BULLETIN DE LA S. M. F.

AVIVA SZPIRGLAS

Singularités de bord : dualité, formules de Picard Lefschetz relatives et diagrammes de Dynkin

Bulletin de la S. M. F., tome 118, nº 4 (1990), p. 451-486

<http://www.numdam.org/item?id=BSMF_1990__118_4_451_0>

© Bulletin de la S. M. F., 1990, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 118, 1990, p. 451–486.

SINGULARITÉS DE BORD : DUALITÉ, FORMULES DE PICARD LEFSCHETZ RELATIVES ET DIAGRAMMES DE DYNKIN

PAR

AVIVA SZPIRGLAS (*)

RÉSUMÉ. — On étudie les singularités de bord en tant qu'extension de la singularité ordinaire associée et de la singularité ordinaire de la section hyperplane, ce qui permet de définir les dualités entre les deux groupes d'homologie associés à la singularité de bord considérée. Ceci permet aussi, pour les opérateurs de monodromie relative, de montrer des formules de Picard Lefschtetz relatives. On construit également deux diagrammes de Dynkin associés à chaque singularité de bord relativement à des bases distinguées, ces deux diagrammes étant duaux l'un de l'autre. Dans le cas des singularités simples, en utilisant la géométrie du discriminant relatif, les diagrammes de Dynkin obtenus sont les mêmes que ceux des systèmes de racines de même nom.

ABSTRACT. — We study singularities with boundary as extensions of the associated ordinary singularity and of the ordinary singularity of the hyperplane section. Then, we can define the dualities between the two homology groups associated to each singularity with boundary. We proof relative Picard Lefschetz formulas for the operators of relative monodomy and we construct two dual Dynkin diagrams, associated to relative distinguished bases. In the case of simple singularities, the Dynkin diagrams obtained by using the geometry of the relative discriminant are the Dynkin diagrams of the roots system of same name.

Introduction

Un germe de singularité de bord (f, H) est la donnée d'un germe de fonction holomorphe en 0, $f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)$, et d'un hyperplan H de \mathbb{C}^{n+1} $(H \supset 0)$ tels que f et $f_{|H}$ admettent 0 comme point singulier isolé (on dit alors que f et $f_{|H}$ sont des singularités absolues ou ordinaires).

Ces singularités de bord ont été étudiées par ARNOLD [1]; il associe à chaque singularité de bord une singularité ordinaire invariante par

^(*) Texte reçu le 8 janvier 1990, révisé le 23 octobre 1990.

Unité de recherche associée au CNRS nº 742, Université Paris Nord, Av. J.B. Clément, 93430 Villetaneuse, France.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/1990/451/\$ 5.00 © Société mathématique de France

l'action du groupe \mathbb{Z}_2 . Ce qui lui permet d'étudier un sous espace de l'homologie de la fibre de Milnor de cette singularité ordinaire, sous espace isomorphe à $H_n(F, F \cap H)$, qui est l'un des objets homologiques qui jouent naturellement le rôle de $H_n(F)$ pour (f, H) (F est la fibre de Milnor de f).

De plus, G.G. ILYUTA (dans [5]), associe à chaque singularité de bord un diagramme de Dynkin déduit du diagramme de Dynkin de la singularité ordinaire associée, diagramme qui est naturellement muni d'une involution.

Dans cet article, on se propose de donner une nouvelle approche des résultats d'Arnold, basée sur la dualité existant dans la situation considérée. On dispose en effet de deux "homologies de la fibre de Milnor", à savoir $H_n(F, F \cap H)$ et $H_n(F \setminus F \cap H)$.

Ces homologies sont extensions des homologies $H_n(F)$ et $H_{n-1}(F \cap H)$ de deux manières duales (voir Proposition 1.2.1).

Par ailleurs, la théorie du déploiement universel fait apparaître la base du déploiement versel pour (f, H) (ou plutôt son espace tangent à l'origine) comme extension des bases pour f et $f_{|H}$ de deux manières duales (voir LEMME 2.1.3).

Il existe dans la base de ce déploiement deux discriminants. On exploite la position relative de ceux-ci pour construire des bases distinguées duales pour $H_n(F, F \cap H)$ et $H_n(F \setminus F \cap H)$.

C'est à ces bases distinguées duales qu'on associe deux diagrammes de Dynkin duaux qui — dans le cas de B_{μ} , C_{μ} et F_4 — correspondent aux diagrammes de Dynkin des systèmes de racines de même nom.

Pour donner un sens à ceci, on explicite les formes d'intersection et de Seifert de la situation et on montre les formules de Picard-Lefschetz correspondantes (qui n'étaient pas établies pour les singularités de bord) (voir § 2).

REMARQUE. — Dans [7], W. EBELING étudie une situation similaire à celle vue ici; on peut en effet considérer la singularité $(f_{|H}, 0)$ comme la singularité d'intersection complète (f, ℓ) , où ℓ est la forme linéaire définissant l'hyperplan H. Mais, alors que dans ce travail, on s'intéresse au comportement relatif de la singularité (f, 0) et de l'intersection complète (f, ℓ) , W. EBELING étudie le comportement de (f, ℓ) dont la fibre de Milnor est plongée dans la fibre de Milnor d'une intersection complète de dimension n (qui, dans le cas particulier présent, est lisse). Ainsi, c'est l'action des opérateurs de monodromie définis par le discriminant ordinaire de $(f_{|H}, 0)$ sur $H_{n-1}(F)$ qui est donnée par les formules de Picard Lefschetz relatives démontrées dans [7] (et qui se réduisent ici aux formules de Picard Lefschetz ordinaires pour la singularité $(f_{|H}, 0)$).

томе 118 — 1990 — N° 4

1. Homologies

Soit (f, H) un bon représentant d'une singularité de bord $(f : X_0 \to \mathbb{D},$ où \mathbb{D} est un disque centré en 0 de \mathbb{C}). On suppose (ce qui est toujours possible, voir [1]), et quitte à diminuer le rayon de la boule de Milnor de f, que la fibration de Milnor de f est telle que, si F_s est la fibre de Milnor de f au dessus de $s \neq 0$, alors $F_s \cap H$ est la fibre de Milnor de $f_{|H}$ au dessus de s. De plus, si h est la monodromie de f $(h : F_s \to F_s)$, alors $h_{|F_s \cap H}$ est la monodromie de $f_{|H}$.

Les deux groupes d'homologie, qui jouent le rôle de $H_n(F)$ pour la singularité ordinaire f, sont, pour (f, H),

$$H_n(F \setminus F \cap H; \mathbb{Z})$$
 et $H_n(F, F \cap H; \mathbb{Z})$.

On démontre d'abord dans le premier paragraphe de cette section que les deux groupes d'homologie $H_n(F, F \cap H)$ et $H_n(F \setminus F \cap H)$ sont des extensions de $H_n(F)$ et $H_{n-1}(F \cap H)$.

Puis, on généralise dans le deuxième paragraphe les notions de formes d'intersection et de Seifert : on définit deux formes d'intersection sur $H_n(F, F \cap H) \times H_n(F \setminus F \cap H)$ ainsi que deux formes de Seifert, qui se trouvent être extensions de ces mêmes notions connues sur $H_n(F)$ et $H_{n-1}(F \cap H)$.

Pour cela, deux énoncés sont importants :

• le LEMME 1.1.1, qui établit un isomorphisme entre les \mathbb{Z} -duaux de $H_n(F, F \cap H)$ et $H_n(F \setminus F \cap H)$;

• la PROPOSITION 1.3.2, qui permet de définir les deux formes de Seifert via les morphismes variation.

Le dernier paragraphe généralise les formules qui relient dans le cas absolu formes d'intersection, formes de Seifert, morphismes variation et monodromie. On obtient dans ce cadre le Théorème 1.3.10.

1.1 Dualité.

On démontre tout d'abord le lemme suivant :

LEMME 1.1.1. — Le \mathbb{Z} dual de $H_n(F \setminus F \cap H; \mathbb{Z}) (\simeq H_n(F \setminus T^0(F \cap H)))$, qui est le groupe $H_n(F \setminus T^0(F \cap H), \partial(F \setminus T^0(F \cap H)))$ vérifie :

$$H_n(F \setminus T^0(F \cap H), \partial(F \setminus T^0(F \cap H))) \simeq H_n(F, (F \cap H) \cup \partial F)$$

qui est le \mathbb{Z} dual de $H_n(F, F \cap H)$ (via la dualité de Lefschetz).

 $(T^0(F \cap H)$ désigne ici un voisinage tubulaire de $F \cap H$ dans F).

 $D\acute{e}monstration.$ — Par excision :

$$\begin{split} H_n\big(F\setminus T^0(F\cap H),\partial(F\setminus T^0(F\cap H))\big) &\simeq H_n\big(F,\partial(F\setminus T^0(F\cap H))\cup T^0(F\cap H)\big) \\ \text{et} \ : \ \ H_n\big(F,\partial(F\setminus T^0(F\cap H))\cup T^0(F\cap H)\big) \\ &\simeq H_n\big(F,T^0(F\cap H)\cup\partial F\big) \\ &\simeq H_n\big(F,(F\cap H)\cup\partial F\big). \end{split}$$

Par la suite, on identifie le groupe d'homologie

$$H_n(F \setminus T^0(F \cap H), \partial(F \setminus T^0(F \cap H)))$$

à $H_n(F, (F \cap H) \cup \partial F)$, via l'isomorphisme du LEMME 1.1.1.

1.2 Liens avec les singularités (f, 0) et $(f_{|H,0})$.

PROPOSITION 1.2.1. — On a les deux paires de suites exactes duales suivantes :

$$(a_1) \qquad 0 \leftarrow H_n(F, \partial F) \xleftarrow{\alpha'_1} H_n(F, (F \cap H) \cup \partial F)$$
$$\xleftarrow{\alpha'_2} H_{n-1}(F \cap H, \partial F \cap H) \leftarrow 0,$$

$$(b_1) \qquad 0 \to H_n(F) \xrightarrow{\alpha_1} H_n(F, F \cap H) \xrightarrow{\alpha_2} H_{n-1}(F \cap H) \to 0,$$

$$\begin{aligned} (a_2) \qquad 0 \to H_n(F,\partial F) \xrightarrow{\beta_1'} H_n\big(F, (F \cap H) \cup \partial F\big) \\ \xrightarrow{\beta_2'} H_{n-1}(F \cap H, \partial F \cap H) \to 0, \end{aligned}$$

$$(b_2) \qquad 0 \leftarrow H_n(F) \xleftarrow{\beta_1} H_n(F \setminus F \cap H) \xleftarrow{\beta_2} H_{n-1}(F \cap H) \leftarrow 0,$$

où le morphisme β_2 est défini ainsi : soit $x \in H_{n-1}(F \cap H)$, soit \tilde{x} un cycle de $F \cap H$ représentant x, soit $T^0(\tilde{x})$ un voisinage tubulaire de \tilde{x} dans F; alors $\beta_2(x)$ est la classe de $\partial T^0(\tilde{x})$ dans $H_n(F \setminus F \cap H)$.

Démonstration :

1) La deuxième suite est la suite exacte longue d'homologie pour la paire $(F, F \cap H)$; la première s'en déduit par dualité (via la dualité de Lefschetz).

2) On a la suite exacte suivante, déduite de la suite exacte longue

$$0 \to H_n(F, \partial F) \to H_n(F, (F \cap H) \cup \partial F) \to H_{n-1}((F \cap H) \cup \partial F) \to 0.$$

томе 118 — 1990 — № 4

454

Or, $H_{n-1}(F \cap H, \partial(F \cap H)) \simeq H_{n-1}(F \cap H, T^0 \partial(F \cap H))$. Par excision, on voit que le groupe $H_{n-1}(F \cap H, T^0 \partial(F \cap H))$ est isomorphe à

$$H_{n-1}\Big[(F\cap H)\cup\partial\big(F\setminus T^0(F\cap H)\big),\big(T^0\partial(F\cap H)\big)\cup\partial\big(F\setminus T^0(F\cap H)\big)\Big].$$

Si on pose :

$$N = H_{n-1} \Big[(F \cap H) \cup \partial (F \setminus T^0(F \cap H)), \\ (T^0 \partial (F \cap H)) \cup \partial (F \setminus T^0(F \cap H)) \Big]$$

alors

$$N \simeq H_{n-1} \Big[T^0(F \cap H) \cup \partial \big(F \setminus T^0(F \cap H) \big), \\ \big(T^0 \partial (F \cap H) \big) \cup \partial (F \setminus T^0(F \cap H) \big) \Big].$$

Par une nouvelle excision : $N \simeq H_{n-1}(\partial (F \setminus T^0(F \cap H)))$. Or, le morphisme β'_2 est le composé de l'isomorphisme du LEMME 1.1.1, du morphisme

$$\partial: H_n(F \setminus F \cap H, \partial T^0(F \setminus F \cap H)) \to H_{n-1}(\partial (F \setminus T^0(F \cap H)))$$

et de l'isomorphisme précédent.

Ce qui montre que la première suite est exacte. L'exactitude de la seconde s'en déduit par dualité.

Complément sur les morphismes β'_2, α'_2 de la PROPOSITION 1.2.1 : (i) β'_2 s'obtient en composant :

- le morphisme $\partial : H_n(F, (F \cap H) \cup \partial F) \to H_{n-1}((F \cap H) \cup \partial F)$ (qui est surjectif car $H_{n-1}(F) = 0$),
- l'isomorphisme $H_{n-1}((F \cap H) \cup \partial F) \simeq H_{n-1}(T^0(F \cap H) \cup T^0(\partial F)),$
- le morphisme canonique de $H_{n-1}(T^0(F \cap H) \cup T^0(\partial F))$ dans $H_{n-1}(T^0(F \cap H) \cup T^0(\partial F), T^0(\partial F)),$
- l'isomorphisme

 $H_{n-1}(T^0(F \cap H) \cup T^0(\partial F), T^0(\partial F)) \simeq H_{n-1}(F \cap H, \partial F \cap H);$

(ii) α'_2 est défini au niveau des cycles comme β_2 et par composition avec l'isomorphisme du LEMME 1.1.1.

1.3 Les formes d'intersection.

On définit, sur le produit $H_n(F, F \cap H) \times H_n(F \setminus F \cap H)$, dans le deuxième paragraphe de cette section, deux formes d'intersection, ainsi que deux formes de Seifert. Pour cela, on définit, dans la première partie

de cette section, les morphismes canoniques et variation qui permettent, via l'isomorphisme du LEMME 1.1.1, l'appariement d'un élément de $H_n(F, F \cap H)$ et d'un élément de $H_n(F \setminus F \cap H)$.

