## Bulletin de la S. M. F.

# GAIL LETZTER <br> LEONID MAKAR-LIMANOV <br> Rings of differential operators over rational affine curves 

Bulletin de la S. M. F., tome 118, no 2 (1990), p. 193-209
[http://www.numdam.org/item?id=BSMF_1990_118_2_193_0](http://www.numdam.org/item?id=BSMF_1990_118_2_193_0)
© Bulletin de la S. M. F., 1990, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## Numdam

Article numérisé dans le cadre du programme

# RINGS OF DIFFERENTIAL OPERATORS OVER RATIONAL AFFINE CURVES 

BY<br>Gail LETZTER, Leonid MAKAR-LIMANOV (*)

Résumé. - Soit $X$ une courbe algébrique irréductible sur $\mathbb{C}$ dont la normalisée est la droite affine et telle sur le morphisme de normalisation est injectif. Soit. $D(X)$ l'anneau des opérateurs différentiels sur $X$. Nous étudions un invariant pour l'anneau $D(X)$ des opérateurs différentiels sur $X$, noté $\operatorname{codim} D(X)$. En particulier, nous montrons que $D(X) \cong D(Y)$ implique codim $D(X)=\operatorname{codim} D(Y)$. Cela permet de distinguer dans certains cas les anneaux d'opérateurs différentiels de courbes nonisomorphes. En outre, nous décrivons les sous-algèbres ad-nilpotentes maximales de $D(X)$. Nous montrons que si $B$ est une sous-algèbre ad-nilpotente maximales de $D(X)$, alors $B$ est un sous-anneau de type fini d'un $\mathbb{C}[b]$ où $b$ désigne un élément du corps des fractions de $D(X)$; de plus, la clôture intégrale de $B$ est $\mathbb{C}[b]$.

Abstract. - Let $X$ be an irreducible algebraic curve over the complex numbers such that its normalization is the affine line, and the normalization map is injective. Let $D(X)$ denote its ring of differential operators. We find an invariant for $D(X)$ denoted as codim $D(X)$. In particular, we show that $D(X) \cong D(Y)$ implies $\operatorname{codim} D(X)=\operatorname{codim} D(Y)$. This allows us to distinguish certain rings of differential operators of non-isomorphic curves. We also describe the maximal ad-nilpotent subalgebras of $D(X)$. We show that if $B$ is a maximal ad-nilpotent subalgebra of $D(X)$, then $B$ is a finitely generated subring of $\mathbb{C}[b]$ for some element $b$ of the quotient field of $D(X)$ and the integral closure of $B$ is $\mathbb{C}[b]$.

## 1. Introduction

Let $X$ and $Y$ be irreducible algebraic curves over the complex numbers, $\mathbb{C}$. Let $D(X)$ and $D(Y)$ denote their ring of differential operators, respectively. (For definition see [9]). This paper is motivated by the following open question. ${ }^{\dagger}$ Does $D(X) \cong D(Y)$ imply that $X \cong Y$ ? Let $\widetilde{X}$ denote

[^0]the normalization of $X$. Makar-Limanov [5] shows that the set of adnilpotent elements $N(X)$ is exactly $O(X)$ whenever $O(X)$ is not a subring of a polynomial ring in one variable over $\mathbb{C}$. He thus answers the question affirmatively for these curves. Let $\mathrm{A}^{1}$ denote the affine line. Perkins [8] extends this result showing that $D(X) \cong D(Y)$ implies $X \cong Y$ whenever $\widetilde{X} \neq \mathrm{A}^{1}$, or $\widetilde{X}=A^{1}$ but the normalization map $\pi: \widetilde{X} \rightarrow X$ is not injective. Thus, in the paper, we are interested in curves $X$ such that $\widetilde{X} \cong A^{1}$ and $\pi: \widetilde{X} \rightarrow X$ is injective. Stafford [10] shows the conjecture holds the following two examples of such curves : when $X$ is the affine line $A^{1}$, or when $X$ is the cubic cusp $y^{2}=x^{3}$.

