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CAUCHY-FANTAPPIE-LERAY FORMULAS

WITH LOCAL SECTIONS AND

THE INVERSE FANTAPPIE TRANSFORM

BY

MATS ANDERSSON (*)

RESUME. — Nous deduisons une formule du type Cauchy-Fantappie-Leray n'utili-
sant que des sections localement defmies. A Paide de cela, nous construisons une
formule d'inversion pour la transformation de Fantappie dans Ie cas C-convexe general.
Ceci retablit la moitie non demontree d'une conjecture de Ai'zenberg, Trutnev et
Znamenskij amrmant qu'un domaine est C-convexe si et seulement si la transformation
de Fantappie y est un isomorphisme.

ABSTRACT. — We derive a Cauchy-Fantappie-Leray formula that requires only
locally denned sections. We use it to construct an inversion formula for the Fantappie
transform in the general C-convex case. This establishes the unproved half of a
conjecture of Aizenberg, Trutnev and Znamenskij that states that a domain is C-convex
if and only if the Fantappie transform is an isomorphism.

0. Introduction
If D is a domain in C72 (or P72) then the Fantappie transform F

maps H\D} into H ( D * ) , where D* is the set of all hyperplanes not
intersecting D (for exact definitions see §3). If D is convex, then F is
an isomorphism. This was proved by MARTINEAU, see [2]. In the seventies
AIZENBERG and TRUTNEV conjectured :

THEOREM 0. — The Fantappie transform F is an isomorphism if and
only if D has simply connected intersections with all complex lines.

(*) Texte recu Ie 13 fevrier 1991.
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114 ANDERSSON (M.)

We call such a domain D C- convex. This conjecture was announced
by ZNAMENSKIJ in [8] to be true, and it is subject to a more elaborated
treatment in [9], where the necessity of C-convexity is established. How-
ever, the proposed arguments for the sufficiency are long and involved and
seem to have gaps.

The aim of this paper is to give a rigorous and comprehensive proof of
the sufficiency, i.e. that F is an isomorphism if D is C-convex. Along the
way we obtain a quite explicit inversion formula for F. This is constructed
by means of a Cauchy-Fantappie-Leray representation formula for holo-
morphic functions, in which the Cauchy-Leray sections are defined only
locally. We derive the representation formula in § 1 and use it in § 2 to give
a simple Hahn-Banach proof of a (known) Runge type theorem which we
need later on. In § 3 we construct the inversion formula for the Fantappie
transform F when D is C-convex, and prove that F is an isomorphism.
However, the proof requires some topological facts about C-convex do-
mains, some of which we have not found in the literature, and we collect
them with proofs in an appendix. For instance, we prove (although it
is not needed in our proof of THEOREM 1) that a C-convex domain is
contractible.

We conclude this paragraph by suggesting the idea behind the Cauchy-
Fantappie representation formula. Suppose K is a compact set in C" and
/ e H(^} where f2 DD K. Then there is an open set uj with smooth
boundary such that K C ( ^ C C ^ . l f n = l w e can represent / on K by
the Cauchy formula :

(1) /W^/^f. ..K.
zm JQuj C - z

A simple generalization of (1) to C71 is the Bohner-Martinelli formula

(2) W^J ^-^^^"''AO, ̂ ,
JQ^ Is — z

which however has the disadvantage that the kernel is not holomorphic
in z^ which is crucial in certain applications.

In order to obtain a representation formula with holomorphic kernel
one, roughly speaking, has to find a complex hypersurface, not intersect-
ing K, through each point C 6 QUJ, and moreover do this in a C^-manner
on QUJ. More explicitly, if we have a mapping s(^ z) : Qujxfl —^ C72 which is
holomorphic in z and such that the hypersurfaces {^ ; < s ( ^ , ^ ) - ( ^ — z) = 0}
do not intersect K, then the Cauchy-Fantappie-Leray formula (see § 1)

r .(c^)A(^(c^)r"1

L (^HC-^))7
^ ^ ^ [ ^)A(^(C^)),^ . „
(3) f(z)=Cn . . ———-7——/(C). Z C K ,

JQ^ (s(Cz) ' (C- z))

TOME 120 —— 1992 —— N° 1



. . . THE INVERSE FANTAPPIE TRANSFORM 115

holds, where <s(C, z) is identified with the form ^Sj(^z)d(^j. We will
present a method for constructing a global representation formula of this
kind from local (on Ouj) choices of s(^z). The resulting formulas will
inherit some properties of s((, z), e.g. being holomorphic or algebraic in z.
In case of domains with piecewise smooth boundary, our formulas are
connected to Norguet's formula, see the last remark in § 1.