On généralise les résultats connus dans le cas absolu (voir par exemple [1]) au cas de la singularité de bord (f, H), après avoir défini formes d'intersection et formes de Seifert.

1.3.1 Les morphismes canoniques et variations.

REMARQUE. — Étant donné le choix de la fibration, la monodromie est l'identité sur ∂F et laisse $F \cap H$ globalement invariant, donc, si $a' \in H_n(F, (F \cap H) \cup \partial F)$ et si \tilde{a}' désigne un représentant de $a', h(\tilde{a}') - \tilde{a}'$ est une *n*-chaîne de F à bord dans $F \cap H$ et définit donc un élément de $H_n(F, F \cap H)$.

De même, si b' est un élément de $H_n(F \setminus T^0(F \cap H), \partial F \setminus T^0(F \cap H))$ et \tilde{b}' un représentant de $b', h(\tilde{b}') - \tilde{b}'$ définit un élément de $H_n(F \setminus T^0(F \cap H))$, c'est-à-dire de $H_n(F \setminus F \cap H)$.

Définition 1.3.1. — Les morphismes canoniques et variations :

• c_1 est le morphisme canonique de

 $H_n(F, F \cap H)$ dans $H_n(F, (F \cap H) \cup \partial F)$.

• c_2 est le morphisme de $H_n(F \setminus F \cap H)$ dans $H_n(F, (F \cap H) \cup \partial F)$ composé du morphisme canonique de

 $H_n(F \setminus F \cap H)$ dans $H_n(F \setminus F \cap H, \partial T^0(F \setminus F \cap H))$ et de l'isomorphisme décrit dans le Lemme 1.1.1.

• v_1 est le morphisme de $H_n(F, \partial F \cup (F \cap H))$ dans $H_n(F, F \cap H)$ égal au morphisme défini au niveau des chaînes à bord par h – Id où h est la monodromie géométrique de la singularité f.

• v_2 est le morphisme de $H_n(F, (F \cap H) \cup \partial F)$ dans $H_n(F \setminus F \cap H)$ composé de l'isomorphisme décrit dans le LEMME 1.1.1, et du morphisme défini au niveau des chaînes à bord par h – Id où h est la monodromie géométrique de la singularité f.

PROPOSITION 1.3.2. — v_1 et v_2 sont des isomorphismes.

Démonstration. — On fait la démonstration pour v_1 . La démonstration pour v_2 est similaire, en remarquant que les isomorphismes considérés dans le LEMME 1.1.1, et dans sa démonstration, commutent avec la monodromie induite sur chacun des groupes d'homologie par la monodromie géométrique de la singularité f.

томе 118 — 1990 — N° 4

÷

On a le diagramme commutatif suivant, où les lignes sont exactes :

 v_1 est donc extension des deux morphismes variation définis pour la singularité f et pour la singularité $f_{|H}$, ceci via l'isomorphisme du LEMME 1.1.1. Ces deux morphismes sont des isomorphismes, d'où le résultat. \Box

1.3.2 Les formes d'intersection et de Seifert.

DÉFINITION 1.3.3. — Les formes d'intersection et de Seifert relatives sont les suivantes :

• I_1 (resp. S_1) est l'appariement de $H_n(F, F \cap H)$ et $H_n(F \setminus F \cap H)$ défini de la manière suivante :

$$\forall (a,b) \in H_n(F,F \cap H) \times H_n(F \setminus F \cap H),$$

$$I_1(a,b) = \langle c_1(a), b \rangle, \quad S_1(a,b) = \langle v_1^{-1}(a), b \rangle.$$

• I_2 (resp. S_2) est l'appariement de $H_n(F \setminus F \cap H)$ et $H_n(F, F \cap H)$ défini de la manière suivante :

$$\forall (b,a) \in H_n(F \setminus F \cap H) \times H_n(F,F \cap H), I_2(b,a) = \langle c_2(b),a \rangle, \quad S_2(b,a) = \langle v_2^{-1}(b),a \rangle.$$

REMARQUE. — Soit α une *n* chaîne de *F* à bord dans $F \cap H$; soit β un *n* cycle de $F \setminus F \cap H$. On suppose que α et β se coupent transversalement en un point *p*. Alors, on définit l'indice d'intersection de α et β dans *F* en *p*, soit $i_{p,F}(\alpha,\beta)$ de la manière suivante (voir le cas absolu par exemple dans [6]) :

Définition 1.3.4.

Solient v_1, \ldots, v_n et w_1, \ldots, w_n des bases respectives de $T_p \alpha$ et $T_p \beta$.

$$i_{p,F}(\alpha,\beta) = \begin{cases} +1 & si \ v_1, \cdots, v_n, w_1, \cdots, w_n \ est \ une \\ base \ orient\acute{e} \ de \ T_p(F) \ ; \\ -1 & sinon. \end{cases}$$

Alors, l'indice d'intersection de α et β dans F, soit $i_F(\alpha, \beta)$ est défini ainsi :

Définition 1.3.5.

$$i_F(lpha,eta) = \sum_{p\in lpha\capeta} i_{p,F}(lpha,eta).$$

On a le lemme suivant :

LEMME 1.3.6. — L'indice d'intersection $i_F(\alpha, \beta)$ des n-chaînes α et β dans F ne dépend que de la classe de α dans $H_n(F, F \cap H)$ et de la classe de β dans $H_n(F \setminus F \cap H)$.

Démonstration. — Soit γ une *n*-chaîne de *F* à bord dans $F \cap H$ qui est nulle dans $H_n(F, F \cap H)$. Soit δ un *n*-cycle de $F \setminus F \cap H$ qui est nul dans $H_n(F \setminus F \cap H)$.

1) $i_F(\gamma,\beta) = 0$. En effet, $\gamma = \gamma_1 + \partial \gamma_2$, où γ_1 est une *n*-chaîne de $F \cap H$ et γ_2 est une (n + 1)-chaîne de F. On a : $i_F(\gamma,\beta) = i_F(\gamma_1,\beta) + i_F(\partial \gamma_2,\beta)$. Or, $i_F(\gamma_1,\beta)$ est nul car γ_1 et β ne se rencontrent pas. $i_F(\partial \gamma_2,\beta)$ est nul car l'indice d'intersection dans F d'un bord et d'un cycle est nul.

2) $i_F(\alpha, \delta) = 0$. En effet, $\delta = \partial \delta_1$ où δ_1 est une (n + 1)-chaîne de $F \setminus F \cap H$. Cette chaîne δ_1 ne rencontre pas le bord de α d'où le résultat. 1) et 2) donnent la preuve du lemme. \Box

Par la suite, on désigne, pour $a \in H_n(F, F \cap H)$ et $b \in H_n(F \setminus F \cap H)$, par $i_F(a, b)$ l'indice d'intersection dans F d'un représentant quelconque de a avec un représentant quelconque de b.

On a alors le lemme suivant :

Lemme 1.3.7. — $I_1(a,b) = i_F(a,b); I_2(b,a) = i_F(b,a).$

D'où la proposition suivante :

PROPOSITION 1.3.8. — $I_1(a, b) = (-1)^n I_2(b, a)$.

Extension des propriétés des formes d'intersection et de Seifert définies sur $H_n(F)$ et $H_{n-1}(F \cap H)$.

(Dans ce paragraphe, on désigne par M soit l'un, soit l'autre des deux groupes isomorphes d'homologie relative $H_n(F, \partial F \cup (F \cap H))$ et $H_n(F \setminus T^0(F \cap H), \partial(F \setminus T^0(F \cap H)))$, le contexte décidant clairement duquel des deux il s'agit.)

Proposition 1.3.9. — $\forall a' \in M, \forall b' \in M$

(*)
$$I_1(v_1(a'), v_2(b')) + \langle a', v_2(b') \rangle + (-1)^n \langle b', v_1(a') \rangle = 0,$$

(**)
$$I_2(v_2(b'), v_1(a')) + (-1)^n \langle a', v_2(b') \rangle + \langle b', v_1(a') \rangle = 0.$$

томе 118 — 1990 — N° 4

Démonstration. — On désigne par \tilde{a}' (resp. \tilde{b}') des représentants de a' (resp. b'). On a : $I_1(v_1(a'), v_2(b')) = i_F(h(\tilde{a}') - \tilde{a}', h(\tilde{b}') - \tilde{b}')$. Or, $i_F(h(\tilde{a}'), h(\tilde{b}')) = i_F(\tilde{a}', \tilde{b}')$. Donc,

$$I_1(v_1(a'), v_2(b')) = 2i_F(\tilde{a}', \tilde{b}') - i_F(\tilde{a}', h(\tilde{b}')) - i_F(h(\tilde{a}'), \tilde{b}').$$

D'autre part,

 \mathbf{et}

$$\begin{split} \langle a', v_2(b') \rangle &= i_F(\tilde{a}', h(\tilde{b}') - \tilde{b}') \\ \langle b', v_1(a') \rangle &= i_F(\tilde{b}', h(\tilde{a}') - \tilde{a}') = (-1)^n i_F(h(\tilde{a}') - \tilde{a}', \tilde{b}'). \end{split}$$

D'où (*). La partie (**) s'en déduit immédiatement puisque :

$$I_1(v_1(a'), v_2(b')) = (-1)^n I_2(v_2(b'), v_1(a')).$$

THÉORÈME 1.3.10. — Soit φ_2 (resp. φ_1), le morphisme de $H_n(F, F \cap H)$ dans M (resp. de $H_n(F \setminus F \cap H)$ dans M) défini de la manière suivante :

$$\begin{aligned} \forall \, a \in H_n(F,F\cap H), \ \forall \, b \in H_n(F\setminus F\cap H), \ \ \left\langle \varphi_2(a),b \right\rangle &= \left\langle v_2^{-1}(b),a \right\rangle, \\ \forall \, a \in H_n(F,F\cap H), \ \forall \, b \in H_n(F\setminus F\cap H), \ \ \left\langle \varphi_1(b),a \right\rangle &= \left\langle v_1^{-1}(a),b \right\rangle. \end{aligned}$$

Soit h_1 (resp. h_2) la monodromie définie sur $H_n(F, F \cap H)$ (resp. sur $H_n(F \setminus F \cap H)$). On a :

- (i) $h_1 = (-1)^{n+1} v_1 \circ \varphi_2$, $h_2 = (-1)^{n+1} v_2 \circ \varphi_1$;
- (ii) $I_1(a,b) + S_1(a,b) + (-1)^n S_2(b,a) = 0;$
- (iii) $I_2(b,a) + (-1)^n S_1(a,b) + S_2(b,a) = 0.$

Démonstration. — Les deux dernières formules sont les conséquences de la PROPOSITION 1.3.9. On remarque par ailleurs que $h_1 = id + v_1 \circ c_1$. Or : $\langle c_1(a), b \rangle = -\langle v_1^{-1}(a), b \rangle - (-1)^n \langle v_1^{-1}(b), a \rangle$ (cf. PROPOSITION 1.3.9). Donc, $c_1 = -v_1^{-1} - (-1)^n \varphi_2$. D'où $h_1 = -(-1)^n v_1 \circ \varphi_2 = (-1)^{n+1} v_1 \circ \varphi_2$. On a la même preuve pour h_2 .

Interprétation géométrique des formes de Seifert relatives.

Dans le cas absolu, on a l'interprétation géométrique de la forme de Seifert, via les coefficients d'enlacement des cycles de la sphère S^{2n+1} . Ici, on étend cette interprétation géométrique aux deux formes de Seifert relatives.

Dans la suite, on fait les hypothèses suivantes. Soit ρ stictement positif et suffisamment petit pour que :

• si $K = f^{-1}(0) \cap S_{\rho}^{2n+1}$;

• si T est un voisinage tubulaire ouvert assez petit de K dans S_{ρ}^{2n+1} alors $\Phi: S_{\rho}^{2n+1} \setminus T \to S^1$, définie par $\phi(x) = f(x)/|f(x)|$ est la fibration de Milnor de f et $\Phi_{|H}: S_{\rho}^{2n-1} \setminus T \cap H \to S^1$ est la fibration de Milnor de $f_{|H}$.

Interprétation géométrique de la forme de Seifert absolue.

On désigne par $\ell_{S^{2n+1}}(.,.)$ le coefficient d'enlacement des n cycles de S^{2n+1} . Soit, pour tout (a,b) élément de $H_n(F) \times H_n(F)$, b^* l'image de b par la monodromie induite sur $H_n(F)$ par un demi-tour dans la base de la fibration.

On a le résultat suivant (voir [1]) :

Théorème 1.3.11. — $S(a, b) = \ell_{S^{2n+1}}(a, b^{\star}).$

Interprétation géométrique de S_1 .

Soit *a* un élément de $H_n(F, F \cap H)$. Soit *b* un élément de $H_n(F \setminus F \cap H)$, et b^* son image par la monodromie induite par un demi-tour dans la base de la fibration. Considéré comme un *n*-cycle de $S^{2n+1} \setminus S^{2n-1}$, dont le *n*-ième groupe d'homologie est nul, b^* s'écrit : $b^* = \partial \beta$ où β est une (n + 1)-chaîne de $S^{2n+1} \setminus S^{2n-1}$.

Lemme 1.3.12.

 $i_{S^{2n+1}}(a,\beta)$ est indépendant du choix de β vérifiant $b^{\star} = \partial \beta$.

 $\begin{array}{l} D\acute{e}monstration. \ --\ \mathrm{Si}\ \partial\beta=0, \, i_{S^{2n+1}}(a,\beta)=0 \ \mathrm{car} \ \mathrm{le} \ \mathrm{bord} \ \mathrm{de} \ a, \, \mathrm{qui} \ \mathrm{est} \\ \mathrm{dans}\ F\cap H \ \mathrm{donc} \ \mathrm{dans}\ S^{2n-1} \ \mathrm{ne} \ \mathrm{rencontre} \ \mathrm{pas}\ \beta \end{array}$

THÉORÈME 1.3.13 (voir THÉORÈME 1.3.11)

$$S_1(a,b) = (-1)^n i_{S^{2n+1}}(a,\beta).$$

Démonstration. — (On reprend la démonstration de [1] faite pour le cas absolu.) b est un élément de $H_n(\Phi^{-1}(1) \setminus \Phi_{|H}^{-1}(1))$. Soit a' un élément de $H_n(\Phi^{-1}(1), \Phi_{|H}^{-1}(1) \cup \partial \Phi^{-1}(1))$. Soit \bar{a}' une *n*-chaîne de $\Phi^{-1}(1)$ à bord dans $\Phi_{|H}^{-1}(1) \cup \partial \Phi^{-1}(1)$, représentant a'. Soit l'application $\Gamma : [0,1] \to S^{2n+1}$ définie par $\Gamma(t,c) = c \exp(2i\pi t)$. Par ce morphisme :

- $\{0\} \times \bar{a}'$ a pour image \bar{a}' ;
- $\{1\} \times \bar{a}'$ a pour image $h(\bar{a}')$;
- $\{0\} \times \partial \bar{a}'$ a pour image $\partial \bar{a}'$;
- $\{1\} \times \partial \bar{a}'$ a pour image $h(\partial \bar{a}')$.

