . ,En, forms an interval whose length tends to zero when n —^ oo.
This can be verified just as in (5). Consequently it is enough to prove that
given qo and n arbitrary we have 2^° many q € C whose "good" expansion

TOME 120 — 1992 — N° 4



ON EXPANSIONS 1 =^qn^ 511

starts with ^ i , . . . , En' Fix a sequence n < n\ < n^ ... satisfying (3) and
construct a set P of infinite subsets of the set {^i,^...} such that
Pi,?2 ^ P implies Pi C ?2 or P^ C Pi and there are 2^° elements
of P. This can be done in the usual way mapping the set {n^} onto the
set of rational numbers Q in a one-to-one way and then consider the
sets Q H ]-oo, x[, x C R. Now for every P e P it corresponds to a q = qp
by the rule

i=y£i+ y ±.
^ n^p^

Then qp e (7 and for different P the value qp is also different (in case
PI C ?2 we have q^ < q^).

THEOREM 3 is proved. \\

2. — Now consider the following problem. For given 1 < q < 2 define
the sets

n-l

An •= An(q) := {^ ̂ 9' : ̂  = 0 or 1^, n = 1, 2 , . . .
i=0

(n) ^ ^ ./n)If we arrange the sums An in a sequence y\ ^ . . . < 2/2 / , we can write

An={^7 ^ ) : 1^^2 n}•

LEMMA 1. — We have %" — % ^ 1 /or a/Z k and n.

Proof. — Almost the same is proved in [6]. It runs as follows. We apply
induction o n n . I f n = l then An = {0,1} so the statement is true. Suppose
it for An and prove for An-\-i. Obviously we have

(6) An^=AnU(qn+An).

Now if in An there is an element larger than q^, the smallest element
of q71 + An, then the inductional hypothesis gives the statement by (6). If
not, we have to check that the distance between the largest element of An
and q71 is not larger than 1, i.e.

(l^q+q2+...+qn-l)+l^qn i.e. q^—1- > ̂  - 1.
q - 1

But this is true since 1 < q < 2.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



512 ERDOS (P.), JOO (M.) AND JOO (I.)

LEMMA 2. — The polynomial

r

Pr{x) -^x^ -^x^ r^ 1
k=0

has exactly one zero ^r in ]1,2[ and ^r ~^ 2 monotone increasingly
as r —> oo.

Proof. — Define the polynomial Qr by

^+1 - trr+l - 1 _ xr+2 - 2xr+l + 1 ._ QrWPr(x) = X7

x — 1 x — 1 . r — 1

We see that the polynomial Qy- decreases for 1 < x < XQ^ increases for
XQ <, x < 2, where XQ = 2(r + l)/(r + 2), further Qr(l) = 0, Qr(2) = 1.
It shows that Qr(x} has exactly one zero ̂  in ]1, 2[ and a;o < ^r < 2. It
implies at once that ^ ^> 2 as r —^ oo. On the other hand

Qr^r-l) = ^r+? - 2^+i1 +1=1- ̂ -l < 0

which shows that ^r-i < ̂ r-

LEMMA 3. — Let n ̂  1, q = £,r Jor some r ^ 1 and An = An{q). Then
we have An H ]qn, 1 + ̂ [= 0.

Proof. — By ^ = ̂  we have Pr(^) == 0, i.e.

(7) l = l + • + . . . + 'q q2 gr+l

Iterating this we get the other representation

m 1 = E ^
k=l -1

fcfr+1

Next we show that

oo -.

>E?
k=l '

(9) i>E^
fc=i '
k^r

TOME 120 — 1992 — N° 4



ON EXPANSIONS 1 = ̂  q^ 513

and equality holds for r = 1. Indeed, we can transform the numbers
^-r^-2r-l^-3r-2^ ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  oU^H

1 ]__ 1 1 / 2 _2_\

(^^"^g^^ T^^^ ̂ '^ ̂ J
1 1 ^ 2 2 ^

+ ^2r+l + ^2r+2 + ^ ^2r+3 + '" + 3r+l )

1 1 / 2 2 \
+ ^T^ + ^TS + ^ ^3r+4 + "• + ~q^2 ) + '"

which implies (9). This shows that if y e An and y > q"" then the first r
digits en-l,£n-2,- • • ^n-r of

n-1

y=^6^
i=l

must be 1 (otherwise y < q^. If Cn-r-i = 1 then ̂  = E^-i ̂ ^ and

hence y > q^ clearly implies y > q71 -}-1. If Cn-r-i = 0 then define

n-l

Vi '=y- Y^ ^ €A^_^_ i .
i=n—r

Since 9n-l + . . . + (f^ = g^ - 9n-r-l, this implies

^-r-1 < y, < g™-1 + 1.