I am grateful to Ragnar SIGURDSSON for valuable comments on the
manuscripts.

1. Cauchy-Fantappie-Leray formulas with
locally defined sections

We present the formulas in P^formalism since this is most natural
when applied to the Fantappie transform in § 3. However, there is a simple
way to translate to the C^form (see below).

Let C = (Co, • • • , Cn) ^ C^1 \ {0} be homogeneous coordinates for the
point [C] in P71 and let TT denote the natural projection :

7T : C^1 \ {0} -^ P^

Sometimes we abusively write ^ € P72 rather than [(} € ?"'. Via the
natural pairing ( , ) of C^1 and its dual (C^^)*, the elements in
(P^)* = {[^] ; ^ e (C^)* \ {0}} are identified with the hyperplanes
in P", i.e. [$] - {[<] G {[C] e P71 ; (C^) = °} and vice ^rsa.

A fixed choice of hyperplane 77* G (P^)* in P^ (called the hyperplane
at infinity) defines a unique affine structure on P^ \ 77*, making it affine-
isomorphic to C^.

If n is an open set in P71 there is a 1-1 correspondence between
holomorphic functions in f^, ^(^2), and zero-homogeneous holomorphic
functions in 7r-1^ C C^1 \ {0}. Let

^-{([CU^DeP^p-)*; (C.O-o}
and Cn = (27^^)-7^.

PROPOSITION 1. — If F(() and ^(<^) are -n-homogeneous and holo-
morphic in (some open subsets of) C7^1 \ {0} and (Cn+l)* \ {0}, respec-
tively^ then

n n _-,

(1) ^($,C) = c^(0^^.d0 A (^ d^- A dC.T" F(C)
o o

is a well-defined closed form on (some open subset of) X .

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



116 ANDERSSON (M.)

Proof. — If for instance Co 7^ 0 and <^o 7^ 0, then

(2) a($,C) == c,CTO E ̂ d^ A (E d^ A ̂ ^TOi <So Co v—^ <;o Co/

which shows that a indeed is well-defined on P" x (?")* and in particular
on the submanifold X. Since F(C) is holomorphic it follows of bidegree
reasons that d^a = 0, but since ̂  ̂  dCj = - S Cj d<^- on X and also <^($)
is holomorphic, we similarly have d^a = 0 on X. []

Definition. — A CL-section (Cauchy-Leray section) ^(C) is a C1-
mapping from some subset of P72 into (P77-)* such that (C^(0) = 0,
i.e. such that .s(C) is a hyperplane through C.

If <I>(<^) is holomorphic on the image of ^(C) it follows from PROPO-
SITION 1 that a(5(C),C) is a closed (n,n - l)-form in C.

PROPOSITION 2 (The Cauchy-Fantappie-Leray formula). — Suppose
that uj CC P72 \ rf has smooth boundary and that f G H(uj). If z e uj
and 5(C) is a CL-section over QUJ such that 5(C) does not contain z^ then

(3) ^'"t^^'^1^'^^1
*\n

where ^ is identified with the form Y^o ^j dCj •

This well-known formula is a special case of THEOREM 4 below.