Il définit donc dans la sphère S^{2n+1} , en contractant ∂T et $\partial T \cap H$ le long des rayons, une (n+1)-chaîne A dont le bord vérifie : $\partial A = v_1^{-1}(a') - A_H$, où A_H est une *n*-chaîne de S^{2n-1} dont le bord est $v(\partial a')$. $(v_1$ étant extension des deux morphismes variation absolus, on a : $\partial(v_1(a')) = v(\partial a')$.

томе 118 — 1990 — №° 4

On a donc :

$$\begin{split} i_{S^{2n+1}}(A,b^{\star}) &= i_{S^{2n+1}}(a'^{\star},b^{\star}) \text{ et } i_{S^{2n+1}}(A,b^{\star}) = i_{\Phi^{-1}(1)}(a',b) \\ \text{d'une part. Par ailleurs, } i_{S^{2n+1}}(A,b^{\star}) &= \ell_{S^{2n+1}}(\partial A,b^{\star}). \text{ Or,} \end{split}$$

$$\ell_{S^{2n+1}}(\partial A, b^*) = (-1)^n i_{S^{2n+1}}(\partial A, \beta)$$

= $i_{S^{2n+1}}(v_1(a') - A_H, \beta)$
= $i_{S^{2n+1}}(v_1(a'), \beta),$

car β ne rencontrant pas S^{2n-1} , $i_{S^{2n+1}}(A_H,\beta) = 0$. (On remarque que $i_{S^{2n+1}}(v_1(a'),\beta)$ est bien défini car $\partial v_1(a') = v(\partial a')$ est dans S^{2n-1} .) Si $a' = v_1^{-1}(a)$,

$$i_{S^{2n+1}}(v_1(a'),\beta) = i_{S^{2n+1}}(a,\beta)$$

On a donc :

 \mathbf{et}

$$i_{S^{2n+1}}(A,b^{\star}) = i_{\Phi^{-1}(1)}(a',b) = i_F(v_1^{-1}(a),b)$$
$$i_{S^{2n+1}}(A,b^{\star}) = (-1)^n i_{S^{2n+1}}(a,\beta). \quad \Box$$

Lien avec les coefficients d'enlacement dans S^{2n+1} et S^{2n-1} .

1) Si $\partial a = 0$, donc si a et b définissent des éléments de $H_n(F)$, on $a : S_F(a,b) = l_{S^{2n+1}}(a,b) = (-1)^n i_{S^{2n+1}}(a,\partial\beta)$ (et on retrouve : $S_1(a,b) = S_F(a,b)$).

2) Si b définit 0 dans $H_n(F)$ donc si b est le bord d'un voisinage tubulaire Tb_0 dans F, c'est-à-dire dans $\Phi^{-1}(1)$ d'un (n-1) cycle b_0 de $F \cap H$ (c'est-à-dire de $\Phi_{\mid H}^{-1}(1)$), alors :

$$i_{S^{2n+1}}(v_1(a') - A_H, \beta) = i_{S^{2n+1}}(v_1(a') - A_H, Tb_0^{\star})$$

Or, $i_{S^{2n+1}}(v_1(a'), Tb_0^{\star}) = 0$ pour Tb_0 suffisament petit, car $v_1(a')$ est à bord dans $F \cap H$ qui ne rencontre pas b_0^{\star} (à cause du demi tour). Par ailleurs,

$$i_{S^{2n+1}}(A_H, Tb_0^{\star}) = i_{S^{2n+1}}(A_H, b_0^{\star}) = \ell_{S^{2n-1}}(v(\partial a'), b_0^{\star}).$$

Si $a' = v_1^{-1}(a)$, on a donc :

$$egin{aligned} &i_{S^{2n+1}}(a,eta)=-(-1)^nS_{F\cap H}(a,b)=-(-1)^n\ell_{S^{2n-1}}(\partial a,b_0)\ &i_{S^{2n+1}}(a,eta)=(-1)^{n-1}\ell_{S^{2n-1}}(\partial a,b_0) \end{aligned}$$

(et on retrouve : $S_1(a, b) = (-1)^{n-1} S_{F \cap H}(\partial a, b)$).

Interprétation géométrique de S_2 .

Soit a un élément de $H_n(F, F \cap H)$. Considéré comme une n-chaîne de S^{2n+1} à bord dans S^{2n-1} , a^* , l'image de a par la monodromie induite par un demi tour dans la base de la fibration, s'écrit : $a^* = \alpha_0 + \partial \alpha_1$, où α_0 est une n-chaîne de S^{2n-1} et α_1 est une (n + 1)-chaîne de S^{2n+1} . Soit b un élément de $H_n(F \setminus F \cap H)$.

LEMME 1.3.14. — $i_{S^{2n+1}}(b, \alpha_1)$ est indépendant du choix de α_1 tel que

$$a^{\star} = \alpha_0 + \partial \alpha_1.$$

Démonstration. — Soient α'_1 et α'_0 comme plus haut, vérifiant

$$a^{\star} = \alpha_0' + \partial \alpha_1'.$$

 $\partial(\alpha_1'-\alpha_1)=\alpha_0-\alpha_0'.$ Donc, $\alpha_1'-\alpha_1$ est une (n+1)-chaîne de S^{2n+1} à bord dans S^{2n-1} et on peut donc écrire : $\alpha_1'-\alpha_1=\gamma_0+\partial\gamma_1$ où γ_0 est une (n+1)-chaîne de S^{2n-1} et γ_1 est une (n+2)-chaîne de $S^{2n+1}.$ Donc,

$$i_{S^{2n+1}}(b,\alpha_1'-\alpha_1) = i_{S^{2n+1}}(b,\gamma_0) + i_{S^{2n+1}}(b,\partial\gamma_1) = 0$$

car b ne rencontre pas $F \cap H$, c'est-à-dire S^{2n-1} .

Théorème 1.3.15. — $S_2(b, a) = (-1)^n i_{S^{2n+1}}(b, \alpha_1)$.

Démonstration. — Elle est du même type que celle du Théorème 1.3.13.

Lien avec les coefficients d'enlacement dans S^{2n+1} et S^{2n-1} .

1) Si $\partial a = 0$, $i_{S^{2n+1}}(b, \alpha_1) = l_{S^{2n+1}}(b, a) = (-1)^n l_{S^{2n+1}}(a, b)$ (et on retrouve : $S_2(b, a) = (-1)^n S_F(a, b)$).

2) Si b définit 0 dans $H_n(F)$, c'est-à-dire si $b = \partial T b_0$ où b_0 appartient à $H_{n-1}(F \cap H)$, on a :

$$i_{S^{2n+1}}(b,\alpha_1) = \ell_{S^{2n+1}}(b,\partial\alpha_1) = (-1)^n i_{S^{2n+1}}(Tb_0,\partial\alpha_1).$$

Or, $\partial \alpha_1 = a^{\star} - \alpha_0$; a^{\star} ne rencontre pas Tb_0 et Tb_0 coupe α_0 dans $\Phi_{|H}^{-1}(1)$. Donc, $i_{S^{2n+1}}(b, \alpha_1) = (-1)^{n-1} i_{S^{2n-1}}(b_0, \alpha_0)$. Or, $\partial \alpha_0 = \partial a^{\star}$, d'où :

$$i_{S^{2n+1}}(b,\alpha_1) = (-1)^{n-1} l_{S^{2n-1}}(b_0,\partial a^{\star})$$

(et on retrouve : $S_2(b, a) = (-1)^{n-1} S_{F \cap H}(b_0, \partial a) = S_{F \cap H}(\partial a, b_0)$).

2. Déploiements

On rappelle la définition de la \mathcal{R}_H -équivalence ainsi que la construction de l'espace tangent à l'espace des déploiements infinitésimaux non \mathcal{R}_H -triviaux de f, où (f, H) est une singularité de bord.

Cet espace tangent est extension des espaces tangents aux déploiements infinitésimaux non \mathcal{R} -triviaux de f et $f|_H$, ceci de deux manières duales. Ce qui amène à construire deux déploiements \mathcal{R}_H -miniversels particuliers, tous deux versels pour f, et dont les "restrictions" à H sont \mathcal{R} -verselles

томе 118 — 1990 — N° 4

pour $f_{|H}$; cependant l'un rend mieux compte de la \mathcal{R} -versalité vis à vis de f, l'autre vis à vis de $f_{|H}$.

Pour les déformations \mathcal{R}_H -miniverselles, on définit le "discriminant relatif" et le "lieu critique relatif", ainsi que leurs liens avec discriminants et lieux critiques de la déformation, et de la restriction à H de la déformation.

La construction de ces déploiements permet également la construction de "bases distinguées" non seulement pour le groupe d'homologie relative $H_n(F, F \cap H)$ (cf. [1]), mais aussi pour $H_n(F \setminus F \cap H)$.

Ce qui permet d'étudier l'action des opérateurs de monodromie sur ces groupes et de montrer des formules de Picard Lefschetz (THÉORÈME 2.3.7).

Dans la suite, on prendra $H = \{x_0 = 0\}, (x_0, x_1, \dots, x_n)$ étant les coordonnées dans \mathbb{C}^{n+1} . De plus $f : X_0 \to \mathbb{D}$ est un bon représentant du germe f.

2.1 Déploiements \mathcal{R}_{H} miniversels (cf. [1]).

DÉFINITION 2.1.1. — Soient Φ_1 et Φ_2 deux déploiements de f de base S; Φ_1 et Φ_2 sont \mathcal{R}_H -équivalents si et seulement s'il existe un Sisomorphisme Ψ de $X_0 \times S$ vérifiant :

- 1) $\Psi_{|X_0 \times \{s\}}(H) = H$ pour tout $s \in S$;
- 2) $\Phi_1 = \Phi_2 \circ \Psi$.

On a la proposition suivante :

PROPOSITION 2.1.2. — L'espace tangent des déploiements infinitésimaux non \mathcal{R}_H triviaux de f est : $\mathcal{O}_{X_0,0}/(x_0\partial f/\partial x_0,\ldots,\partial f/\partial x_n)$.

Démonstration. — Elle se fait comme les démonstrations du même type concernant la détermination des bases de déploiements. Voir par exemple [8].

Dans la suite de ce paragraphe, on adopte les notations suivantes :

$$\mathcal{I}_{0} = \left(\frac{\partial f}{\partial x_{0}}, \dots, \frac{\partial f}{\partial x_{n}}\right); \quad \mathcal{I}_{1} = \left(x_{0}, \frac{\partial f}{\partial x_{1}}, \dots, \frac{\partial f}{\partial x_{n}}\right);$$
$$\mathcal{I} = \left(x_{0}, \frac{\partial f}{\partial x_{0}}, \frac{\partial f}{\partial x_{1}}, \dots, \frac{\partial f}{\partial x_{n}}\right).$$

LEMME 2.1.3. — On a les deux suites exactes suivantes :

1)
$$0 \to \mathcal{O}_{X_0}/\mathcal{I}_1 \to \mathcal{O}_{X_0}/\mathcal{I} \to \mathcal{O}_{X_0}/\mathcal{I}_0 \to 0,$$

où le morphisme : $\mathcal{O}_{X_0}/\mathcal{I}_1 \to \mathcal{O}_{X_0}/\mathcal{I}$ est la multiplication par $\partial f/\partial x_0$ et le morphisme $\mathcal{O}_{X_0}/\mathcal{I} \to \mathcal{O}_{X_0}/\mathcal{I}_0$ est la projection naturelle p_1 .

2)
$$0 \to \mathcal{O}_{X_0}/\mathcal{I}_0 \to \mathcal{O}_{X_0}/\mathcal{I} \to \mathcal{O}_{X_0}/\mathcal{I}_1 \to 0,$$

où le morphisme : $\mathcal{O}_{X_0}/\mathcal{I}_0 \to \mathcal{O}_{X_0}/\mathcal{I}$ est la multiplication par x_0 et le morphisme : $\mathcal{O}_{X_0}/\mathcal{I} \to \mathcal{O}_{X_0}/\mathcal{I}_1$ est la projection naturelle p_2 .

 $D\acute{e}monstration:$

1) Un élément du noyau de p_1 est dans l'intersection des idéaux \mathcal{I}_0 d'une part, et \mathcal{I} d'autre part. Or $g\partial f/\partial x_0$ est dans l'idéal \mathcal{I} si et seulement si il existe k tel que $(g-kx_0)\partial f/\partial x_0$ est dans l'idéal $(\partial f/\partial x_1, \ldots, \partial f/\partial x_n)$; f étant à singularité isolée, \mathcal{I}_0 définit une intersection complète, donc $(g-kx_0)\partial f/\partial x_0$ est dans l'idéal $(\partial f/\partial x_1, \ldots, \partial f/\partial x_n)$ si et seulement si :

$$g - kx_0 = \sum_{i \ge 1} lpha_i rac{\partial f}{\partial x_i},
onumber \ g rac{\partial f}{\partial x_0} = rac{\partial f}{\partial x_0} \Big(kx_0 + \sum_{i \ge 1} lpha_i rac{\partial f}{\partial x_i} \Big),$$

 \mathbf{et}

ce qui établit la première partie du lemme.

2) \mathcal{I}_0 définit une intersection complète, donc, le noyau de p_2 est $x_0 \mathcal{O}_{X_0}/\mathcal{I}_0$.

Corollaire 2.1.4.