Iterating this process we finally find a value 1 <, n <^ r + 1 and y G An,
q71 < y < 1 + q1^. But this is impossible since n < r + 1 implies
that ^n ^ 1 + <7 + . . . + ̂ n-l. The contradiction proves the LEMMA 3. Q

Now introduce the Fibonacci-type sequence Fn^ by the recursion :

(0 for n < 0,
(10) F^= _

^F^+l forrzX).
i=l

We see that

F^ =T for 0 < n < k, F^ = 2^+1 - 1,

pW _ ^+2 o pW _ ^+3 1 -I
" / i ;+2— z - °^ ^+3 — ^ - 1 1 '

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



514 ERDOS (P.), JOO (M.) AND JOO (I.)

THEOREM 4. — Let n, r = 1,2. . . and q= S,r- Then

(a) \A^q)\=F^r+l\

(b) min (^-^))>1

i</c<271 y
^l/^

anc? equality holds for n > r + 1.

Proof. — Consider first the case n < r. Then

gn-(l+9+...+gn- l) ^ x >0
g

hence
An n (^n + An) = 0

and then from the obvious relation

A^+i =AnU{qn^An)

we see at once that

|4 | _ 9 | /i | _ _ 9^ | 4 1 _ 9^+1 _ c-^+1
l^-n+ll — z l^nl — • • • — ^ l^lll — ^ — r n-\-l

further (b) is also true and equality holds only for n = r + 1.
Now let n ^ r + 1. Then An and qn + An has nonempty intersection

since q^ = ̂ n-l + . . . + qn~r~l. We show that in this case the sets An
and q^ + An has overlapping maximal possible. Namely every y e An,
y > q^ belongs to q71 + An. More precisely :

( Every y G An, y > q71 has an expansion
(*) n-r-2

^ = ^ - 1 + . . . + ^ — — — 1 + ^ ̂ .

A;=0

To prove (*) we apply induction on n. For n = r + 1 the only element
y ^ An with y > q71 is q71 = ̂ n-l + . . . +g+1. Suppose (*) for n and prove

n

it for n + 1. Let ^/ C Ayi+i and ^/ > ^n+l. If in the expansion y = V^ ̂ ^fc

fc=o
we have £o = 0, then applying the induction hypothesis to y / q G Ayi,
!//9 > ^n we are ready. If y = q71^1 then y = qn -{- q71-1 + . . . + qn~r

which is also a good representation. Finally if y > ^r^1 and EQ = 1
then by Lemma 3, y — 1 > ^n+l, hence we can apply the induction

TOME 120 — 1992 — ?4



ON EXPANSIONS 1 = ̂  q^ 515

hypothesis for y — l / q € An, y — ^ / q > q71 so (*) holds indeed. Consequently
A^+i = 2An — An-r-i, if u > v + 1. So we can prove (a) by induction as
follows :

I A — OZT^+l) T^7^1)|An+l — ^^^ - ̂ n-r-1

= F(r+l) + fi + y F^+1^ - F^1)1 n 1 \ -L ' / ^ -rn—z j -'-n-r-1
i=l

r+1
'(^l) _ E^1)- i i \ ^^+ i ) -^(r+ l)

— -L ' / ^ "n+l-i — ^n+l •
i=l

The proof of (b) for n > r + 1 is obvious : in An and in A^ + q71 the
minimal distance is 1/q and they overlap maximally hence in A^+i
the minimal distance is also 1/q. THEOREM 4 is proved. []

3. —In the following part of this paper we consider two other problems
related to the papers of ERDOS, RENYI [3] and ERDOS, REVESZ [1].
To formulate the first one, fix a number 1 < q < 2 and expand any
number 0 < x < 1 by the so-called greedy expansion

00 / \

E^nW / ^ r o
X = ————? £n(x) = Sqn n^ ) \ -Y

We assert that

THEOREM 5. — There exists a constant c > 0 with the following
properties. Consider the set of those x C [0,1] for which the greedy
expansion of x contains a sequence of ^ clogn consecutive 0-digits
between the first n digits ^i(^),... ,^n(^) for all indices n ^ no(x). This
set has full measure in [0,1].