Remark. — If 77 = 77* = (1 ,0 ,0 , . . . ) and we make the identifications
[C] = [(UQ] - C' ^ C71, [^] = [(1,^)] - ̂ / e C" and [5] = [(5o, s ' ) ] - 57,
noting that s(C) being a CL-section means that 5o(C) = -^'(CX7, then (3)
becomes (3) in § 0. In particular, if ,s(C) is the complex tangent plane to
the level surface of the distance function d(^z) in C72, then (3) becomes
the Bochner-Martinelli formula (2) in § 0. []

If we for each z in, say, K C uj have a section C 1-̂  (C^ z) tnat d0^ not
intersect z, then of course (3) holds for all z G K. Then 5(C,^) also may
have some additional desirable property; e.g. being constant, a polynomial
or at least holomorphic in z. We are going to construct formulas when such
a required s(C, z) only is found locally on QUJ. To this end, we will use the
following formalism :

Let z C P"/^* be fixed and let

«K,O^<^AW-^.

TOME 120 — 1992 — ?1



. . . THE INVERSE FANTAPPIE TRANSFORM 117

For CL-sections so((^), s i (^) , . . . not intersecting z, we define

(4) .̂(.o,.,,...,.)̂ ,(E (%,(),

where Afc is the standard simplex {t € RS-^iSo^j = ^-} ^th the usual
orientation, and the integrand is the pullback of a under the mapping
(*,C) ^ (^0 = (EWC)/(^(C)),C). Hence H^^SO, ... , S k ) is a
form in ( and we have :

PROPOSITION 3. — Hk+l(so,.. - , S k ) has bidegree (n,n — k) and van-
ishes if k>_n. It is alternating in sj and

(5) dff^1 (50, Sl, . . . , Sk) = ff^Sl, . . . , Sk) - H^SQ, 82,..., Sk)

+•••+(-l)kHk{so,Sl,...,Sk-l).

Explicitly,

(6) Hk(sl,...,Sk) =Cn{z,1f}nSi^••• f\Sk/\S,

with
g^ Y" (9sl)al A • • • A ( ^ s f c ) a f c 1

\c.\~-k (2' s^al+l • • • <2' SA)afc+l «' 7?*)ra '

Proof. — By PROPOSITION 1, o;(^,C) is a closed form and hence
(de + dt)a(EoW<^),0 = 0. Thus

^^'•••'^-L^t^)
=-^<E^c)
=I :fA ;(5l , . . . ,S/ ,) -^(50,52,...,^) + • • •

if 9/\k is oriented in the usual way. This proves (5) and the other
statements follow from formula (6) which we now are going to derive.

Since both sides of (6) are zero-homogeneous in each sj, we may assume
that { z ^ S j } = 1. We also assume that

<^)=«,r?*)=l .

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



118 ANDERSSON (M.)

Then, letting r = ̂  rj d^j (and assuming (z, ̂ ) > 0) we can write
roo

n^(^(:)=cn \ e-^^drr^
J(T=0

so that

î,...̂ )^ I r e-^^drY
n • JtC^k-i Ja=0

^o, o.\ -cn- / / p^-rdr^i
n \ I I { ) \^=^tjSj-^ • . / f<=A. , .//-r—n "He^k-i ^(T=o

Making the change of variables xj = atj we get
Ht-c-,[ . ^'•(y,^,^',+y.^.,""-^L^"^'^'^'6")'
^C)^8-^-1^--^ E ̂ .̂rd.

+ |Q;|=n—fe

= c^i A • • . A sj, Y^ (d^i)01 A • • • A (ds^.
\a\=n—k

Finally, each dsj can be replaced by Qsj for bidegree reasons. []
We are now ready for our main result of this paragraph.

THEOREM 4. — Suppose that f <E H(uj\ z <E ^ CC P" \ 77* and <9a; ?5
smooth. If {^a} is an open cover of QUJ, Sa(Q are CL-sections over m a
which do not intersect z and {^a} is a partition of unity subordinated
{c^a}, then

V\A T-r1^ \f -L / Y^ /,/, A.I. A u-2/. . \ i(7) f^= [ ^aH\S^f+[ E^d^lA^2(^-^)/
J^ a l/^ 02,01

+ • • • + / ^ ^d^^A-.-Ad^A^^,. . . ,^)/ .
^^Ci; „,)Q-^...^

If n = 1, eq. (7) reduces to Cauchy's formula. If 5^(C, z) is defined for
z <E K and holomorphic in 2;, then (7) is a representation formula with
holomorphic kernel. Note that if there are only m < n different Sa, then
only H1^ for k < m occur. In particular, if m = 1 we get back (3).

