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NON SINGULAR TRANSFORMATIONS AND

SPECTRAL ANALYSIS OF MEASURES

BY

BERNARD HOST, JEAN-FRANQOIS MELA

AND FRANCOIS PARREAU (*)

RESUME. — Ce travail approfondit les interactions qui existent entre Panalyse
harmonique des mesures et 1'etude spectrale des systemes dynamiques non singuliers.
II est centre sur Petude de sous-groupes remarquables du cercle, groupes de valeurs
propres, groupes de quasi-invariance des mesures..., dont les exemples les plus naturels
sont definis par des conditions diophantiennes. La conjonction des points de vue permet
d'obtenir nombre de resultats nouveaux dans les deux theories, y compris dans des
problemes classique d'analyse de Fourier.

ABSTRACT. — This work explores in depth the interactions existing between
harmonic analysis of measures and spectral theory of non-singular dynamical systems.
It focuses on the study of some classes of remarkable subgroups of the circle : eigenvalue
groups, groups of quasi-invariance of measures..., the most natural examples of which
are denned by diophantine conditions. The conjonction of these points of view leads
to many new results in both theories, including some classical problems in Fourier
analysis.

1. Introduction

The spectral study of non-singular transformations reveals a deep
interplay between ergodic theory and harmonic analysis. The aim of
this work is to display some aspects of these connections, mainly those
involving the eigenvalue group e(T) of a non-singular transformation T,
and the group of quasi-invariance H(^i) of a positive finite Borel measure 11
on T, that is the group of all t e T such that ^ is equivalent to its
translate by t.

(*) Texte recu Ie 26 Fevrier 1990, revise Ie 12 novembre 1990.
B. HOST, J.-F. MELA, F. PARREAU, Universite Paris Nord, C.S.P., Dept. de
Mathematiques, Laboratoire d'Analyse et Applications, URA 742 du CNRS, avenue
J.B. Clement, 93430 Villetaneuse, France.
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34 B. HOST, J.-F. MELA AND F. PARREAU

The work finds its unity as much in the methods as in the results, as
the reader will realize, we hope.

For sake of simplicity, we will focus on the case of the circle group,
T == R/Z, which is maybe the most interesting one. Most of our results
can be easily extended to any second countable locally compact group and
we will mention it only occasionally. We use the classical notations and
results of Ergodic Theory and Fourier Analysis. The measure spaces we
consider are all standard, that is : up to an isomorphism, they are polish
spaces with a finite or cr-finite positive Borel measure. In the case of T,
we also allow complex Borel measures.

Along this paper, we will introduce some remarkable Borel subgroups
of T which all belong to the class of so-called saturated subgroups of T.

The notion of saturated subgroup had already been considered in a
more general setting and under an other name, in the chapter 8 of [18].
The point was there to exhibit some examples of non locally compact
group topologies for which we have an extension of the Bochner theorem.
The property for a subgroup to be saturated is initially a Fourier Analysis
property, related to the notions of Dirichlet measure and weak Dirichlet
set ([18], [26]). C. MOORE and K. SCHMIDT ([32], [41]) already noticed
that these notions appear naturally when studying the eigenvalue groups
of non-singular dynamical systems.

Since then, there have been some developments and it seems useful
to give a clear, new and more complete exposition of these topics.
This is achieved in section 2, where are also discussed the connections
with the classical theory of the absolute convergence of trigonometric
series. We introduce a group which plays a key role at the crossroad of
harmonic analysis and non-singular dynamics. Given any positive finite
Borel measure on T, we denote by Zi(/A) the group of all measurable
functions (of unit modulus) which are limits of group characters e271"17^,
n C Z, in the ^{fi) or L2^) topology. We also characterize saturated
subgroups in terms of these groups.

In the same section, we define a class of subgroups which provides
typical examples throughout the paper : with any sequence of positive
integers nj and any sequence of nonnegative real numbers Oj such that
^ aj = +00, we associate the group of all t C T such that

+00

^a.le^^-lj^+oo.
o

Such a group will be called an H^ group.
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NON SINGULAR TRANSFORMATIONS 35

In section 3, we study the eigenvalue groups of ergodic non-singular
transformations or flows, which have been paid attention by several
authors ([14], [19], [3]) and which are also the r-sets of the Connes-Krieger
theory of Von-Neumann algebras ([9]). These groups may be uncountable
but may not be any subgroup of the circle; they are (7-compact and admit
an intrinsic polish topology stronger than the circle topology. C. MOORE
and K. SCHMIDT ([32], [41]) first noticed that eigenvalue groups are weak
Dirichlet sets, except when equal to T.

In fact it is proved in [30] that they enjoy the stronger property to
be saturated. However, this proof is a little sketchy and the properties
of saturated subgroups are simply stated, referring to [18] where the
terminology and the context are different. The main theorem of [30]
is proved here with full details and complements. Moreover, having in
mind some general applications in Harmonic Analysis, we get rid of the
unnecessarily restrictive assumption of ergodicity (restricting then the
definitions to eigenfunctions of constant modulus).

We ask wether the conjunction of the saturation property and of
the topological properties of eigenvalue groups characterizes this class
of subgroups of T. We prove that any H^ group can be realized as
the eigenvalue group of some ergodic non-singular transformation (3.5).
Besides, any cr-compact saturated subgroup of the circle is close to being
an H^ group (2.3); it might even be that every eigenvalue group is an H^
group.

The main proof in section 3 involves the construction of factors which
play the same role as discrete factors for measure preserving transforma-
tions. Denoting by S the transformation of Zi(r) corresponding to the
multiplication by e27^, any non-singular system (Zi(r),i/, S) is isomor-
phic to a non-singular compact group rotation (THEOREM 3.2). Given a
non-singular dynamical system (X,/A,T), we associate such a factor with
every positive Borel measure r carried by e(T).

In section 4, we consider some classical non-singular systems defined as
Kakutani towers over the 2-odometer, which appear in [10], [23] and are
also studied in [33], [19], [3]. Their eigenvalue groups turn out to be H^
groups. We will prove two new results for these systems. First, under
some growth condition for the height function, we show that the tower is
isomorphic to a non-singular compact group rotation : we construct on
the eigenvalue group a probability measure which is familiar to harmonic
analysts — a so called "generalized Riesz product" — and then we prove
that the factor given by the technique of section 3 is in fact isomorphic
to the initial system.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



36 B. HOST, J.-F. MELA AND F. PARREAU

On the other hand, in full generality, we compute the maximal spectral
types of these systems which turn out to be classical Riesz products, and
it is worth noting that any Riesz product with nonnegative coefficients
may be interpreted as a maximal spectral type in this way.

Both results point out the key role of Riesz products in these topics
and provide a link with the last sections of the paper, where we are mainly
concerned with groups of quasi-invariance of measures on the circle.

Indeed, it is known that for any non-singular transformation T with
maximal spectral type a the eigenvalue group e(T) is contained in the
quasi-invariance group H(a). Whether the equality holds in general is an
open problem. In the case of the tower over the 2-odometer and the Riesz
product, we are able to prove it under a mild condition on the height
function. This yields a condition for the equivalence of a Riesz product
with its translates which improves the classical results (G. BROWN and W.
MORAN [6], J. PEYRIERE [37]). Besides, when the tower is isomorphic to
a non-singular compact group rotation, its spectral type is ergodic under
the action of some countable group of translations. This provides a proof
of the ergodicity of a class of Riesz products by a method quite different
from PARREAU'S [34].

Apart from these results, the section 5 contains a general study of the
groups H(p) for an arbitrary positive measure ^ on T. Till recently, very
little was known about these groups, except that ^{H{p)) = 0 for any
continuous singular measure ^ ([29]; see also [12]). J. AARONSON and M.
NADKARNI [3] show that H{ii) is the eigenvalue group of some non-singular
transformation and thus is a saturated subgroup, under the assumption
of ergodicity which is not quite natural from the Harmonic Analysis point
of view. We prove the result without restriction, as a particular case of a
more general theorem which deals with cocycle extension (THEOREM 5.4) :
the "maximal group" for a cocycle associated with a group of translations
on T is an eigenvalue group. This contains some results by H. HELSON
and K. MERRILL ([16], [17]).

The property for a measure on T to be "ergodic under translations"
may be restated in a non-classical way : it is possible to drop any re-
quirement of quasi-invariance (see [7], [12]) and moreover any reference
to a specified group of translations [34]. In this context the natural ob-
ject to attach to any positive finite Borel measure ^ on T is the set
A(/z) of all t € T such that fi and its translate by t are not mutu-
ally singular. These topics are discussed in section 5.5, where we also
prove a significant property of the sets A(p) for an arbitrary singular
measure ^ : any measure carried by A(/A), although it need not be a
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NON SINGULAR TRANSFORMATIONS 37

Dirichlet measure, is concentrated on a countable union of weak Dirich-
let sets.

The end of the paper is dedicated to some applications to the Fourier-
Gelfand theory of the convolution algebra M(T) of finite complex Borel
measures on T, in relation with the "Wiener Pitt phenomenon" (the range
of the Fourier transform of a measure is generally not dense in its Gelfand
spectrum). The eigenfunctions and eigenvalues of translations are closely
related to the so-called "generalized characters" and the techniques of
sections 2 and 3 involving the groups Zi(r) provide multiplicative linear
functionals on the measure algebra M(T) which are limits of continuous
characters. These properties are used in [35] for constructing non-trivial
examples of measures whose spectrum in M(T) is the closure of the range
of their Fourier transform.

2. Saturated subgroups

For sake of simplicity we will write the definitions and properties in
the case of the circle group. But all we are going to say is meaningful for
locally compact abelian groups and can be straightforwardly extended to
the general case.

Let us denote M(T) the convolution algebra of complex finite Borel
measures on T which is a Banach algebra under the norm l l /^ l^ jd i /^ l .
In the sequel a measure, without other specification, will mean an element
of M(T). The Fourier transform of a measure [i C M(T) is defined by

/2(n)= / e2—^), ( n € Z ) .

We note /Z the measure defined by fi(E) = p(—E), for every Borel set E.

2.1. Definition and general properties.
THEOREM. — For a Borel subgroup H of the circle group T, the

following properties are equivalent:
(1) For any measure ^ € M(T),

K^)|<sup|/2(n)|.

(2) For every compact K C H, every compact L disjoint from H, and
every e > 0, one can find a positive-definite continuous function (f) with
0(0) = 1 such that

\l-^t)\^e, ( t e K } , |^)| <e, ( t e L ) .

(3) For any positive measure [L C M(T), IH is in the closed convex
hull in ^(fi) of the exponentials e2^171*.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



38 B. HOST, J.-F. MELA AND F. PARREAU

DEFINITION. — A Borel subgroup of the circle which shares these
equivalent properties is called a saturated subgroup.

In the general case of a locally compact abelian group the theorem
remains valid, replacing the e2^1^ by continuous group characters, and
we define a saturated subgroup similarly.

Proof of the Theorem. — Let us recall that the positive-definite conti-
nuous functions on T are the sums of absolutely convergent Fourier series
with nonnegative coefficients. The condition <^(0) = 1 in (2) means that
the sum of the Fourier coefficients of 0 is 1, i.e. that (f) belongs to the
closed convex hull of the exponentials under the uniform norm.

(1) implies (2). Let us consider the space of real continuous functions
on KUL with the uniform norm. It is enough to prove that in this space IK
is in the closed convex hull of the functions cos 2Tvnt, n € N. If not, by the
Hahn-Banach theorem, we could find a real measure fi supported by KUL
and a constant a such that

Rej2(n) = / cos(27rnt) dfi{t) < a, (n e N),

fi(H)= [lK(t)d^t)>a.

Let then v be the symmetric measure \a\6 + j(/A + /^), where 6 denotes
the Dirac mass at 0. We have P(n) = |a| + RejS(n) > 0 for every n and
^(H) = |a| + l^(H) > sup |P(^)|, whence a contradiction.

(2) implies (3). Given any positive measure p, e M(T) and any e > 0,
one can find a compact set K C H and a compact set L disjoint from Jf,
such that fi{K U L) > ||/^|| — e. So, as the function (f) given by (2) is a
uniform limit of convex combinations of the exponentials, (3) is a direct
consequence of (2).

(3) implies (1). Let [L C M(T). The property (3) for \^\ implies
immediately

|/̂ )| = \f\nWW < sup|y e^W = sup|jS(n)|.

COROLLARY 1. — The properties of the theorem are also equivalent to :
(4) There exists some constant C > 0 such that, for any mea-

sure 11 C M(T),
\^H)\<Csup\M\.
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NON SINGULAR TRANSFORMATIONS 39

Proof. — Since (1) is obviously stronger than (4), we have to show
that (4) implies (1). If (1) does not hold, one can find a measure [i such
that \^(H)\ > 1 and sup|jl(7i)| < 1 - e for some e > 0. Let us consider
the measure v = /A * j2. We have

W= f ^H+x)dfl(x).

Now, there exist at most countably many disjoint classes H + x with
^{H + x) / 0; say ii{H + x) = 0 if x does not belong to one of the
classes H + :Cn, ?z > 1, so that

^W-E / ^(H+x)dfl(x)
n>lJH^

(2.1.1) = E ̂ (ff + ̂ ) ̂ (JHr + ̂ )
n>l

=^(ff+^) |2>|/x(ff) |2>l.
n>l

On the other hand, i)(n} = \fi(n)\2 and sup \v(n)\ < (1 - e)2. By iterating
this argument we will contradict (4).

REMARK 1. — For any Borel subgroup H of the circle, IH is a positive-
definite Borel function. The property (3) of the theorem asserts that H
is saturated if and only if, given any positive measure /A, IH is the limit
in -^(y^) (or /A-almost everywhere) of a sequence of continuous positive-
definite functions.

Note that T itself is saturated. For a proper subgroup, the properties
of the theorem can be strengthened.

COROLLARY 2. — A proper Borel subgroup H of T is saturated if and
only if

(5) for any measure p, C M(T), \p.(H)\ < limsup|/2(n)|.
It is clearly enough to prove that (1) implies (5). Since H is a proper

subgroup, it has zero Lebesgue measure (otherwise H = H — H has
a non-empty interior and H = T follows). Let ^ C M(T). Given any
positive integer N , we can find an absolutely continuous measure v
with y{n) =- j2(n) for -N < n < N and v(n) == 0 if \n\ > N.
Then v{H) = 0 and

\^H)\=\^-i.)(H)\< sup |̂ )|.
\n\>N

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



40 B. HOST, J.-F. MELA AND F. PARREAU

REMARK 2. — In the general case of a locally compact abelian group
the assumption that H is a proper subgroup must then be replaced by the
assumption that H is not an open subgroup or, equivalently, that it has
zero Haar measure.

