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SOME EXCEPTIONAL COMPACT

MATRIX PSEUDOGROUPS

BY

NICOLAS ANDRUSKIEWITSCH (*)

RESUME. — Nous construisons des groupes quantiques compacts de matrices de
types EQ et Ej.

ABSTRACT. — We construct compact matrix pseudogroups of types EQ and £7.

A mis hermanos Alejandro y Andres.

0. Introduction

0.1. — Examples of non-commutative non-cocommutative Hopf alge-
bras arise in the literature at least in three different ways : as quantized
enveloping algebras ([KR], [Sk], [Dl], [J]); as rings of functions on the for-
mal (or algebraic) quantum group ([D2], [FRT], [T], [Ma]); or as compact
matrix pseudogroups ([Wl], [W2], [W3] and also [VS]). A natural ques-
tion, already considered by several authors, is to relate these approaches.
In this article, we shall construct compact matrix pseudogroups from re-
presentations of quantized enveloping algebras (QEA). For QEA of classical
type, this was done in [R2], using an explicit construction of its "natural"
representations from [Re].

(*) Texte recu Ie 26 fevrier 1991, revise Ie 29 mai 1991.
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298 N. ANDRUSKIEWITSCH

0.2. —A way to construct compact matrix pseudogroups, the Tannaka-
Krein-Woronowicz theorem [W3], is to consider a concrete monoidal W*-
category and to complete the *-Hopf algebra built from the dual of spaces
of morphisms with respecte to a suitable norm. In few words, the idea
is to isolate the minimal number of properties of the category of unitary
(finite dimensional) representations of a compact matrix pseudogroup and
to show that a category satisfying those properties comes from a uniquely
determined such object. The main observation in (the first part of) [R2]
is that the category of finite dimensional representations of a QEA (with
real positive parameter) is a concrete monoidal W-category, provided
that each representation carries an "invariant" hermitian form. This last
problem is solved once it is solved for a finite (one or two) number of
representations; for these, the hermitian form is constructed explicitly
using the formulas in [Re].

0.3. — Our approach, though very close in spirit to [W3], [R2],
carries a technical simplification. Let us consider a finite dimensional
representation p of a complex Hopf algebra A and let us assume for
simplicity that it is isomorphic, as A- module, to its the double dual.
First, we consider its matrix coefficient algebra : it is a Hopf algebra
contained in A*, spanned by the matrix coefficients of p and p* (see 1.2).
That is, we take as primary object the "universal enveloping algebra" ;
this point of view goes back to [Ko].

In the QEA-case, it can be considered as the ring of rational functions
on the quantum algebraic group corresponding to the representation.
It coincides with some previous constructions (see the papers cited above
and also [L4, section 7], [APW]), but the existence of the antipode follows
at once from our approach.

Next, we consider real algebras which, after extending scalars to C,
become isomorphic to A. Equivalently, semilinear involutions of A, pre-
serving the multiplication. It turns out that the so found forms are not
Hopf algebras; but they define a *-algebra structure on A* and (provided
that the space of the representation has a sesquilinear form invariant by
the involution, cf. 1.3) a *-Hopf algebra structure in the coefficient alge-
bra. It will be very interesting to understand what happens if we consider
field extensions of degree higher than 2.

0.4. — The following step is to consider real forms of a QEA; remembe-
ring the well-known construction of real forms of simple Lie algebras, it is
clear how to produce examples of such involutions. (It is also possible to
present some of these forms, the "inner" ones, by generators and relations,
see the Appendix.) This coincides with some of the proposed "quantum
versions" ofsu(l.l).
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0.5. — Next we remark that the realization in [Re] is also available for
irreducible representations with minuscule highest weight, see 1.5; and
they can be endowed with an inner product, invariant for the "Cartan
involution", or equivalently, for the compact form of the QEA. (There is
a small difference with [R2], where a different involution was considered.)
In this way, we obtain twisted EQ and £'7, as well as the classical twisted
groups first constructed in [W3], [R2].

0.6.—The paper is organized as follows : in the first chapter, we present
the construction outlined in 0.3 in a general form, with the hope that it
will of some help to find more examples of compact matrix pseudogroups
(see [AE]). This owes a great deal to [W3] and many proofs are inspired
in he cit. In the second chapter, we recall the definition of QEA and
of its highest weight modules; we state our construction of real forms
of QEA and prove that they give raise to *-Hopf algebras; finally, we
obtain the minuscule compact matrix pseudogroups. In the Appendix,
we give a presentation by generators and relations of some forms of QEA
(over an arbitrary field of char 0) which splits after tensoring with a
quadratic extension. It should be noted that this presentation depends on
the choice of a maximal anisotropic Cartan subalgebra. (Namely, the span
ofZi , . . . ,Z^cf .A. l . )

0.7 Acknowledgments. — I was introduced in this subject in a
talk given by P. CARTIER at the University of Cordoba, in July 88 and
in a course by G. LUSZTIG, at the Third Workshop on Representation
Theory of Lie Groups (Carlos Paz, one year later). On the other hand,
I wrote a (rather primitive) preliminar version of this article during a
visit to IMPA (Rio de Janeiro), where I benefited the generosity of Jacob
PALIS and Oscar BUSTOS. I finished this paper during a one-year-term
visit, supported partially by the CONICET (Argentina), to the "Centre de
Mathematiques de PEcole Polytechnique" (Palaiseau), where I profited
the hospitality of A. GUICHARDET and J.-P. BOURGIGNON. To all of them,
my kind acknowledgment. Finally I shall also thank B. ENRIQUEZ for
comments on the manuscript.

1. Generalities

1.1 Dual Hopf algebras. — Let A; be a field of characteristic 0, k
its algebraic closure. A bialgebra over A: is a data (.4,m, 1,A,6), where
(^4, m, 1) is an associative algebra with unit 1 over fc, (^4, A, e) is a
coassociative coalgebra with counit e € A* (i.e., it satisfies the dual
axioms of an associative algebra with unit, cf. [D2]), and A : A —> A 0 A
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300 N. ANDRUSKIEWITSCH

is an algebra morphism. In particular, A* is an associative algebra
with unit e; but needs not to be a bialgebra, since in general the
inclusion .4* 0 A* C (A (g) .4)* is strict. A Hopf algebra over A- is a data
(A, m, 1, A, e, 6'), where (A, m, 1, A, e) is a bialgebra and S : A -^ A is an
antimultiplicative isomorphism satisfying the axiom dual to the inversion
in a group. S is called the antipode.

A representation of a Hopf algebra is a representation of its underlying
algebra structure; equivalently, a module over a Hopf algebra is a module
over the underlying algebra . For coalgebras, there is the dual notion
of corepresentation : it is a pair (V,p), where V is a finite dimensional
^-vector space and p e End(V)(^A satisfies (id (g)A)(p) = pQp. (We adopt
the usual notation :

Q : (End(Y) (g) A) (g) (End(V) (g) A) —> End(Y) 0 A (g) A

is given by
Q((f) (g) x (g) '0 (g) y) = (f)^ (g) x (g) y).