Proof. — Let s(() be the complex tangent space to the level surface of
same appropriate distance function (cf. the remark above). Then by the
Bochner-Martinelli formula (2) in § 0,

f(z)= [ H\s)f= f ̂ ^H\s)f
J 9uj J Quj

= ( ^^H\s^)f- f ^^{H\s^)-H\s}}f.
J ouj JQUJ

TOME 120 — 1992 — ?1



. . . THE INVERSE FANTAPPIE TRANSFORM 119

By (5), ^(s^) - ̂ (s) = dH2^^^), so the holomorphicity of / and
Stockes' theorem yield :

f^)= I E^l^l(^lV+/> E^d^AT^,.)/.
JQ^ ^ai,^

Now, H^s^^s) = H^s^^s^^H^s^s) - dH^s^^^s) by (5).
Moreover we notice that

E ̂ d^ A^2^^) ̂ E^i AE^2^2(^^) =0,
»i,Q2 ai 02

so we get

f(^= I E^l^l(^lV+/l E^d^A^2^,^,)/
l/<9a; ai 7aa; 01,02

- / E ^3 d^a2 A d^, A H3 (s^, s^, s) f.
JQ^ 01,02,03

With a repeated application of (5) we finally arrive at (7). \\

Remark. — If D is a domain with piecewise smooth boundary
^D = ̂ sj^ where Sj are the smooth pieces, and Sj are CL-sections
over Sj that do not contain z <E D, then in our notation the Norguet
formula (for details see [3] and [4]) is

(8) ^)=E/ ^i^,...,^,)/,j J S i

where Si = Q^^ 5'̂  appropriately oriented, for multiindices J. Hence (8)
can be viewed as a limit case of (7) when the ̂  : s tend to characteristic
functions.

2. A Runge type theorem

THEOREM 1. — A domain of holomorphy D C C71 z'5 a .Rzm^e domain
if and only if for any compact K C D and z <E D sufficiently near 9D
(depending on K) there is a curve of algebraic hypersurfaces from z to the
hyperplane at infinity that does not intersect K.

We recall that D is a Runge domain if the polynomials are dense
in H(D). The condition in the theorem means that there is a continuous

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



120 ANDERSSON (M.)

mapping t i—^ Ft, with a < t <^ &, where Ft are polynomials, such that
Fa(z) = 0, Fb is a non-zero constant and K D {Ff = 0} = 0 for a <^t <^b.

We first observe that the "only if" part is quite trivial. Namely, if
z € D \ KD^ then there is a / G H(D) and hence a polynomial / such
that f(z) = 1 but I /] < 1 on K. Thus Ff(z) =1- f (z ) / t , for 1 < t < oo
yields the curve of algebraic hypersurfaces.

The "if" part is for n = 1 just Runge's theorem and for n > 1 it
is a consequence of the Oka-Stolzenberg theorem, see [6], and the (not
quite trivial) fact that D is a Runge domain if the polynomial hull K
is contained in D whenever K is. However, we will give a direct Hahn-
Banach proof here. It is clearly enough to prove :

PROPOSITION 2. — Suppose K is compact in the domain uj € C72, QUJ
is smooth and that through each point on 9uj there is a curve of algebraic
hypersurfaces ending at the hyperplane at infinity and not intersecting K.
Then any f € H(uj) can be uniformly approximated by polynomials on K.

Proof. — We may assume that 0 € K. For fixed ^o ^ 9uj, let
{z; p(z) = 0} be a hypersurface through <^o as in the hypothesis. We
can write p(z) = a(z) ' ((^o — z) where a(z) is a polynomial. For ^ near ^o
it is clear by continuity that {z,a(z) • (C — z) = 0} is a hypersurface
through ^ which can be joined to the hyperplane at infinity by a curve
that does not intersect K. Locally on QUJ we now put

(D •«.^^<.
so that s«, z) • « - z) = 1 + Eo<|/3|^M a0z(3•

Now let {uja} be an open cover of QUJ such that we have a Sa(^ z) of
the form (1) in o;cn and let ^a be a partition of unity. We can then form a
representation formula for / e H^) in accordance to THEOREM 4 in § 1.