1) On note μ_0 , μ_1 , et μ les dimensions respectives de $\mathcal{O}_{X_0}/\mathcal{I}_0$, $\mathcal{O}_{X_0}/\mathcal{I}_1$ et $\mathcal{O}_{X_0}/\mathcal{I}$; alors :

$$\mu_0+\mu_1=\mu.$$

2) Soit $\Phi_f(\star H) : X_0 \times T \to S = D \times T$ le déploiement de f défini par : $\Phi_f(\star H)(x,\tau) = (F_j(\star H)(x,\tau),\tau)$ avec

$$F_j(\star H)(x,\tau) = f(x) + \sum_{i=0}^{\mu-1} \tau_i \,\xi_i$$

où $\{\xi_i\}_i$ forment une base de $\mathcal{O}_{X_0}/\mathcal{I}$ (avec $\xi_0 = 1$):

(a) $\Phi_f(\star H)$ est un bon représentant de déploiement \mathcal{R}_H -miniversel de f et un bon représentant de déploiement \mathcal{R} -versel de f.

(b) Soit $\Phi_f(\star H)|_H : X_0 \times T \to D \times T = S$ le morphisme défini par :

$$\Phi_f(\star H)|_H(x_0, x_1, \dots, x_n) = \Phi_f(\star H)(0, x_1, \dots, x_n).$$

томе 118 — 1990 — N° 4

$\Phi_f(\star H)|_H$ est un bon représentant de déploiement \mathcal{R} -versel de $f|_H$.

Démonstration. — (On montre la deuxième partie du corollaire.)

(a) Le morphisme p_1 est induit par l'inclusion de l'espace tangent à la \mathcal{R}_H orbite de f dans $\mathcal{O}_{\mathbb{C}^{n+1}}$ dans l'espace tangent à la \mathcal{R} -orbite de f. Ce morphisme est surjectif; d'autre part, si $\Phi_f : X_0 \times T' \to D \times T'$ est le déploiement \mathcal{R} -miniversel de f, on sait que $\Phi_f(\star H)$ se déduit de Φ_f par un changement de base $K' : S \to S'$; celui-ci est une submersion donc $\Phi_f(\star H)$ est versel.

(b) $\Phi_f(\star H)|_H$ est un déploiement de $f|_H$ qui se déduit donc du déploiement \mathcal{R} -versel de $f|_H$ par un changement de bases K'', qui, infinitésimalement est égal à p_2 ; ce changement de base est donc submersif et $\Phi_f(\star H)|_H$ est \mathcal{R} -versel pour $f|_H$. \Box

Par la suite, on considèrera les deux déploiements \mathcal{R}_H -miniversels suivants :

1) $\Phi_f^1(\star H)$, avec

$$F_f^1(\star H)(x,\tau',\tau'') = f(x) + \sum_{i\geq 1} \tau'_i \,\phi'_i + \frac{\partial f}{\partial x_0} \left(\sum_{i\geq 0} \tau''_i \,\phi''_i\right),$$

les coordonnées sur S étant :

$$(t_1, \tau'_1, \dots, \tau'_{\mu_0 - 1}, \tau''_0, \dots, \tau''_{\mu_1 - 1})$$

(on fait $\tau'_0 = 0$).

2) $\Phi_f^2(\star H)$, avec

$$F_{f}^{2}(\star H)(x,\tau',\tau'') = f(x) + x_{0} \sum_{i \ge 0} \tau_{i}' \phi_{i}' + \left(\sum_{i \ge 1} \tau_{i}'' \phi_{i}''\right),$$

les coordonnées sur S étant :

$$(au_0', \cdots, au_{\mu_0-1}', t_2, au_1'', \cdots, au_{\mu_1-1}'')$$

(on fait $\tau_0'' = 0$).

Le changement de bases K entre $\Phi_f^1(\star H)$ et $\Phi_f^2(\star H)$ fait correspondre t_1 à t_2 .

2.2 Déformations \mathcal{R}_{H} miniverselles, lieu critique relatif, discriminant relatif.

2.2.1 Déformation. Soit $\mathcal{X}_0 = \{f = 0\}$; pour $k \in \{1, 2\}$, soient $\mathcal{X}_f^k(\star H) = \{F_f^k(\star H) = 0\}$

et $\gamma_f^k(\star H)$ le morphisme de $\mathcal{X}_f^k(\star H)$ sur T_k , restriction à $\mathcal{X}_f^k(\star H)$ de la projection de $X = X_0 \times T_k$ sur T_k (les coordonnées dans T_1 sont $(\tau'_1, \ldots, \tau'_{\mu_0-1}, \tau''_0, \ldots, \tau''_{\mu_1-1})$ et les coordonnées dans T_2 sont $(\tau'_0, \cdots, \tau'_{\mu_0-1}, \tau''_1, \ldots, \tau''_{\mu_1-1})$).

DÉFINITION 2.2.1. — $\gamma_f^k(\star H)$ est une déformation \mathcal{R}_H -miniverselle de \mathcal{X}_0 .

Soit $C_{\Phi_f^k(\star H)}$ le lieu critique de $\gamma_f^k(\star H)$.

Proposition 2.2.2. — $C_{\Phi_{\ell}^{k}(\star H)}$ est lisse, pour $k \in \{1, 2\}$.

Démonstration. — Pour $k \in \{1,2\}$, $\Phi_f^k(\star H)$ est un déploiement \mathcal{R} -versel de f; donc $\gamma_f^k(\star H)$ est le produit d'une déformation \mathcal{R} -miniverselle de \mathcal{X} par l'identité sur un espace lisse. Donc, le lieu critique de $C_{\Phi_f^k(\star H)}$ est lisse.

2.2.2 Lieu critique relatif et discriminant relatif.

Notations : pour $k \in \{1, 2\}$, on désigne par $D_{\Phi_{f}^{k}(\star H)}$ le discriminant associé à $\Phi_{f}^{k}(\star H)$, $C_{\Phi_{f}^{k}(\star H)}$ le lieu critique associé; on désigne par $D_{\Phi_{f}^{k}(\star H)|H}$ le discriminant associé à $\Phi_{f}^{k}(\star H)|_{H}$, $C_{\Phi_{f}^{k}(\star H)|_{H}}$ le lieu critique associé.

On a :

$$C_{\Phi_{f}^{k}(\star H)} = \operatorname{Specan}\left[\mathcal{O}_{X} \left/ \left(\frac{\partial F_{f}^{k}(\star H)}{\partial x_{0}}, \frac{\partial F_{f}^{k}(\star H)}{\partial x_{1}}, \dots, \frac{\partial F_{f}^{k}(\star H)}{\partial x_{n}}\right)\right],$$

$$C_{\Phi_{f}^{k}(\star H)|_{H}} = \operatorname{Specan}\left[\mathcal{O}_{X} \left/ \left(x_{0}, \frac{\partial F_{f}^{k}(\star H)}{\partial x_{1}}, \dots, \frac{\partial F_{f}^{k}(\star H)}{\partial x_{n}}\right)\right].$$

Définition 2.2.3.

1) Le lieu critique, relatif à H, de $\Phi_f^k(\star H),$ noté $C_f^k(\star H),$ est défini par :

$$C_{f}^{k}(\star H) = \operatorname{Specan}\left[\mathcal{O}_{X} \left/ \left(x_{0} \frac{\partial F_{f}^{k}(\star H)}{\partial x_{0}}, \frac{\partial F_{f}^{k}(\star H)}{\partial x_{1}}, \dots, \frac{\partial F_{f}^{k}(\star H)}{\partial x_{n}}\right)\right] \cdot$$

2) Le discriminant, relatif à H, de $\Phi_f^k(\star H)$, noté $D_f^k(\star H)$ est l'image directe par $\Phi_f^k(\star H)$ sur S de $C_f^k(\star H)$.

PROPOSITION 2.2.4.

$$\mathcal{I}_{D_{f}^{k}(\star H)} \supset \mathcal{I}_{D_{\Phi_{f}^{k}(\star H)}} \mathcal{I}_{D_{\Phi_{f}^{k}(\star H)}|_{H}}.$$

On a égalité aux points génériques du discriminant relatif.

 $D\acute{e}monstration.$ — Pour prouver cette proposition, on utilise le lemme suivant :

томе 118 — 1990 — N° 4

LEMME 2.2.5. — (Si M est un \mathcal{O}_S -module cohérent, on désigne par $\mathcal{F}_i(M)$ le *i*-ème idéal de Fitting de M.) Soit la suite exacte de \mathcal{O}_S -modules suivante :

$$O \to M' \to M \to M' \to 0.$$

On suppose que

$$\mathcal{F}_0(M') \neq 0, \quad \mathcal{F}_0(M'') \neq 0.$$

Alors:

$$\mathcal{F}_0(M') \cdot \mathcal{F}_0(M'') \subset \mathcal{F}_0(M).$$

Pour montrer la proposition, on applique le lemme précédent à l'une des deux suites exactes du LEMME 2.1.3 où f est remplacée par F (et qui est vrai aussi).

2.3 Application : bases distinguées de $H_n(F, F \cap H)$ et de $H_n(F \setminus F \cap H)$.

Soit $\Phi_f(\star H) : X \to S = T \times \Delta$ un bon représentant de l'un ou l'autre des deux déploiements précédents tel que, Δ étant le disque centré à l'origine de rayon η dans C, si t est un élément générique de T pour la restriction p_0 à $D_{\Phi_f(\star H)}$ (resp. p_1 à $D_{\Phi_f(\star H)|H}$) de la projection $\pi : T \times \Delta \to T, p_0^{-1}(t)$ (resp. $p_1^{-1}(t)$) est formé d'exactement μ_0 points (resp. μ_1 points) notés s_1, \dots, s_{μ_0} (resp. $\sigma_1, \dots, \sigma_{\mu_1}$).

D'autre part, on définit S_t par : $S_t = \pi^{-1}(t)$.

On suppose que $\{s_i, 1 \le i \le \mu_0\} \cap \{\sigma_j, 1 \le j \le \mu_1\}$ est vide.

Soit s_0 un élément de $S_t \setminus (p_0^{-1}(t) \cup p_1^{-1}(t))$ et $\ell_1, \ldots, \ell_{\mu_0}$ (resp. d_1, \ldots, d_{μ_1}) un système de chemins joignant s_0 à chacun des s_1, \ldots, s_{μ_0} (resp. à chacun des $\sigma_1, \ldots, \sigma_{\mu_1}$) dans $S_t \setminus (p_0^{-1}(t) \cup p_1^{-1}(t))$ et $\{\lambda_i\}_{1 \leq i \leq \mu_0}$ (resp. $\{\delta_j\}_{1 \leq j \leq \mu_1}$) une base de cycles évanescents de $H_n(F_{s_0})$ (resp. $H_{n-1}(F_{s_0} \cap H)$) définie par ce système de chemins.

2.3.1 Base distinguée de $H_n(F_{s_0}, F_{s_0} \cap H)$ [1].

• Demi-cycle évanescent : pour $1 \leq j \leq \mu_1$, au dessus d'un point s d'un voisinage suffisamment petit de σ_j , F_s a pour équation au voisinage du point singulier de $F_{\sigma_j} \cap H$, dans un système de coordonnées bien choisi,

$$\left\{x_0 + \sum_{i \ge 1} x_i^2 = \alpha\right\} \quad (= F'_s).$$

On considère la sous-variété à bord de F'_s de dimension n donnée par :

Im
$$(x_k) = 0$$
, $(0 \le k \le n)$;
 $\sum_{k\ge 1} x_k^2 \le \alpha$, $x_1 = \sum_{2\le k\le n} x_k^2 - \alpha \le 0$,

qui définit un cycle à bord (élément de $H_n(F'_s,F'_s\cap H)$) (voir la figure ci-après, pour le cas n=1)

DÉFINITION 2.3.1. — Un tel cycle définit (par inclusion de F'_s dans F_s) un demi-cycle évanescent de $H_n(F_{s_0}, F_{s_0} \cap H)$ (par transformation le long du chemin d_j).

• Soient $\{\Lambda_i\}_{1 \leq i \leq \mu_0}$ les images des $\{\lambda_i\}_{1 \leq i \leq \mu_0}$ dans $H_n(F_{s_0}, F_{s_0} \cap H)$ et $\{\Delta_j\}_{1 \leq j \leq \mu_1}$ l'ensemble des cycles évanescents associés aux chemins $\{d_j\}_{1 \leq j \leq \mu_1}$.

PROPOSITION 2.3.2. — La réunion des $\{\Lambda_i\}_{1 \leq i \leq \mu_0}$ et des $\{\Delta_j\}_{1 \leq j \leq \mu_1}$ forment une base de $H_n(F_{s_0}, F_{s_0} \cap H)$.

DÉFINITION 2.3.3. — Une telle base est appelée base distinguée de

$$H_n(F_{s_0}, F_{s_0} \cap H).$$

2.3.2 Base distinguée de $H_n(F_{s_0} \setminus F_{s_0} \cap H)$.

1) Pour $1 \le i \le \mu_0$, au dessus d'un point *s* d'un voisinage suffisamment petit de s_i , F_s a pour équation dans un système de coordonnées bien choisi, au voisinage de son point singulier

$$\left\{\sum_{i\geq 0} z_i^2 = \alpha
ight\} \quad (=F'_s).$$

(H n'a pas pour équation $\{z_0 = 0\}$ dans c
e système de coordonnées, car $F'_s \cap H$ est lisse). Dans cette situation locale, on a l'isomorphisme β_1

$$H_n(F'_s) \leftarrow H_n(F'_s \setminus F'_s \cap H).$$

томе 118 — 1990 — N° 4

On peut donc trouver un représentant du cycle évanescent de $H_n(F'_s)$ qui évite $F'_s \cap H$, soit λ_i ; on note encore λ_i son image dans $H_n(F_{s_0})$ par monodromie le long du chemin c_i . $\phi_f(\star H)$ étant un déploiement \mathcal{R}_H -miniversel de f, cette monodromie envoie $F_s \cap H$ sur $F_{s_0} \cap H$ et réciproquement. Donc, λ_i ne rencontre pas $F_{s_0} \cap H$. Soit encore $\tilde{\Lambda}_i$ l'élément de $H_n(F_{s_0} \setminus F_{s_0} \cap H)$ qu'il définit.

2) Soit $\{\tilde{\Lambda}_i\}_{1 \leq i \leq \mu_0}$ les éléments de $H_n(F_{s_0} \setminus F_{s_0} \cap H)$ construits comme précédemment. Soit $\{\tilde{\Delta}_j\}_{1 \leq j \leq \mu_1}$ les images des $\{\delta_j\}_{1 \leq j \leq \mu_1}$ dans $H_n(F_{s_0} \setminus F_{s_0} \cap H)$.