There is also the notion of (right) comodule over a coalgebra (A,A,e).
It is a pair (V,p), where V is a A;- vector space (allowed to be infinite
dimensional) and ^ is a linear application V —> V 0 A satisfying

(id (g)A)p = (p (g) id)p and (id 0e)/^ = id.

The left comodules are defined in a similar way.
Let (Vi,pi), (V2?P2) be two representations of the Hopf algebra A.

Then (Vi (g) V^ (pi 0 p2) ° A) and (Vi*, (pi o 6^) are representations of A.
We shall denote p6' = (pi o S^ and pi (g) pa instead of (pi (g) ps) o A.
The trivial representation of A is e; we will say that v e Vi is invariant
if pi(x)v = e(x)v for all x C A Notice that Homfc-aig(A,A;) is a
multiplicatively closed subset of A*. A representation of A on V is called
irreducible if the only A-endomorphisms of V are the multiples of the
identity.

Let A be the set of isomorphy classes of irreducible representations
of A. Sometimes, we will write TT for a representant of TT G A. For any
Amodule W and any TT € A, let W^ the isotypic component of type TT.
Let us denote

A[W}= {7TGA:W^O} .

Let V be a finite dimensional Amodule, {vk} a basis of V and {/^}
its corresponding dual basis. Consider the module structure on End(Y) ^
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V* (g) V given by (p^ 0 p) o A. Let iy : V* 0 V -^ k, ty : ^ -> V* (g) V
given by

fv(^^v) = (/^^ M1) = y^z^^
I

We claim that ?y, ty are A-morphisms, considering in k the trivial
representation. This follows from the properties of the antipode and is
trivial for ty. For ty, if A (a:) = ̂ . x\ 0 a;'- we have

a; ̂  /^ (g) ̂  = ̂  ̂ -^ (g) ̂ '̂  = ̂ (^-^, ̂ )^ (g) ;r̂
i i j i,j,£

= y^ ̂  0 X^ ( l j L j , S(x^)v^Vi

iJ^

= Y^ ̂  (g) ̂ /5(^•)^ = e(a;)^y(l).
3^

Another trivial and well-known remark is that the canonical linear iso-
morphism V (g) k ^ V intertwines the corresponding representations.

Let A be an associative A:-algebra with unit. Let A0^ be the opposite
algebra. The left (resp. right) regular representation is the morphism
L : A -^ End(^) (resp. R : A0^ -^ End(A)) given by L^{y) = xy
(resp. Rx(,y) = yx). As Lx and Ry commute for every re, y , there is a
representation L^R: A^A0^ —^ End(^4). Now assume that in addition
A is a Hopf algebra. The adjoint representation of A is ad : A —>• End(A)

ad = (L (g) R) o (id 05) o A.

Let {A, THA, U, A^, e^, 5^), (23, m^, 1^, A^, e^, S^) be two Hopf alge-
bras over k. A pairing between them is a bilinear form ( , ) : A x B —> k
such that for any n, v € A, a, /? € 23

(u, m^(a 0 /?)) = <A^(n), a 0 /3), (n 0 v, A^(a)) = (m^(n 0 v), a),

(U, a) = €5(0), (n, 1^) ^ e^(n), {u, S^a)} = (S'^(^), a).

We will say that B is dual to A if ( , ) induces a monomorphism B —> *A*.
It is clear what "A and B are dual" will mean.

It is well-known that for a given Hopf algebra the uniqueness of its
dual Hopf algebra in general fails. For example, different dual Hopf
algebras of the universal enveloping algebra of a finite dimensional real
Lie algebra g appear in two different ways. First, we can consider a
connected Lie group G whose Lie algebra is isomorphic to g ; various kind
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302 N. ANDRUSKIEWITSCH

of function algebras on G (rational, analytic,...) give examples of different
Hopf algebras dual to U{g). But, secondly, there can exist many different
connected Lie groups with Lie algebra isomorphic to g.

Let B be dual to A. We shall identify B with its image in A* under the
map defined by the pairing. An A-module-B-comodule (an ^4-^-module,
for shortness) is a pair (V,p), where V is a k- vector space and

p C Hom(A, End V) ̂  A* 0 End V ^ End V (g) A*

satisfies : p € EndY (g B and defines an .4-module and Z^-comodule
structures in V. It is not true that an A-module defines a 23-comodule,
there is no 2-dimensional representation of PSL(2).

1.2 The coefficient algebra. —Let T(V<S>V*) be the tensor algebra
of the dual of the space of endomorphisms of a finite dimensional vector
space V. Let {vk} be a basis of V and {/^} its corresponding dual basis.
T(V (g) V*) carries a natural bialgebra structure, defined by

A(v (g) 11) = ̂ ^(vk 0 fJi) 0 (v 0 AA/O, e(v (g) IJL) = (/^, v).

Let A be a Hopf algebra and p : A —^ End(V) be a finite dimensional
representation. There is an application <f)p = (/) : T(V (g) V*) —> A*
induced by {(f)(v (g p)iX) •= (l^^x • v); (f)(v 0 p) are usually called the
matrix coefficients. The image of ^ is a bialgebra dual to A and (f) is a
morphism of bialgebras, because

(^(j)(v (g) ^),xy} = (((/) (g) (/))A('y (g) /^), x (g) ^/).

(V, p) is a (j)(T(y (g) y*))-comodule : we need to check that

pe^(r(y(gy*))(gEnd(y).
But we have p = ̂ ^. 0(^ (g ^-) (g (^ (g ^-).

Let us consider V (g V* (resp. A*) with the representation

Pi(x)(v (g /^) = p(.r)v (g IJL (resp. I?*).

Then (^ : V (g V* —> A* is a morphism of A-modules. If we look at
T(y (g V*) as a graded A-module, where the representation in (V^y*)0777^
is p^ = (p^ (g yo^_^) o A (the coassociativity guarantees the arbitrariness
of the z, 1 ̂  z ^ m - 1, chosen), then ̂ m : (V (g y*)^ -^ A* is still a
morphism of A-modules. For this, as (^(g)m = A* o (^ 0 (pm-z), it suffices

TOME 120 — 1992 — ?3



COMPACT QUANTUM GROUPS 303

to prove A* o ((J? (g) 7?) o A(;r))) = ^{x) o A*; i.e. that A* is a morphism
of A-modules. But on one hand, we have

(A* o ((^ ̂  R^ o A(a:)))a 0 f3,y) = (((^ 0 ̂ ) o A(a;)))a 0 /?, A(2/))
=(a(g)^A(2/)A(.r)),

and on the other
(R\x) o A^a (g) /?, 2/) = (a (g) /?, A(^z-)).

Let TT € A be finite dimensional. It is clear that ^(^ ^ TT*) c A^.
and the other inclusion also holds : let / : TT —^ A* be a morphism of
^-modules, i.e. (f(xv),y} = (f{v),yx) for any x, y in A. If ^ ^ TT* is
defined by {/^ v) = (/(v), 1), then the image of / and (^-(TT (g) ̂ ) coincide.