EXAMPLE . — The group generated by a Kronecker set is a proper
saturated subgroup.

A compact subset E of the circle is a Kronecker set if every continuous
function of unit modulus on E is a limit of group characters in the uniform
topology on E. A Kronecker set is rationally independent and generates
a proper subgroup. (See [26] for more details and examples.)

Proof. — For the group generated by a Kronecker set, the property (2)
of the THEOREM 2.1 is proved in [18], p. 141.

2.2. Another characterization of saturated subgroups. The
group Zi(/A).

We will give another equivalent formulation of the property for a
subgroup to be saturated, which will justify this terminology and will
be used in the next section.

Given any positive measure /^, we denote Z(/^) the closure and Z{fi)
the closed convex hull of the exponentials e271"17^ in the weak ^-topology
of L°°(/^). With this topology the pointwise multiplication is separately
continuous and both sets are compact semi-topological semigroups. Z{p)
is also the closed convex hull of the exponentials in the L1 (/x) topology.

Zi(/^) denotes the closure of the exponentials in the L1^) topology.
It is contained in the multiplicative group of all functions in L°°(^) with
unit modulus, and it may be viewed at as the completion of Z under
the invariant metric d(m,n) = f [e27^ - e^^^d^t). Here, the L1^)
topology is equivalent to the L2^) topology, since

/[l- e^^d/^) = 2 / l(l-cos27^n^)d/^).

It follows moreover that, for any sequence n^ C Z, e^172^ converges to 1
in the L1 (/^) topology if and only if it converges to 1 in the L00 (p) weak *-
topology and this is also equivalent to saying that lim^+oo W^k) = 11^11-

LEMMA. — Let fi and v be positive measures on T. The following
properties are equivalent:

(1) For any sequence n^ 6 Z,

lim fi(nk) == 11/^H implies lim v{nk) = ||i/||.
fc—^+oo fc—^+oo
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NON SINGULAR TRANSFORMATIONS 41

(2) For any sequence n^ € Z,

lim f \e27^[nkt-l\d^l(t)=0 implies lim / le^^-lld^) = 0.
fc-»>+oo 7 fc-o+oo J

(3) Every element of Z(/z + z/) which is 1 /A-almost-everywhere, is
identically 1.

(4) There exists a continuous group homomorphism Zi(/^) —> Zi(^)
which maps the function e271"^ ofJ-i(ii) to the function e27^ ofJ-\(v).

(5) Every element of Z{ii + ^) which is 1 /^-almost-everywhere, is
identically 1.

Proof. — The equivalence of (1), (2), (3) and (4) follows immediately
from the remarks above and (5) implies obviously (3). It remains to prove
that (3) implies (5) : every element ^ of Z(/^ + ^) can be written as
a barycenter of elements in Z(/A + ^), say '0 = f \da(^) with some
probability measure a on Z(/A + z/). Now if ^ = 1 ̂ -a.e., necessarily for
cr-almost every \ we must have \ = 1 jLA-a.e., whence by (3) ^ = 1, and
finally '0=1.

DEFINITION. — Let fi and ^ be positive measures on T. If the equivalent
properties (1) to (5) of the theorem above hold, we will say that v sticks
to fi. More generally, we will say that a measure v sticks to a measure [L
if | v\ sticks to \IJL\.

REMARK 1. — Iff! is a positive measure such that lim sup |/2(n)| < ||/^||
(in particular if the Fourier transform of ^ vanishes at infinity}, then
every measure sticks to { j t . Moreover Zi(/A) c^ Z.

Proof. — Suppose that limfe-^+oo |iS(nfc)| = ||/^||; then necessarily the
sequence n^ stays bounded. If n^ = n for infinitely many fc, e^177^
is equal to a constant jLA-a.e., whence |jS(mn)| = \\{i\\ for all m and
necessarily n = 0. So n^ = 0 for k large enough and, for an arbitrary
positive measure ^, v(nk) == \\v\\ for k large enough. This also shows that
the topology of Zi(/A) induces the discrete topology on Z and Zi(/A) ^ Z
follows by density.

The next theorem explains the choice of the terminology "saturated".
THEOREM. — A Borel subgroup HofJ is saturated if and only if every

measure which sticks to a measure concentrated on H, is itself concentrated
onH.

Proof. — We shall prove the equivalence with the property (3) of the
THEOREM 2.1, which can be stated : for any positive measure [L C Af(T),
ijf e W
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42 B. HOST, J.-F. MELA AND F. PARREAU

Assume that H is a saturated subgroup of T and let ^ and v be two
positive measures such that ^, is concentrated on H and v sticks to /^.
Since IH belongs to Z(^+z/), the property (5) of the lemma yields IH = 1
i/'a.e. and therefore v is concentrated on H.

Conversely, let ^ be^any positive measure on T. The set of all non-
negative elements of Z(/^) which are > IH /^-a.e. is compact in the
weak *-topology and thus admits a minimal element h for the natural
order relation on /A-measurable functions (see [18], p. 21). Since Z(/z) is
a multiplicative semi-group, h is a one-zero function. We claim that the
measure v = hp, sticks to the measure ^n = l^. Let ( / ) be any element
of Z(y} which is equal to 1 /^-a.e.; by compacity (f) may be extended to an
element (f)' of Z(/^) which is still equal to 1 ̂ -a.e. Then -0 = j(l+Re(<^'))
is a positive element of Z(/z) with '0 = IH /^-a.e. and thus ^ > h, so
that ^ = 1 z^-a.e. and it follows ^ ' = 0 = 1 ^/-a.e. By the property (5)
of the lemma, v sticks to p^n. Finally, assuming the condition in the the-
orem, v is concentrated on ft; this proves h = IH jn-a.e. and therefore
IH e Z(^).

EXAMPLE . — Any countable subgroup HofJ is saturated,

Proof. — We denote H the dual group of the discrete group H. Endowed
with the dual topology, i.e. the pointwise convergence on H y H is compact
metrizable and contains Z as a dense subgroup. Let p, and v be two
positive measures such that /A is concentrated on H and v sticks to /A. If a
sequence e2^171^ converges pointwise on Jf, it converges in Zi(^) and, by
the property (4) of the lemma, it converges in Zi (z/); then v(nk) converges.
Therefore, the Fourier transform v may be extended to a continuous
function on H. It follows from the Bochner theorem that v is concentrated
onJf.

REMARK 2. — More generally, given a Borel subgroup U, we can define
a group topology on Z such that a sequence n^ converges to 0 if and only
if for every positive measure /A carried by H, the sequence ^(n^) converges
to 11 |̂ [ ; by the theorem, H is saturated when any positive measure whose
Fourier transform is continuous in this topology is concentrated on H
(according to the terminology of [18], chap. 8, M{H) is then a Bochner
subalgebra of M(T)).

2.3. Saturated subgroups and Ha groups.
The most important example of saturated subgroups will arise from

the next theorem which is nothing but a more precise version of the
property (2) of the THEOREM 2.1.
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NON SINGULAR TRANSFORMATIONS 43

THEOREM. — Let H be a a-compact subgroup of J. The following
properties are equivalent:

(1) H is saturated.
(2) For any compact L disjoint from H, one can find a sequence 0j of

real-valued positive-definite continuous functions with ^j(O) = 1 such that
the sum

+00

E(1-^))
0

is finite for all t C H and infinite for all t e L.
(3) For any compact L disjoint from H, one can find a sequence aj

of nonnegative real numbers and a sequence nj of positive integers (not
necessarily distinct) such that the sum

+00

Y^ Oj(l — cos l^rijt)
0

is finite for all t (E H and infinite for all t e L.

Proof.
(1) implies (2). H can be written as a union of an increasing sequence of

compact sets Kj,j > 0. Then, for j > 0, let ̂  be given by the property (2)
of the THEOREM 2.1 with K = Kj and e = 2~7 , and let (j)j = Re('0j).

(2) implies (3). For each j > 1, (f)j is the sum of an absolutely convergent
series ^^^ o^n cos 27m^ where a^n > 0 fo1' all n and S^?o aj,n = 1.
Then

+00 +00 +00

^(1 - (f>j(t)) = ̂  ̂ a^(l - cos27TO().
j=0 j=0 n=l

(3) implies (1). We may assume aj < 1 for all j (by splitting each term
when needed). We shall show that the property (3) of the THEOREM 2.1
holds. Given any positive measure /A and any e > 0, one can find a
compact L disjoint from H and such that ^{H U L) > (1 - e)\\p,\\. For
every k > 1 we define

+00

^kW=]^(l-a^+a^cos27^n,t)'
j=0

^k is the pointwise limit of a sequence of positive-definite continuous
functions taking the value 1 at 0 and therefore belongs to Z(^). Now ̂

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



44 B. HOST, J.-F. MELA AND F. PARREAU

converges to the function '0 given by

^(t) = [ 1 if ^00 a^1 ~ cos27^njt) < +00,
[ 0 otherwise,

so that ^(t) == \H(t) f o r t e H U L . We have

^ C Z(/^) and f \^ - l^|d/z < 5||^||.

DEFINITION. — Let a > 0. Given a sequence rij of positive integers and
a sequence a^ > 0, the set of all t € T such that

+00

(2.3.1) ^a.ll-e^^l^+oo
j=o

is a group, as can easily be checked. A subgroup of T which can be
described in this way, for some sequence a^, will be called an Ha group.

Notice that we do not suppose the integers nj pairwise distinct and
thus that we do not restrict these classes of groups if we moreover require
that the sequence aj be bounded.

For every C > 0 the set of t C T such that ^;t^ a^|l - e27^^ < C
is compact, so that Ha groups are cr-compact. When a = 2, (2.3.1) can
be written

+00

(2-^-2) ^0^(1 - COS27T71^) < +00
0

and the next corollary is nothing but a reformulation of the theorem above.
COROLLARY.
(1) Every H^ group is a saturated a-compact subgroup ofJ.
(2) Let H be a a-compact saturated subgroup of T. For every com-

pact L disjoint from H, there exists an H^ group containing H and disjoint
from L.

EXAMPLES :
1) Let (f)j be a sequence of real-valued positive-definite functions,

with ^-(0) =1. The set of all t e T such that
+00

(2.3.3) ^(l-^))<+oo
0

is an H^ group and so is a saturated subgroup.
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NON SINGULAR TRANSFORMATIONS 45

Proof. — We have shown in the proof of the theorem that (2.3.3) may
be written as (2.3.2).

2) If 0 < a < 2, any Ha group is an H^ group and so is a saturated
subgroup.

Proof. — For 0 < a < 2, it is well known that there exists a positive-
definite continuous function '0 such that 1 — ^(t) ^ \t\06 as t —^ 0 (take
for '0 the characteristic function of the stable law of order a). Then, we
get an equivalent series when , for every j > 0, we replace dj\l — e^17131^
by \—(f)j(t) where (t>j(t) = 1 —aj+a^(?7^) (we may again assume Oj < 1
for every j).

We shall show in section 2.4 that the Ha groups are not saturated in
general for a > 2.

3) If ̂ J^Q ftj = +00, the Ha group defined by (2.3.1) is a proper
subgroup for any a > 0.

Proof. — Let us denote H this group and let Sk = Z^=o aj ^or k > 0.
Since sje —> +00, we have

lya . l l -e^^l '^O, ( t e H ) .
8k 3=0

Now, as we have averages of uniformly bounded functions, the convergence
towards zero does not depend on the exponent a and, with a == 2, we
obtain

1 k

— V^ dj cos 27rnjt — ^ 1 , (t C H\
^k • n

3=0

and it follows by integrating that H has 0 Lebesgue measure. In fact, for
any positive measure ^ concentrated on H, we have

1 k

—^a^RejS(^) -> ||/A||
sk 3=0

and therefore limsup |jS(n)| = ||/^||.
4) For an arbitrary choice of the sequences aj and nj, the correspon-

ding H^ group may pretty well be trivial. The most interesting case is
when the sequence nj satisfies some lacunarity condition. In particular,
the H^ group is uncountable if

+00 r>

(2.3.4) ^(^) <+OQ-
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This is shown in [34] by exhibiting a continuous measure concentrated on
the group. We shall also give this construction in section 4.2. The hypo-
thesis (2.3.4) is the best possible lacunarity condition : if^+i = k^n^ + 1,
where kj is a sequence of positive integers such that ^ a ^ / k 2 = +00,'
with the mild hypothesis that a^ ~ a^+i, one proves in [34f that the
corresponding H^ group is trivial.

2.4. Non saturated H^ groups.
THEOREM. — Let, for j > 0, ^4-1 = rrij n^ where the rrij are positive

integers > 2 and ̂ °° 1/m] < +00. Neither the Ha groups defined by
+00

^ll-e^^j^+oo

for a > 2, nor the group

J^={^eT ; e^^-^l}

are saturated.

Proof. — We choose positive integers pj < mj such that pj/mj -^ 0,
+00 . +00

S ~y = +00 and ^ -^ < +00 for all a > 2.
0 ^3 0 PJ

For j ^ 0, let g^ be the integral part of mj/2pj and Tj = ̂ /^+i.
We consider independent random variables Xj which take the values 0

with probability j and ±rj with probability ^ and independent random
variables Yj which take the values 0 with probability 1-1/(2^2) and ±pj TJ
with probability l/(4j^). The distributions ̂  and i/ of the convergent sums
^ = Si °° ̂ 0 and ^ = S^°° Yj are the infinite convolution products

r=VW+ ',<>., +i^,),

•"TK1-^)'^^"^^--]-
The following lemma will prove clearly that none of the Ha groups
with a > 2 is saturated.

LEMMA. — (With the notations above.)
(a) For every a > 2, fi is concentrated on Ha.
(b) ^oo)=0.
(c) v sticks to 11.
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Proof.

(a) Let a > 2. The convergence of ^°° |1 - e^171^^ ^-a.e. is
equivalent to the almost sure convergence of Y^°° |1 — e271'171^!01. Let j >
1. For fc < j, n^ rfc = rij qk/rik+i is an integer; as qk < mk = nk-^-i/rik for
all fc, we also have ̂ ^ ̂ /^+i ^ V^+i; whence n^ S^ ̂  < V^r
Thus, modulo 1, njX is equal to yij; Xj up to a term < l/rrij. As
;> '̂00 1/m^ < +00, we only have to check ]^00 [^ X^0 < +00 a.s. This
follows from

-I-00 +00 -. -1-00 ..