For the remainder of the paper, assume that $X$ is a curve such that its normalization is isomorphic to the affine line $A^{1}$ with an injective normalization map. We may therefore assume that the coordinate ring of $X$, denoted $O(X)$, is a subring of a polynomial ring in one variable $\mathbb{C}[x]$ such that the integral closure of $O(X)$, written $\widetilde{O(X)}$, is equal to $C[x]$. Furthermore $D(X)$ is a subring of $\mathbb{C}(x)[\partial]$ where $[\partial, x]=1$. Here $\partial$ is just $\partial / \partial x$ and the element $f_{n}(x) \partial^{n}+\cdots+f_{0}(x)$ of $D(X)$ sends $g(x) \in O(X)$ to $f_{n}(x) g^{(n)}(x)+\cdots+f_{0}(x) g(x)$ where $g^{(n)}(x)$ denotes the $n^{\text {th }}$ derivative of $g(x)$.

Perkins studies rings that satisfy these conditions in [8]. He shows that in many cases, $D(X)$ contains maximal commutative ad-nilpotent subalgebras not isomorphic to $O(X)$. Thus, for these curves, the set $N(X)$ of ad-nilpotent elements does not determine $O(X)$.

In this paper, we obtain an invariant for $D(X)$ and a nice description of the maximal ad-nilpotent subalgebras of $D(X)$. Set $T=\mathbb{C}(x)[\partial]$ and set $\partial-\operatorname{deg} w=n$ where $w=f_{n}(x) \partial^{n}+\cdots+f_{0}(x)$ is an element of $T$. Define a filtration on $T$ by $T_{i}=\{w \in T \mid \partial-\operatorname{deg} w \leq i\}$ and hence on any subring $R$ of $T$ by $R_{i}=R \cap T_{i}$. (Note that this is the same filtration on $D(X)$ as the one defined by the order of the differential operator.) We may form the associated graded ring $\partial$-gr $R=\bigoplus R_{i} / R_{i-1}$. We define codim $R$ to be equal to $\operatorname{dim}_{\mathbb{C}} \partial-\mathrm{gr} \mathbb{C}[x, \partial] / \partial-\operatorname{gr} R$ for those subrings $R$ of $T$ such that $\partial$-gr $R \subset \partial$-gr $\mathbb{C}[x, \partial]$.

Now assume that both $X$ and $Y$ are affine curves with normalization equal to the affine line and injective normalization map. By [9], both $\partial-\operatorname{gr} D(X)$ and $\partial-\operatorname{gr} D(Y)$ are subrings of $\partial-\mathrm{gr} \mathbb{C}[x, \partial]$ and $\operatorname{codim} D(X)$ and $\operatorname{codim} D(Y)$ are finite numbers.

Our main results are :
Theorem. - Suppose that B is a maximal ad-nilpotent subalgebra of $D(X)$. Then there exists elements $x^{\prime}$ and $\partial^{\prime}$ in the quotient field of

$$
\text { томе } 118-1990-\mathrm{N}^{\circ} 2
$$

$\mathbb{C}(x)[\partial]$ such that $\left[\partial^{\prime}, x^{\prime}\right]=1, D(X)$ is a subring of $\mathbb{C}\left(x^{\prime}\right)\left[\partial^{\prime}\right], D(X) \cap$ $\mathbb{C}\left(x^{\prime}\right)=B$, and the integral closure of $B$ is $\mathbb{C}\left[x^{\prime}\right]$. Furthermore, $\partial^{\prime}-\operatorname{gr} D(X)$ is a subring of $\partial^{\prime}-\mathrm{gr} \mathbb{C}\left[x^{\prime}, \partial^{\prime}\right]$ and

$$
\operatorname{dim}_{\mathbb{C}} \partial^{\prime}-\operatorname{gr} \mathbb{C}\left[x^{\prime}, \partial^{\prime}\right] / \partial^{\prime}-\operatorname{gr} D(X)=\operatorname{codim} D(X)
$$

Corollary. - If $D(X) \cong D(Y)$, then $\operatorname{codim} D(X)=\operatorname{codim} D(Y)$.
This result permits one to distinguish many rings of differential operators. For example, set $O\left(X_{n}\right)=\mathbb{C}+x^{n} \mathbb{C}[x]$. Then it will follow from the Corollary, that $D\left(X_{n}\right) \cong D\left(X_{m}\right)$ implies that $n=m$.