The transposition r : V (g) V* ^ V* 0 V** ^ V* (g) V induces an
isomorphism of algebras T(V0y*) ̂  T(V* (g)V), still denoted r. Clearly
(j)pdT = St(f)p\ thus we have a morphism

st: (t>[T(y ^ y*)) ̂  ̂ (r(y ̂  y*)).
As T((V (g) V*) C (V* 0 V)) is the coproduct of T(V (g) V*) and

T(V* (g)V) in the category of associative /c-algebras, it inherits a bialgebra
structure; we have a morphism of bialgebras (denoted (j)p © (f)pd) from
T((V (g) y*) e (v* (g) v)) to .4*.

PROPOSITION. — -Let ^5 assume that
(1) t/iere errz5^ an isomorphism of vector spaces M :V —>V such that

M(av) = S'2{a)M{v) for all a e A, v e V.
Then ̂ ©^d(T((y(g)y*)e(V0V*))) is a Hop f algebra dual to A which

will be denoted Coeff(p). Moreover, (V, p) is an A- Coeff(p) -module.

Proof. — Let (V ® V*) C (V* 0 V) -̂  (V 0 V*) 0 (V* 0 V) be the
morphism

(v 0 ̂ , 77 (g) w) »-̂  (M^w 0 Mt(r]), fjL (g) v);
The corresponding algebra automorphism of T((V (g) V*) C (V (g) V*))
makes commutative the following diagram :

r((v (g) y*) e (v 0 y*)) ——> T[(V 0 y*) e (v ^ y*))

^p@4>pd <f>pWpd

s*
A* ———————————————— ^*,

as follows from
{M^^^xM^w} = (M^^.M-^^^w)) - {rj,S\x)w}.

Thus 6't(Coeff(p)) C Coeff(p). D

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



^4 N. ANDRUSKIEWITSCH

REMARK. — If the hypothesis of the Proposition is not fulfilled, the
coefficient algebra can be constructed in the following way : let V =
V 0 V*, ;̂ : Vj -^ Vj^ the identity, ^ : Vj -> A* the application
{(f)j{v 0 ̂ ), .r) = (^ S^(x) • 2;), for any j e I. That is, 0o = 0p, 0i = <^d
(modulo the transposition), etc. By definition, the following diagram
commutes : i/j

V, ———— ^

^ <f>j+l
't-

5*
A* ———. A*.

Let ^ : T(e^zV,) -^ A\ be defined by ©0,, let v = e^,. Then
^pou= S ^ - o ^ p and we can define a Hopf algebra structure in the image
of ^>p. (Different coalgebra structures are defined in T(^), depending on
the parity ofj).

1.3 *-Hopf algebras. — Let us assume that in addition the field k is
provided with an involution 7. A A; *-algebra is a pair (A, *), where A is
an associative algebra and * is an application A -> A, v ̂  v* satisfying

(2;*)* = v, (v + w)* = ̂ * + w*, (vwy = w*^*, (\vy = 7(A)^*.

A *-Hopf algebra is a Hopf algebra provided with a star operation for the
algebra structure, such that

A(^)=A(^)*, S(S(v^)=v.

Let k^ be the field of 7-fixed points. Let A be a Hopf algebra and Ao
a A^-form of the algebra structure of A. That is, AQ ̂  k ^ A is an
isomorphism of algebras. Let T : A —^ A,

T(a 0 A) = a (g) 7(A)

(a € Ao, A e A-). Let a ^—> a* be the automorphism of A* given by

(a*,.r)=7((a,r(.r))).

PROPOSITION. — Le^ ^5 assume that

(2) Aor= (T(g ) r )oT-oA.
TOME 120 — 1992 — ?3
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Then (A*,*) is a ^-algebra. Moreover^ let B C A* be a ^-stable Hopf
algebra dual to A and suppose that

(3) SATSA = T.
Then B is a ^-Hopf algebra.

Proof. — Both assertions are proved in a straightforward way. For
example,

(^?(0*)*)^) = <(^(a*)*),^)) =7«^(^*),T^(^)))

= {a^TSATSA{v)) = M

since T2 is the identity. Let us observe that e is a *-morphism. Let x € A.
Then

e*(;zQ = -i(e(Tx)} = ̂ (m(id^S)^T(x))

=^{m(T^T)(id(S)S~l)r^{x))

= 7(rm(5-1 (g) fi'-1)^ 0 id)rA(;r))

=^(TS-lm{S^ld)^x))=^(TS-le(x))=^(€(x)). Q

1.4 Compact matrix pseudogroups. — Let k^ A;7, etc. as in 1.3.
A ^-matrix Hopf algebra is a pair (B,u), where B is a *-Hopf algebra
and u is a matrix with coefficients in B such that :
(4) the entries of u and (n)* generate B;

(5) A^(^)=^u^^;

(6) ^ SB{uji)ua = 6^ Ijs, ^ UjiSa(ui() = 6j(, 1^.
i i

If J : V —>• W is an antilinear morphism of ^-vector spaces (i.e.
J(tv) = 7(t)J(z»)), then J* : W* —^ V* denotes the antilinear morphism
given by (J*(/2),z;) = -y{(^ J(v))).

LEMMA. — Let p : ̂ 4. ̂  End(Y) 6e a finite dimensional representation
of a Hopf algebra A satisfying (1) ; let T : A -^ A be an antilinear
involution satisfying (2), (3). Let us assume that:

(7)
f there exists an antilinear isomorphism J : V —> V*
\ such that J{xv) = T(x)J(v), x e A, v e V.

Let {uij) = {(f)p(vj 0^)) e GooffO^11111^11111". Then (Coeff(p)^) is
a ^-matrix Hopf algebra.
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Proof. — (5) holds by definition of Coeff(p) and (6) by the axioms
of the antipode. Coeff(p) is generated by Uij and S(uij). Thanks to
PROPOSITION 1.3, it suffices to prove

4>p(v ̂  ^Y = ̂ (J(v) ̂  (J-1)*^)).

But

{^(J(v) 0 (J-1)*^))^) = ((J-1)*^),^^))

=7((^T(x)v))=(^(v^^)^x). D

Let us remark that a <E Coeff(p)^ implies a* € Coeff(/))^, as follows
from the proof of the Proposition.

(7) is equivalent to the existence of a sesquilinear form ( | ) : V x V —^ k
satisfying (xv \ w) = (v | TS~l(x)w). The equivalence is given by the
formula (v \ w) = J(w)(v). The sesquilinear form ( | ) : V* x V* -^ k
given by QLA | rj) = (MJ-^T/) | J~~1^)) also satisfies that recipe.

We want to extend the sesquilinear form to Coeff(p). First, we define
a sesquilinear form on V (g) V* (resp. on V* (g) V) by

(Vl 0 P.1 | V2 0 ̂ 2) = {Vl | ^2) (^-l(^l) | ̂ -l(^2))

(resp. by

(r?i 0wi | r]2^w^ = (MJ~1^ | J"1^)^! | ̂ 2)).