^Xln.X,!") = ̂ (n,r,r ^ ^ < +^.
0 0 0 ^

(b) Similarly, njY converges to 0 modulo 1 if and only if rijYj converges
to 0. By construction, the sum of the probabilities

P(|r^|=n^^) = ,.
^3

is infinite, and nj pj rj converges to j . As the variables njYj are indepen-
dent, we conclude by the Borel Cantelli lemma that almost surely njYj
and thus 1 — e^177^ do not converge to 0. This proves v(Hoo) = 0.

(c) For every n € Z, we have

+00

j£(n) = TT j(l + cos27rn^),

1 1

o
+00

y(n) = IJ
o ' ^J "^

^n) = IJ (l - ̂  + ^2 cos 27rw,).

Since 1 — cos^ > 1/J?2(1 — cospt) for every t C R and every positive
integer p, we have 0 < fi(u) < y(n) for every ?z. It is obvious from there
that v sticks to /^.

2.5. Dirichlet subgroups and N sets.
We have shown that, if H is a proper saturated subgroup of T, every

positive measure ^ concentrated on H satisfies

(2.5.1) limsup[/2(n)[=||/2||.

In particular, H has measure zero for the Lebesgue measure and, more
generally, for every measure whose Fourier transform tends to 0 at infinity.
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DEFINITION 1. — Any positive measure /A C M(T) enjoying the
property (2.5.1) is called a Dirichlet measure. More generally, a complex
measure /x e M(T) is called a Dirichlet measure if |/^| is one.

This definition is introduced in [18] where one can find a thorough
study of Dirichlet measures. The property (2.5.1) is equivalent to the
fact that 1 is the limit, in the L^{p) topology, of a sequence of group
characters e271"17^, where nj tends to infinity (see [18], p. 34). Here again,
the L1^) topology can be replaced by the ^(/z) topology, or by the
weak *-topology of L00^), or by the topology of convergence in measure.

DEFINITION 2.
(a) A compact set E C T is a Dirichlet set if 1 is the limit, in the

uniform topology on £", of a sequence of group characters e^177^, where n^
tends to infinity.

(b) A Borel set E C T is a weak Dirichlet set if, for every measure [i
carried by E, 1 is the limit, in the L1^) topology, of a sequence of group
characters e2^171^, where rik tends to infinity; or, equivalently, if every
measure carried by E is a Dirichlet measure.

(c) A Borel subgroup of T is a Dirichlet subgroup if it is a weak
Dirichlet set.

EXAMPLES :
1) Every saturated proper subgroup is a Dirichlet subgroup.

2) Every discrete measure is a Dirichlet measure.

When 11 is supported by a finite number of points, this property is a
nothing but a classical diophantine approximation theorem of Dirichlet,
which justifies our terminology (see [20] from which these ideas originate).

We will see later several examples of continuous Dirichlet measures. It
is useful to remark that a Dirichlet measure is always singular because,
for every positive measure, we have limsup |j5(n)| < ||/^s||, where /^ is the
singular part of [L.

3) If ̂ J^Q dj == +00, the Ha group defined by (2.3.1) is a Dirichlet
subgroup for any a > 0.

That is nothing but what we actually proved in example 3, section 2.3.
4) There exists a Dirichlet subgroup H such that every point mass

measure sticking to a measure concentrated on H is itself concentrated
on H, but which is not saturated.

It is enough to consider the group Hoc defined in section 2.4. The proof
is obvious.

TOME 119 —— 1991 —— N° 1



NON SINGULAR TRANSFORMATIONS 49

The terminology of Dirichlet set and of weak Dirichlet set is used by
many authors (see [26]). The interest of the last notion is enhanced by
the fact that, for a compact set, being a weak Dirichlet set is equivalent
to being a N set.

DEFINITION 3. — A set E C T is a N-set if there exists a trigonometric
series ^y^?o ^n cos(27rn^ — o^), with dn > 0 and ^a^ = +00, which is
absolutely convergent on E. It is well known (see [4], [5]) that we obtain an
equivalent definition when considering only series of sines ̂  On sin 27rnt.

The problem of absolute convergence and the description of N sets
has long been an important topic in the classical theory of trigonometric
series, studied by the best Fourier analysts (see [4], [5]). We would like
now to show its connections with our subject. It is worth noticing that
the next theorem contains many classical results on N sets.

THEOREM. — For a Borel subset E of T, the following properties are
equivalent:

(1) E is a N set:,
(2) E is contained in an H\ proper subgroup;
(3) E is contained in an H'z proper subgroup;
(4) E is contained in a proper a-compact saturated subgroup;
(5) E is contained in a a-compact weak Dirichlet set {or subgroup).

Proof.
(1) implies (2). This is obvious from |sin27r^| = |,|1 - e47"^!.
(2) implies (3). Every H^ group is also an H^ group (see 2.3, example 2).
(3) implies (4). Every H^ subgroup of T is saturated (COROLLARY 2.2).
(4) implies (5). Every proper saturated subgroup is a weak Dirichlet set.
(5) implies (1). We may assume that E is a weak Dirichlet set. Let K

be a compact contained in £', and N be an integer > 1. In the space of
continuous functions on K with the uniform topology, 0 belongs to the
closed convex hull of the functions |sin27rn^|, n > N. Indeed, if not, by
the Hahn-Banach theorem, we would have a real measure /^ concentrated
on K such that

/ | sin 27rnt\ dfi(t) > C > 0, (n > N),

and, as | sin 27rnt\ < [1— e271'1^], this would contradict the property for E of
being a weak Dirichlet set. Therefore, for every e > 0 and for every N > 1,
one can find numbers dn > 0 (TV <_n < TV'), such that

y ^ an = 1 and y ^ dn\ sin2-7m^| < e (t e K).
N<n<N' N<n<N'
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Now E is ^--compact and can be written as a union of an increasing
sequence of compact sets Kj, j > 1. Using the previous argument
with K = Kj and e = 2"-7, j > 1, we build a sequence Nj and blocks
of coefficients a^, Nj < n < A^'+i, so that ]̂ °̂i On = +00 and
Eit^i ^1 sin 27m^ < +00 for ^ery ^ e E.

3. Eigenvalue groups of non-singular dynamical systems

3.1. The eigenvalue groups are saturated.
Let [i be a finite or cr-finite positive measure on a standard Borel space

(X, B) and let T be a non-singular automorphism of the measure
space (X, B^ fi) == (X, /^). A complex number A is said to be an L°° eigen-
value of T (or of the dynamical system (X, /^, T)) if there exists a non-zero
function (j)\ e L°°{iji) such that (f)\(Tx) = \(f>\(x) /^-a.e.; ̂  will be called
an L°° eigenfunction corresponding to the eigenvalue A.

If T is ergodic, every such (f)\ has constant modulus /^-a.e. and every
eigenvalue has modulus 1. Later on, we will have to deal with non-ergodic
transformations. In that case, the L°° eigenfunctions have no longer
constant modulus in general. Most of what we are going to say will stay
valid if we restrict ourselves to considering only those eigenfunctions which
have constant modulus. The corresponding eigenvalues are, of course, of
modulus 1.

DEFINITION. — For any non-singular transformation T of a standard
measure space (X,/^), we denote by E(T) the set of all L°° eigenfunctions
of unit modulus, and by e(T) the set of all t C T such that e27^ is an
eigenvalue corresponding to an eigenfunction in E(T).

e(T) is a subgroup of the circle group. E(T) is a subgroup of the
multiplicative group of L°° functions of unit modulus, which will be
denoted U{fJi).

When the measure [L is finite, we shall give U(fi) the I/^) topology.
It is equivalent to the I/2^) topology and, in fact, the convergence of (pj
towards (p in U{ii) is equivalent to the weak ^convergence in L°°(f^). This
follows from

( \^ - (^fd/z = 2(l|/,|| - Re [ ^dfi)

and this implies that we do not change the topology when we replace fi
by an equivalent finite measure. If /x is infinite, we define the topology
on U{fJi) by the above metric for any equivalent finite measure.
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Then U(ii) is a polish group; the mapping ( / ) i-> (^ o T ) / ( J ) from ?7(/^)
into itself is a continuous group homomorphism which maps E(T) into
the group of constant functions and whose kernel is the group EQ(T)
of all invariant functions of unit modulus. Thus E()(T) and E(T) are
closed and are also polish groups. Endowed with the quotient topology
of E(T)/Eo(T), e(T) is a polish group, continuously imbedded in T. We
shall need a few basic properties of polish spaces or polish groups that
can be found in [24], [36], or [8], chapter 9.
(3.1.1) Let f be a continuous one-to-one map from a polish space X to
a metric space Y. Then f(X) is a Borel subset of Y and f is a Borel
isomorphism of X with f(X).
(3.1.2) A group homomorphism between polish groups is continuous
whenever it is Borel. Then it has a Borel cross section (not necessarily a
group homomorphism).

We deduce from (3.1.1) and (3.1.2) :
LEMMA. — There exists a unique polish topology on e(T) under which

the imbedding of e(T) in T is continuous, and this topology has the same
Borel structure as the Borel structure inherited from T. Moreover, there
exists a Borel map t ̂  ̂  from e(T) to E(T) such that, for all t G e(T),
e271"^ is the eigenvalue corresponding to (pf

We state here the main result of this section, which will be proved
in section 3.2, using a remarkable property of the measures concentrated
on e(T).

THEOREM. — Let T be a conservative non-singular automorphism of a
standard measure space (X,ii). Then e(T) is a proper saturated subgroup
(and so a Dirichlet subgroup) of the circle group.

In the ergodic case, this result was given by J.F. MELA [30] and
the property that e(T) is a Dirichlet subgroup was already obtained by
K. SCHMIDT [41]. In fact, the only property we know which is specific to
the ergodic case is the following :

PROPOSITION. — IfT is ergodic, e(T) is a-compact in the topology ofJ.
Proof. — We consider here the closed unit ball B(/i) of L°°(ii) endowed

with the weak *-topology and the set E'(T) of all eigenfunctions of
modulus < 1. B(p,) is compact and metrizable, and E ' ( T ) is contained
in B(fi) \ {0} which is (7-compact. Now, for any / C L1^), the mapping
(p !->• f (p(Tx)f(x)dfi(x) == f (p(x)f(T~lx)dT|.t(x) is continuous in the
weak *-topology and it follows easily that E ' ( T ) is closed in B(p,) \ {0},
hence ^--compact, and that the mapping which assigns to any y? e E ' ( T )
the corresponding eigenvalue is continuous. So, the set of all eigenvalues
is a ^-compact subset of T (and this set is e(T) when T is ergodic).
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REMARK. — We do not know if every polish group continuously
embedded in T as a cr-compact saturated subgroup is the eigenvalue group
of some non singular ergodic transformation. That is the case for the H^
groups, as we shall see (section 3.5).

3.2. Measures concentrated on the eigenvalue group. Discrete
factors.

In the case of measure-preserving transformations, the discrete fac-
tors are the compact group rotations (D^\,S) where D is any subgroup
of the eigenvalue group, D the dual group of D, \ the Haar measure of
D and S the rotation x \—>- x + 1 of D {D being a subgroup of T, there
is a natural homomorphism of Z onto a dense subgroup of D). Such fac-
tors can be defined for non-singular transformations as well, except that
the measure A may be any ^-quasi-invariant measure. A further extension
will be to associate a factor with every measure concentrated on the eigen-
value group, the previous construction being the case when we choose a
discrete measure. We shall first use this construction in order to prove the
THEOREM 3.1 and then show that all the factors we obtain this way turn
out to be compact group rotations.

We shall use the following standard result (see [42], p. 65) :
(3.2.1) Let (X,^) and (Y,^) be standard measure spaces. If x ^-> ̂  ^ a
Borel map from X to U(v}, there exists a Borel function (p(x, y) on X x Y,
such that, for ^-almost every x, ^p(x,y) = ̂ x(y) ^-a.e(y).

Conversely, if ip{x^y) is a unit modulus Borel function on X x V, the
map y i—^ ^(-,^/) is a Borel map from Y to U{ii). Therefore, for each Borel
map x \—>- ^x from X to U(v), we have a Borel map y i—^ ^py from Y to
U(iji) with ^x(y) = ̂ PyW ^ ̂  ^-a.e.

LEMMA 1. — A positive measure r e M(T) is concentrated on e(T)
if and only if there exists a Borel map x \—> ̂  from X to U(r) such
that ^Tx(t) = ̂ '^^xW r-a.e(t) for fi-almost every x.

Proof. — According to the previous remark, it is equivalent to have a
Borel map x i-> ^x ^om X to U(r) such that, for /^-almost every x,

^Tx{t) = e2^^), T- a.e%,

or a Borel map t ̂  ̂  from T to U(fJi) with, for r-almost every t,

^t(Tx) = e^^rr), /^-a.e(^),

and the latter property implies clearly that r is concentrated on e(T).
Conversely, when r is concentrated on e(T), the existence of such a map
is given by the LEMMA 3.1.
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For any positive measure r C M(T), we are led to consider the multi-
plication by e271^ on U(r) as a continuous transformation 5' of U(r) :

5^=e2^, (^e^(r)).

5 is also a transformation of the subgroup Zi(r) (the closure of the
exponentials e27"^, n C Z, in U{r)).

LEMMA 2. — For any positive measure r e M(T), there exists a Borel
map from U(r) onto Zi(^) which commutes with S.

Proof. — Since Zi(^) is a closed subgroup of ?7(r), the quotient group
(7(T)/Zi(r) is a polish group and admits a Borel cross section, according
to (3.1.2). In other words, one can find a Borel map ̂  \—> ^ ' from U(r) into
itself which is constant on every class modulo Zi(r) and such that ^ = ̂
mod Zi(T). Then we have ( S ^ ) ' = ^ ' . It is clear that ^(^) = ^/-1

belongs to Zi(r) and ^(5''^) = S\(^).
COROLLARY. — A positive measure r e M(T) is concentrated on e(T)

if and only if there exists a Borel map x \—> ̂  from X to Zi (r) such that
XTx(t) = e27^1tXa;(^) T-a.e(t) for ^-almost every x.