PROPOSITION 2.3.4. — La réunion des $\{\tilde{\Lambda}_i\}_{1 \leq i \leq \mu_0}$ et des $\{\tilde{\Delta}_j\}_{1 \leq j \leq \mu_1}$ forment une base de $H_n(F_{s_0} \setminus F_{s_0} \cap H)$.

Définition 2.3.5. — Une telle base est appelée base distinguée de

$$H_n(F_{s_0} \setminus F_{s_0} \cap H).$$

2.3.3 Matrices des formes d'intersection et des formes de Seifert.

(On reprend dans cette partie les notations précédentes.)

On désigne par $\{\Lambda_i^*\}_i, \{\Delta_j^*\}_j$ la base de $H_n(F, \partial(F \cap H))$ duale de la base $\{\Lambda_i\}_i, \{\Delta_j\}_j$ de $H_n(F, F \cap H)$, et par $\{\tilde{\Lambda}_i^*\}_i, \{\tilde{\Delta}_j^*\}_j$ la base duale de la base $\{\tilde{\Lambda}_i\}_i, \{\tilde{\Delta}_j\}_j$ de $H_n(F \setminus F \cap H)$.

Soit I_1 la matrice de la forme d'intersection I_1 définie sur

$$H_n(F, F \cap H) \times H_n(F \setminus F \cap H)$$

relativement aux bases $\{\Lambda_i\}_i, \{\Delta_j\}_j$ de $H_n(F, F \cap H)$ et $\{\tilde{\Lambda}_i\}_i, \{\tilde{\Delta}_j\}_j$ de $H_n(F \setminus F \cap H)$.

Soit I_2 la matrice de la forme d'intersection I_2 définie sur

 $H_n(F \setminus F \cap H) \times H_n(F, F \cap H)$

relativement aux bases $\{\tilde{\Lambda}_i\}_i, \{\tilde{\Delta}_j\}_j$ de $H_n(F \setminus F \cap H)$ et $\{\Lambda_i\}_i, \{\Delta_j\}_j$ de $H_n(F, F \cap H)$.

On a :

1) $\forall (i,i'), I_1(\Lambda_i, \tilde{\Lambda}_{i'}) = i_F(\Lambda_i, \tilde{\Lambda}_{i'})$ car $i_F(.,.)$ ne dépend pas des représentants choisis dans $H_n(F)$.

2) $\forall (i,j), I_1(\Lambda_i, \tilde{\Delta}_j) = 0.$

Donc :

$$I_1 = \begin{pmatrix} I_f & 0\\ N_1 & \mathcal{I}_1 \end{pmatrix}.$$

On remarque également que :

1) $\forall (i, i'), I_2(\tilde{\Lambda}_i, \Lambda_{i'}) = i_F(\tilde{\Lambda}_i, \Lambda_{i'});$ 2) $\forall (i, j), I_2(\tilde{\Delta}_j, \Lambda_i) = 0.$

Donc :

$$I_2 = \begin{pmatrix} I_f & N_2 \\ 0 & \mathcal{I}_2 \end{pmatrix}.$$

On considère le diagramme commutatif suivant :

$$0 \leftarrow H_n(F, \partial F) \xleftarrow{\alpha'_1} H_n(F, \partial F \cup (F \cap H)) \xleftarrow{\alpha'_2} H_{n-1}(F \cap H, \partial F \cap H) \leftarrow 0$$

$$c \downarrow \qquad c_2 \downarrow \qquad c \downarrow$$

$$0 \leftarrow H_n(F) \xleftarrow{\beta_1} H_n(F \setminus F \cap H) \xleftarrow{\beta_2} H_{n-1}(F \cap H) \leftarrow 0$$

On a : $\beta_2(\delta_j) = \tilde{\Delta}_j$ et $\alpha'_2(\delta^*_j) = \tilde{\Delta}^*_j$. Donc, $I_2(\tilde{\Delta}_i, \Delta_j) = I_{f|H}(\delta_i, \delta_j)$. D'autre part, $\forall a \in H_n(F, F \cap H), \forall b \in H_n(F \setminus F \cap H)$,

$$I_1(a,b) = (-1)^n I_2(b,a).$$

REMARQUE. — Si M^t désigne la transposée d'une matrice carrée M, alors :

$$I_{f|_{H}} = (-1)^{n-1} I_{f|_{H}}^{t}.$$

D'où la proposition suivante :

PROPOSITION 2.3.6.

$$I_1 = \begin{pmatrix} I_f & 0\\ N_1 & -I_{f|H} \end{pmatrix}, \quad I_2 = \begin{pmatrix} I_f & (-1)^n N_1^t\\ 0 & I_{f|H} \end{pmatrix}.$$

2.3.4 Formules de Picard Lefschetz relatives.

Le but de ce paragraphe est de déterminer l'action sur $H_n(F, F \cap H)$ (resp. $H_n(F \setminus F \cap H)$) des opérateurs de monodromie $h_{\ell_i,1}$ et $h_{d_j,1}$ (resp. $h_{\ell_i,2}$ et $h_{d_j,2}$) associés aux lacets définis par les chemins ℓ_i et d_j . On se place dans le cas où $\{s_i, 1 \leq i \leq \mu_0\} \cap \{\sigma_j, 1 \leq j \leq \mu_1\} = \emptyset$. La fibration de Milnor est choisie comme plus haut. On a le théorème suivant :

Théorème 2.3.7. — Soit $s_0 \in S \setminus D_f^k(\star H)$ pour $k \in \{1, 2\}$.

томе 118 — 1990 — №° 4

470

$$\begin{aligned} 1) \ \forall x \in H_n(F_{s_0}, F_{s_0} \cap H) \\ & \stackrel{\prime}{} \qquad h_{\ell_i,1}(x) = x + (-1)^{(n+1)(n+2)/2} I_1(x, \tilde{\Lambda}_i) \Lambda_i \,, \\ & h_{d_j,1}(x) = x + (-1)^{n(n+1)/2+n} I_1(x, \tilde{\Delta}_j) \Delta_j. \end{aligned}$$
$$2) \ \forall \tilde{x} \in H_n(F_{s_0} \setminus F_{s_0} \cap H) \end{aligned}$$

$$h_{\ell_i,2}(\tilde{x}) = \tilde{x} + (-1)^{(n+1)(n+2)/2+n} I_2(\tilde{x}, \Lambda_i) \tilde{\Lambda}_i,$$

$$h_{d_i,2}(\tilde{x}) = \tilde{x} + (-1)^{n(n+1)/2} I_2(\tilde{x}, \Delta_j) \tilde{\Delta}_j.$$

Démonstration. — (On démontre la première partie, la deuxième se démontrant de la même façon, en remarquant que $i_F(\tilde{x}, \Lambda_i) = (-1)^n I_2(\tilde{x}, \Lambda_i)$.)

On remarque tout d'abord que les formules de Picard Lefschetz locales pour $H_n(F)$ et $H_{n-1}(F \cap H)$ sont établies. Or, localement, au dessus d'un point s_i (resp. σ_j), on a

$$H_n(\tilde{F}_{s_i}) \simeq H_n(\tilde{F}_{s_i}, \tilde{F}_{s_i} \cap H)$$

(resp. $H_n(\tilde{F}_{\sigma_j}, \tilde{F}_{\sigma_j} \cap H) \simeq H_{n-1}(\tilde{F}_{\sigma_j} \cap H)$) où \tilde{F}_{s_i} (resp. $\tilde{F}_{\sigma_j} \cap H$) désigne la fibre de Milnor locale autour du point singulier quadratique de F_{s_i} (resp. $F_{\sigma_i} \cap H$).

(Dans la suite de la démonstration, on reprend les notations de 2.3.1; on désigne par $\operatorname{var}_{\ell_i,1}$ (resp. $\operatorname{var}_{d_j,1}$) les morphismes variation associés aux opérateurs de monodromie $h_{\ell_i,1}$ (resp. $h_{d_j,1}$).)

• Soit x un élément de $H_n(F_{s_0}, \partial F_{s_0} \cup (F_{s_0} \cap H))$; on désigne encore par x son image par le transport le long du chemin l_i joignant s_0 à s_i . Soit \tilde{x} un représentant de x. Par application de la suite de Mayer Vietoris, on voit que cet élément \tilde{x} se décompose en $\tilde{x} = \tilde{x}_1 + \tilde{x}_2$ où \tilde{x}_1 est une chaîne dans $F_{s_i} \setminus \tilde{F}_{s_i}$ qui n'est donc pas touchée par la monodromie $h_{l_i,1}$, et où \tilde{x}_2 est une chaîne de \tilde{F}_{s_i} à bord dans $\partial \tilde{F}_{s_i}$ car $F_{s_i} \cap H$ ne rencontre pas \tilde{F}_{s_i} . La chaîne \tilde{x}_2 définit donc un élément x_2 de $H_n(\tilde{F}_{s_i}, \partial \tilde{F}_{s_i})$, auquel on peut appliquer les formules classiques de Picard Lefschetz, *i.e*:

$$\operatorname{var}_{\ell_i,1}(x_2) = (-1)^{(n+1)(n+2)/2} i_{\tilde{F}_{n+1}}(\tilde{x}_2,\lambda_i)\lambda_i.$$

On a donc :

$$ext{var}_{\ell_i,1}(x) = (-1)^{(n+1)(n+2)/2} \, i_{ ilde{F}_{s_i}}(ilde{x}_2,\lambda_i) \Lambda_i.$$

Or, $i_{\tilde{F}_{s_i}}(\tilde{x}_2, \lambda_i) = i_{F_{s_i}}(x_2, \lambda_i) = I_1(x, \tilde{\Lambda}_i)$, la dernière égalité se déduisant de la Proposition 2.3.6. D'où le résultat annoncé , qui se déduit de :

$$\operatorname{var}_{\ell_i,1}(x) = (-1)^{(n+1)(n+2)/2} I_1(x, \tilde{\Lambda}_i) \Lambda_i.$$

• Soit x un élément de $H_n(F_{s_0}, (F_{s_0} \cap H) \cup \partial F_{s_0})$. On désigne encore par x son image par transport le long du chemin d_j joignant s_0 à σ_j . Soit \tilde{x} un représentant de x. Cet élément se décompose (cf. suite exacte de Mayer Vietoris) en $\tilde{x} = \tilde{x}_1 + \tilde{x}_2$ où \tilde{x}_1 ne rencontre pas \tilde{F}_{σ_j} et où \tilde{x}_2 définit un élément de $H_n(\tilde{F}_{\sigma_j}, (\tilde{F}_{\sigma_j} \cap H) \cup \partial \tilde{F}_{\sigma_j})$. Or \tilde{x}_2 définit un unique élément de $H_{n-1}(\tilde{F}_{\sigma_j} \cap H, \partial \tilde{F}_{\sigma_j} \cap H)$ soit \tilde{x}'_2 (via l'application réciproque de l'application α'_2 de la PROPOSITION 1.2.1 qui est ici un isomorphisme), on peut donc appliquer la formule de Picard Lefschetz locale; on a :

$$\operatorname{var}_{d_j,1}(\tilde{x}'_2) = (-1)^{n(n+1)/2} i_{\tilde{F}_{\sigma},\cap H}(\tilde{x}'_2,\delta_j)\delta_j.$$

 $\text{Or}, \, H_n(\tilde{F}_{\sigma_j}, \tilde{F}_{\sigma_j} \cap H \cup \partial \tilde{F}_{\sigma_j}) \simeq H_{n-1}(\tilde{F}_{\sigma_j} \cap H, \partial \tilde{F}_{\sigma_j} \cap H). \text{ Donc},$

$$\operatorname{var}_{d_j,1}(\tilde{x}_2) = (-1)^{n(n+1)/2} i_{\tilde{F}_{\sigma_j} \cap H}(\tilde{x}'_2, \delta_j) \Delta_j.$$

Donc,

$$h_{d_j,1}(x) = x + (-1)^{n(n+1)/2} i_{F_{\sigma_j} \cap H}(\tilde{x}'_2, \delta_j) \Delta_j$$

Or, $I_1(\tilde{x}'_2, \tilde{\Delta}_j) = (-1)^n i_{F_{\sigma_j} \cap H}(x_2, \delta_j) = I_1(x, \tilde{\Delta}_j)$, ceci par application de la proposition 2.3.6. Donc,

$$h_{d_j,1}(x) = x + (-1)^{n(n+1)/2} I_1(x, \tilde{\Delta}_j) \Delta_j.$$

3. Diagrammes de Dynkin des singularités de bord. Les cas B_{μ} , C_{μ} et F_4

3.1 Diagramme de Dynkin d'une singularité de bord.

3.1.1 REMARQUE. — Dans l'étude des singularités de bord par association d'une singularité ordinaire invariante par l'action de \mathbb{Z}_2 (cf. [1]), on peut associer à (f, H) relativement à une base distinguée donnée de $H_n(F, F \cap H)$ un diagramme de Dynkin : on l'obtient, à partir du diagramme de Dynkin de la singularité ordinaire associée, qui est naturellement muni d'une involution induite par l'action de \mathbb{Z}_2 (voir l'article de G.G. Ilyuta [5]).

томе 118 — 1990 — N° 4

Ici, on va associer à toute singularité de bord (f, H) deux diagrammes de Dynkin relativement à des bases distinguées de $H_n(F, F \cap H)$ et de $H_n(F \setminus F \cap H)$, construites sur les mêmes bases distinguées de $H_n(F)$ et $H_{n-1}(F \cap H)$, ceci en utilisant les deux formes d'intersection relatives introduites plus haut.

On considère

$$(\Lambda_i, \Delta_j)_{(1 \le i \le \mu_0, 1 \le j \le \mu_1)}$$
 et $(\Lambda_i, \Delta_j)_{(1 \le i \le \mu_0, 1 \le j \le \mu_1)}$

bases distinguées de $H_n(F, F \cap H)$ et $H_n(F \setminus F \cap H)$ construites sur les bases distinguées respectives $(\delta_j)_{(1 \leq j \leq \mu_1)}$ et $(\lambda_i)_{(1 \leq i \leq \mu_0)}$ de $H_{n-1}(F \cap H)$ et $H_n(F)$.