Since Sa(^,z) is holomorphic in ^, (cf. (6) in § 1) only the last sum of
terms in (7) in § 1 actually occurs and we thus have (compare with the
proof of PROPOSITION 2 in § 1).

(2) ^ ' L s V'Qn d^O

^"1,...,^

. A -1 / ^0:1 /\ ' " " A <SQ: f ( .r\A " ' A ̂ al s—ir^)—s—7r~^/(c)-^Qi \^ ~ Z ) • • • SQ^ ' [(^ — Z )

This formula may be compared to the Well formula for analytic polyhedra.

Now we are ready for the Hahn-Banach argument. Thus let fi be a
measure on K that annihilates (the restrictions to K of) all polynomials.

TOME 120 — 1992 — ?1



. . . THE INVERSE FANTAPPIE TRANSFORM 121

We then have to show that also ii{f) = 0. However, by (2) and Fubini's
theorem it is enough to show that, for each fixed ^ G QUJ,

s^ A • • • A Sa^(z)
=0.

JK ^i • (C - ̂ ) • • • ̂  • (C - ̂ )

The integral has the form

p(z)d/^)/.K (1 + E|̂ M 4^) • • • (1 + S|/3|<M < )̂

where p{z) is a polynomial. By the assumption on the polynomials, this
integral is holomorphic in the coefficients a3 in a connected open set that
contains the point dg = <2^(C) as weu as a^ = 0- But for a3 near 0 we can
expand in a power series in z, so by the assumption on /2, the integral
vanishes for these a3 and hence by uniqueness also for a^ = a3^). []

3. The Fantappie transform
We begin with some definitions and simple facts. If E is a set in P71

we let E* be the set in (P72)* consisting of all hyperplanes in P72 which
do not intersect E. A set E is called linearly convex if P71 \ E is a union
of hyperplanes, i.e. if E1** = E. If E is compact (open) then E" is open
(compact) and if E C E ' then {E'Y C E\

A complex line in P72 is the generic intersection of (n — 1) hyperplanes
and thus isomorphic to P1.

Definition. — An open set D C P11 is called C-convex if its intersection
with each complex line is simply connected and 7^ P1^ i.e. homeomorphic
to the unit disc.

Any C-convex domain is linearly convex, see [8], and the converse is
true if D has C^-boundary, see [I], but not in general, see e.g. example 1
below.

Suppose we have chosen a hyperplane at infinity 77* in Pn and a point
77 6 P71 \ 77* (77 and 77* can be thought of as the origins in Pn and (P71)*,
respectively). For a linearly convex domain D in P71 wet let H()(D) be the
space of holomorphic functions in D that vanish on the hyperplane 77*.
Similarly, Ho(D") is the space of functions, that are holomorphic in
some neighborhood of D* and vanish on 77. Thus H(D) = HQ^D) and
H ( D " ) = Ho(D*) if 77 e D C P71 \ r?*. All spaces are taken with the usual
topologies, see [2].

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



122 ANDERSSON (M.)

If IJL is an analytic functional, ^ G HQ^D), then the Fantappie transform
of ^, with respect to T] and 77*, is

WO^fC^),
\ \ ? s / /

which is an element in Ho(D*), since fi has some compact carrier in D, and
F : HQ(D) -^ Ho{D") is continuous. Its adjoint, F* : H^D") -^ ^o(^) is

^)-(^)-
MARTINEAU [2] showed that F is an isomorphism if and only if F* is. (A
set D for which this holds is called strongly linearly convex
by MARTINEAU.) Now we can reformulate THEOREM 0 in § 0 :

THEOREM 1. — If D is a linearly convex domain in P"', n > 1 then F
(and F*) are isomorphisms if and only if D is C-convex.