Let us consider the representation of A in the orthogonal direct sum
V (g) V* C V* 0 V given by

^(v 0 ̂ , 77 0 w) = (xv (g) /z, x r j ^ )w ) .

Then for any a, ^ e V 0 V* C V* 0 V we have

(8) (^1/3) =(a T^-1^)/?).

Extend the sesquilinear form to T(V (g) V* C V* 0 V) in the canonical
way. Then (8) holds for any a, f3 e Tfy (g) V* © V* (g) V). Indeed, it is
easy to see that if V, (% = 1, 2) are A-modules provided with sesquilinear
forms satisfying (8), then the sesquilinear form on Vi (g) V^ given by
('yi (g) V2 | ̂ i 0 ̂ 2) = (^i [ wi)('y2 | ̂ 2) still satisfies (8). (To see this, it
is necessary to use (2) and that S also satisfies (2).)
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For the rest of the section, we shall assume that k = C, k^ = R. A com-
pact matrix pseudogroup [W2] is a *-matrix Hopf algebra A endowed with
a norm || || such that \\xx*\\ = \\x\\ • \\x*\\. (This is equivalent to the defi-
nition in [W2], as remarked in the arguments after [W3, Prop. 3.5].)

We need to "normalize" M (cf. (1)). Let us assume that J = J*;
recall that then for any ^ : V* -^ V*. (J-^^J^ = J-^J. On
the other hand, J~lMtJ is a linear endomorphism of V satisfying
J~lMtJ(xv) = Sl2(x)J~lMtJ(v), thanks to (3). If in addition, p is ir-
reducible, there exists c e C>< such that J~lMtJ = cM. Moreover

M = c{J~l)tMtJt = cJ-Wj = ccM,

i.e., c| = 1. Hence we can choose A € Cx such that J~l\MtJ = XM. In
what follows, we will replace M by AM, in order to have

J-^J = M.

PROPOSITION. — Let p : A —^ End(V) be an irreducible finite dimen-
sional representation of a Hopf algebra A satisfying (1), T : A —^ A an
antilinear involution satisfying (2), (3), J : V —^ V* an antilinear isomor-
phism satisfying (7). Let us assume

(9) J = J* and ( | ) is a positive defined hermitian form.

(10) M is positive defined.

Then Coeff(p) is a compact matrix pseudogroup.

Proof. — (9) and (10) implies that the extension of ( | ) to

T(V 0 y* e y* 0 v)

constructed below is positive defined. As in the classical case, it is
immediate that T(V (g) V* (D V* (g) V) decomposes in orthogonal direct
sum of irreducible submodules. Hence Coeff(p) inherits an inner product
satisfying (8) (perhaps not in a unique way).

Let '0 : Coeff(p) —> C be defined by ^(a) = (a | e). (Recall that e is
the counit of A and the unit of Coeff(p).) We shall prove

(11) ^(aa*) > 0 for any a -^ 0.

Let TT, TT' e A[Coeff(p)], a e TT (g) TT* , a' e TT' (g) TT'* . Let TT (g) TT' = Q) • T^-
be the decomposition as a direct sum of irreducible components. In other
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words, if x € A, then the image of x in (TT 0 TT')* 0 (TT 0 TT') is ^Xj^
where xj is the image of x in TT* 0 TTj. It follows that

0,(a)^(a') ̂ ^^(Y^^aQ,).
j

Here, T : TT 0 TT* 0 TT' 0 TT'* ^ (End 71-)* 0 (EndTT')* -^ (End(7r 0 TT'))* c±
TT (g) Tr' 0 TT* 0 TT'* is the canonical application, i.e.

v 0 ̂  0 v' 0 // '—>• f 0 ̂ / 0 /^ 0 //;

and, i fz j (resp. pj) is the inclusion ofTTj on TT^TT' (resp. the orthogonal pro-
jection from TT^TT' onto TT^), then (r^, /) = (T.ijfpj) (T e End(7r (g) TT')*,
/ € End(7r,)).

By construction, this decomposition is orthogonal. It follows from the
Schur Lemma (see below) that (^(a)^^^') | e ) = 0 i f 7 r * and TT' are not
isomorphic. Hence we are reduced to prove (11) for a € Coeff(p)^- or even
for a = (f)p(v 0 /^) € Coeff(p)p. As ie = tp , we have

(aa* | e) = {v (g) J{v) (g) p. (g) J"1^), ̂  J(^) 0^0 ̂  0 ̂ (^))
^j

=(^\p)(v\ v)

and (11) follows. The proposition can be now proved in a standard way. []

LEMMA (SCHUR). — Let V, W € ^[Coeff(p)]. Assume that (9), (10)
/^c?.

a) dimHom^(V,iy) 25 1 (resp. 0) if V and W are (resp. are not)
isomorphic.

b) dimHom^(A:e, V 0 W) is 1 (resp. 0) if V* and TV are (resp. are
not) isomorphic.

Proof. — (See [W3, Prop. 2,5].)
(a) is immediate (we asume (9) and (10) to be sure that the irreduci-

bility of V implies that it has no proper submodules).
(b) follows from (a) and the isomorphism

Honu(Y, W) ̂  Hom^(^, V* 0 W)

given by G i—» (id<S)G) o t y * - , whose inverse is F i—» (fy 0 id) o (id0-F).
(The verification is straightforward.) []
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2.1 Quantized enveloping algebras. — Let q be an indeterminate.
Given N, M, d C No, we denote (as usual)

qdh _q-dh[^= n --r^^rt
1 << ̂  <^ ?V A -1Kh<N

[M+AH _[M+JV], i[ ^ i-mW^ }
\d \.lvl\d\.lyU

Let g be a simple finite dimensional split Lie algebra; let A be the
corresponding Cartan matrix. There exists a diagonal matrix such that
D= (d^...,dn) eZ^, DA=AD and del D ^ 0.

It is well-known that the universal enveloping algebra of g is the
associative ^-algebra given by generators e^, /^, hi and relations

(12)

(13)

(14)

and if i ̂  j

(15)

hihj = hjhi^

hiej — cjhi = d i j e j ^ hifj — fjhi = —o^/j,

^ • i j j — J j ^ i = ^ i j ' ^ j ' )

^1-a;y ) (-1)^6^=0,E
h+e=l-a,i

h(1 a^3\f^fh_r.
\ r j J i J j J i ~u•E (-1)

^ h-^-e=l-aij
I b /

The quantized enveloping algebra Uq{g) = Ukq(g) is defined as the
associative A;(g)-algebra given by generators £^, 1 ,̂ 7^, K^ and relations

(16) KiK^ = K^Ki = 1, KiKj = K,K^

KiE, = q^EjK^ KiF, = q-^ F,K^

Ki - K71

(17)

(18) -^i-^ i - ^ j - ^ i — ^zi ,7 ,1 iJ J J nUi — n~a^

and if i 7^ j

(19) ^ (-l^E^E^^O, ^ (-l^F^^O.
h-\-(.=\—dij h-\-i=l—dij
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Here E^ denotes E^ divided by [N]^ (idem for ^(AO). (We follow the
presentation in [L2].)