Soit φ et $\tilde{\varphi}$ les deux morphismes définis de la manière suivante : on a les deux suites exactes (b_1) et (b_2) de la PROPOSITION 1.2.1. On pose : $\varphi = \beta_2 \circ \alpha_2$ et $\tilde{\varphi} = \alpha_1 \circ \beta_1$. Soit Ψ le morphisme de

$$H_n(F, F \cap H) \times H_n(F \setminus F \cap H)$$

dans lui même défini par :

$$\begin{split} \forall \, (a, \tilde{b}) \in H_n(F, F \cap H) \times H_n(F \setminus F \cap H), \\ \Psi(a, \tilde{b}) = (\tilde{\varphi}(\tilde{b}) - a, \tilde{b} - \varphi(a)). \end{split}$$

Soient :

$$\mathcal{H}_1 = \left\{ (a, \tilde{b}) \in H_n(F, F \cap H) \times H_n(F \setminus F \cap H) \mid \Psi(a, \tilde{b}) = (a, \tilde{b}) \right\},$$
$$\mathcal{H}_2 = \left\{ (a, \tilde{b}) \in H_n(F, F \cap H) \times H_n(F \setminus F \cap H) \mid \Psi(a, \tilde{b}) = -(a, \tilde{b}) \right\}.$$

Lemme 3.1.1. — $\mathcal{H}_1 \cap \mathcal{H}_2 = \{(0,0)\}.$

 $\begin{array}{l} D\acute{e}monstration. --(a,\tilde{b}) \in \mathcal{H}_1 \Leftrightarrow \tilde{\varphi}(\tilde{b}) - a = a \text{ et } -\varphi(a) + b = b \Leftrightarrow \\ \varphi(a) = 0, \ \tilde{\varphi}(\tilde{b}) = 2a. \ \text{De même}, \ (a,\tilde{b}) \in \mathcal{H}_2 \Leftrightarrow \tilde{\varphi}(\tilde{b}) = 0 \text{ et } 2\tilde{b} = \varphi(a). \end{array}$

Lemme 3.1.2

- 1) \mathcal{H}_1 et \mathcal{H}_2 sont tous deux de dimension $\mu_0 + \mu_1$.
- 2) Une base dite distinguée de \mathcal{H}_1 est constituée par

$$\left((\Lambda_i, 2\tilde{\Lambda}_i)_{1\leq i\leq \mu_0}, (0, \tilde{\Delta}_j)_{1\leq j\leq \mu_1}\right).$$

3) Une base distinguée de \mathcal{H}_2 est constituée par

$$\left((\Lambda_i,0)_{1\leq i\leq \mu_0},(2\Delta_j,\ \tilde{\Delta}_j)_{1\leq j\leq \mu_1}\right).$$

A. SZPIRGLAS

Démonstration. — (On fait la preuve pour \mathcal{H}_1 .) $\forall (a, \tilde{b}) \in \mathcal{H}_1$,

$$arphi(a) = 0 \Rightarrow a = \sum_{1 \le i \le \mu_0} lpha_i \Lambda_i;$$

 $ilde{arphi}(ilde{b}) = 2a \Rightarrow ilde{b} = 2 \sum_{1 \le i \le \mu_0} lpha_i ilde{\Lambda}_i + \sum_{1 \le j \le \mu_1} eta_j ilde{\Delta}_j$

Donc,

$$(a,\tilde{b}) = \sum_{1 \le i \le \mu_0} \alpha_i(\Lambda_i,\tilde{\Lambda}_i) + \sum_{1 \le j \le \mu_1} \beta_j(0,\tilde{\Delta}_j). \quad []$$

Action des opérateurs de monodromie sur \mathcal{H}_1 et \mathcal{H}_2 .

Par application des formules de Picard Lefschetz relatives, si on désigne par h_{1,ℓ_i} (resp. h_{2,ℓ_i}) l'opérateur de monodromie associé au lacet ℓ_i sur lequel sont construits Λ_i et $\tilde{\Lambda}_i$, qui agit sur \mathcal{H}_1 (resp. sur \mathcal{H}_2), et h_{1,d_j} (resp. h_{2,d_j}) l'opérateur de monodromie associé au lacet d_j sur lequel sont construits Δ_j et $\tilde{\Delta}_j$, qui agit sur \mathcal{H}_1 (resp. \mathcal{H}_2), on a le lemme suivant :

LEMME 3.1.3. $\forall (a, \tilde{b}) \in \mathcal{H}_{1},$ $h_{1,l_{i}}(a, \tilde{b}) = (a, \tilde{b}) + (-1)^{(n+1)(n+2)/2}I_{1}(a, \tilde{\Lambda}_{i})(\Lambda_{i}, 2\tilde{\Lambda}_{i})$ $h_{1,d_{j}}(a, \tilde{b}) = (a, \tilde{b}) + (-1)^{(n+1)n/2}I_{2}(\tilde{b}, \Delta_{j})(0, \tilde{\Delta}_{j}).$ $\forall (a, \tilde{b}) \in \mathcal{H}_{2},$ $h_{2,l_{i}}(a, \tilde{b}) = (a, \tilde{b}) + (-1)^{(n+1)(n+2)/2}I_{1}(a, \tilde{\Lambda}_{i})(\Lambda_{i}, 0)$ $h_{2,d_{j}}(a, \tilde{b}) = (a, \tilde{b}) + (-1)^{(n+1)n/2}I_{2}(\tilde{b}, \Delta_{j})(2\Delta_{j}, \tilde{\Delta}_{j}).$ Démonstration. — On a, pour \mathcal{H}_{1} : $h_{1,\ell_{i}}(a, \tilde{b}) = (a, \tilde{b}) + (-1)^{(n+1)(n+2)/2} [I_{1}(a, \tilde{\Lambda}_{i})\Lambda_{i}, (-1)^{n}I_{2}(\tilde{b}, \Lambda_{i})\tilde{\Lambda}_{i}],$ $h_{1,d_{j}}(a, \tilde{b}) = (a, \tilde{b}) + (-1)^{(n+1)n/2} [0, I_{2}(\tilde{b}, \Delta_{j})\tilde{\Delta}_{j}].$ Or, $I_{2}(\tilde{b}, \Lambda_{i}) = (-1)^{n} 2I_{1}(a, \tilde{\Lambda}_{i}) \operatorname{car}(a, \tilde{b}) \in \mathcal{H}_{1} \operatorname{et} I_{1}(.,.) = (-1)^{n}I_{2}(.,.).$ On adopte les notations suivantes :

$$\begin{aligned} \forall (a, \tilde{b}) \in \mathcal{H}_1 \text{ (resp. } \in \mathcal{H}_2), \ \forall i, 1 \leq i \leq \mu_0, \ \ell_i(a, \tilde{b}) = I_1(a, \tilde{\Lambda}_i), \\ \forall (a, \tilde{b}) \in \mathcal{H}_1 \text{ (resp. } \in \mathcal{H}_2), \ \forall j, 1 \leq j \leq \mu_1, \ d_j(a, \tilde{b}) = I_2(\tilde{b}, \Delta_j). \end{aligned}$$

Avec ces notations, le LEMME 3.1.3 s'écrit :

томе 118 — 1990 — № 4

474

Lemme 3.1.4. — $\forall (a, \tilde{b}) \in \mathcal{H}_1$,

$$\begin{split} h_{1,l_i}(a,\tilde{b}) &= (a,\tilde{b}) + (-1)^{(n+1)(n+2)/2} \ell_i(a,\tilde{b})(\Lambda_i,2\tilde{\Lambda}_i), \\ h_{1,d_i}(a,\tilde{b}) &= (a,\tilde{b}) + (-1)^{(n+1)n/2} d_i(a,\tilde{b})(0,\tilde{\Delta}_i). \end{split}$$

 $\forall (a, \tilde{b}) \in \mathcal{H}_2,$

$$h_{2,l_i}(a,\tilde{b}) = (a,\tilde{b}) + (-1)^{(n+1)(n+2)/2} \ell_i(a,\tilde{b})(\Lambda_i,0),$$

$$h_{2,d_j}(a,\tilde{b}) = (a,\tilde{b}) + (-1)^{(n+1)n2} d_j(a,\tilde{b})(2\Delta_j,\tilde{\Delta}_j).$$

Diagrammes de Dynkin de la singularité de bord.

On construit deux diagrammes de Dynkin, l'un associé en fait à \mathcal{H}_1 , l'autre à \mathcal{H}_2 . Ces deux diagrammes sont les mêmes pour ce qui concerne les arêtes, et diffèrent par l'orientation de certains arcs. On donne ici les détails pour \mathcal{H}_1 , en indiquant ce qui différe pour \mathcal{H}_2 .

On pose : $\forall i, 1 \leq i \leq \mu_0, L_i = (\Lambda_i, 2\tilde{\Lambda}_i); \forall j, 1 \leq j \leq \mu_1, D_j = (0, \tilde{\Delta}_j).$

REMARQUE. — D'après le LEMME 3.1.4, h_{1,ℓ_i} (resp. h_{1,d_j}) est une pseudo-réflexion telle que le noyau de h_{1,ℓ_i} – id (resp. h_{1,d_j} – id) est engendré par L_i (resp. D_j).

Le diagramme de Dynkin de la singularité de bord (f, H) associé aux bases distinguées considérées ici de $H_n(F \setminus F \cap H)$ et $H_n(F, F \cap H)$ pour \mathcal{H}_1 est construit de la manière suivante :

• les sommets du graphe sont les L_i et les D_j ;

• deux sommets L_i et L_j sont reliés par autant d'arêtes (c'est à dire d'arcs non orientés) que $|\ell_i(L_j)|$;

• Deux sommets D_k et D_ℓ sont reliés par autant d'arêtes que $|d_k(D_l)|$;

• un sommet D_k est relié à un sommet L_i par autant d'arcs orientés de D_k vers L_i que $|d_k(L_i)|$.

REMARQUE. — Il n'y a pas d'arc orienté de L_i vers D_k car $\ell_i(D_k) = 0$.

Ce qui change dans le diagramme de Dynkin pour \mathcal{H}_2 .

On obtient le même graphe, mais les orientations des arcs entre les sommets $L_i = (\Lambda_i, 0)$ et $D_k = (2\Delta_k, \tilde{\Delta}_k)$ sont inversées.

Remarque

1) Si on prend le sous graphe du graphe de Dynkin associé à \mathcal{H}_1 , formé des sommets L_i $(1 \leq i \leq \mu_0)$ et des arêtes qui existent entre ces sommets, on trouve le diagramme de Dynkin de la singularité f dans la base distinguée λ_i $(1 \leq i \leq \mu_0)$ de $H_n(F)$.

A. SZPIRGLAS

2) Si on prend le sous graphe du graphe de Dynkin associé à \mathcal{H}_1 , formé des sommets D_j $(1 \leq j \leq \mu_1)$ et des arêtes qui existent entre ces sommets, on trouve le diagramme de Dynkin de la singularité $f_{|H}$ dans la base distinguée δ_j $(1 \leq j \leq \mu_1)$ de $H_{n-1}(F \cap H)$.

3) Pour \mathcal{H}_1 (resp. pour \mathcal{H}_2), les sommets L_i (resp. D_k) correspondent aux sommets longs de la construction d'Ilyuta, les sommets D_j (resp. L_i) correspondent aux sommets courts. Les diagrammes de Dynkin de \mathcal{H}_1 et \mathcal{H}_2 sont duaux (au sens de Ilyuta) l'un de l'autre, puisqu'il y a échange des sommets courts et des sommets longs.

Diagramme de Dynkin des singularités de bord B_{μ} et C_{μ} .

Dans cette section, on choisit des bases distinguées de $H_n(F \setminus F \cap H)$ et $H_n(F, F \cap H)$ de telle sorte que le diagramme de Dynkin de la singularité de bord B_{μ} (et C_{μ}) soit le diagramme de Dynkin du système de racines de même nom.

On rappelle tout d'abord dans une première partie comment sont construites les bases distinguées de la singularité f (et donc aussi de la singularité $f_{|H}$).

Puis, on indique, à partir des bases distinguées de

$$H_{n-1}(F \cap H)$$
 et $H_n(F)$,

comment sont construites les bases distinguées de $H_n(F \setminus F \cap H)$ et $H_n(F, F \cap H)$.

Par ailleurs, on sait, d'après [3], qu'on peut construire des bases distinguées pour les singularités de Brieskorn de telle sorte que le diagramme de Dynkin d'une singularité simple soit le diagramme de Dynkin du système de racines de même nom.

Dans le cas de B_{μ} , C_{μ} et F_4 , on montre comment on peut améliorer le choix des bases distinguées de $H_n(F \setminus F \cap H)$ et $H_n(F, F \cap H)$ pour obtenir dans ces cas aussi des diagrammes de Dynkin qui sont ceux des systèmes de racines de même nom. Pour cette construction, on utilise les propriétés de la géométrie du discriminant relatif, c'est à dire des propriétés relatives des deux discriminants de (f, 0) et $(f_{|H}, 0)$.

3.1.2 Construction des bases distingués de $H_n(F)$, $H_{n-1}(F \cap H)$, ainsi que de $H_n(F \setminus F \cap H)$, $H_n(F, F \cap H)$ (voir [1] et [3]).

• Cas absolu : soit $\Phi : X_0 \times T \to \mathbb{D} \times T = S$ un bon représentant de déploiement \mathcal{R} -miniversel de la singularité de bord (f, H) (où $f : X_0 \to \mathbb{D}$ est un bon représentant de la singularité f).

томе 118 — 1990 — N° 4

Pour construire l'ensemble des points $\{s_i\}_{1 \le i \le \mu_0}$ du discriminant de Φ à partir desquels est définie une base distinguée de $H_n(F)$, on procède de la manière suivante :

• on fixe un élément τ de T;

• on détermine tous les éléments t de D tels que, si $s = (t, \tau)$ ($s \in \mathbb{D} \times T$), s est élément du discriminant de Φ . On note $s_1, s_2, \ldots, s_{\mu_0}$ les points $s_i = (t_i, \tau)$ de D $\times T$ ainsi obtenus.

Les éléments de la base distinguée de $H_n(F)$ qu'on construit alors sont associés à des lacets de base $s = (t, \tau)$ (qui n'est pas dans le discriminant de Φ , noté D_{Φ}) autour de chacun des points s_i , dans $S \setminus D_{\Phi}$, ces lacets n'ayant pas de point commun autre que s.

On suppose maintenant que Φ est un déploiement \mathcal{R}_H -miniversel de (f, H).