The "only if" part is proved in [9] and we are now going to prove the
"if" part. Our first objective is to reduce to the case when 77 G D CC
P72 \ 77*. To this end, choose rj and ry* so that 77 <E D CC P71 \ r?*, and
let F be the corresponding Fantappie transform. Let r and a be the
isomorphisms r : ̂ o(^) -^ H\D), a : Ho(D") -^ H{D^ defined by

^=^f) and ^O-tJ^)-

Then the diagram

Ho{D) -^—. H^)

H\D) —J——^ H(D"

is commutative, so F is an isomorphism if and only if F is. Hence we may
assume in the sequel that 77 C D CC P72 \ r/*. Sometimes it is convenient
to assume that 77* = r] = (1, 0 , . . . , 0) so that in "C^-formalism"

^(o^f—^y^/ ^i+^y
LEMMA 2. — If D is C-convex then D* is connected.

Proof. — See COROLLARY 4 in Appendix. Q

TOME 120 —— 1992 —— N° 1



. . . THE INVERSE FANTAPPIE TRANSFORM 123

PROPOSITION 3. — If D is an open linearly convex domain in C7^ ^
P^ \ 77* such that J9* is connected, then D is a Runge domain and
F : H' (D) -^ H{D^ is injective.

Proof. — The Runge property immediately follows from THEOREM 1
in § 2. Then suppose that F^) == /z(l/(l + C • 0) = 0 for all C ^ D\
In particular this holds for C m a neighborhood of the origin. After
differentiation one finds that /^(p) = 0 for all polynomials p(^) and hence
/ x=o . D

It remains to prove that F is surjective. Take a fixed (p G H ( D : ' ) , say
(p (E H(^) where D* CC uj CC ^ and cj has smooth boundary. Locally
in uja on <9a; we can find CL-sections Sa(r) such that ^(r) avoids D*,
and hence by THEOREM 4 in § 1 we have :

(i) ^(o- / E^^^)^/ E ^d^A^2(^,^)^+•••
7aa; a ^ai,^

Note that the right hand side of (1) consists of a sum of terms, cf. PROPO-
SITION 3 in § 1, of the form

(2) / ^facrn^^77?- ^^*-Jr^ ^ {Sa,(r),Q

where /i(r) is smooth and has its support where all the occuring Sc,- are
defined. It is thus sufficient to find an inverse Fantappie transform of any
function in C of the form (2). Since the image of r ̂  Sa.(r) is a compact
set in D, this is accomplished by :

LEMMA 4. — If D is C-convex, T] e D CC P71 \ r;*, then for points
a i , . . . , ak € D there is a ^ai,...,afc ^ H ' { D ) such that:

(3) ^...^(o^^o'n^?^-i w^/

Moreover, for any compact K C D there is a compact K ' C D and a
constant CK > 0 such that:

(4) |^,..,a,(/)| ^C7^sup|/|, a, e K .
K'

It is clear from the lemma that / ̂  f^ h(r)^^^^^,^^f defines
an element in H\D) and that its Fantappie transform is (2)"

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



124 ANDERSSON (M.)

Proof of the lemma. — For a, b G D and, say, entire / we consider the
functional :

(5) ^f}=l\'9^m-\ dt.
Jo ^^ ^ e=W<^)+(i-W<M*)

One readily verifies that ^a,bf is holomorphic in a and & and that :

(6) ^.(O^^C)2^77*^^^(a.o^C)
We can change path of integration in the integral such that (5) is defined

for all / € H(D). In fact, for any fixed K C D there is another compact
K ' C D and CK > 0 such that (4) holds (with k = 2). Now we put :

^ai,.,a, (/) = /^,afc_i (^afc_i , • ( • • • (/^ai, •(/)) • • • ) ) .

Then (3) follows from (6) and (4) follows by induction. Q

Thus the "if" part of THEOREM 1 is completely proved.