Let us introduce the following notation, for any elements x,y in an
associative A;(g)-algebra :

^y) = D-1)'f^l ^-V.
h=0 L -1 d

Thus (19) can be rewritten as

(20) B\-^ (^, E,) = 0, B\-^ (F, ̂ ) = 0.

U (A) is a Hopf algebra with comultiplication A, antipode S and
counit e defined by

( ^ ( E i ) = E , ( S ) l + K ^ E i ,
(21) ^ W)=F^K^+1(S)F^

[AKi=K^Ki,

(22) ^)=-J^1^, ^(F,)=-F^, S(K,)=K^\

(23) 6(^,) = 0, e(Fi) = 0, 6(^) = 1.

Note that

(24) S-^E,) = -E,K^\ S-\F,) = -K^ S-\K,) = K-,\

It follows from [L3], [L4] that we can specialize q to any non-zero element
of A;.

2.2 Minuscule highest weight modules. — The notion of
"integrable" representation was introduced in [Sk2], [J] and in full gene-
rality in [LI], [Rl].

Let us fix a quantized enveloping algebra U = Uk(A). Let U° be
the subalgebra of U generated by K^ for all z. ?7° is a commuta-
tive algebra, isomorphic to the algebra of Laurent polynomials in K,.
K0111^)-^^^)) is isomorphic to (k(q)x)n via

^——(<^i) , . . . ,0(^)) .

Let P (resp. Q^ be the free abelian group with basis ̂  (resp. o^),
1 < i < n. Let ( , ) : P x (^ -^ I be the bilinear pairing defined
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by (c^,ap == 6ij. Let Oj € P be defined by (a^a^) = a^ and let Q
(resp. Q ) be the subgroup (resp. the subsemigroup) of P generated
by ai , . . . ,a^. Let ( | ) : Q^ x Q^ -—)• Z be the symmetric bilinear
non-degenerate form defined by (o^ a^) = d-^a^ = d^laj^. ( | )
defines a morphism v : Ov -^ P by (z^),/^) = (o^ | ^v); we
have Q C ^(Q^) because c^ = dii^(a^). In particular, we obtain a
symmetric bilinear non-degenerate form, still denoted ( | ), on Q\ we
have (ai \ aj) = dia^ = djdji. We even have ( | ) : P x Q —^ Z.

We can identify U° with the group algebra (over k(q)) of Q via
Ki —^ ai; the image of a = ̂  Wi will be denoted Ka; i.e. Ka = Y[ K^.
Every uj C P defines a group homorphism Q^ —^ k(q)x by a^ i-̂  g^'0 ^ ;
and hence a homomorphism Q -^ k{q)x by a ^ q^^ 1^. We shall
denote by e^ the corresponding A*(g)-algebra homomorphism £7° —^ k(q).
For example, e^3 (Kj,) = q^j^^-i ^ = q^0-^. We have a monomorphism of
groups P -^ Hom^(^)_aig(^05 k(q)); we shall identify P, Q, Q^ with their
images in what follows.

Let M be a ?7(A)-module. For w C (k(q)x)n, let
Mzc = [x C M : J^rr = w^ Vz} .

There is a partial order in {k(q)x)n given by w < w' if and only if
w~lwf C Q4". -̂ f is called a highest weight module if it is generated by
some x € Mw (w G k{q) is then called the highest weight of M) which
is annihilated by Ei for every z. It is known ([LI, Prop. 2.6]) that for
any w C (^i^)*)71 there exists a simple highest weight module of highest
weight w, unique up to isomorphism, denoted L(w).

On the other hand, M is integrable if M = ̂ ^ Mw and ^, F, are
locally nilpotent endomorphisms of M. Then (cf. [LI, Prop. 3.2]) L(w) is
integrable if w G P. This exhausts the integrable ireducible highest weight
modules, modulo tensoring with one-dimensional representations.

Now we shall present a realization of minuscule highest weight modules.
It is inspired in the formulas in [Re].

Let us recall [B] that a dominant weight w C P—0 is called minuscule if
(w.Q^) = 0, 1 or — 1, for any root o^.

The fact about minuscule weights that will be useful for us is the following :
if r and r 4- ai are weights of a minuscule highest weight module V,
then (r, a^) = —1. In particular, r — o^ and r + 2o^ are not weights of V.

The minuscule weights form a system of representants of P/Q — 0.
Hence, there are minuscule weights for irreducible root systems of types
A, B, G, D, EQ, E7, cf. [B, Tables]. Let V be a minuscule highest weight
module, II(V) the set of its weights; it is the orbit under the Weyl group
of the highest weight.
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PROPOSITION. — Let V be a minuscule highest weight module of a
complex Lie algebra of type X, corresponding to a representation p. Let
q € C — 0, and let t G C such that exp(t) = q. The assignement

Ei ̂  p(ei), Fi ̂  p(fi\ KI ̂  exptdip(hi).

gives rise to a Uq(X)-module structure on V.

Proof. — We need to check relations (16),... ,(19). Relation (16) is
trivial. Relation (17) follows from (13) and the following well-known
formula which holds for any pair of elements a*, y in any associative
algebra :

xjy=Y,(3\^x)iy^-i.
\ }z=o ' '

For (18) and (19) we will use that the highest weight is minuscule.
(18) means in our case

_ exp(tdjhj) - exp(-tdjhj)
p( i ) ~ exp{tdi) -exp(-tdi)

But p(hi) is diagonalizable, with eigenvalues (w.a^), w € II(V), which
are 0 or rbl by hypothesis. Thus we are reduced to prove

exp(us) — exp(-us)
s= p v ———-)——^ for any H O C , 5 = 0 , 1 ;

exp(u) - exp(-u)

and this is clear. Finally, let us check (19). It is identical to (15) if a^ = 0;
but if a^< 0, w C II (V) and x € V is a weight vector of weight w, then
e^ejei~a^3~ x ls a weight vector of weight w + aj + (1 — a^)c^. Looking
at the o^-string trough w, we see that e^eje]~a^j~hx = 0 and hence (19)
holds. D

2.3 Algebraic quantum groups. — Let L(w) be an integrable
irreducible highest weight module over the quantum algebra U(A), w e P,
let p be the corresponding representation. It follows from [LI, Th. 4.12]
that L(w) is a finite dimensional fc(g)-module, of dimension, say, m. Let G
be the algebraic subgroup of GL(m) corresponding to the image of g by
its irreducible representation of highest weight w. Then Coeff(p) is a Hopf
algebra dual to U(A) which will be denoted kq[G]. Indeed, (1) is true :
let v G L(w) be a highest weight vector and consider the representation
p = p o S2. As S2(Ei) = q-^E, and S2^,) = K,, v is a highest
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weight vector for this new representation. It follows the existence of an
isomorphism M e End(L(w)) such that M(x) o p = S^^x) o M for any x :
we can apply PROPOSITION 1.2.