This is immediate from the LEMMAS 1 and 2.
Proof of the theorem 3.1. — Let r a positive measure concentrated

on e(T), and let uj be another positive measure sticking to r. By the
LEMMA 2.2, we have a continuous group homomorphism \ »—>• ^from Zi(r)
to Zi(c(;) which maps the function e271^ of Zi(r) to the function e27^
of Zi(c<;), and thus commutes with the transformations S of Zi(r)
and Zi(c(;).

By the corollary above, there exists a Borel map x ^-> ^ from X
to Zi(r) such that, for /^-almost every x, \TX = S^x ^d consequently
j^p = 5'̂ a;. Using the corollary in the other way, we conclude that
the measure uj is carried by e(T). This proves that e(T) is saturated
(THEOREM 2.2).

It remains to prove that T is non conservative when e(T) = T.
Then, we may apply the corollary with r being the Lebesgue measure.
Since Zi(r) ^ Z (see the remark 1 in section 2.2), \^{t) = ^n{x}t
where n{x) is a Borel function from X to Z such that n(Tx) == n(x) + 1,
/A-a.e. Thus T is non conservative.

REMARK. — One can also use the corollary to obtain a more precise
version of the main theorem in [11]. Let T be a non-singular ergodic trans-
formation and let S be a finite measure preserving ergodic transformation
with reduced maximal spectral type a. The cartesian product S x T is
ergodic if and only if a(e(T)) = 0. We omit the proof.
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According to the corollary, for each positive measure r concentrated
on e(r), we have a factor (Zi(r),i/,5') of the system (X,/A,T) (taking
for v the image measure of p, by the map x i—^ ̂ ). In section 4, we shall
give an example where, for some choice of r, we can construct explicitly
a one-to-one map x i-̂  \y^. Then we will conclude that the system is
isomorphic to a compact group rotation by using the next simple result,
interesting by itself.

THEOREM. — Any non-singular dynamical system (U(r)^^S) (or
(Zi(r),i/,6')) is isomorphic to a compact group rotation.

Proof. — It is enough to show that the ^--algebra A of U(r) spanned
by the Borel eigenfunctions of modulus 1 is the whole Borel cr-algebra
(see [3], theorem 1.2.). Note that A contains the i^-null Borel sets, since
eigenfunctions are only determined almost everywhere.

By (3.2.1), there exists a Borel map t \—> (pt from T to U(i/) with
^PtW = ̂ (t) v 0 r-a.e. Then, given any '0o € U(r),

f\^t)-^(t)\dr(t) = [\^W-Mt)\dr(t\ v-^.W.

For r-almost every t, ̂ f(S^) = e^^^tW holds ^-a.e.(^), so that (^ is an
eigenfunction of modulus 1 and thus belongs to L^L^r), A, v). It follows
that the integral above, as a function of ^, belongs to ^(U^.A, v) and
therefore is A-measurable.

We conclude that A contains the balls of U(r) and so coincides with
the Borel cr-algebra.

3.3. Group actions.
Let us consider a locally compact second countable abelian group G

acting non singularly on a standard measure space (X,/x). A continuous
character 7 of G is called an L°° eigenvalue if there exists a non-zero
function (f) G L°°(^) such that

(t)(Tgx) = -y(g) (f)(x), /^-a.e.,

for every g C G. We denote e(G) the set of all L°° eigenvalues correspond-
ing to constant modulus eigenfunctions (all L°° eigenvalues in the ergodic
case). e(G) is a subgroup of the dual group G which enjoys the same
general properties as e(T) above. The THEOREM 3.1 can be extended to
group actions. We will restrict ourselves the ergodic case.

Let us recall that the action is said to be of type I if the measure /A is
carried by some G-orbit.
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THEOREM. — Let G be a locally compact second countable abelian group,
acting non-singularly and ergodically on a standard measure space (X,^),
and assume the action is not of type I. Then e(G) is a proper saturated
subgroup (and so a Dirichlet subgroup) of the dual group G.

Proof. — The LEMMAS 3.2 and the THEOREM 3.1 can be readily
extended. In particular when e(G) = G, one can find a Borel map x i-> \x
from X to G, such that \Tgx = 9Xx /^-a.e., for every g C G. Thus X
can be written (modulo a null-set) as the disjoint union of TgB, g G G,
for some Borel set B, and it follows easily by ergodicity that ^ is carried
by some G-orbit.

3.4. Cocycles and T-sets.
Given a non-singular dynamical system (X, /^, T) and a locally compact

second countable abelian group G (noted additively), a 1.-cocycle with
values in G is a Borel map h from Z x X to G, satisfying

h(m + n,x) = /i (?7i, T77're) + h(n,x), /^-a.e.

Since h is completely defined by the Borel function h(x) = h(l,x), one
commonly speaks of "the cocycle h(xy\ The cocycle is a coboundary if
there exists a Borel function ^>(x) from X to G such that

h(x) = ̂ p(Tx) — (p(x), /A-a.e.

For any 7 C G, 7 o h is a cocycle with values in the circle group. If 7 o h is
a coboundary for every 7 C G, then h itself is a coboundary : when G == IR
and h = Log(dr/^/d/^) this is a theorem of HAMACHI, OKA and OSIKAWA
([13], [14]). In [32], MOORE and SCHMIDT extend this result, showing that
if h is not a coboundary, the group o f 7 C G such that 70/1, is a coboundary
cannot be "too thick" : namely it must be a Dirichlet subgroup of G. One
can improve these results as a direct consequence of the previous theorem.

THEOREM. — Let (X.^l.T) be an ergodic non-singular dynamical sys-
tem and let h(x) be a cocycle with values in a locally compact second
countable abelian group G. If h is not a coboundary, the set of all 7 € G
such that 7 o h is a coboundary, is a proper saturated subgroup (and so a
Dirichlet subgroup) ofG.

Sketch of the proof. — As in [13], [14], we can associate with the
cocycle h a non-singular ergodic flow S g , g C G, whose eigenvalue group
is exactly the subgroup of 7 € G such that 7 o h is a coboundary. We
skip the details, referring to [14]. Actually, the proof in [14] is given for
the Radon-Nikodym cocycle, but can easily be extended to the case of a
general cocycle. So the result is a mere consequence of the THEOREM 3.3.
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DEFINITION. — The T-set of a non-singular transformation T is the set
of real numbers t such that exp{itLog(dTfi/dfi)) is a coboundary. It can be
identified with the T-set, as defined by A. CONNES [9], of the Krieger-Von
Neumann factor constructed from T (see [13]).

COROLLARY 1. — The T-set of any ergodic non-singular dynamical
system (X,/2,T) is a saturated subgroup of R. It is a proper saturated
subgroup (and so a Dirichlet subgroup) if and only if 11 is not equivalent
to a a-finite T-invariant measure.

Proof. — The additive cocycle Log(dr/^/d/^) is a coboundary if and only
if there exists a cr-finite r-invariant measure equivalent to fi (see [13]).

COROLLARY 2. — Let (Tt)t^n be an ergodic non-singular flow, not of
type I. The set

{0} U {t C R ; T^/i is not ergodic}

is a proper saturated subgroup {and so a Dirichlet subgroup) ofH.

Proof. — The fact that we have a Dirichlet subgroup of H is already
proved in [27]. Going back to [27], we can check that this group can be
written as a countable increasing union of groups of the type considered in
the theorem above (and which are saturated). Now it is an easy exercise
to show that a countable increasing union of saturated subgroups is a
saturated subgroup.

3.5. The Ha groups are eigenvalue groups.
Let H be an H^ group, defined by the convergence of the series

+00

^a^( l — cos27rnjt) < +00.
o

H will be endowed with the translation invariant metric

d(t,t')= \\t-t'\\+\t-t'\,
where

+00

\\t\\2 = ̂ ^-(1 -cos27rnjt).
o

It is elementary that this metric is complete and separable. So, H is a
polish group with a topology stronger than the circle topology. Moreover,
as we noticed in section 2.3, it is cr-compact in the last topology.
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THEOREM. — Any H^ group is the eigenvalue group of some ergodic
non-singular compact group rotation.

Proof. — Let H be as above. We shall assume, without loss of generality,
0 < O j < 1 for every j > 0. We also assume that H is infinite, in order to
avoid trivialities. Let D be a countable dense subgroup of H in the polish
topology and let D be the dual group of -D, which is a compact metrizable
group containing Z as a dense subgroup. The group rotation T on D will
be defined by Tx = x +- 1.

By duality, any element t of D defines a character 7^ of -D, such that
7^(n) = e271"17^ for every n € Z, and the Fourier transform at t of a finite
measure [L on D is defined as j2(r) = J 7t d/^.

Let ;/ = * YJ be the infinite convolution product of the probability

measures on D

^ = (1 - ̂  + \^3 6n, + jftj 6-n,, (j > 0).

The weak ^convergence is guaranteed by the convergence at any t G D
of the infinite product ft^00 ^(^)? tna^ ls

+00

(3.5.1) II((1 -^^^-cc^Tm^).
0

^ can be viewed at as the distribution of the sum X = S^°° Xj in D of
a series of independent random variables Xj which take the values 0 with
probability (l—aj) and ±nj with probability jo^. In fact the convergence
of (3.5.1) implies the almost sure convergence of ]"[ ̂ ltx] for every t e D
and thus the convergence a.s. of ̂ Xj in D (see [36]).

We build from v the T- quasi-invariant probability measure
+00

/,=^ 2-1^1^.
—00

The ergodicity of the dynamical system (D,/^,r) is then an immediate
consequence of the zero-one law for the random variables Xj (see [7] or [12]
for the details). We claim that its eigenvalue group is exactly the group H.

Let (j) be an non-zero eigenfunction corresponding to some eigen-
value e2^^. Let us denote

+00

E,=E[^(^Xk)\ 0 ->0) .
k=j
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For j large enough, since (f) is non zero, the conditional expecta-
tion E((f)(X) ; XQ, ... 5X^-1) cannot vanish identically, and we can find
integers mo , . . . , ̂ -i such that

___ +00 -(-CO

0^^(J>fc+^X,)] =E[exp(2mt^mk)cf>(^Xk)]
k<j k=j k<j k=j

= exp 2mt V^ rrik Ej.
k<j

This proves Ej / 0 for j large enough. We also have the induction relation

E, = ((1 - a,) + ̂ -e2-^ + j^e-2-17^)^

= ((1 — aj) + dj cos27rrijt}Ej^

and thus, for every j,

EQ = []^((l-a^)+afecos27m^)]^.
k<j

Therefore EQ / 0 and, since |E^| < 1 for all j, it follows that the infinite
product (3.5.1) converges and so t e H.

Conversely, we prove now that for every t e H, e271"^ is an eigenvalue.
Let us first consider a sequence t^ in D which converges to 0 in the polish
group topology of H. Then, the infinite product (3.5.1) converges to 1,
that is v(tk) tends to 1 and

[ |1 - 7j2 d^ = 2(1 - Re(P(4)) -^ 1.

Moreover, as tk converges to 0 in the circle topology, for every n e Z,
^Trintk converges to 1 and, as ̂ (x+n) = e^17^^^),

[\1 -^I'dCr^) = (\\ - e27-^!^ -^ 1.

This proves that 7^ converges to 1 in L2^).
Now, any t ^=. H is the limit in the polish topology of a sequence tk

of elements of D. Then the corresponding sequence of characters 7^ con-
verges in L2^) to a measurable function \i of unit modulus. Since e2^1^
converges to e27^, ^(a; + 1) = e^^a;) /^-a.e. follows and we conclude
that e271"^ is an eigenvalue.
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4. Towers over the 2-odometer

We will consider now classical examples of non-singular dynami-
cal systems (X,p.,T) given by a Kakutani tower over the 2-odometer
(see [I], [3], [19], [33]). We will prove two new results for these systems,
both involving the measures called Riesz products. Under some condi-
tion on the height function, we will show that the corresponding tower
is isomorphic to a non-singular compact group rotation, by means of the
technique introduced in section 3.2 : we will build a special Riesz prod-
uct r on e(T), and then an explicit isomorphism from X to Zi(r). Besides,
we will compute in full generality the maximal spectral types of these sys-
tems, which turn out to be classical Riesz products.

We begin with a brief description of the systems and the definition of
Riesz products.

4.1. Definition.
Let n = {0,1}N , identified to the group of dyadic integers, let S be

the transformation of n defined by Suj = uj + 1, and, given any two
sequences pj > 0 and ^ > 0 such that pj + ;̂ = 1, let v be the product
measure

+00

(g)(^0+^l)-
J=0

Then v is ^-quasi-invariant and ergodic. Moreover v is non-atomic if and
only if

]^min(^,^) =+oo.

From now on we will assume that this condition holds.
Next, let h(u) be a measurable positive integer-valued function on fL

Let us consider the subspace X C ^ x N, of elements (cj,n) such that
1 < n < h((jj), and let T be the measurable transformation oiX defined by

f (^+l) i f l < n < / i ( ^ ) ,
T(uj,n) = {

[(a;+1,1) i fn=/ i (c j ) .

We identify n with H x {1} and extend the measure v to a cr-finite
measure [L on X by setting

r /. ^)
/ /(^,7i)d/z(cj,n)= / [y/(o;,n)1d^)
Jx ^^i J
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for every positive Borel function /(a;, n) on X. Then T is invertible, and fi
is non-atomic, r-quasi-invariant and ergodic. The ergodic, conservative,
non-singular dynamical system (X,/^,r) is called a "Kakutani tower
over n" (n is called the basis of the tower and h(uj) the height function).

Now, we choose the height function as follows. Let be given a se-
quence rij of positive integers such that

(4.1.1) nk>^n^ (k>0).
J<k

For LJ C n, let us denote k{uj) the smallest index k such that uj^ = 0 ^d

/i(c^) =71^(0;) - ̂  ^r
j<k^}

Strictly speaking, /i(c^) is not denned for uj = (1,1,1,...) and we shall
have to except all the uj with only finitely many coordinates equal to 0, or
to 1 {i.e. the integers), but this does not matter since the measure v has
no atom. Since the value of {uj-\-l)j—ujj is —1 for j < k{uj), 1 for j = k{uj)
and 0 for j > fc(<^), we have

(4.1.2) ^)=^n,((^+l),-^).
j>o

From the definition of T we get that, for any uj e ^ and m e N,

(4.1.3) uj + m = ̂ /l(a;)+/^(a;+l)+•"+/l(a;+7n)^ = r '̂̂  + m^' - ̂ ')cc;.