## 2. Graded Algebras of $D(X)$

In this section, $\alpha$ and $\beta$ are nonnegative real numbers with $\alpha+\beta>0$. Define valuations $V_{\alpha, \beta}$ on $\mathbb{C}(x)[\partial]$ as follows. Set

$$
V_{\alpha, \beta}\left(w_{n}(x) \partial^{n}+w_{n-1}(x) \partial^{n-1}+\cdots+w_{0}(x)\right)
$$

equal to $\max \left\{\alpha d_{m}+\beta m \mid n \geq m \geq 0\right\}$ where $d_{m}=\operatorname{deg}\left(w_{n}(x)\right)$. This extends the notion of valuations introduced by Dixmier in [2] for the Weyl algebra. For each valuation $V_{\alpha, \beta}$ we may define a filtration of $\mathbb{C}(x)[\partial]$, and hence on any subring $R$ of $\mathbb{C}(x)[\partial]$ as follows. Recall that $T=\mathbb{C}(x)[\partial]$. Set $T_{i}=\left\{z \in T \mid V_{\alpha, \beta}(z) \leq i\right\}$ and $R_{i}=R \cap T_{i}$. We may then define the associated graded algebra $\mathrm{gr}_{\alpha, \beta} R=\bigoplus R_{i} / R_{i-1}$. Now the commutator $\left[x^{i} \partial^{j}, x^{k} \partial^{\ell}\right]=(k j-i \ell) x^{i+k-1} \partial^{j+\ell-1}+$ terms with $x$-degree less than $i+k-1$ and $\partial$-degree less than $j+\ell-1$. Therefore $V_{\alpha, \beta}\left(\left[x^{i} \partial^{j}, x^{k} \partial^{\ell}\right]\right)<\alpha(i+k)+\beta(\ell+j)$. It follows that $\operatorname{gr}_{\alpha, \beta}(\mathbb{C}(x)[\partial])$ is a commutative algebra.

Note that when $\alpha=0$ and $\beta$ is positive, then the filtration defined by $V_{0, \beta}$ on $D(X)$ is the same filtration on $D(X)$ as the one defined by $\partial$-deg in the introduction. We will write $\partial$-gr $D(X)$ for $\operatorname{gr}_{0, \beta} D(X)$ and $\partial$-deg for $V_{0, \beta}$. Similarly, when $\beta=0$ and $\alpha$ is positive the graded algebra determined by $V_{\alpha, 0}$ is the same as $x$-gr $R$ determined by $x$-deg defined in [8].

Set $\operatorname{gr}_{\alpha, \beta} x=x$ and $\operatorname{gr}_{\alpha, \beta} \partial=y$. Since $D(\widetilde{X})$ is just the first Weyl algebra, $A_{1}$, we have that $\partial-\operatorname{gr} D(\widetilde{X})=\mathbb{C}[x, y]$ where $\partial-\operatorname{gr} x=x$ and $\partial-\mathrm{gr} \partial=y$. By [9, Proposition 3.11], it follows that $\partial-\operatorname{gr} D(X)$ is a subring of $\mathbb{C}[x, y]$ and by [8, Lemma 2.3], $x-\operatorname{gr} D(X)$ is also a subring of $\mathbb{C}[x, y]$. In the following lemma, we extend this to other gradings.

Lemma 2.1. - Let $R$ be a subring of $\mathbb{C}(x)[\partial]$ such that $\partial-\mathrm{gr} R \subset \mathbb{C}[x, y]$. Then the graded algebra $\mathrm{gr}_{\alpha, \beta} R$ is a subring of $\mathbb{C}[x, y]$.