2.4 Real forms of quantized enveloping algebras. — Let g be a
complex simple (finite dimensional) Lie algebra, whose enveloping algebra
is presented by (12), . . . , (15). The antilinear involution given by

e, ̂  -fi, f, ̂  -e,, hi ̂  -hi

is called the Carton involution and will be denoted by uj. Let 0 be a
diagram automorphism and define te by

te(ei) == e^), te(fi) = fe^, te(hi) = he^.

It is well-known (cf. for example [K, exercice 8.9]) that, modulo
conjugation, all the linear involutions of g are contained in the following
list :

(25) tj, 1 < j ̂  n, defined by

tj(ei)=ei, tj(fi)=fi, tj(hi)=hi, if i^j
t3^j) = -ej, t j ( f j ) = -fj, t j ( h j ) = hj.

(26) te^ if 6 is a diagram automorphism of order two.

(27) tej = tetj, if 0 is a diagram automorphism of order two and j is
fixed by 0.

Now let q be an indeterminate. We shall consider the following two
involutions of C(g) :

7i (Ml- f(q). -f2(f(q))=f(q-1).

71 corresponds to the field H{q) and 72 to the field of real rational functions
on S1. In other words, when considering 71 (resp. 72), we can specialize
to q real (resp. q C S'1).

We shall consider now involutions with respect to 71. The 72-involutions
are constructed by composing with respect to the 7i72-involution S
given by

Ei^FiKi, Fi^K^Ei, K i ^ K i , q^q~\

Note that 2 is multiplicative, comultiplicative and 56' = 65.
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The Cartan involution is the 7i-antilinear involution denoted by ^ and
given by

E,^-Fi, Fi^-E,, K^^K^.

Now we define the following linear automorphisms of Uq(g) :

(28) fj, 1 ̂  j < n, defined by

f,{E,) = {-l)^Ei, f,(F,) = (-l)^F,, f,(K,) = K,.

(29) Te, where 0 is a diagram automorphism, given by

Te{E,)=Ee^ fe(F,) = Fe^ fe(K,) = Ke^.

(30) fffj = TeTj, if 0 is of order two and j is fixed by 0.

Now it is easy to see that any T in the list (28), . . . ,(30) commutes
with ^; we define T = TO.

PROPOSITION.
i) ^ satisfies (2), (3).

ii) Iff in the list (28),... ,(30) is of order 2 then T satisfies (2), (3).

iii) Any T in the list (28),... ,(30) is a morphism of Hopf algebras.

iv) Let L(w) an irreducible highest weight module, w € P. Let T
be n or an involution from (28). Then there exists J : L{w) —> L(w)*
satisfying (7).

v) For T from (29), (30), iv) holds ifw <E P is 0-stable.

Proof.
i) to iii) are easily verified by definition.
iv) and v) can be proved as suggested in [K, Lemma 11.5] : take the real

QEA U^ and its highest weight module L(w)iR, proceed as in [K, Prop. 9.4]
(this is posible because T(U^) C U^) and extend the scalars to C.

2.5 Minuscule compact matrix pseudogroups.

PROPOSITION. — Let V be a minuscule highest weight module of a
quantized enveloping algebra Uq, where q is a real positive parameter.
Then V has an ^-invariant inner product ( | ). That is,

(xv | w) = (y ^S~l(x)w) for all x € Uq, v, w € V.
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Proof. — Combining PROPOSITION 2.2 and the classical theory (see
for example [K, Th. 11.7]) we observe that V has an cj-invariant inner
product ( )o ; i.e. we have

(eiV | w)o = (v I fzw)o, {fiV w)o = (v I ^w)o,

(hiV | w)o = (v I hiw)o,

for all v, w € V; clearly, the decomposition of V in weight spaces is
orthogonal.

Let r be a weight. Let g C P be defined by (^, a^) = 1, for all i. Then
we define

(y w) = q^^v I w)o for all v^w C Vr-

Clearly, this defines an inner product on V. Let us proceed with the
invariance. We need to prove

(E,v w) = (v | F,Kiw), (F,v w) = (v \ K^Eiw),

(KiV | w) = (v | Kiw),

for all ^, w € V. The third equality is clear. For the first, we can assume
v € Vr - 0, w C VT+Q, - 0. Then

(E,v | w) = q^^^v | w)o = q^^^v \ /,w)o = q^^v \ F,w)

= qdi-{r\a,)-2d,^ | FiK,w) = (v \ F,^w).

The proof of the second is similar. [}

Combining the preceding with PROPOSITION 1.4, we obtain twisted
deformations of any compact connected simple Lie group of type A,
B, G, D, £'6, £'7. (Note that instead of (10), we can use in the proof
of PROPOSITION 1.4 an invariant form on V* satisfying (9).)

Appendix : generators and relations

A.O. — In [A] we presented a construction by generators and relations
of A:-forms of (symmetrizable) "derived" Kac-Moody algebras over k.
This construction can be roughly described as "glueing together' suitably
choosen three dimensional simple Lie algebras (TDS for short) over k.
(The TDS over k are in one-to-one correspondence with the quaternion
algebras sq{a^ b) over k, cf. A.I below). In particular, we constructed there
A'-forms of simple finite dimensional Lie algebras over k.
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In this paper we propose a definition of quantized enveloping algebras
of those A;-forms of g constructed in [A]. We begin by the quantized
enveloping algebra of the quaternion algebra sq(a, b). The observation
is the following : k [x, x~1] is the coordinate ring of the hyperbola

{(x,y) :xy= 1}

which is isomorphic to {(r, s) : r2 - s2 = 1}. But the split form of ^(2, k)
corresponds to a = 1, b == -1. Thus we replace, in the general case,
k[x,x~1] by k[r,s] where r, s are two commuting variables satisfying
r2 +abs2 = 1.

A.I Presentation of certain simple Lie algebras. — Let X , V, Z
be a basis of a 3-dimensional A;-vector space V. For fixed a, b e k* = k - 0
a Lie algebra structure on V, which we shall denote sq(a, b) is defined by
the rule :

[X, Y] = 2Z, [V, Z] = -2&X, [Z, X] = -2aY.

sq(a, b) is simple and any simple 3-dimensional Lie algebra (TDS, for short)
over k arises in this way. sq(a, b) can be realized as Lie algebra of the
traceless elements of a suitable quaternion algebra. s£(2, k) is isomorphic
to 5^(1, -1) and ifk=H, sq(-l, -1) is su{2, R). sq(l, 1) is also isomorphic
to s^(2,IR); but whereas in sq(-l, 1) Z spans a split Cartan subalgebra,
in sq(l, 1) Z is compact.