REMARK. — When n^4-i is a multiple of n^ say n^+i = rrijrij for
every j > 1, X can be embedded in the adding machine

n{o,. . . ,m,-i}
j>0

in such a way that T matches the mapping x \—^ x + 1 of this group :
this is immediate from (4.1.2) and (4.1.3). So, in this case, the system is
isomorphic to a non-singular compact group rotation.

It is known that the group e(T) of L°° eigenvalues of the dynamical
system (X,/^,r) is an H^ group ([3], theorem 2.2) :
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THEOREM. — The group of L°° eigenvalues of the dynamical system
(X, 11, T) is the H^ group of all t e T such that

+00

^p^-ll-e^^l^+oo.
0

4.2. Riesz products.
A generalized Riesz product is a probability measure denned as an

infinite product
+00T[p^t)

0

where the Pj are nonnegative trigonometric polynomials

^^TTlktE c^)c-,(A;)e
\k\<^'mj

of integral 1 and the convergence is the weak ^-convergence of measures.
In order to guarantee the convergence, we have to make some lacunarity
assumption. A sufficient condition is

(4.2.1) rik >2^m^n^ (j > 1).
3<k

This implies that, in the expansion of the finite products, all the fre-
quencies are distinct (we say that the polynomials Pj are dissociate) and
from this fact it is elementary to compute their Fourier coefficients and to
prove the convergence (c/. [18], p. 176). The weak *-limit is a probability
measure r whose Fourier transform is explicitly known : namely f(n) = 0
except if n is a finite sum ̂  kj nj, with kj e Z and \kj\ < mj, in which case

(4.2.2) ^(E^) = Lh(-^) = Ip(^-)-
In particular f(nj) = Cj(—l) .

It is proved in [18] that such a measure r is continuous, in a more
general setting (see theorem 5, p 184). In the case mj = 1 for every j, we
have the standard Riesz product

+00 +00

JJ (1 + Cj e27^^ + Cj e-^171^) = JJ (1 + 2 Re(c^ e27^^)).
0 0

The following construction was originally given by one of the authors in
a study of the ergodic properties of Riesz products [34].
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LEMMA. — Let dj he a sequence of nonnegative real numbers and nj a
sequence of positive integers such that

+00 r>

E ( n.\2
a. —J— < +00.

o ^i7

Then there exists a symmetric generalized Riesz product T concentrated on
the H^ group ̂ ^°° a^(l—cos27rn^) < +00 and this group is uncountable.

Proof. — We will choose for mj the integral part of (n^+i — nj)/(2nj),
so that (4.2.1) clearly holds, and

mj-\-l
2 | v-^ . k7T o^J2

p(t) = ———— Y sin ———e27^
•n / m^+2 ^ m^+2

A simple computation gives that

<^(0)=1 and Cj(l) = Cj(-l) = cos( 7r V
\ TTi' ^ i" Z /

(Actually this is the best possible choice for a positive trigonometric
polynomial with frequencies in [—rn^mj] if we want that |1 — c^(l)| be
minimal.) By (4.2.2), ?(nj) = Cj(—l) whenever mj > 0, i.e. nj+i > 3nj,
and we have 1 — f(nj) = 0((n^/nj+i)2), whence

+00

(4.2.3) ^a,(l-^-))<+oo
o

+00 »+00 />

V^ / 0^(1 — cos27m^)dr(t) < +00.
n v

and V^ / 0^(1 — cos27rn^^
o

It follows that S^00^^! — cos27rn^) < +00 r-a.e. and thus T is
concentrated on the H^ group. Since r is continuous, this group cannot
be countable.

4.3. Isomorphism with a compact group rotation.
THEOREM. — (With the notations 0/4.1.) Assume

+00 «

E ( n r ) \
P3^[————) <+00-

0 ^J+l7

Then the dynamical system (X^^T) is isomorphic to a non-singular
compact group rotation.
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Proof. — We keep the notations of section 4.2 and use the LEMMA 4.2
with dj = pjqj. Let r be the generalized Riesz product constructed
there, r is concentrated on e(T) (THEOREM 4.1) and, according to the
COROLLARY 3.2, there exists a Borel map x ^ \^ from X to Zi(r) such
that, for /^-almost every x,

(4.3.1) XT. = e2-^.

Here we are going to build explicitly such a mapping on a Borel
subset of full measure in X and show that it is one-to-one. So, by
the THEOREM 3.2, it will provide an isomorphism of the given dynamical
system with an ergodic non-singular group rotation.

For every j > 0, let aj be 0 if pj > \ and 1 if pj < \. For
every x = (c^, n) in X, let Cj = Cj{x) = uj - aj.

We observe from the lacunarity condition, that 7^+1/7^ cannot be
bounded. Indeed, we constantly assume that the sum

^ mm(pj, ̂ ) < ̂  2pj QJ

is infinite (4.1) and, given any positive constant (7, the sum ^pjQj
restricted to the set of all j with rij^/rij < C is finite . As the probability
to have ej = ujj — a^ / 0 is min(^,^), it also follows that for almost
every x there exist only a finite number of .7 with nj^/rij < C and Ej ^ 0.

We shall first restrict the definition of \x to the set XQ of all x = (a;, n)
satisfying this property. Then, the integers nij in the definition of the
Riesz product r being chosen as in the LEMMA 4.2, we have mj = 0
only if rij^/rij < 3, and there exist only finitely many j with Cj / 0
and nij = 0, that is \Cj\ > mj.

We define formally, for x e XQ and t G T,

+00

(4.3.2) ^(t) = e27^ JJ e27^-^
o

and we have to show that this infinite product converges in Zi(r) for
/^-almost every x, i.e. for ^-almost every uj. The limit will satisfy the
relation (4.3.1), obviously if n < /i(^), and by the formula (4.1.2)
when n = h{uj).

For a given uj, for 0 < k < k ' , we have

f\l - fl e2-^ \r = 2 - 2Re[?(^.,n,)].
K k
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f is real and ?(Ef^j) = Ilf^-^) by (4.2.2) if |^-| < m,
for k < j < k ' . Since a; C Xo, this condition holds for k large enough;for k < j < k '
we have then

/'|l-^e2Ti£^|2dT=2-2^^n,)
k k

and the infinite product (4.3.2) converges in L^r) if and only if the series
^^°°(1 - f{£j rij)) converges.

Now, Y^Q °°{1 — ?(^ n^)) converges for ^-almost every uj if the series
Y,Q °° E[l - f(ejnj)} converges. According to the choice we made for aj,
we have

E[l - f(e, n,)] = q,(l - f(n,)) if p, > ̂

whence

E [1 - ̂ (e, n,.)] = p, (1 - ?(-n,)) if p, < j,

+00 +00

^E[l-f(e,n,)} <2^^^(l-?(n,)),
0 0

and this series converges according to (4.2.3). This proves that the
set X-t in XQ where the infinite product (4.3.2) converges in L^r)
has full measure.

It remains to show that the mapping x ^ ^, from Xi into Zi(r),
is one-to one. Let x = (cj,n) and x ' = {u j ' ,n ' ) be two elements of Xi
with \^i = \^ and let

k

''-^^(^•--J^
0

Tk = n' - n + ̂ (^- - ̂ j ) r i j , (k > 0).

From the definition of ̂  and \^<, e^17^ converges to 1 in Zi(r) and
thus ?(r^) —» 1 as k -^ +00. Since x ^ x ' e Xo, we may choose an integer k
such that ?(rfc) 7^ 0 and which moreover satisfies

(4.3.3) 7^+i >4nfc+2|7i'-n|,

(4.3.4) ^ = u j j = aj for all j > k such that mj = 0.

As r(r^) ^ 0, r/, may be written as a finite sum ^ = S/5j^
where |^| < m^ for all j. (4.3.3) implies |̂ | < j^+i and, by (4.2.1),
T.j<k' 1^1^ < ^k' for every fc' > 0. It follows that f3j must be 0 for
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all j > k. Thus, for all k' > k, r^' is the sum ]̂  f3j ^j +^^i(^' —ujj)n^
where each coefficient has absolute value < mj, so that

k k1^ /)= IP(^) IP(^- -^)^)'
0 fc+1

Since the product converges to 1 as k ' —>• +00, all the coefficients f3j
(j < k) and ̂  — ̂  (j > A;) must be zero. In other words c</ — a; is the
integer ^o(^ ~~ ̂ j^ an^

A;
n-n' = ̂ (^- ~^ j ) r i j .

o

Therefore, by the formula (4.1.3), T71-71'^ = ^/ and finally x = T^ =
r '̂ = ̂ '.

REMARK. — In fact, there is a great latitude in the construction
of \x- Alternately, we could choose the aj at random, independently,
and independently from the ejj, with probabilities pj for aj = 0 and qj
for aj = 1. See also [18] for a complete description of Zi(r).

4.4. Maximal spectral type.
The basic notions and results of spectral theory that we shall use can

be found in [38]. By the maximal spectral type of the system (X, /x, T), we
mean the maximal spectral type of the unitary operator U = UT of ^(y^)
associated with the transformation T, defined by

"f-W'^ (/w
In the case of the tower over the 2-odometer, it turns out that the maximal
spectral type can be computed explicitly in terms of the sequences pj, q^
and rij. The next theorem is new, as far as we know (see [25], [38] for
similar results when h{uj) = 0). We shall have a Riesz product

TT(1 + bj cos 27rnjt)

where the dissociation condition (4.2.1) (with rrij = 1) is not satisfied.
Indeed we only assume the condition (4.1.1) : rik > ̂ <^;^- With this
weaker condition, it is still possible to prove the weak ^convergence of
the product, but we lose the formula (4.2.2) for the Fourier coefficients
and the fact that the Riesz product must be continuous (however in our
case the convergence will follow from the proof).
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THEOREM. — (With the above notations.) The spectral multiplicity of
the system (X, /^, T) is 1 and its maximal spectral type, up to a discrete
measure, is the Riesz product

+00(4.4.1) n (1 +2^ ̂ 1/2 cos 27r7^) •
j=0

Proof. — Remind that we identify ^ with fl x {1} and the measure v
on Q with the restriction of /^ toQx{l} . For every k > 0, given £o,. • • , £k-i
with values 0 or 1, we denote [ eo , . . . ,£fc-i] the set of all uj = (ujj) e ^ such
that cjQ = £ Q , . . . , ujk-i = ̂ k-i; such a set will be called a k-cylinder in ^.
Let us denote f^ the ^-cylinder [0, . . . ,0] (Qo = ^), A the normalized
function

fk = ̂ O^)"172!^ and a-k = a^.

Given any k > 0 and any choice of £Q, ... ,£k-i with values 0 or 1, let us
consider m = ̂ -1 ̂  2j and n = SS~1 e3 ^j- we have5 for ^^Y CL; € n/c,
(a; + m)^ = ej for 1 < j < k, (cj + m)j = ujj for ^ > k and thus,
by (4.1.3), uj + m = T^. So, [eo, • . • ,^-i] is the image of Q^ under T71

and the Radon-Nikodym derivative of T71^ with respect to /x is constant
on [eo,...,£k-i]. It follows that U^fk is the normalized characteristic
function of [^o,. • • ,^-i].

This shows that the subspace spanned by the U~nfk contains all the
functions in L2^) which vanish out of Q, and it is clear that these
functions span L2^) under U. Moreover, as f^ is the union of f^+i
and of the (k + l)-cylinder [0,...,0,1] = T^^+i, fk is a combination
of fk+i and U'^fk-^i. So, /^ belongs to the span of the iterates of /^;+i,
and L2^) is spanned by a non-decreasing sequence of cyclic subspaces.
This proves that the spectral multiplicity is 1. Also, the maximal spectral
type is determined by the o-k-

More precisely, as ^(^+1) = Pk^k) and 1/^^+1) = ^(^),
we have

(4.4.2) /, = p^f^i + q^U-^fk^ (k > 0).

For every k > 0, let Nk denotes the set of all sums ̂ -1 e3 n3 witn eJ = 0
or 1 (1 < j < k). Iterating (4.4.2), we get the expansion

/o = [^(^/2J+^/2^~nJ)] -A = E ̂ )^A
0 ne^Vfc
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(the functions Ck(n) U^fk, n e Nk, are merely the characteristic func-
tions of the ^-cylinders).

The spectral measure (TO is given by

(4.4.3) ao(n) = (^/ojo)

= ^ ^(r)^)^-^,^-5/,), (n6Z).
r,s€Nk

Substituting ak(n - r + s) for {U^ fk,U~8 fk} yields the relation
(TO = P^ak, where

2 fe-l

^= ^ c,(n)e-2^ =^(l+2(^^) l /2cos27^^).
n^Nf, 0

Since a trigonometric polynomial has only a finite number of zeros, a
and o-k are equivalent up to finitely many point masses and the continuous
part of the maximal spectral type is the continuous part of (TO. We claim
that o-o is the Riesz product (4.4.1), that is the weak *-limit of the P^.
We have to prove So(n) = limfc_+oo Pk(n) for all n e Z.

Let n C Z be given. We may identify the expansion (4.4.3) with the
decomposition \

^ , . //dr-^\i/2.,^ - y i ^ ) 17
^ y/dr-^

ir-71^ -I-^U/A

^ r/dT-71'^1/2
= 2^ / [ A , , ) ^——^fclr^fcd/^.

^e^7 a/A /

Let ^ C n with T71^ C 0. Necessarily T71^ = uj + m for some integer m
and then n = Z^K^ + m)J - ̂ 3} ̂  (4.1.3). When k is large enough,
^ = (c<; + m)^ for all '̂ > fc and then, if r and <s are the elements of N^
such that uj € T6^ and r"^ € T^, we find r = 5 + n. This proves
that ?o(n) is the limit as k tends to infinity of the integral restricted to
the union of the T^-^ H T8^ with r, s C M; and r = 5 + n. Therefore,

ao(n) = lim V ^(5 + n) Ck(s) = lim Pfc(n).
fe^+oo ._——- fe-^+oo

sONkHNk-n

REMARK. — The maximal spectral type has point masses if and only
if the dynamical system is of type 77i, that is to say if there exists
a T-invariant finite measure ^ ' equivalent to p, (indeed, a point mass
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in the maximal spectral type arises if and only if there exists some
eigenfunction </> in L2^) for U, and then |<^|2^ is a finite invariant measure
equivalent to p).

It is immediate that fi is equivalent to a (possibly infinite) T-invariant
cr-finite measure // if and only if v is equivalent to the equidistributed
product measure y ' on 0. Using Kakutani's criterion (see [21], [6]), this
happens if and only if E(j - Pj)2 < +00- Then,

f +00

| | / /11= / ^)d^(a;)=^2-^+l)(n,-^^•)
7n 0 j<k

and this sum is finite if and only if n^ = 0(2^).
In all other cases, the maximal spectral type is the Riesz product o-o

and L2^) is spanned by the iterates of /o = IQ.