The second problem arises in a heads or tails game with an asymmetric
piece of money. We represent it as a random variable whose value is
zero with probability p, 0 < p < 1 and 1 with probability q = 1 — p.
Consider a sequence x\^ x ^ ^ . . . of independent random variables with such
distributions. Introduce the quantities

On '.= log n — log log log n + K

with some constant K < 0 to be specified later. We prove the

THEOREM 6. — The following event has probability 1 : between the
first n digits x \ ^ . . . , Xn there exist On consecutive 0 digits for sufficiently
large n > no ; here no = no(uj) may depend on the concrete value of the
sequence (xn(^)). -

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



516 ERDOS (P.), JOO (M.) AND JOO (I.)

We mention the following open

Problem 2. — THEOREM 5 does not remain true for large c > 0 (this is
the case if q = 2, see ERDOS, RENYI [3]).

For the proof of THEOREMS 5 and 6 we need some lemmas. Denote

P(^, . . . En) = \{x C [0, 1] : E, = C^X)^ . . . , On = En(x)}\

the probability of the event that the greedy expansion of x begins with
the digits ^ i , . . . ,^.

LEMMA 4.

(a) ^l,...,£n,l)^ ^P(£l,...,^,0),

(b) ?(£!,...,£„)< ^.P(^...^,0).

Proof. — (b) follows form (a) since

P(£i, ...,£„)= P(ei,. ..,£„, 0) + P(£i,. ..,£„, 1)

^ ^-P(£l,...,£n,0).

To see (a) denote /„ the length of the segment

{x € [0, 1] : £l = £i(x), . . . ,£ „= £n(x)\-

n

The left endpoint is x = V £k-. Hence •
fc=^

i) l!In< ^.then

?(£!,...,£„,0)=P(£i,...,£^), P(^,...,^,i)=o.

i i)If/"€[^T•^^T['th-

P(^l,...,£n,0)=^, P(£i,...,^,1)=P(^.,^)_^

and hence (a) follows. []

From LEMMA 4 we obtain immediately the

TOME 120 — 1992 — ?4



ON EXPANSIONS 1 = ̂  Q^ 517

LEMMA 5.

1 a— '-^•n / n — J \ 0'n. q_ I X Q ^
l,...,£n, 0 , . . . , 0 J Z ( ———— ) ^^,...,Cn)P ( £ l , . . . , ^ 0 , . . . , ~ 0 ~ ) ^ (^———J P(£i, . . . ,^) .

f \
Now denote Sk{x} :== ^^ —7——. We obtain from LEMMA 5 by induction

j=i ^
(in [n/an]) the

LEMMA 6.
|{^ : S^(x) ̂  5(,+i),Jrr), ^ = 0 ,1 , . . . J-^-1 }
I ^ L Q^ J ^

/ / q - l\Q;n\[n/Q'n]+l^'-(—r)'\ \ q

Proof of the Theorem 5. — Let

On := log n — log log n — log log log n — K

where log denotes the logarithm of base q/{q — 1) and K = K(q) > 0 is a
constant "large enough". Then

/, /g- lN^(, / (g- l ))- 1
(l-(^) ) ^ (asn-oc),

hence
/ _ /q -1\ anx (97(9-1))^ 1

(We know that ^1 - (1 - ̂ -^^ ^ ——— i.e.^-'̂ -.iTD
? haveWe have

/ ( q — 1 \Q^\[n/Qn]+l

Y \ q ) )
The exponent can be estimated as follows if n > no

. Qn

^ _ /^W^A^ ^ ^-((,-l)/,)-([n/a.]+l)^

( ( l ~ l \ a n ( \ n 1 i - i ^ < l/9-l^" "IT'^' vCT'^1^"^"^ a,;
1 / ^ N^ log n log log n n-.)2 \q — 1 / n Q^
1 / ^ ^^

^-3(^TJ loglogn

< —JHoglogn;

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



518 ERDOS (P.), JOO (M.) AND JOO (I.)

but if K = K(q) is large enough, then the condition n > no can be
omitted. We obtained that

\Pn\ = \[x : S^(x) ̂  ̂ +i),J^), £ = 0 , 1 , . . . , [n/an}}\

1<
(logn)2

is R is large enough, i.e. K is large enough. This means that

^[(A)' < 00

and according to the Borel-Cantelli lemma almost every x C [0,1]
belongs to finitely many set P[(,/(,-I))^, i.e. for a.e. x C [0,1] the first
l(<7/(<? - l))m] digit contains 0-sequence of length

(*) cm if m > mo(x).