• Cas relatif : pour construire les bases distinguée de $H_n(F, F \cap H)$ et $H_n(F \setminus F \cap H)$, on procède de la même manière que precédemment; on détermine l'ensemble des points $\{s_i\}_{1 \leq i \leq \mu_0}$ du discriminant de Φ ainsi que l'ensemble $\{\sigma_j\}_{1 \leq j \leq \mu_1}$ du discriminant de $\Phi_{|H}$ tels que $\{s_i\}_{1 \leq i \leq \mu_0} \cup$ $\{\sigma_j\}_{1 \leq j \leq \mu_1}$ soit l'intersection du discriminant \mathcal{R}_H relatif de Φ avec la droite complexe déterminée par τ .

De plus, τ est choisi de telle sorte que $\{s_i\}_{1 \le i \le \mu_0} \cap \{\sigma_j\}_{1 \le j \le \mu_1} = \emptyset$.

3.2.2 Cas des singularités B_{μ} et C_{μ} .

Soit l'hypothèse \mathcal{K}' suivante : il existe un point $\tau_0 \in T$ tel que $\{s_i\}_{1 \leq i \leq \mu_0} \cap \{\sigma_j\}_{1 \leq j \leq \mu_1} \neq \emptyset$. Cette intersection est réduite à un point $s_{1,0} = \sigma_{1,0}$.

Dans cette hypothèse, au dessus de ce point $s_{1,0}$, $\Phi(., s_{1,0})$ admet un seul point singulier isolé qui est quadratique, ainsi que $\Phi_{|H}(., s_{1,0})$.

Pour s un élément de S, soit l'hypothèse $\mathcal{K}''(s)$ suivante : au dessus de s, $\Phi(.,s)$ admet un seul point singulier isolé qui est quadratique, ainsi que $\Phi_{|H}(.,)$, et ces deux points singuliers sont confondus.

On se place dans l'hypothèse $\mathcal{K} = \mathcal{K}' \cup \mathcal{K}''(s_{1,0})$.

Soit m_0 le point singulier commun à $\Phi(., s_{1,0})$ et $\Phi|_H(., s_{1,0})$. Pour τ dans un voisinage suffisamment petit de τ_0 , s_1 et σ_1 sont distincts. De plus, on a : $\{s_i\}_{1 \leq i \leq \mu_0} \cap \{\sigma_j\}_{1 \leq j \leq \mu_1} = \emptyset$, et, lorsque τ tend vers τ_0 , s_1 tend vers $s_{1,0}$ et σ_1 tend vers $s_{1,0}$. Soit $s_0 = (t, \tau_0)$ et $s = (t, \tau)$ qui ne sont pas dans le discriminant \mathcal{R}_H relatif de Φ (noté $D_{\Phi}(\star H)$). Soit c un chemin de s_0 vers s extérieur à ce discriminant relatif.

A. SZPIRGLAS

La monodromie définie par un lacet r de base s_0 dans $S \setminus D_{\Phi}(\star H)$ autour de $s_{1,0}$ sur $H_n(F_{s_0}, F_{s_0} \cap H)$ (resp. sur $H_n(F_{s_0} \setminus F_{s_0} \cap H)$) est égale au produit des monodromies définies par les lacets ℓ_1 et d_1 de base s autour de s_1 et σ_1 dans $S \setminus D_{\Phi}(\star H)$ qui agissent sur $H_n(F_s, F_s \cap H)$ (resp. sur $H_n(F_s \setminus F_s \cap H)$), composé avec le transport le long du chemin c.

Dans le plan défini par τ_0 , on a la situation de la figure 1, dans le plan défini par τ , on a la situation de la figure 2 :

Soit λ_1 (resp. $\lambda_{1,0}$) l'élément de la base distinguée de $H_n(F_s)$ (resp. $H_n(F_{s_0})$) défini par le lacet ℓ_1 (resp.r).

Soit δ_1 (resp. $\delta_{1,0}$) l'élément de la base distinguée de $H_{n-1}(F_s \cap H)$ défini par le lacet ℓ_1 (resp. de $H_{n-1}(F_{s_0} \cap H)$ défini par le lacet r).

Par transport le long du chemin c, λ_1 donne $\lambda_{1,0}$, δ_1 donne $\delta_{1,0}$ et réciproquement.

Soient Λ_1 et Δ_1 les éléments de la base distinguée de $H_n(F_s, F_s \cap H)$ construits sur λ_1 et δ_1 .

Soient Λ_1 et Δ_1 les éléments de la base distinguée de $H_n(F_s \setminus F_s \cap H)$ construits sur λ_1 et δ_1 .

Soit $B_{\varepsilon}(m_0)$ la boule de centre m_0 dont le rayon ε est choisi assez petit pour que $F_{s_{1,0}} \cap B_{\varepsilon}(m_0) = \tilde{F}_{s_{1,0}}$ soit la fibre de Milnor de $\Phi(., s_{1,0})$ et $\tilde{F}_{s_{1,0}} \cap H$ soit la fibre de Milnor de $\Phi_{|H}(., s_{1,0})$.

On a :

$$\dim H_{n-1}(\tilde{F}_{s_{1,0}} \cap H) = \dim H_n(\tilde{F}_{s_{1,0}}) = 1$$

et on a les deux suites exactes (b_1) et (b_2) de la Proposition 1.2.1.

 $\{\lambda_{1,0}\}$ et $\{\delta_{1,0}\}$ sont des bases respectivement de

$$H_n(F_{s_{1,0}})$$
 et $H_{n-1}(F_{s_{1,0}} \cap H)$.

Soit $\Lambda_{1,0}$ l'image de $\lambda_{1,0}$ par le morphisme α_1 et $\tilde{\Lambda}_{1,0}$ un antécédent de $\lambda_{1,0}$ par β_1 . ($\tilde{\Lambda}_{1,0}$ est la classe dans $H_n(\tilde{F}_{s_{1,0}} \setminus \tilde{F}_{s_{1,0}} \cap H)$ d'un représentant de $\lambda_{1,0}$ qui ne rencontre pas H).

томе 118 — 1990 — N° 4

Soient également $\Delta_{1,0}$ et $\Delta'_{1,0}$ les deux demi-cycles qu'on peut construire sur $\delta_{1,0}$, et $\tilde{\Delta}_{1,0}$ l'image de $\delta_{1,0}$ par β_2 .

Remarque sur les monodromies :

Si

• x est un élément de $H_n(F_s, F_s \cap H)$ et \bar{x} est le transporté de x le long de c (\bar{x} est donc dans $H_n(F_{s_{1,0}}, F_{s_{1,0}} \cap H)$) et h_r est la monodromie définie par le lacet r agissant sur $H_n(F_{s_{1,0}}, F_{s_{1,0}} \cap H)$;

• \tilde{x} est un élément de $H_n(F_s \setminus F_s \cap H)$ et $\bar{\tilde{x}}$ est le transporté de \tilde{x} le long de c et \tilde{h}_r est la monodromie définie par le lacet r agissant sur $H_n(F_{s_{1,0}} \setminus F_{s_{1,0}} \cap H)$,

• h_{ℓ_1} et h_{d_1} (resp. \tilde{h}_{ℓ_1} et \tilde{h}_{d_1}) les monodromies définies par les lacets ℓ_1 et d_1 agissant sur $H_n(F_s, F_s \cap H)$ (resp. sur $H_n(F_s \setminus F_s \cap H)$); alors

• $h_r(\bar{x})$ est égal au transporté de $h_{\ell_1} \circ h_{d_1}(x)$ le long du chemin c (ou au transporté de $h_{d_1} \circ h_{\ell_1}(x)$ le long du chemin c);

• $\tilde{h}_r(\bar{\tilde{x}})$ est égal au transporté de $\tilde{h}_{\ell_1} \circ \tilde{h}_{d_1}(\tilde{x})$ le long du chemin c (ou au transporté de $\tilde{h}_{d_1} \circ \tilde{h}_{\ell_1}(\tilde{x})$ le long du chemin c).

(On suppose dans la suite que $n \equiv 1 \mod 4$.) Proposition 3.2.1. $-h_r(\Delta_{1,0}) = -\Delta_{1,0} + \varepsilon' \Lambda_{1,0} \ (\varepsilon' = \pm 1)$ Proposition 3.2.2. $-I_1(\Delta_1, \tilde{\Lambda}_1) = \varepsilon_1 \ (\varepsilon_1 = \pm 1)$

Démonstration de la proposition 3.2.1. — On sait, d'après les formules de Picard Lefschetz que $h_r(\delta_{1,0}) = -\delta_{1,0}$ avec le choix qu'on a fait pour n. Donc, $h_r(\Delta_{1,0}) = -\Delta_{1,0} + \alpha \Lambda_{1,0}$ et $h_r(\Delta'_{1,0}) = -\Delta'_{1,0} + \alpha' \Lambda_{1,0}$. Or, $\alpha = -\alpha' \operatorname{car} \Delta_{1,0}$ et $\Delta'_{1,0}$ se déduisent l'un de l'autre par symétrie par rapport à H, et par cette symétrie (qui commute avec h_r), $\Lambda_{1,0}$ donne $-\Lambda_{1,0}$. Par ailleurs, $\Delta_{1,0} - \Delta'_{1,0} = \varepsilon' \Lambda_{1,0}$. Donc, toujours par application des formules de Picard Lefschetz, on en déduit : $h_r(\Delta_{1,0} - \Delta'_{1,0}) = \varepsilon' \Lambda_{1,0}$. Or, $h_r(\Delta_{1,0} - \Delta'_{1,0}) = \Delta'_{1,0} - \Delta_{1,0} + (\alpha - \alpha')\Lambda_{1,0} = \Delta'_{1,0} - \Delta_{1,0} + (2\alpha)\Lambda_{1,0}$. D'où, $\alpha = \varepsilon'$, ce qui montre la PROPOSITION 3.2.1.

Démonstration de la proposition 3.2.2. — Le transporté de l'image de $\Delta_{1,0}$ (resp. $\Lambda_{1,0}$) le long de c est Δ_1 (resp. Λ_1). On applique les formules de Picard Lefschetz relatives et la remarque sur les monodromies faite plus haut pour conclure à l'aide de la PROPOSITION 3.2.1. Ainsi,

$$\begin{split} h_{d_1}(\Delta_1) &= -\Delta_1, \quad h_{d_1}(\Lambda_1) = \Lambda_1, \\ h_{\ell_1}(\Lambda_1) &= \Lambda_1, \qquad h_{\ell_1}(\Delta_1) = \Delta_1 - I_1(\Delta_1, \tilde{\Lambda}_1)\Lambda_1. \end{split}$$

Donc,

$$egin{aligned} h_{d_1} \circ h_{\ell_1}(\Delta_1) &= -\Delta_1 - I_1(\Delta_1, \Lambda_1)\Lambda_1, \ h_{\ell_1} \circ h_{d_1}(\Delta_1) &= -\Delta_1 + I_1(\Delta_1, ilde\Lambda_1)\Lambda_1. \end{aligned}$$

D'où le résultat annoncé par application de la Proposition 3.2.1.

PROPOSITION 3.2.3. — Les singularités de bord B_{μ} et C_{μ} vérifient $l'hypothèse \mathcal{K}.$

Démonstration :

• Pour B_{μ} . Soit $f : \mathbb{C}^3 \to \mathbb{C}$ l'application définie par : $f(x, y, z) = x^{\mu+1} + y^2 + z^2$. L'hyperplan H a pour équation $\{x = 0\}$. Soit, pour déploiement de f, Φ définie par :

$$\Phi(x, y, z, \tau) = (F(x, y, z, \tau), \tau),$$
we
$$F(x, y, z, \tau) = x^{\mu+1} + y^2 + z^2 + \sum_{i=1}^{\mu-1} \tau'_i x^i + \tau''_0 x^{\mu}.$$

av

Le discriminant de Φ est obtenu par élimination de x entre les deux équations suivantes :

$$\begin{cases} x^{\mu+1} + \sum_{i=1}^{\mu-1} \tau'_i x^i + \tau''_0 x^{\mu} = t, \\ (\mu+1)x^{\mu} + \sum_{i=0}^{\mu-1} i\tau'_i x^{i-1} + \tau''_0 x^{\mu-1} = 0 \end{cases}$$

Par ailleurs, $\Phi_{|H|}(=f_{|H|})$ admet un point singulier quadratique pour y =z = 0, et ceci au dessus de tout point $(0, \tau', \tau'')$ de la base S du déploiement.

Pour déterminer $\tau = (\tau', \tau'')$ au dessus duquel l'hypothèse \mathcal{K}'' est vérifiée (ce qui prouvera en même temps que l'hypothèse \mathcal{K} est vérifiée), on cherche τ de telle sorte que les deux équations suivantes admettent 0 comme solution commune :

$$\begin{cases} x^{\mu+1} + \sum_{i=1}^{\mu-1} \tau'_i x^i + \tau''_0 x^{\mu} = 0, \\ (\mu+1)x^{\mu} + \sum_{i=1}^{\mu-1} i\tau'_i x^{i-1} + \tau''_0 x^{\mu-1} = 0. \end{cases}$$

Ce qui est vrai dès que $\tau'_1 = 0$. De plus, génériquement, c'est-à-dire pour $\tau'_2 \neq 0$, au dessus de tels points, Φ admet un point singulier quadratique, car : $F(x, y, z, \tau) = \tau'_2 x^2 + y^2 + z^2 +$ termes d'ordre supérieur.

томе 118 — 1990 — N° 4

480

• Pour C_{μ} . Soit $f : \mathbb{C}^3 \to \mathbb{C}$ l'application définie par :

$$f(x, y, z) = y^{\mu+1} + xy + z^2.$$

(L'hyperplan H a encore pour équation $\{x = 0\}$.) Soit pour déploiement de f, Φ définie par :

$$\begin{split} \Phi(x,y,z,\tau) &= (F(x,y,z,\tau),\tau) \\ F(x,y,z,\tau) &= y^{\mu+1} + xy + z^2 + y \sum_{i=0}^{\mu-1} \tau'_i y^i. \end{split}$$

avec

Le discriminant de $\Phi_{|H}$ est obtenu par élimination de y entre les deux équations suivantes :

$$\begin{cases} y^{\mu+1} + \sum_{i=0}^{\mu-1} \tau'_i y^{i+1} = t, \\ (\mu+1)y^{\mu} + \sum_{i=0}^{\mu-1} (i+1)\tau'_i y^i = 0. \end{cases}$$

Par ailleurs, le discriminant de Φ a pour équation $\{t = 0\}$. Pour vérifier l'hypothèse \mathcal{K} , il faut déterminer τ tel que le système suivant de deux équations admette 0 pour solution :

$$\begin{cases} y^{\mu+1} + \sum_{i=0}^{\mu-1} \tau'_i y^{i+1} = 0, \\ (\mu+1)y^{\mu} + \sum_{i=0}^{\mu-1} (i+1)\tau'_i y^i = 0. \end{cases}$$

Ce qui est le cas dès que $\tau'_0 = 0$. Et alors, $\Phi_{|H}$ admet génériquement au dessus de tels points, c'est-à-dire pour $\tau'_1 \neq 0$, un point singulier quadratique. En effet, alors : $F(0, y, z, \tau) = \tau'_1 y^2 + z^2 +$ termes d'ordre supérieur. \Box

REMARQUE. — Pour pouvoir appliquer les résultats du paragraphe précédent ici, c'est-à-dire pour avoir $n \equiv 1 \mod 4$, il faut ajouter dans l'équation de f deux carrés qui n'interviennent pas dans les calculs ci-dessus.