5. Quasi-invariance and ergodicity under translations

5.1. The group of quasi-invariance of a measure.
As before we restrict the discussion to the case of T although everything

stays valid for any metrizable locally compact abelian group.
DEFINITION. — The group of quasi-invariance of a positive measure

fi € M(T) is the group

H ^ ) = { t < E J ' , ^*/^/^}
In section 5.2 we shall give the example of the standard Riesz products

(defined in section 4.2) p = ̂ ^oo(l+2Re(^e27^m^)), where the positive
integers rij satisfy the dissociation condition n^ > 2^.^y^ (k > 1).
Then H(p) is the I^-group [t e T ; ^°° |c,|2|l - e^17^]2 < +00}.

The main property of the group of quasi-invariance of a measure, which
will be obtained in section 5.4, is the following :

For any positive measure fi e M(J), H{ii) is a saturated subgroup o/T.
It is a proper subgroup whenever [L is singular.

This result has already been obtained by J. AARONSON and M. NAD-
KARNI [3] with the assumption that /A is ^f(/A)-ergodic. The methods we
will use, although developed independently, are not very different from
theirs. But we get rid of any ergodicity condition and we will prove
moreover a general theorem on the extension of cocycles, which provides a
new class of saturated subgroups of the circle containing the groups H(^i)
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for every measure fi G M(T). The problem of extension of a multiplicative
cocycle has been paid attention by many authors, specially for our concern
by HELSON and MERRILL [16], [17].

The proof, which makes clear the spectral theoretic nature of this prob-
lem, will allow us, in section 7, to deduce some new and rather surprising
results in the Fourier-Gelfand theory of the convolution algebra M(T).

In the present section we will be interested in finding the general
properties of H{^}^ without any restriction on the measure [i. The
assumption of ergodicity is not relevant as far as we are concerned with
the harmonic analysis properties of fi. On the other hand, it is interesting
to study the measures which are ergodic under translation subgroups.
But then, as we shall see in section 5.5 and in order to include classical
examples, we will be led to drop any a priori assumption of quasi-
invariance and to consider measures p, for which the group H(fi) can
pretty well be trivial. The significant object in this context is the set

A^)={te T; (^*/^/ /4.

We shall establish for A(/^) properties close to those of H(p,).
For every positive measure /A C M(T), we denote L(/z) the (closed)

subspace of M(T) of all measures v such that \r\ <e /i. For h € H(p), we
denote T^ the non-singular translation by h on (T, p,) and the correspond-
ing operator on L{p). We define the strong topology of H(p) as the strong
topology of operators on L{fi) : a sequence hn tends to h in this topology
if and only if T^v tends to T^y in norm for every v e ^(/^). As we can
take for v a measure with an arbitrary small support, hn must converge
to h in T. So, the strong topology of H{p) is stronger than the usual
topology; moreover, it is clearly polish. According to (3.1.1) and (3.1.2),
this implies :
(5.1.1) H(p,) is Borel and the topology of the action on L(iji) is the
unique polish group topology on H(^), compatible with its Borel structure
inherited from T.

From the uniqueness, the following characterization is immediate :
A sequence hn converges to h in the polish topology of H(fi) if and only

if hn tends to h in the usual topology, and T^p^ tends to T^II in norm.

On the other hand, it is known that A(^) is a Borel set and that it
has zero Lebesgue measure when p, is purely singular (see [12], chap. 8.3).
It follows that H(p,) is a proper subgroup whenever [i is singular, but we
have a stronger result :

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



70 B. HOST, J.-F. MELA AND F. PARREAU

(5.1.2) If ji is continuous and non-equivalent to the Lebesgue measure,
lji(x + H(^)) = 0 for all x C T.

As pointed out in [29], this follows from a theorem of MACKEY
([28], p. 146) which states that, if a polish group H carries a non-zero
I^-quasi-invariant measure, then its topology must be locally compact. In
the case of a subgroup of T then, either H is finite or countable, or H = T.
A different proof, avoiding Mackey's theorem, can be found in [31].

If H is an uncountable subgroup of H(p) we say that ^ is H-ergodic
if li{B) = 0 or li{B) = 11/^H for every Borel set B which is It-invariant
modulo null sets (i.e. such that, for every h € H, T^B is equal to B up
to a p.- null set). We shall need the following remark :
(5.1.3) If a positive measure p, is H-ergodic for some subgroup H of H(^i),
it is D-ergodic for any countable subgroup D of H which is dense in H in
the polish topology of H(p).

Indeed, let B be a P-invariant Borel set of T. The space of all measures
absolutely continuous with respect to ^ and concentrated on B is closed
and D-invariant. Referring to the definition of the polish topology of H{^}^
B is also Jf-invariant modulo null sets.

5.2. Quasi-invariance and ergodicity of Riesz products.
All the statements in the next theorem have already been proved by

means of harmonic analysis ([6], [37], [34]), but we want to point out
the interplay between the behaviour of Riesz products with respect to
translations and the results of section 4.

THEOREM
Let nj (j > 0) be a sequence of positive integers with nk > 2][-<^nj,

(fc > 1), and let cj (j > 0) be any sequence of complex coefficients of
modulus < 1. Let p denote the Riesz product n^°°(l + 2Re(^•e27^m^)).

(a) H(p) is the H^ group

H
+00

= ft c T ; ̂  |c,|2 |1 - e2"17^!2 < +00}.
o

(b) If we assume either that nj divides TZj+i for every j > 0, or that

+00 ^

(5.2.1) EM2^) <+00'
o ^j+i7

then p is H-ergodic.
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Proo/. — The translate of p by t is clearly the Riesz product

+00

JJ(l+2Re(^•e-27^m^e27^m^)).
o

The criterion of Brown and Moran [6], and Peyriere [37] asserts that
two Riesz products, constructed with the same sequence rij (satisfy-
ing ^>2^^7^-, k > 1), and coefficients cj and c' respectively,
are mutually singular if ^00 \Cj - c^|2 = +00. Thus ^ * p ± p if
E^°° M2]! - e^17^!2 = +00. In particular H{p) C A(p) C H.

The same criterion yields the equivalence of the Riesz products
if ^ \Cj — c'j\2 < +00, under some extra condition which is satisfied in
particular if limsup^^.^ \Cj\ < 1 (see KILMER and SAEKI [22] for recent
improvements). This proves H C H(p) under some restriction. In [34],
this restriction is dropped, and the ergodicity is proved under the con-
dition (5.2.1). When nj divides ?Zj+i, a previous result of BROWN and
MORAN (see [12]) asserts that p is D-ergodic, where D is the group gene-
rated by the 1/rij (obviously contained in H).

Now, in the case when the coefficients cj are positive, we can give
an alternative proof, except for the inclusion H{p) C H. According to
the THEOREM 4.4, the Riesz product p can be interpreted as the maximal
spectral type of the tower over the 2-odometer defined in 4.1, with the
same sequence nj, when choosing pj and qj such that 2(p^)1/2 = cj.
In 4.1 we have made the general assumption that ^min(^,^) == +00,
equivalent to ^c2 == +00, but we may restrict to that case : otherwise p
is equivalent to the Lebesgue measure (see [18], p. 127), H is equal to T
and the Lebesgue measure is I^-ergodic.

Under either assumption in (b) the tower is isomorphic to a non-
singular ergodic compact group rotation, according to the remark 4.1 or
the THEOREM 4.3. So, the inclusion H C H(p) and the ergodicity of p
under the assumptions in (b) follow from the more general property :

(5.2.2) For any non-singular dynamical system (X,/z,T), the maximal
spectral type is quasi-invariant under the translations by the eigenvalue
group e(T) ; it is e(T)-ergodic when (X,/^,T) is isomorphic to an ergodic
non-singular compact group rotation.

This result is already in [3]; we will prove a slightly different version of
it in the next section.
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REMARKS:

1) As mentioned in section 2.2 (example 4), we can get

H ( p ) = H = { 0 }

by releasing slightly the conditions in (b). Then, of course, p is not H-
ergodic.

2) Actually, the THEOREMS 4.1 and 4.4, and thus the inclusion
H C H(p) and the property (b), hold under the weaker hypothesis

nk>^nj, (k > 1).
3<k

But, then, we do not know if the converse inclusion H(p) C H is still
valid. This leads to natural questions which can be asked either for the
tower over the 2-odometer or, more generally, for an arbitrary non-singular
ergodic dynamical system : whether the group of quasi-invariance of the
maximal spectral type is exactly the eigenvalue group, and whether this
spectral type is ergodic if and only if the system is isomorphic to a non-
singular ergodic compact group rotation ?

5.3. Spectral type of a cocycle.
We introduce now some prerequisites for the discussion of cocycle

extension. Let fi be a probability measure on T. Let us consider the
(algebraic) unitary representation of H{^i) in -L2^), defined by

Utf(x) = (^^(^(T^ a e HW).

Let H be a possibly uncountable subgroup of H{^)^ acting non-singularly
by translation on (T,/z) and let a(t,x) be an (algebraic) H-cocycle with
values in the circle group; we assume simply that, for every t G H,
x ̂  a(t,x) is a unit modulus Borel function and that

(5.3.1) a(t + 1 ' , x) = a(t, x) a{t1', Tfx) jLA-a.e., (t, t ' e H).

With the cocycle a(t,x) we associate the representation of H on I/2^)
defined by

Wtf(x) = a^x) Utf(x), (/ C L2^)).

Notice that operators so defined yield a representation of H if and only
ifa(^,rr) satisfies the cocycle equation (5.3.1).
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Let us also denote V the unitary operator of multiplication by e27^ :

Vf(x)=e27^[xf(x), (feL2 (/.)).

We have the so called Weyl commutation relation^ both for Ut and Wt '.

(5.3.2) UtV = e^V U^ (t C H^)),

(5.3.3) WtV = e^V Wt, (t e ff).

H will be given the strong topology defined by the representation Wt;
it is metrizable and separable but not necessarily complete. Notice that
the strong topology on H{^) defined by the representation Uf is the same
as the strong topology already defined on H{^)^ by a straightforward
computation or by the uniqueness property (5.1.1); it is also immediate
that the strong topology on H is stronger than the topology given by the
metric of H{ji) and than the usual topology of T.

Let D be a countable dense subgroup of H. The compact metric dual
group D will be denoted additively. It contains the eigenvalue group e(D)
of the non-singular action of D on (T,/^) (see section 3.3); as D C T
there is a natural homomorphism of Z into -D, whose image is clearly
contained in e(D) since every function ^lnx (n C Z) is an eigenfunction.
We still denote by n the image of n e Z by this homomorphism, and
by S the translation by 1 in D. For every d G D, we denote 7^ the
character of D defined by duality, such that 7^(0) = a{d) for a C D; in
particular, 7d(n) = e271"17^ for n 6 Z.

Let us consider the spectral representation of {Wd)deD. We recall that
the spectral measure of any / C L2^) is the positive measure a/ on D,
defined by S/(d) = (Wdf^f)^ d € -D. There exists a measure a = (T/Q
(unique up to an equivalence) such that o-f <€ a for all / C L2^); a is
called the maximal spectral type of (Wd)deD-

By the spectral theory, we have an isomorphism -0 i-̂  W^ of L°°(a)
onto the subalgebra of operators on L^di) spanned by the Wd in the
strong (or weak) operator topology, which maps 7^ to Wd and satisfies
{W^f, f} = f ^do-f for all ̂  € L°°(a) and / C L2^). A bounded sequence
^n in L°°((T) converges to '0 in the L2(a) topology if and only if W^
converges to W^ in the strong operator topology (see for example [38],
chap. II).

In particular, from the definition of the topology on H and the
assumption that D is dense in ft, there is, for every t € H, a (unique)
function 7^ in L°°(a) with W^ = Wt. Every 7^ has unit modulus and the
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mapping t ̂  ̂  is continuous from H to L00^) endowed with the L^a)
topology.

LEMMA. — (With the above notations.)
(a) The maximal spectral type a of (Wd)deD is translation quasi-

invariant under e(D).
(b) If 11 is D-ergodic, a is S-ergodic.

Proof. — Let a C e(D) and let (p be a corresponding eigenfunction
of unit modulus. Let Vy be the unitary operator of multiplication by (p
on L (p). As for V, we have a Weyl commutation relation

(5.3.4) WdV^ = a(d) V^ (d € D),

whence, for every / c L2^),

(WdV^f, V^f) = a(d) (V^Wdf, V^f) = a(d) (W^ /), (d e D\

that is av^,f(d) = a(d)Sy(d), (d e D), which implies

(5.3.5) o-^^, = ̂  ^^^

Since V^ is an isomorphism, it follows 6 a * cr ~ a. This proves (a).
In particular ^ *o- ~ o-; in other words cr is ^-quasi-invariant. Assume

now that p. is 2^-ergodic and let us show that a is 5'-ergodic. The
eigenvalue a = 1 corresponds to the eigenfunction (p(x) = e27^, and
then Vy = V. Let 5 be a 5-invariant Borel subset of D. By (5.3.5),
the subspace U of all / e L^/A) such that oy is concentrated on B
is V-invariant. Therefore it consists of all functions of L2^) which are
null outside some Borel set E of T. As a spectral subspace, H is also
invariant under {Wd)deD, and thus E must be jD-invariant. By ergodicity
we conclude that U = {0} or U = L2^); it follows that a(B) = 0
or a(D \ B) = 0. This proves (b).

REMARKS:
1) For each d C D, we have ^d(Sx) = e^^x) for all x C D.

By density and continuity, it follows that^for every t C H, the unit
modulus function 7^ is an eigenfunction of (D, cr, S) with eigenvalue e27^
Therefore H C e(S).

2) In the second part of the proof, if we do not assume the ergodicity
we still obtain the following property, which will be useful in section 6.1 :

Any S-invariant Borel set B of D is also invariant modulo a a-null set
under the translation by any eigenvalue a C e(D).
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Indeed, with the same notations, T-i is invariant under any multiplica-
tion operator; so, it is invariant under Vy. It follows by (5.3.5) that B
is a-invariant modulo a null set.