Now we recall the construction from [A], which is a generalization (and
a consequence) of Serre's theorem. If g is a Lie algebra, V a p-module,
X ^ g , v e V , a e k and n = 0,1,2,3, we put

r 0 if n = 0 ,
^(X v) - I av if n = 1,
^^-^aXv if n = 2 ,

110aX2v - 9<A if n = 3.

Let us fix elements of A;*, a,, &,, 5^ (1 ^ %, j ^ n), satisfying the
relations Sij = s^s^y V %, hj bj/aj = (^/a^)s^.

We define ^(A,a^5^,^), as the Lie algebra over k given by 3n
generators {X,, V,, Z, : 1 < i <, n} and relations

(31) [Z,,Z,]=0,

(32) [X,,y,]=2Z,,

(33) [Z,, X,} = -a^a^, [Y^Z,] = -b^a^X, ;
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and if i ̂  j

(34) [X^Y,] = s^X^ [X^X,} = -a,b^s^[Y^Y^

f (adX,)1-^. =P^dX^X,)^
(35) {

{(adX,)1-^. =P^dX^Y,).

Let a, b e /c* and consider the data a^ = a, s^ = 1, 6j = &, for
all %, j . We will denote gk(A,a,b) instead of p/c(A,a^5^,^) in this case;
^fc(A, 1, —1) is isomorphic to the split form of the simple Lie algebra of
Cartan matrix A, cf. [A].

A.2 Quantized enveloping algebras of TDS. — Let a,b € A;*, q
an indeterminate. Let

C,(q)=l,(q2^q-2)^ C,(q) = \^ - q-2).

We define U(2,a^b) = Uk(2,a,b), the quantized enveloping algebra
of the TDS sq(a^b)^ as the associative /c(g)-algebra given by generators
X, y, -R, 6' and relations

(36) R2 + abS2 = 1, RS = SR,

(37) RX = C^XR - C^aYS, SX = C^XS + C^YR,

(38) RY = C^bXS + C^YR, SY = -C^XR + C^YS,

(39) X Y - Y X = - ^abs

q-q-1

LEMMA.
i) If k ' is an extension of fc, there is a natural isomorphism

U^a^^k' ^Uk'(^b).
11) Let \,fJi € k*. Then there is an isomorphism between Uk(a\2^bp2)

(with generators X'\ V, R'\ S") and Uk(a,b), given by

X' ^ XX, Y ' h-> pY, R' ̂  R, S ' ̂  (X^S.

In particular^ the order two automorphism of U(a,b) given by X = —1,
[L = 1 is called the Cartan involution.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



318 N. ANDRUSKIEWITSCH

iii) There is an isomorphism from U(2) = U (the quantized enveloping
algebra ofs£(2), with generators E, F, K, K-1) onto U(l, -1), given by

E^^(X-Y)^ F^j(X+V), K^(R^S)^ K-^^R-S)

with inverse

X ^ ( E - ^ F ) ^ Y^(-E+F)^ R^^K+K-1)^ S ^ ^ ( K - K - 1 ) .

iv) Let us assume that -ab is not a square in k and choose a quadratic
extension k1 containing a square root V^ab which we shall fix once and
for all. Then there is an isomorphism from Uk(a,b)^k' onto U^ given by

R ̂  ̂ K + K-1)^ S^^K- K-^/^ab^

X^E+aF, Y ̂  v^ab {-E/a + F),

whose inverse is given by

K^R+^abS, K-1 ̂ R-V^abS,

E ̂  j {X - (a/^ab) r), F ̂  ^{X/a + (1/V^ab) Y).

Let^ be the non-trivial element ofGal^/k) ; i.e. ̂ (^ab) = -^/~^ah',
7 extends to an automorphism in Gal(k'{q)/k(q)), letting q invariant,
which we shall still denote 7. Let T : Uj,' -^ Uk' be defined by T(v 0 A) =
v ^ 7(A), for v € Uk(a,b), X e k\ with the above identification. T is an
antilinear isomorphism of algebras. Then (^,,*) is a ^-algebra, with the
star operation * : Uy -> U^ given by (a^x) = ̂ ({a,T(x))).

v) Let kq[G} be an algebraic quantum group corresponding to some
finite dimensional representation U^ —^ End(V). Then k'[G\ is a *-
subalgebra of U^ and a ^-Hopf algebra.

A.3 Quantized enveloping algebras of ^(A,a,,^,^).
Let X, y be two indeterminates and let

M, = [X s , ̂ s-ly, x^yx,...}

be the set of words in X, y of lenght s. For w e Ms, we set oy(w)
(resp. o^(w)) for the number of times that V (resp., X) appears in w.
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Obviously, o^(w) +oy(w) = s. In the free associative ^-algebra generated
by ^, y we have

(A'+y)^ ̂  w, (;f-3r= ̂  (-l)°^w.
W^MS W^MS

Now if a;, ^ are elements of an associative algebra and S C Ms,
then S(x,y) will denote the image of 5 under the map corresponding
to X \—> x^ V i—^ y .

Let us introduce, for a fixed Cartan matrix A as in 2.1, the polynomials
on q :

C^q) = ̂ {q^ + q-^y C^q) = ̂ (q^ - q-^).

Let also introduce the sets JJ, for j = 1,2 and 0 ^ 5 ^ 1 — a^ ; and
for (m,n) C JJ, the integer g^^ by

Jf = {(m,n) C M,(^,y) x Mi_a,,-.(^y) :

- Oy(mn) = 2qm,n ^ 2ZL

^ = {(m,n) G M,(/Y,y) x Mi_^._,(<Y,y) :

- oy(mn) = 2qm,n + 1 € 2Z + ll-

(Note that Jf, 1^ depend also on a^-; this is not reflected in the notation.)
We define ^(A,^,^-,^), the proposed quantized enveloping algebra

of gk(A,di,Sij,bi), as the associative A:(^)-algebra given by generators
Xi, YI, RI, Si and relations

(40) l=R^dibiS^

(41) RzSj = SjRi, RiRj = RjRi^ SiSj = SjSz,

(42) RiXj = C{j(q)XjRi - C^q)aiS^YjSi,

(43) SiXj = C{3(q)XjSi + C^q^s^YjRi,

(44) RiY, = C^(q)biSijXjSi + Cij(q)YjRi,

(45) SiYj = -C^(q)a^SijXjRi + Cf(g)y^,

tAR\ YV VV- -^aibjSi(46) A,r, - YiXi = —,———.-)qdi —q-ai
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and if i -^ j

(47) X,Y, - Y,X, = s., (YiX, - X,Y^

(48) XiX, - X,Xi = -aib^s^ (YiY, - YjYi)

(49) E^-D'f1"^] { E (-^^-mX.n
^ L -'^ ^(m^eJfp^y,)

+ ̂ 1 ( E (-^~l^)9m•n^^)} = o
(m,n)eJ|(x,,y,) J

(50) E^-1)5?"^'] { E (-^-l^)gm•7^^n
5=0 ] d i '(rn,n)el^X^Yi)

- a^biSij ( ^ (-^-^^ '̂-mX.n) 1=0 .
(m,n)GJ|(X,,y,) / J

For example, if a^ = 0, (49) and (50) take the form

(49) X,X, - X,X, = a^s^(Y,Y, - Y,Y,)^

(50) X,Y, - Y,X, = -s^Y,X, - X,r,),

which, combined with (47), (48) gives that X, (resp. V,) commutes with
Xj^ Yj. If aij = —1, the relations are

(49) biB\X^X,) - a^^X,) = a^[x,Y,Y, + Y,XiY,

- ̂  + q-^X^Y, + y,y,X,) + Y,X,Y, + Y,Y,X^

(50) W\X^ Y,) - a,B\Y^ Y,) = -s^{xW, + Y,X,X,

- (^ + q-^KXiX.Yi + Y,X,Xi) + X,X,Yi + X.^xJ.