Proof. - If $\alpha=0$ then $\operatorname{gr}_{\alpha, \beta} R=\partial-\mathrm{gr} R$. So we may assume that $\alpha$ is positive. Let $w$ be a typical element of $D(X)$. Write $w=$ $g_{m}(x) \partial^{m}+\cdots+g_{0}(x)$ where $g_{i}(x) \in \mathbb{C}(x)$ for $0 \leq i \leq m$. Set degree of $g_{i}(x)$ equal to $d_{i}$ for $0 \leq i \leq m$. Since $\partial$-gr $R \subset \mathbb{C}[x, y]$, it follows that $g_{m}(x) \subset \mathbb{C}[x]$ and thus $d_{m} \geq 0$. Set $N=V_{\alpha, \beta}(w)$. By the definition of $V_{\alpha, \beta}$, it follows that $N=\max \left\{d_{i} \alpha+i \beta \mid 0 \leq i \leq m\right\}$. Hence $\operatorname{gr}_{\alpha, \beta}(w)=\sum_{0 \leq s \leq m} \gamma_{s} x^{d_{s}} y^{s}$ where $\gamma_{s}=0$ if $V_{\alpha, \beta}\left(x^{d_{s}} \partial^{s}\right)<N$, and $\gamma_{s} x^{d_{s}}$ is the leading term of $g_{s}(x)$ if $V_{\alpha, \beta}\left(x^{d_{s}} \partial^{s}\right)=N$. We need to show that whenever $\gamma_{s} \neq 0$, we have $x^{d_{s}} y^{s} \in \mathbb{C}[x, y]$. In particular, since $0 \leq s \leq m$, we need to show that $d_{s} \geq 0$ whenever $\gamma_{s} \neq 0$. Now $N=V_{\alpha, \beta}(w) \geq V_{\alpha, \beta}\left(g_{m}(x) \partial^{m}\right)=d_{m} \alpha+m \beta$. Hence $d_{s} \alpha+s \beta \geq d_{m} \alpha+m \beta$. Recall that $m \geq s, d_{m} \geq 0$, and that $\alpha$ is positive. It follows that $d_{s} \geq d_{m} \geq 0$. The lemma now follows.

Define a linear map $\phi: \mathbb{C}(x)[\partial] \rightarrow \mathbb{C}[x, \partial]$ as follows. Suppose that $w=g_{m}(x) \partial^{m}+\cdots+g_{0}(x)$ is an element of $\mathbb{C}(x)[\partial]$. For each $i$ such that $1 \leq i \leq m$, there exists a unique polynomial $f_{i}(x)$ such that $\operatorname{deg}\left(g_{i}(x)-f_{i}(x)\right)<0$. Set

$$
\phi(w)=f_{m}(x) \partial^{m}+\cdots+f_{0}(x) .
$$

Now consider two rational functions $g_{1}(x)$ and $g_{2}(x)$ such that $\phi\left(g_{1}(x)\right)=$ $f_{1}(x)$ and $\phi\left(g_{2}(x)\right)=f_{2}(x)$. Then clearly

$$
\begin{gathered}
\operatorname{deg}\left(\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)-\left(\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x)\right)<0 \quad\right. \text { and } \\
\phi\left(\lambda_{1} g_{1}(x)+\lambda_{2} g_{2}(x)\right)=\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x) .
\end{gathered}
$$

It follows that $\phi$ is a well defined linear map from $\mathbb{C}(x)[\partial]$ to $\mathbb{C}[x, \partial]$.
Corollary 2.2. - Let $R$ be a subring of $\mathbb{C}(x)[\partial]$ such that $\partial-\operatorname{gr} R \subset$ $\mathbb{C}[x, y]$. If $w$ is an element of $R$, then $\operatorname{gr}_{\alpha, \beta} \phi(w)=\operatorname{gr}_{\alpha, \beta}(w)$.

Proof. - This is clear since $\operatorname{gr}_{\alpha, \beta}(w-\phi(w))$ does not contain any monomials $x^{d_{s}} y^{s}$ with $d_{s} \geq 0$.