3) In the proof of (a), we need not suppose that D acts by translation
on a compact group. We may consider any non-singular action and the
property (5.2.2) used in the previous section is a particular case. Moreover,
introducing cocycles in the example of the tower on the 2-odometer
would allow to find any Riesz product as spectral type, and so to prove
the THEOREM 5.1 without the restriction cj > 0. We skip the proof.

5.4. Maximal groups for cocycles.
DEFINITION. — A subgroup H of H{^) will be said to be maximal for

an H-cocyde a(/i, x) if it cannot be extended to an H'-cocyde for any
subgroup H ' of H{^) strictly larger than H.

Given any subgroup H of H(p.) and any -H'-cocycle a(/i,o:), H is
contained in a maximal group for a(/i, re), by application of Zorn's lemma.

THEOREM. — Let ^ € M(T) and let H be a subgroup of H{^}, acting
non-singularly by translation on (T,/^). Leta(h,x) be a cocycle defined on
H x T. If H is maximal for a, H is the eigenvalue group e(S) of some
non-singular transformation S, and so is a saturated subgroup o/T. If [L
is H-ergodic the conclusion holds with S ergodic.

Proof. — We keep the notations of section 5.3. Let D be a countable
subgroup of H which is dense in the strong topology. D is a fortiori dense
in H in the topology of H{^) and, when ^ is H -ergodic, [L is still D-
ergodic (5.1.3). By the LEMMA 5.3, we have a non-singular dynamical
system (5, a, S), which is ergodic when /A is D-ergodic. We already noticed
that H C e(S). So, it will be enough to prove that e(5') is contained in H.

For ^ e L°°(a), let S^(x) = ^(Sx) = ^(x + 1). For every d € JD,
we have 67^) = 7^(1)7^) = e27^^). The Weyl commutation
relation WdV = e^VWd yields

W^V = VWs^

when -0 = 7rf for some d C D and, by linearity and continuity, for every
^eL°°(a).

Let t € e(S) and let ^ be a corresponding eigenfunction of unit
modulus; then S^(x) = e^^a;) cr-a.e. and thus we have

W^V = e^VW^.

We shall conclude that t belongs to H and so prove the theorem by the
following lemma :
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LEMMA. — (With the above notations.) Let t C T. t belongs to H(p)
and the cocycle a can be extended to the subgroup H ' = H+It if and only
if there exists a unitary operator W of L2(^) which commutes with Wh
for all h € H and satisfies moreover

(5.4.1) WV = e^VW.
Proof. — If t C H(ii) and if the cocycle a(h, x) can be extended to H1',

the unitary operator W = Wf denned with the extended cocycle satifies
both properties. Let us prove the converse.

Let TV be a unitary operator commuting with all the W^ (h € H) and
satisfying (5.4.1). This relation expresses that the operators V and e^'^V
are unitarily equivalent. It follows that their maximal spectral types,
which are respectively ^ and ^*/^, are equivalent; in other words t C H(p).
Moreover, W and Ui satisfy the same commutation relation with V and
thus the operator WU^ commutes with V; therefore it is the operator
of multiplication by some measurable function of unit modulus b(x) :

Wf(x)=b(x)Utf(x)^ ( / C L 2 (/.)).

For every n e Z and every h C H,

Wnf(x) = bn(x) Untf(x)^ (f € L2^)) ,

where bn(x) = b(x) b(x +1) • • • b(x + (n - l)t) for n > 0, and

(5.4.2) W-W^W = bn(x+h)a(^x)U^tf(x), (f c L2 (/.)).

Since W commutes with all the TV/,, we have a representation of
the group H x It. If H n (It) = {0}, (5.4.2) yields a representation
of H1 = H + It, and this is equivalent to the fact that

(5.4.3) a\h + nt, x) = bn(x + h) a(h, x)

is an If'-cocycle; then, we have an extension of a to H ' ' .
If H n (It) -^ 0, let m be the least positive integer with mi € H, and

let c(x) = bm(x)/a(mt,x); we have

Wmf(x) = c(x) Wmif(x), (f e L2^))

and thus the operator of multiplication by c(x) commutes both with W
and with all the W^. c(x)Wf(x) = W(cf)(x) /A-a.e. for all / c Z/2(/x)
implies clearly c(x + t) = c(x) ^-a.e. Similarly c(x) is invariant under
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the translation by any h C H-, thus it is ^'-invariant. We may write
c(x) = e17710^) where a(x) is some real-valued ^'-invariant Borel function.
Let then

W'f{x} = e-^WfW, {f C L2^)).

Conversely, the multiplication by e1^ commutes with all the W^ and
with W\ therefore W still commutes with the W^, and moreover we
have W^ = Wmt; it follows that W^WH depends only on h + nt.
Substituting W for W, we obtain a representation of H ' and so (5.4.3)
defines an extension of a to H ' .

COROLLARY 1. — For any positive measure j i C M(T), H(p,) is a
saturated subgroup of T. If fi is continuous singular^ H(fi) is a proper
saturated subgroup o/T, and so it is a Dirichlet subgroup.

Proof. — H{fi) is maximal for the cocycle a{h,x) = 1. This proves the
first part of the corollary. The second part follows from (5.1.2).

We turn now to the problem of extension of a multiplicative cocycle
when fi is the Lebesgue measure (c/. HELSON and MERRILL [16], [17]).
Let us recall that a multiplicative cocycle a(h,x) on H x T is trivial
if it is cohomologous to a cocycle which is constant in x for each /i,
that is if there exists some Borel function (j) of unit modulus, such that
a(h^x) = Ch(/)(x + h)(f>{x)^ jLA-a.e., with Ch a constant of modulus 1.

The theorem in [17] can be rephrased by saying that any maximal group
for a non-trivial cocycle is a Dirichlet subgroup (section 2.4, definition 2).
This result can be strengthened as a consequence of the theorem.

COROLLARY 2. — Let [i be the Lebesgue measure o/T, and let a(h,x) be
a non trivial cocycle. Then any maximal subgroup for a(/i, x) is a proper
saturated subgroup of T, and so is a Dirichlet subgroup.

5.5. Ergodicity without quasi-invariance. The sets A(/^).
We extend now the notion of ergodicity with respect to a group of

translations in a way which is not quite classical in ergodic theory, but
very natural in harmonic analysis (see [7], [12], [34]) :

DEFINITION 1. — If D is a countable subgroup of T we shall say
that a finite positive Borel measure [L on T is D-ergodic if ^{B) = 0
or ji{B) = ||/A|| for every D-invariant Borel set B.

We do not request any quasi-invariance property for [L. As a matter
of fact, the most natural examples of ergodic measures are the infinite
convolution products of discrete measures (see [7] ), and they are generally
not quasi-invariant under any non-trivial translation (in other words H{ii)
is trivial). In section 3.5 we constructed such a measure on a compact
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group, and we had to replace it by a combination of its translates in order
to get a quasi-invariant ergodic measure.

We recall the notation, for any positive measure fi e M(T),

A ( ^ ) = { ^ e T ; <^* /z / /4 .

When 11 is ^(^)-ergodic, then A(/A) = H(fi); indeed, any translate of p,
is still quasi-invariant and ergodic under the translations by elements
ofJf(/^), and two such measures are either equivalent or mutually singular.

In the general case, A(/i) will be given a natural separable metric
topology in a similar way as H{fi). Namely, with every t C A(/i) we
associate the operator Tf of L{fi) such that, for every v e L^), TfV is
the part of ^ * v which is absolutely continuous with respect to fi in the
Lebesgue decomposition; A(/^) will be endowed with the strong topology
of the operators Tf on L(fi) (referred to, simply, as the strong topology).
When restricted to H{^), this topology is nothing but the intrinsic polish
topology of H(^i).

The ergodicity property can be formulated without reference to any
subgroup D :

PROPOSITION ([34]). — For any positive measure fi e M(T), the
following properties are equivalent:

(1) For any positive measures // < fi and //' < [L, there exists some
t e T such that // jL 6f * //'.

(2) There exists some countable subgroup D of T such that [L is D-
ergodic.

(3) ii is D-ergodic for any countable subgroup D of T such that
D D A{/i) is dense in A(/^) in the strong topology.

Proof. — When // ± 6d *^" for every d in some countable subgroup D,
we can find a J^-invariant Borel set B such that // is concentrated on B
and 11" {B) = 0; therefore (1) follows from (2).

Assume now that DnA(fi) is dense in A{p) and let B and B' be two dis-
joint D-invariant Borel sets. ^(l^//^) is concentrated on B' for all d C D;
by the density of.DnA(/^) in A(/A) in the strong topology, T^lp'^) is still
concentrated on B' for all t e A(^). It follows Ipl^ -L Sf * \B'^ tor every
t C A(/^), and thus for every t e T.

Therefore (1) implies (3) and the proposition follows.
DEFINITION 2. — We shall say that fi is translation ergodic (or simply

ergodic) if the equivalent properties of the proposition hold.
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The COROLLARY 1 in section 5.4 states that, when 11 is any continuous
singular positive measure in M(T), H{ji) is a weak Dirichlet set. We shall
prove now a weaker property of the same kind for A(/z).

Let D be a countable subgroup of T generated by a dense subset of A(/^)
in the strong topology. Taking for v a convex combination with positive
coefficients of all the translates of fi by elements of D, we get a D-quasi-
invariant measure with the following property :

LEMMA. — (With the above notations.) Let B and B' be two disjoint
D-invariant Borel sets. For every t C T, \av -L 6t * \B'V-

Proof. — By construction, if Ipi^ / 6t * \B'V for some t e T, there
is some d 6 D such that \B^ / ^t+d * IB^- But, from the proof of the
proposition, we have I p l ^ -L Sf * I B ' I ^ tor every t e T.

REMARK 1. — At first glance the definition of v depends strongly on
the choice of D. It turns out that, when j[A is ergodic, v is unique, up to an
equivalence. If v9 is another measure with the properties : ̂  < v ' and v ' is
quasi-invariant and ergodic under the subgroup generated by A(jLi), then,
v and v ' being not mutually singular, they are necessarily equivalent by
ergodicity. We summarize this remark as follows :

Given any translation ergodic measure p., there exists a unique mea-
sure v, up to an equivalence, such that ^ <C v, v is H(i/)-ergodic and
H(v) is the group generated by A{fi).

THEOREM. — Let [i be any purely singular positive measure in M(T).
(a) If ̂  is translation ergodic^ then the group generated by A(/z) is a

proper saturated subgroup.
(b) In the general case, every finite positive Borel measure on A(/i) is

concentrated on a countable union of weak Dirichlet sets.

Proof. — Let D and v be defined as above. It is clear that v is still
purely singular.

(a) If p, is translation-ergodic, by the proposition ^ is D-ergodic, and
it follows immediately that v is -D-ergodic; it is a fortiori ^(^-ergodic.
Obviously A(/^) is contained in A(^) = H(^)- Conversely, if 6t * v ~ ^,
there exists some d C D such that 6t+d * ̂  / /^ which implies that t + d
belongs to A(/^), whence t belongs to the group generated by A(/^);
so, H{v) is exactly the group generated by A(/A) and by the COROLLARY 1
(section 5.4), it is a proper saturated subgroup.

(b) In the general case, let V denote the <T-algebra of all D-invariant
Borel sets. We introduce the ergodic decomposition of v with respect
to the action of D (see [40], p. 63). It may be written v = f ujsdi^(s),
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where the c^ are -D-quasi-invariant and D-ergodic probability measures,
the map s ^-> ujg is weakly P-measurable and

(5.5.1) IB^= / cjsd^(s) for every B € P.
J B

As v is purely singular, ujs must be singular for ^-almost every s; we may
assume that it is the case for all s. Let us also notice that

£ ; = { ( 5 , t ) ; t e H ( ^ ) }
is a Borel set in T2. Indeed, as ujg is .D-ergodic, H(ujs) = A^) ^d
t € A(o;s), i.e. 6t * ̂ s / ^5, is equivalent to |[<^ * sjjs ~ ^s\\ < 2; as the
norm is semi-continuous in the weak *-topology of M(T), this inequality
defines a Borel set.

Let t C A(^) and let us write ^*z/ = (f)v-\-y1', where 0 is a Borel function
and v1 J- v. Clearly t e A(i/) and (f)y > 0. For any 2^-invariant Borel
set B, we have 0 IB v < 6t * v and, applying the lemma with B' == T \ B,
(f> \B v ± 6t * IB/ ^, whence

^IB z/ < 6t * IB ̂
Comparing with (5.5.1), we get

/ (^s)d^(s) < / ^*c^sd^(5) for every B C P.
JB JB

The mappings s \—^ ^^s and 5 i—^ ^ * cja being weakly ^-measurable, it
follows (j)ujs < Sf * ̂ s ^-a.e. When (f)ujs > O? this implies ^ e A^) ==
H(ujs)\ as ^z/ == f ^ujs^W > O? we g^

^({s ; ^ € ^(^s)}) > 0 for each t € A(/^).
Now, let T be any positive finite Borel measure concentrated on A(/^); by
Fubini's theorem, v 0 T~(E) > 0 and there exists some s with

r({^; (^)€£;})=r(^))>0.

Since (^5 is singular, H{iJs) is a weak Dirichlet set (COROLLARY 1,
section 5.4). Thus r gives positive measure to some weak Dirichlet set. We
may consider a countable union F of such sets with maximal r-measure;
then the non-negative measure r' == r — lp r is concentrated on A(^)
and gives zero measure to every weak Dirichlet set. By the previous
argument, r ' = 0 and r is concentrated on F.

REMARK 2. — It is classical that the union of two Dirichlet sets need
not be a Dirichlet set [26] and actually A(/z) may be not weak Dirichlet.
However, it is still a null set for every measure whose Fourier transform
vanishes at infinity.
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6. Applications to harmonic analysis
This section is devoted to the connections between non-singular dynam-

ics and the Fourier-Gelfand theory for measures. The link is provided by
the eigenvalues and eigenfunctions of translations which give rise to gener-
alized characters in the sense of convolution measure algebras theory. We
develop the techniques and results of the previous sections which involve
the groups Zi(r) to show a deep property of the eigenvalues of the action
of H({i), namely that they are in the closure of the continuous group char-
acters. This is a key property for solving subtle problems about spectra
of measures around the Wiener-Pitt phenomenon.

6.1. H(/^)-eigenvalues.
Let [L be a positive measure in M(T). We consider H(^), or more

generally a subgroup H of H(^), acting non-singularly by translation
on (T,^). As in the case of locally compact group actions, we will say
that a non identically zero function (p C L°°(^) is an eigenfunction and
that a complex function a on H is the corresponding eigenvalue if, for
every t C H,

(6.1.1) ^(Tfx) = a(t) (p(x), /z-a.e.