Example 1. — Let D = ̂  x A C C2 C P2 where A is the unit disc
and ^2 is a non-convex domain in C. Then D and D* are both connected
so that both of F* and F are injective, but D is not C-convex so none of
them are surjective. In fact, if L is a line such that Lr\D is not connected
and a and b belong to different components of L H D, then the function

^(c) = ( l + a . 0 ( l + 6 - 0

does not belong to the image of F unless L meets the origin. In fact, if L
meets the origin (this is equivalent to that the planes a ' z = 1 and b • z = 1
are parallel) then fia,b can be realized as Dirac measures in the points a
and b. However, in the generic case when 0 ^ L, then any carrier of ^a,b
must connect a and b in L. This follows by computing ^a,b according to (5)
and comparing with the "only if" proof of Theorem 1 in [9]. Q

Remark. — The proof of the surjectivity of F can be turned in a slightly
different way, which reveals the connection to usual inversion formulas for
F when e.g. OD* is smooth.

So let again (p G H(^) where D* CC uj CC ^2, and let s(r) be a
CL-section over QUJ that avoids 77* G D*. Let :

^.^.^(^y™.-(^)^ {^rY
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Then
/ — — — / /^(T),T> =/.(/)

JQuj

is defined for all / which are holomorphic in some big domain in P71 \ rf
that contains the image of s(r). Also note that F^(() is denned and
equals (^(^) for all ( near 77*. We want to show that fi has a continuous
extension to H{D). It then follows by uniqueness of analytic continuation
that F J J L = (p. In particular, if s(r) takes values in D, we are already
done. Otherwise we choose SQ in ujo, as before and then repeating the
argument in the proof of THEOREM 4 in § 1, we can successively eliminate
^(C) and get :

^= I i^^CA^r)
JQ^J ^

+ / ^ ^d^ai A / (3(f,t^Sa, +t2S^,r)JQ^^^ l/Al
+ . . . + [ ^ ^d^_,A...

^^ai,...,^

• • • A d ^ A / ^(/^^^.,T).
^An-i ^

We show in Appendix that the simplices A^ can be deformed in such a way
that the integrals, remain unchanged but the supports will be contained
in D, which thus gives an extension of fji to H{D). \]

Notice in particular that :

..„...,.(/) »^(,,<y"-(^)î ^
dt2/\'" /\ dtn.

This follows by uniqueness since both sides are equal when applied to the
Fantappie kernel.

Appendix Topology of C-convex domains

PROPOSITION 1. — A C-convex domain D in Pn is simply connected,
i.e. any closed curve in D is homotopic to a point, i.e. TT^(D) = 1.

Proof. — Let a be a closed curve in D. Since D is open, we may assume
that a is piecewise linear (in some affinization) and we let ao , . . . , a^
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denote the corners of a. Let a be a fixed point in D. There are curves 7 -̂ (t),
0 < t < 1, from dj to a lying entirely in the intersection of D and the
complex line spanned by aj and a. To prove that a is homotopic to a, it is
enough to show that the segment between aj = 7j(0) and a^+i = 7^+1(0)
can be continuously (in t) deformed to a curve from 7j(^) to 7^+1 (t),
lying in D and the complex line spanned by thse two points. Since D
is open, this is clearly possible locally in t, say, in the intervals [0,^i],
[^1,^2] 5 • • • ? [t-m, 1]; and since the intersection of D and the complex line
spanned by 7j(^) and 7^+1 (t/c) is simply connected, the two different
choices of curves, joining these two points, are homotopic. []

COROLLARY 2. — The affine projection of a C-convex domain D C C'1

onto a complex line is simply connected.

Proof. — It is enough to show that any closed curve ^(t) in the
projection can be lifted to a closed curve in D. Since D is open, this
is clearly possible locally in t, say, on [0,^i], [^1,^2], • • . , [tm, 1]. The two
different points in D corresponding to tk can then be connected by a curve
in the complex line through these two points, and this line is orthogonal
to the projection. []

A mapping T :_ P771 -^ P71 is projective if it is induced by an
injective mapping T : C77^1 -^ C^1. Then we also have a mapping
T* : (P^)* \X -^ (P^* where X = {[z} € (P71)* ; T^z = 0}.