Let a, b € A;* and consider the data a, = a, Sij = 1, ^ = b, for all z,^'.
We will denote ^(A, a, &) instead of ^(A, a,, 5^, h,) in this case; it is the
quantized enveloping algebra of ^(A, a, &), cf. A.I.

LEMMA.

i) If k' is an extension of k, there is a natural isomorphism
Uk^ai.Si^b^^kk' ^Uk'(A,ai,Sij,bi) .
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ii) Let \i, 7, G k*. Then we have an isomorphism/row, U{A, a^, i^, bi)
to U(A,ai\'j,Sij^ij,bi^).

iii) Let c^d € k* and let us assume that there exists A^,7 e A;*,
satisfying : A? = ca,~1, 72 = d^1. TT^n £/(A,a,,5^,6,) z5 isomorphic
toU(A,c,d).

iv) £/(A,1,--1) z5 isomorphic to U(A) (cf. 2.1).
v) Uk(A,ai,Sij,bi) (g)/c A; z5 isomorphic to U^A).

Proof.
i) is obvious.

ii) Let fJ.ij = (^j\i)/{^i\j). We have ̂  = ̂ ^^-, for all z,/^. Let
XI, V/, R^ S[ be the generators of [/(A, a,A?, 5^^, 6,7?), (40') , . . . , (50')
the defining relations. The assignement

X^\,X, Y^^Y, R^R, ^(A,7,)-1^

gives the claimed isomorphism. We leave the checking of the well-
definiteness to the reader; it is a straightforward computation.

iii) follows from ii), putting 7 -̂ = 7A^•A^l^•l.
For iv), the isomorphism from Uk(A) onto ^(A, 1, -1), is given by

i^i(X,-y,), F,^j(X,+y,), K^(R,±Si)

with inverse given by

X, ̂  E, + F,, Yi ̂  -Ei + F,,
^-j(^+^1), 5,-j(^-^1).

It is necessary to check that relations (16),... ,(19) are equivalent to
relations (40),... ,(50). It is clear that (16) is equivalent to (40), (41).
Let us assume that (16),... ,(19) holds. Let us deduce (42) :

WX,R, - C^Y.Si) = C^E, + F,)(K, + K^)

-C^(-E^F,)(K,-K^)
={C\^C^{E,K^F,K^

+(^-^)(^•^1+F^)
= KiEj + K^Fj + K^Ej + K,Fj = 2R,Xj.
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(43), (44), (45) can be proved in a similar way. For (46), we have :

X,Y, - Y,X, = (E, + F,)(-Ei + F,) - (-E, + F,)(E, + F,)

= 2{E,F, - F,E,) = 2 Ki ~ K i l = ~4^ ,/ qdi _ q-di qdi _ q-di

and similarly for (47), (48). Now we deduce (49), (50). We shall use (20).
Let us add the left-hand sides of (49) and (50) :

^.^fi-^l ^ ^ ^ ^ ^ ^
^ Jdi (m,n)eJf(x,,y,) (m,n)eJ|(x,,y,)

+1E(-1)S[1-,%1 { E m^n+ E mx^}s=o -ldl (m,n)eJf(Xz,y,) (m,n)eJ|(x,,y,)

= E(-1)5 f1"^! E {rnY.n+mX.n)
5=0 L -1^ (m,n)eM^xMi_a^.-s

=lE(-lr[l7^J1 E E rn(y,-+X,)n
«=0 L -l<;('m€M.(X,,y.) n€Mi_oy_,(X,,r.)

= E^-1)^1"^! ?+^r?•+^•)?+y,)l-a--s
s==0 L -1 ̂

= E^-1)^1"^! FfF^-^-8.
s=0 L -I ̂

Substracting the left-hand sides of (49) and (50), we obtain :

EWpT^I
s=0 L J di

E ^-l^^mXjn - (-l)°y^mY,n)
(m,n)eMsXMi_a^.-s

= lE(- l)sf l7^ '1 E^1)0^
5==0 1- -1 di rn^Ms

E (-ir^^^--^-^
neMi_a^.-^
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- E(-1)8 [1 -aij} ^ - w^' - Y^ - ̂ l-oy-s
i ^ ,

5=0 L -1 di

-E^-1)^1"^! ElE^-3.
5=0 L J ̂

Now we turn to the implication (40),.. . , (50) => (16),.... (19). The last
computation shows how to obtain (19) from (49) and (50); (17) and (18)
will be left to the reader.

v) follows from the preceding items.

Let us assume that —o^ is not a square in k, for some £ : 1 < £ < n,
and choose a quadratic extension k' containing a square root V ' —a^n
which we shall fix in the rest of the section. As —djbj = —a^b^(aja^ls^j)2,
\/— (ie be dj a~^1 s^j is a square root of —djbj which will be denoted \/—ajbj.
Clearly

\—aibi = ̂ /—ajbjCiia- s j i Vz, j .

Then there is an isomorphism from ^(A,^,^-,^) onto Uk'{A) gi-
ven by

^^j(^+^1), S^^Ki-K^)/^aib,

X ̂  Ei + aiFi, Yi ̂  \/-aibi (-^/a, + F,),

whose inverse is given by

Ki v-f Ri + \/—OibiSi, K^1 \—>Ri— ^—OibiSi

Ei ̂  j(X, - (a,/^-aA)^), Fi ̂  j(X,/a, + (1/^aA)^).

Let 7 be the non-trivial element of Ga^k'/k); one has

^{V-dibi) = -\/-dibi;

7 extends to an automorphism in Gal(k'(q)/k(q)), letting q invariant,
which we shall still denote 7. Let T : E4/(A) -^ Uk'{A) be defined by
T(v <g) A) = v (g) 7(A), for v € £/(A,a^,5^,^) A C A:', with the above
identification.
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PROPOSITION.

i) ([//(/(A)*,*) is a ^-algebra, with the application * : Uk'(A)* —>
Uk'{AY given by (a^x) =-f((a,T(x))).

ii) Let kq[G] be an algebraic quantum group corresponding to some
finite dimensional representation Uk'(A) —> End(V). Then kq[G} is a *-
subalgebra ofUk'{AY and a * -Hopf algebra.
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