Since |(^(^)| and |(^(r^.r)| have the same essential supremum, necessarily
\a(t)\ = 1 for all t € H and it is immediate that a is a group character.
On the other hand, for every t € H, integrating (6.1.1) with respect to
any measure v e ^(^), we have

(\pd(T^)=a(t) f\pdv.

The first integral is continuous with respect to the topology of H(ii) and,
since (p / 0, one can choose v such that f ^pdi^ -^ 0. This shows that a is
a continuous group character of Jf, when H is endowed with the strong
topology of H{ji).

THEOREM. — Let p, he any positive measure on T, let H be a Borel
subgroup of H{fji) and let a be an eigenvalue of the action of H on (T,/^).
For every positive measure r carried by H^ a belongs to Zi(r).

Proof. — Let (p be a non identically zero function in L°°{ii) which
satisfies (6.1.1). The positive measure v = \(p\fi is ^-quasi-invariant. We
have H C H(v) and (p is an eigenfunction for the action of H on (T, v\
with the same eigenvalue a, and moreover (p(x) / 0 i/-a.e. So, replacing /A
by v and y? by ^/|y?|, we may assume that (p has modulus 1.
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Let us come back to the construction of section 5.3 (with the
cocycle a(h,x) equal to 1) : D is a countable dense subgroup of H in
the strong topology, D its dual group and a is the maximal spectral
type of the representation (Ud)deD- We keep the notations 7^ for the
character of D defined by d e D and 7^ (t C H) for the family of unit
modulus functions in L°°(o-) defined by continuity from the 7^. We still
denote by a the restriction of a to D; since (p has modulus 1, it is an
element of e(D) and the LEMMA 5.3 shows that a is quasi-invariant un-
der both the translation Sx = x + 1 and the translation by a in D. We
have noticed (5.3, remark 1) that H C e(S) and more precisely that for
every t € H

(6.1.2) ^(Sx) = e^SOr) (7-a.e.

Moreover, for every d C -D, 7rf(rc + a) = a(d)^d(x) o--a.e.; since, by a
previous remark, a is continuous in the topology of H^ we still have for
every t e H

(6.1.3) ^i(x + a) = a(t) ̂ t(x) cr-a.e.

On the other hand, given any positive measure T carried by H, since
H C e(5'), the COROLLARY 3.2 yields a mapping \ ^ \x from D
to Zi(r) such that \sx(t) = e27^;^^) T-a.e(^) for cr-almost all x; by
the remark (3.2.1) we may write Xx(t) = X^^) a ̂  T-a.e., where \ is a
unit modulus Borel function on -D x T, and then

(6.1.4) ^(Sx, t) = e27^^, t) o-0 r-a.e.

It is clear from (6.1.2) and (6.1.4) that, for r-almost every t, the func-
tion \(x, t)/%{x) of L°°{cr) is ^-invariant. Now, according to the remark 2
in section 5.3, any ^-invariant Borel function is also invariant under trans-
lation by a (modulo a <7-null function). Therefore,

\(x + a, t}/\{x, t) = 7^(.r + a)/-ft(x) a 0 r-a.e.

By (6.1.4) we have, for cr-almost every x, \x+aXx = OL. We conclude that a
belongs to Zi(r).

6.2. A property of the measures carried by H(/^).
For every saturated subgroup H, the property for a measure to be

concentrated on H depends only on the behaviour at infinity of its Fourier
transform (see remark 2, section 2.2). When ^ is a positive measure
and H = H{p), is it possible to give an explicit criterion? The next
theorem gives half of the answer. We ask whether its converse is true
when ji is ergodic.
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THEOREM. — Let 11 be a positive measure on T. Let r be any proba-
bility measure carried by H{p). For every e > 0, there exists a positive
measure v < ft such that

P(7i)^0 =^ |?(n)-l| < e.

Proof. — We keep the notations of the previous section. Let r be any
probability pleasure carried by H(p) = e(S) and X ^ Xx the Borel
map from D to Zi(r) given by the COROLLARY 3.2. Given e > 0, for
some xo ^ Zi(r) the set B of x e D such that \\Xx - XQ\\L^(r) < j^ has
positive cr-measure. When a^BnS'^B) > 0, we can find some x C Br{SnB
for which we have

(6.2.1) |r(n)-l| ̂  He2-'- l||̂  ^ HX^-X.IL^) ̂ .

Now we choose some / G -^(j^) whose spectral measure a/ is concentrated
on B. Let ^ = |/|2/^. Its Fourier transform is

P(n) = y e2——/(^)7(rr)d^) = (V^/J), (n G Z).

If P(n) ^ 0, the spectral measures of / and of V71/ cannot be mutually
singular. We know that a-y^f = 6n * o-f is carried by SnB. Therefore,
necessarily, a(B H ̂ B) > 0 and (6.2.1) holds. This proves the theorem.

6.3. The Fourier-Gelfand representation of the convolution
algebra M(T).

The convolution algebra M(T) of all finite complex Borel mea-
sures on T, is a commutative Banach algebra with the total variation
norm | |^ | |=Jd|/x| .We summarize here some basic facts of the Fourier-
Gelfand theory of this algebra (we refer the reader to [18], chapter 4 for
more details). Let us recall that, for any positive measure fi C M(T), we
denote by L(fji) the space of all measures v < /^.

Let A = AM(T) be the maximal ideal space of the algebra M(T).
An element \ of A is a non-zero complex homomorphism of M(J);
for 0 < [i e M(T), its restriction to the subspace L{p) is given by the
function Xp, ofL°°(^) such that

(6.3.1) (X^)= I X^ (^L(/.)).
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The family of functions ̂  (^ e M(T), /i > 0) is called a generalized
character, and satisfies the following properties (for every positive ji,
v C M(T)) :

(6.3.2) IMoo<l;

(6.3.3) ^ = ̂  M-a.e., (0 < v < p,);

(6.3.4) X/^(^ + 2/) = X/.(^) X^(^ /^ ̂  ^-a.e.

Conversely, any non identically zero family of functions \^ (fi e M(T),
^ > 0), enjoying the properties (6.3.2), (6.3.3) and (6.3.4), defines
a non-zero complex homomorphism of M(T) by the formula (6.3.1).
For every n e Z, the mapping p, \—> Jl{n) is obviously a complex
homomorphism corresponding to the family \^(x) = ̂ {nx. So we have
a natural imbedding of Z in A, such that the Gelfand transform of a
measure restricted to Z is nothing but its Fourier transform. The Gelfand
topology of A, that is the weak ^-topology of M(T)7 , induces on Z the
usual (discrete) topology. A is weak *-compact and contains the weak
*-closure of Z, that we will denote Z. The corresponding generalized
characters \^ are those for which \^ belongs to Z(/z) for every ^ C M(T)
(see section 2.2).

The following results are classical and can be found in [18].
(6.3.5) Except for group characters, one does not have \\^\ = 1 for every
[i e M(T) and one cannot find a single Borel function (f) such that \^ = (/),
[i-a.e. for every fi G M(T).

(6.3.6) There exist generalized characters which are not weak ^-limits of
group characters (in other words, Z is not dense in the maximal ideal
space AM(T)).

(6.3.6) expresses that the range of the Fourier transform of a mea-
sure 11 C M(T) may be not dense in the range of its Gelfand transform,
which is nothing but its spectrum. It is well known that ^ may be non-
invertible in the convolution algebra M(J) although |/2(n)| > c > 0, n e Z
(the so-called Wiener-Pitt phenomenon).

In particular, the spectrum of any continuous symmetric probability
measure on T whose convolution powers are mutually singular is the entire
unit disc (see [18], chapter 4), although its Fourier transform is real-valued
(an example is provided by the standard Riesz product, defined in 4.2,
when Cj is a non-zero constant real sequence).

In the opposite direction, it is classical that /2(Z) is dense in the
spectrum of ^ in the following cases (see [12], [18]) :
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(a) if [JL is discrete;
(b) if /i is absolutely continuous;
(c) if \^\n is absolutely continuous for some n > 1 and, more generally,

if ^ belongs to the radical ofL^T) (i.e. the intersection of all the maximal
ideals of M(T) containing the absolutely continuous measures).

The problem to decide whether these cases were the the only ones
(when ^ is symmetric), stayed opened for long. The answer, given by
PARREAU in [35], is negative. It is a nice application of the results that
we will now draw from the properties of H (/^)-eigen values and saturated
subgroups.

6.4. Generalized characters and H(/^)-eigenvalues.
There is an obvious relationship between eigenfunctions and gener-

alized characters. Let \ e AM(T) and let t be any element of H{p).
Since Sf * ̂  ~ ^, using (6.3.3) and (6.3.4) we obtain

X^ {x +1) = ̂  (x) X6t (t) /A-a.e.

Defining a(t) = X6tW, we have

X^ {x +1) = ̂  (x) a(t) ^-a.e.

This expresses that ^ is an eigenfunction for the action of H{fi) and
that a is the corresponding eigenvalue. The following properties follow
from the discussion in section 6.1.

COROLLARY. — Let 0 < /A € M(T) and let \ C AM(T) such that \^
is not identically 0.

(a) There exists a Borel group character a of H(p,) (equivalently, a
continuous group character in the polish topology of H{p)) such that^ for
every measure r carried by H(p,)^ \r = a^ T-a.e.

(b) For every measure r carried by H(fi)^ \r is in Zi(r).
Proof. — First notice that, for any measure T carried by H(ii\ r*/x ~ [i.

Indeed, for every Borel set,

=/,(£?)= fSt^^B)dr{t).

This formula shows that r * ̂ {B) = 0 if and only if 6t * ^(B) = 0 for
r-almost-every t, which in turn is equivalent to ^{B) == 0. Using again
(6.1.3) and (6.1.4) we obtain

^ (x +1) = ̂  {x) Xr (r) ^0 r-a.e.
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By assumption ̂  -^ 0. Comparing (6.3.6) and (6.3.7) we conclude that

Xr{t) = a{t) r-a.e.

a, being an eigenvalue, is a continuous group character of H(iji) and,
according to the THEOREM 6.1, belongs to Zi(r). This proves both
properties (a) and (b) of the corollary.

REMARKS :
1) For every \ e A such that ̂  / 0, ̂  is an eigenfunction for the

action of H(^). We don't know if any Jf(/^)-eigenfunction is of the form ̂
for some \ e A.

2) If ^ == 1, \T = 1 for every measure r carried by H{fi}; in
particular r sticks to /-A (definition 2.2). Thus every saturated subgroup
of T which carries fi contains necessarily H(fi). But this property is of no
interest when the Fourier transform of [L tends to 0 at infinity, because
then every measure sticks to [L (remark 2.2).

6.5. Saturated subgroups and generalized characters.
We restate here the separation properties of saturated subgroups

discussed in section 2 in terms of generalized characters. Let us recall
that, given LJ e M(T), the measure 2 is defined by uji(E) = uj[—E) for
every Borel set E\ then uji(n) = 3(n) for n € Z.

THEOREM. — Let H be a saturated subgroup ofJ. There exists some
^p C Z with (pr == 1 /or an^ positive measure r concentrated on H^ and
(̂  =: 0 for any positive measure uj such that UJ^H 4- x) = 0 for all x € T.

Proof. — By compactness, it is enough to prove that given finitely
many positive measures T- i , . . . , Tm concentrated on H and finitely many
positive measures c< ; i , . . . , ujn with c^ {H + x) = 0 (1 < k < n) we can find
a positive measure [L with rj < ^ (1 < j < m), o^ < fi (1 < k < n),
and ^ € I(^) such that f ydrj = f dr^ (1 < j < m] and J^dcc^ = 0
(1 < fc < n). Let

^ = ^ Tj + ^ Cc;fe + y^ C^fc*CJfc .

Kj<m l<fe<n KA;<n

Since I? is saturated, Ijf, as an element of L°°(^), belongs to the closed
convex hull of Z(/^) (section 2.2), and it can be written as a barycenter of
elements of Z(/z); say IH = J^d^"^) witn some probability measure a
on Z(/z). We have then, for 1 < j < m

j drj = l H d r j = j (J (^dr^ do-(^),
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whence ^ = 1 r^-a.e. for cr-almost every (p.
On the other hand, for 1 < k < n,

^k^^k(H) = j uJk(H -x)dujk{x) =0;

since_Z is dense in Z(/^), we have J^d(^ * ̂ ) = |j^d^|2 for every
^ e Z(/^) and thus

0 = y l jfd(^*^)= y(y^d(^*^) )da(^ )= /1/^d^ 2d^).

It follows f ^dc^k = 0 o--a.e. So, cr-almost every (^ satisfies the desired
properties.

REMARKS:
1) What is significant in the previous theorem is to have ( p e l .

Indeed, given any Borel subgroup H, there always exists a ( p e A such
that (pr = 1 for any positive measure T concentrated on a translate of H,
and ^ = 0 for any positive measure uj such that ^(^ + x) = 0 for
all x C T (see [18], chap. 8). The theorem is already stated in other words
in [18], p. 248, by saying that, when M(H) is a "Bochner algebra" (i.e. H
is saturated), then the algebra spanned in M(J) by all the measures
carried by the translates of H is still a Bochner algebra. Let us note that,
for a countable subgroup H, the latter algebra is nothing but the algebra
of all discrete measures; then our result is simply equivalent to the well-
known inequality

IMoo < ll^lloo

for every ^ e M(T), where /^ denotes the discrete part of fi.
2) If /A is a continuous positive measure non-equivalent to the Lebesgue

measure, ^{H(p) +x) = 0 for all x e J (5.1.3). According to the theorem,
one can find some \ C Z such that ̂  = 0 and \r = 1 for every measure r
carried by H(p,).

This theorem, under the form of this last remark, and the COROL-
LARY 6.4 are quoted in [35] (theorem 3.2) in order to prove the following
result ([5], theorem 3.3) :

THEOREM. — Let {pt}t(^{o,i) be a weakly measurable family of contin-
uous singular probability measures on T such that ps is carried by H(pt)
whenever s < t and let fi = J^ pfdt. Then all the convolution powers of fi
are continuous and singular and, for every measure v < ̂ , P(Z) is dense
in the spectrum of v.
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Actually, in [35], these results are stated for any second countable
locally-compact abelian group instead of T; but the extension is straight-
forward; besides, explicit examples of families {pt} of measures on the
circle group fulfilling these assumptions are given.
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