Remark 2.3. - Note that $\phi(R)$ is a linear subspace of the first Weyl algebra $A_{1}=\mathbb{C}[x, \partial]$, but, generally speaking, is not a subalgebra. Nevertheless $\alpha, \beta$ gradings are defined on $\phi(R)$ and $\operatorname{gr}_{\alpha, \beta} \phi(R)=\operatorname{gr}_{\alpha, \beta} R$. Now

$$
\begin{array}{cl}
\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \partial-\operatorname{gr} D(X)<\infty & ([9,3.12]) \text { and } \\
\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / x-\operatorname{gr} D(X)<\infty & ([8, \text { Lemma 2.5]) }
\end{array}
$$

In the next proposition, we will show that these two finite numbers are equal. We will later show that this codimension is an invariant for $D(X)$.

```
томе 118-1990 - n * 2
```

Proposition 2.4. - Suppose that $R$ is a subring of $\mathbb{C}(x)[\partial]$ such that $\partial$-gr $R \subset \mathbb{C}[x, y]$ and $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \partial-\operatorname{gr} R<\infty$. Then $\operatorname{gr}_{\alpha, \beta} R$ is a subring of $\mathbb{C}[x, y]$ and $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \operatorname{gr}_{\alpha, \beta} R=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \partial-\operatorname{gr} R$.

Using Corollary 2.2 and Remark 2.3, we may replace $R$ by $\phi(R)$ and prove the following.

Proposition 2.4'. - Suppose that $R^{\prime}$ is a linear subspace of the Weyl algebra $\mathbb{C}[x, \partial]$ and that $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \partial-\mathrm{gr} R^{\prime}<\infty$. Then $\mathrm{gr}_{\alpha, \beta} R^{\prime}$ is a linear subspace of $\mathbb{C}[x, y]$ and $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \operatorname{gr}_{\alpha, \beta} R^{\prime}=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \partial-\operatorname{gr} R^{\prime}$.

Before proving Proposition 2.4', we need some additional notation and lemmas. Set, for $i \geq 0$,

$$
\begin{aligned}
E_{i} & =\mathbb{C}[x]+\mathbb{C}[x] y+\cdots+\mathbb{C}[x] y^{i} \quad \text { and } \\
B_{i} & =\left\{w \in R^{\prime} \mid \partial-\operatorname{sr} w \in E_{i}\right\} .
\end{aligned}
$$

Note that $\bigcup_{i \geq 0} B_{i}=R^{\prime}$. Set $E=\bigcup_{i \geq 0} E_{i}=\mathbb{C}[x, y]$.
In Proposition 2.4', we assume that $\operatorname{dim}_{\mathbb{C}} E / \partial-\mathrm{gr} R^{\prime}<\infty$. Since $\partial-\mathrm{gr} w \in E_{i}$ if and only if $w \in B_{i}$ for any $w \in R^{\prime}$, it follows that $\operatorname{dim}_{\mathbb{C}} E_{i} / \partial-\mathrm{gr} B_{i}<\infty$ for all $i \geq 0$, and that there exists an $N>0$ such that $\operatorname{dim}_{\mathbb{C}} E_{i} / \partial-\operatorname{gr} B_{i}=\operatorname{dim}_{\mathbb{C}} E / \partial-\mathrm{gr} R^{\prime}$ for all $i \geq N$. Hence for each $i \geq 0$, there exists an integer $M_{i} \geq-1$ such that for each $m>M_{i}$ there exists a monic polynomial $p_{i, m}(x)$ of degree $m$ in $\mathbb{C}[x]$ such that $p_{i, m}(x) y^{i}$ is an element of $\partial-\operatorname{gr} B_{i}$. Furthermore, for $i \geq N$, we may assume that $M_{i}=-1$.

We have the following lemmas.