3.2.3 Bases distinguées particulières pour B_{μ} et C_{μ} .

On suppose toujours $n \equiv 1 \mod 4$. (Ici, pour C_{μ} , $\mu_0 = 1$ et $\mu_1 = \mu$, et pour B_{μ} , $\mu_0 = \mu$ et $\mu_1 = 1$.) On se place dans les conditions d'application de la PROPOSITION 3.2.2 (ce qui est possible d'après la PROPOSITION 3.2.3),

et on fait la construction de [3] des bases distinguées de $H_{n-1}(F \cap H)$ et $H_n(F)$ en prenant, si $h_r = h_{\ell_1} \circ h_{d_1}$, pour premier vecteur de la base distinguée de $H_{n-1}(F \cap H)$ l'élément δ_1 défini plus haut, et pour dernier vecteur de la base distinguée de $H_n(F)$ l'élément λ_1 défini plus haut. (Si $h_r = h_{d_1} \circ h_{\ell_1}$, on fait le choix contraire les résultats sont les mêmes ainsi que les démonstrations.)

Proposition 3.2.4

- 1) Pour B_{μ} , $I_1(\Delta_1, \tilde{\Lambda}_i) = 0$ pour $i \neq 1$.
- 2) Pour C_{μ} , $I_1(\Delta_j, \tilde{\Lambda}_1) = 0$ pour $j \neq 1$.

Démonstration (pour C_{μ}).. — On a le lemme suivant (voir [3]) :

LEMME 3.2.5. — On a par construction l'égalité dans $\Pi_1(S \setminus D_{\Phi}(\star H))$

$$d_j = \gamma^{-1} d_{j+1} \gamma, \quad \forall j \in \{1, \cdots, \mu - 1\},$$

où γ est le lacet $rd_2 \dots d_{\mu}$ et où par abus de langage, on désigne par d_2, \dots, d_{μ} les lacets de base s_0 autour des points $\sigma_{2,0}, \dots, \sigma_{\mu 0}$ dans la droite complexe définie par τ_0 .

Soit $h = h_r \circ h_{d_2} \cdots \circ h_{d_n}$. Modulo le transport le long de c,

$$h = h_{\ell_1} \circ h_{d_1} \circ h_{d_2} \cdots \circ h_{d_u}.$$

Le LEMME 3.2.5 implique : $h_{d_j} = h^{-1} \circ h_{d_{j1}} \circ h$ (relation (*)). Or, pour $k \neq \mu$ et 2,

$$h(\Delta_k) = h_{\ell_1} \circ h_{d_1} \circ h_{d_2} \circ \cdots \circ h_{d_{k+1}}(\Delta_k)$$

= $h_{\ell_1} \circ h_{d_1} \circ h_{d_2} \circ \cdots \circ h_{d_k}(\Delta_k - \Delta_{k+1})$
= $h_{\ell_1} \circ h_{d_1} \circ h_{d_2} \circ \cdots \circ h_{d_{k-1}}(-\Delta_k)$
= $-\Delta_{k+1} - I_1(\Delta_{k+1}, \tilde{\Lambda}_1)(-\Lambda_1).$

Donc,

$$h(\Delta_k) = -\Delta_{k+1} + I_1(\Delta_{k+1}, \Lambda_1)$$

$$h_{d_k} \circ h(\Delta_k) = -\Delta_{k+1} + \Delta_k + I_1(\Delta_{k+1}, \tilde{\Lambda}_1)$$

Par ailleurs, $h^{-1}(\Delta_k) = -\Delta_{k-1} + I_1(\Delta_k, \tilde{\Lambda}_1)\Lambda_1$. Donc,

$$h^{-1} \circ h_{d_k} \circ h(\Delta_k) = \Delta_k - \Delta_{k-1} + I_1(\Delta_k, \Lambda_1)\Lambda_1$$
$$h_{d_{k-1}}(\Delta_k) = \Delta_k - \Delta_{k-1}.$$

D'où le résultat attendu par application de (*). \square

томе 118 — 1990 — N° 4

482

Remarque

- 1) Les calculs pour k = 2 et $k = \mu$ conduisent à la même conclusion.
- 2) La preuve pour B_{μ} se fait par le même type de considérations.

Les résultats précédents permettent d'énoncer le théorème suivant :

THÉORÈME 3.2.6. — Les diagrammes de Dynkin des singularités de bord B_{μ} et C_{μ} sont les graphes de Dynkin des systèmes de racines de même nom, i.e :

1) Pour B_{μ} et pour \mathcal{H}_1 :

REMARQUE. — On retrouve ici que les singularités de bord B_{μ} et C_{μ} sont duales (ce qui permet de retrouver le résultat de [2]) car le diagramme de Dynkin pour \mathcal{H}_1 associé à B_{μ} est le diagramme de Dynkin pour \mathcal{H}_2 associé à C_{μ} lorsqu'on échange les sommets D_j et L_i (et vice versa).

3.3 Diagramme de Dynkin de la singularité de bord F₄.

Dans cette section on choisit des bases distinguées de $H_n(F \setminus F \cap H)$ et $H_n(F, F \cap H)$ de telle sorte que le diagramme de Dynkin de la singularité de bord F_4 soit le diagramme de Dynkin du système de racines de même nom.

Soit $f : \mathbb{C}^3 \to \mathbb{C}$ l'application définie par : $f(x, y, z) = x^2 + y^3 + z^2$. (Comme pour B_{μ} et C_{μ} on se contente pour les calculs qui suivent d'un seul carré z^2 , alors qu'il en faudrait deux de plus pour que le nombre de variables soit congru à 1 modulo 4.)

Remarque. — Ici, $\mu_0 = \mu_1 = 2$.

Le déploiement de f qu'on choisit est le suivant : $\Phi : X_0 \times T \to \mathbb{D} \times T$, vérifiant :

avec

$$\begin{split} \Phi(x,y,z,\tau) &= (F(x,y,z,\tau),\tau) \\ F(x,y,z,\tau) &= x^2 + y^3 + z^2 + \tau_1' y + x(\tau_0'' + \tau_1'' y). \end{split}$$

A. SZPIRGLAS

PROPOSITION 3.3.1. — Il existe $\tau_0 \in T$ tel que $s_{1,0} = \sigma_{1,0}$ et $s_{2,0} = \sigma_{2,0}$. De plus, au dessus de ces points, les points singuliers quadratiques de $\Phi_{\mid_H}(., s_{i0})$ et $\Phi(., s_{i0})$ sont confondus (ceci pour i = 1 et i = 2).

Démonstration. — Le discriminant de Φ est donné par l'élimination de x et y dans le système :

$$\begin{cases} x^2 + y^3 + \tau'_1 y + x(\tau''_0 + \tau''_1 y) = t, \\ 2x + \tau''_0 + \tau''_1 y = 0, \\ 3y^2 + \tau'_1 + \tau''_1 x = 0. \end{cases}$$

Le discriminant de $\Phi_{|H}$ est $\{4\tau_1'^3 + 27t^2 = 0\}$. On cherche donc (τ_0, t_0) à l'intersection des deux discriminants, tel que de plus (τ_0, t_0) soit solution du système :

$$\begin{cases} y^3 + \tau'_1 y = t, \\ 3y^2 + \tau'_1 = 0, \\ x^2 + y^3 + \tau'_1 y + x(\tau''_0 + \tau''_1 y) = t, \\ 2x + \tau''_0 + \tau''_1 y = 0, \\ 3y^2 + \tau'_1 y + \tau''_1 x = 0, \end{cases}$$

avec la condition x = 0. D'où les solutions cherchées :

$$\tau_0'' = \tau_1'' = 0, \quad 4\tau_1'^3 + 27t^2 = 0,$$

au-dessus desquelles Φ et $\Phi_{|H}$ admettent une singularité quadratique ceci pour $\tau_1^{'}$ générique.

(On reprend les notations introduites plus haut.)

On choisit τ dans un voisinage suffisamment petit de τ_0 pour que s_1 et σ_1 soient distincts, s_2 et σ_2 soient distincts, et que, par abus de langage, comme dans la partie précédente, on puisse dire que la monodromie h_{r_i} , pour $i \in \{1, 2\}$, induite sur $H_n(F, F \cap H)$ par un lacet de base s_0 autour de s_{i0} dans $S \setminus D_{\Phi}(\star H)$ est égale au produit des monodromies définies par les lacets ℓ_i et d_i de base s autour de s_i et σ_i dans $S \setminus D_{\Phi}(\star H)$. (On néglige le transport le long de c.)

Plus précisément, si $\tau_1'' = 0$, le discriminant de Φ est donné par l'équation suivante :

$$432t^{2} + 216\tau_{0}^{\prime\prime2}t + 64\tau_{1}^{\prime3} + 27\tau_{0}^{\prime\prime4} = 0.$$

Celui de $\Phi_{|H}$ est donné par : $4\tau_1'^3 + 27t^2 = 0$. On a donc, pour τ_1' négatif, la disposition suivante (figure 1) des points $s_1, s_2, \sigma_1, \sigma_2$ dans le plan déterminé par τ :

томе 118 — 1990 — №° 4

Figure 1.

Et les lacets ℓ_1 , ℓ_2 , d_1 , d_2 sont choisis comme sur la figure 2 suivante :

Figure 2.

D'où le lemme suivant :

Lemme 3.3.2. — $h_{r_1} = h_{d_1} \circ h_{\ell_1}$ et $h_{r_2} = h_{\ell_2} \circ h_{d_2}$.

D'après la PROPOSITION 3.2.2, $I_2(\tilde{\Lambda}_i, \Delta_i) = \varepsilon_i$ pour $i \in \{1, 2\}$ et $\varepsilon_i = \pm 1$. On a, voir le LEMME 3.2.5, le lemme suivant :

Lemme 3.3.3. — Si $h = h_{r_1} \circ h_{r_2}$, alors $h \circ h_{r_1} = h_{r_2} \circ h$.

Par application de ce lemme, on déduit que :

$$I_2(\Lambda_1, \Delta_2) = I_2(\Lambda_2, \Delta_1) = \frac{1}{2}(\varepsilon_1 + \varepsilon_2).$$

Or, on peut faire le choix de Δ_1 et Δ_2 de telle sorte que $\varepsilon_1 = \varepsilon_2 = \varepsilon$. D'où on déduit : $I_2(\tilde{\Lambda}_i, \Delta_j) = \varepsilon$. Ce qui implique :

$$\begin{cases} I_2(\tilde{\Lambda}_1 - \tilde{\Lambda}_2, \Delta_1) = 0, & I_2(\tilde{\Lambda}_1, \Delta_1) = \varepsilon, \\ I_2(\tilde{\Lambda}_1 - \tilde{\Lambda}_2, \Delta_1 - \Delta_2) = 0, & I_2(\tilde{\Lambda}_1, \Delta_1 - \Delta_2) = 0. \end{cases}$$

A. SZPIRGLAS

Par ailleurs, $|I_1(\Lambda_1, \tilde{\Lambda}_1 - \tilde{\Lambda}_2)| = 1$, et $|I_2(\tilde{\Delta}_1, \Delta_1 - \Delta_2)| = 1$. On peut montrer que (voir par exemple [4]) λ_1 et $\lambda_1 - \lambda_2$ constituent une base distinguée de $H_n(F)$ et δ_1 et $\delta_1 - \delta_2$ constituent une base distinguée de $H_{n-1}(F \cap H)$. Donc, $(\Lambda_1, 2\tilde{\Lambda}_1)$, $L'_2 = (\Lambda_1 - \Lambda_2, 2(\tilde{\Lambda}_1 - \tilde{\Lambda}_2))$, $(0, \tilde{\Delta}_1)$ et $D'_2 = (0, \tilde{\Delta}_1 - \tilde{\Delta}_2)$ constituent une base distinguée \mathcal{B} de \mathcal{H}_1 .

D'après les calculs précédents, on en déduit le théorème suivant :

THÉORÈME 3.3.4. — Dans la base \mathcal{B} , les diagrammes de Dynkin de la singularité de bord F_4 sont celui du système de racines de même nom, i.e (pour \mathcal{H}_1) :

REMARQUE. — On retrouve ici que la singularité de bord F_4 est "autoduale" (ce qui permet de retrouver le résultat de [2]) car les deux diagrammes de Dynkin pour \mathcal{H}_1 et \mathcal{H}_2 sont identiques lorsqu'on échange les sommets D_j et L_i .

BIBLIOGRAPHIE

- ARNOLD (V.I.), VARCHENKO (A.), GOUSSEIN-ZADÉ (S.). Singularités des applications différentiables. — Éd. Mir, Moscou, 1986.
- [2] SHCHERBAK (I.G.). Duality of boundary singularities, Russian Mathematical Surveys, t. 39, p. 195–196.
- [3] HEFEZ (A.), LAZZERI (F.). The Intersection Matrix of Brieskorn Singularities, Inventiones Math., t. 25, p. 143–157.
- [4] GABRIELOV (A.M.). Intersection matrices for certain singularities, Functional analysis., t. 7–3, p. 182–193.
- [5] ILYUTA (G.G.). Monodromy and vanishing cycles of boundary singularities, Functional analysis, t. 19, p. 173–182.
- [6] GRIFFITH (P.), HARRIS (J.). Principles of algebraic geometry. Wiley & Sons, New York, 1978.
- [7] EBELING (W.). The monodromy groups of isolated singularities of complete intersections. — Lecture Notes in Mathematics, 1293, Springer, 1987.
- [8] TEISSIER (B.). The hunting of invariants in the geometry of discriminants. — Proceedings of the Nordic Summer School, Oslo, Sijthoff & Noordhoff International Publishers, 1976.

томе 118 — 1986 — N° 4

486