Now if

ff^n^ff-^r^Li\q- I/ J - [\q- \) \

then m x logn, i.e. it follows from (*) that for a.e. x e [0,1] among the
first n digits there exists 0-sequence of length > clogn. Theorem 5 is
proved. \\

Proof the Theorem 6. — We need some lemmas.

LEMMA 7. — The probability of the event that a sequence of length 2n
contains a sequence of zeros of length n is pn(l + nq).

Proof. — Consider the sequence of n consecutive zeros with minimal
first index. The probability of the event that this minimal index is the first
is p71, the probability of the event that it is A: (2 < k < n+1) is qpn because
the (k - l)th digit must be equal to 1. Hence LEMMA 7 follows. []

LEMMA 8. — Let 0 < an < n be arbitrary and consider the sets

Bk := {Sk^ = Sk), ( A ; = 0 , l , . . . , n - a ^ ) ,
(^+l)a,

Q:= U B^ ^=0, l , . . . ,2( [n/a , ] - l ) ) ,
k=£ar,

[n/a^-1

Dn := D := \J C^.
£=0

TOME 120 — 1992 — N° 4



ON EXPANSIONS 1 = ̂  q^ 519

TT^en ^e probability of D is

[l-p-O+a,,)]^2^.

Proo/. — The events C^ are independent and one of them has proba-
bility p^ (1 + Onq) by LEMMA 7. \\

Now we give upper estimate for the probability of D. Because

p^ (1 + a^q) ̂  0 as On —> oo,

hence

[(l-^-d+a^))^^1^"^"1]'0^1^"9""7""1

/l\P°"(l+Q.i'?)["/(»„]

^ ( e ) =:w

Let a^ := logn - log log log n + K with some constant ^, where log is
of base 1/p. Then we have

^ _^K log log ̂
n

hence the exponent of 1/e in TV is

^ log log n n 1 , , /<-
^ P ————— 9 log n ——— = j. log log np^ qn 41ogn 4 ^ ^ ^ ^

consequently
f / 1 \^og\ogn-fpKq/4

w^[{~e) \

Choose -K to be large enough, then the probability of D ^ i r . can be
estimated as follows :

Ixloglog^/p-)^^ ^=- l \f 1 \i0gl0g(l/p )^p -gr/4^/."i^iu j ^< e / J — n0^

hence

El̂ /." ̂ E^< oo

so according to Borel-Cantelli lemma, almost every x belongs to finitely
many D^/prz only i.e. for every n > no(x) the first n digits contain
consecutive 0-s of length On. THEOREM 6 is proved. Q

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



520 ERDOS (P.), JOO (M.) AND JOO (I.)

At last we state the following questions.

Problem 3. — Investigate the behaviour of n,+i/n, for the greedy, lazy
or arbitrary expansions (see [8]).

Problem 4. — Is the set investigated in THEOREM 5 residual in [0,1] ?

Problem 5. — If q is not the root of the equations

1 1 1
1 = - + —, + • • • + ——r^ r= 1 ,2 , . . .q q2 q7'^1 ' '

then
inf(^+i - y^) = 0,

where yn is the strictly increasing list of the values

k

j^e^ A ; = l , 2 , . . . ; ^ = { ^

Problem 6. — The statement analogous to THEOREM 5 with lazy
expansions and consecutive 1 digits.

Problem 7. — THEOREM 3 for greedy expansion.

Problem 8. — By [6], THEOREM 2 the set of q for which the greedy
expansion of 1 contains consecutive 0-sequences of length > log2 m
between the first m digits for infinitely many m, is residual and of full
measure in ]1, 2[. Does it remain true if we require >, clogm consecutive 0
between the first m digits for every m ̂  m{q) (the constant c > 0 can be
chosen appropriately small) ?

Problem 9. —In [14] we showed, among others, that the value q defined by

9 -1 n oo
_ ^r-^ 1 ^-^ 1 ^-^ 1
— 2^ ~Qi + 2_^ ^9+lOj + Z^ /y9+10n+5/c (n ^ 1)

^=1 ' j=l ' k=l q

has the property that 1 has exactly n + 1 expansions. Describe the set of
all 9's having this property.

The third author is indebted to Professor Christiane FROUGNY (Paris)
for her valuable discussion (in Budapest, 1991, May) on the topic of this
paper and the connections of these problems with those in the theory of
finite automata [9, 10, 11].
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