If X is contained in the hyperplane at infinity for some affinization
of (P71)*, then T* is a affine mapping from (P^* \ 77 to (P771)* \ Tr]~1.

PROPOSITION 3. — IfT : P^ -^ P71 is projective and ImT H £'* -^ 0,
then T* is defined on E, i.e. E C P71 \ {T* = 0), and (T*^)* = T-1^*
inP^.

Proof. — z G T-^* <^ Tz € ^* <^ <T^,^) 7^ 0 for all $ € ^ <^
(z, T^) ̂  0 for all ^ G £; (in particular T*^ 0) ̂  z C (T*£;)*. Q

COROLLARY 4. — Suppose D is a C-convex domain in P71. J/L is any
complex line, then (D* D L)* z5 simply connected'^ in particular D* Fl L is
connected.

Proof. — Let L be the image of the projective map T : (P1)* -^ (P^)*.
Then D* H L ^ T-^* = (T*P)* and T*D is simply connected by
COROLLARY 2. Q

THEOREM 5 (Zeiinskij). — Any C-convex domain D is acyclic, i.e.
Hk(D, Z) = 0 for k > 0 and ^o(-D, ̂ ) = Z.

Proof.—See [7]. Q
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THEOREM 6. — Any C-convex domain D is contractible.

Proof. — By THEOREM 5, PROPOSITION 1 and Hurewicz theorem
(7.5, Theorem 5 in [5]) it follows that 7Tk(D) = 1 for all A:, i.e. all homotopy
groups are trivial. Since D is a CW-complex then WhiteheacTs theorem
(7.6, Corollary 24 in [5]) implies that the mapping f : D —^ point is a
homotopy equivalence, i.e. D is contractible. []

COROLLARY 7. — Suppose D C P72 is a C-convex domain and
PQ-> • • - ,Pk ^ D. Then there is a differentiable k-simplex a : A/c —> D with
corners pj such that each r-face^ r < k, lies the (at most) r-dimensional
subspace spanned by its r 4-1 corners.

Proof. — We construct a successively. Suppose we have a a with the
proposed properties from the (r — 1) skeleton of A/c, i.e. from the union
of the (r — l)-faces. Now let F be a fixed r-face and II the (at most)
r-dimensional complex subspace spanned by its corners. Since II D D is
C-convex, and thus contractible by THEOREM 6, we can extend a from 9F
to a continuous a : F —> II D D. We may also assume that a is smooth
since otherwise we approximate it by a smooth map into II which coincides
with a on 9F. \\

Let PQ , . . . , pk be points in C71 and let r : A/c —> C71 be the k-
simplex with corners pj. For holomorphic (A;,0)-forms /, defined in some
neighborhood of T, we define the functional Apf = Ap^...^/ = f^. f.

PROPOSITION 8. — Suppose D C Pn is a C-convex domain and
Po? • • •Pk € D. Then the functional Ap has a continuous extension to all
holomorphic (k^0)-forms in D.

In particulars, Ap is defined intrinsically on P71 for appropriate holo-
morphic (A", 0)-forms.

Proof. — Suppose D C C7'1 and let T : A^. —> D be the geometrical
simplex and a : A^ —> D the one from COROLLARY 7. We now claim that
there are ^-chains Cj, contained in (k — l)-dimensional complex planes,
such that a — r — ̂  cj is a cycle and hence a boundary in C71.

We show the claim by induction over k, so assume that it holds
for {k — 1). Let A-7 be a (k — l)-face of A^. Then T ,^ j and CT|^J are
in the same (k — l)-plane and also fulfills the other requirements, so by
assumption there is a chain cj such that a \^ —r^j —cj is a cycle. Hence
a — r — ̂  Cj is a cycle.

Now let / be a e.g. entire (k, 0)-form. Since / is a closed form in the
A*-plane spanned by p o , . . . , pk i it follows by the claim that :

/ /- / / 'E//
J <j -J r Jc-,
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But since / = 0 in each (k - l)-plane, we find that f^ f = ^ /, and
then we define the proposed extension to holomorphic (A:, 0)-forms in D
byAp=U. D
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