## Lemma 2.5

Suppose that $R^{\prime}$ satisfies the conditions of Proposition 2.4'. Suppose that $w=\left(\alpha x^{d}+f_{i+1}(x)\right) \partial^{i+1}+\cdots+f_{0}(x)$ is an element of $B_{i+1}$ where $\alpha \in \mathbb{C}-\{0\}$ and $\operatorname{deg} f_{i+1}(x)<d$. Then there exists a $w^{\prime} \in B_{i+1}$ such that $w^{\prime}=\left(\alpha x^{d}+g_{i+1}(x)\right) \partial^{i+1}+g_{i}(x) \partial^{i}+\cdots+g_{0}(x)$ and $\operatorname{deg} g_{k}(x) \leq M_{k}$ for each $k$ such that $i+1 \geq k \geq 0$.

Proof. - Let us use the following induction. Set $w_{-1}=w$. Suppose that

$$
\begin{aligned}
w_{k}=\left(a x^{d}+g_{i+1}(x)\right) \partial^{i+1}+\cdots & +g_{i-k}(x) \partial^{i-k} \\
& +f_{i-k-1}(x) \partial^{i-k-1}+\cdots+f_{0}(x)
\end{aligned}
$$

where $\operatorname{deg} g_{j}(x) \leq M_{j}$, is defined. There exists $b \in B_{i-k-1}$ such that $\partial-\mathrm{gr} b=\left(f_{i-k-1}-g_{i-k-1}\right) y^{i-k-1}$ where $\operatorname{deg} g_{i-k-1} \leq M_{i-k-1}$ by the
paragraph preceding the lemma. So we can define $w_{k+1}$ as $w_{k}-b$, and $w^{\prime}$ as $w_{i}$.

Let $P_{i}$ be the set of positive integers $m$ such that there exists a nonzero polynomial $q_{i, m}(x)$ of degree $m$ in $\mathbb{C}[x]$ with $q_{i, m}(x) y^{i} \in \partial$-gr $R^{\prime}$. Note that if $n$ is an integer such that $n>M_{i}$, then $n \in P_{i}$. By Lemma 2.5, it now follows that for each $m \in P_{i}$ there exists a monic polynomial $p_{i, m}(x)$ of degree $m \in \mathbb{C}[x]$ such that $b_{i, m}=p_{i, m}(x) \partial^{i}+g_{i-1}(x) \partial^{i-1}+\cdots+g_{0}(x)$ is an element of $B_{i}$ with $\operatorname{deg} g_{k}(x) \leq M_{k}$ for $i-1 \geq k \geq 0$. Furthermore, for $i \geq N$, we may assume that $p_{i, m}(x)=x^{m}$. Note that the set

$$
\left\{b_{i, m} \mid i \geq 0 \text { and } m \in P_{i}\right\}
$$

forms a basis for $R^{\prime}$ over $\mathbb{C}$, and

$$
\left\{p_{i, m}(x) y^{i} \mid i \geq 0 \text { and } m \in P_{i}\right\}
$$

forms a basis for $\partial-\operatorname{gr} R^{\prime}$ over $\mathbb{C}$. Thus if $w \in R^{\prime}$, with $\partial-\operatorname{gr} w=f(x) y^{i}$, then for $i>k \geq 0$, there exist $f_{k}(x) \in \mathbb{C}[x]$ with $\operatorname{deg} f_{k}(x) \leq M_{k}$, such that $f(x) \partial^{i}+f_{i-1}(x) \partial^{i-1}+\cdots+f_{0}(x)$ is an element of $R^{\prime}$.

Set $M=\max \left\{M_{k} \mid N>k \geq 0\right\}$. Then we may assume that $b_{i, m}=p_{i, m}(x) \partial^{i}+w_{i, m}$ with $\partial-\operatorname{deg} w_{i, m}<\min (i, N)$ and $x-\operatorname{deg} w_{i, m} \leq M$.

## Lemma 2.6

Assume that $R^{\prime}$ satisfies the conditions of Proposition $2.4^{\prime}$. For each $m \geq 0$, there exists a positive integer $S_{m}$ such that for all $i \geq S_{m}$, there is an element $c_{i, m}$ in $R^{\prime}$ of the form $p_{i, m}(x) \partial^{i}+t_{i, m}$ with $\operatorname{deg} p_{i, m}(x)=m$ and $\partial-\operatorname{deg} t_{i, m}<i$ and $x-\operatorname{deg} t_{i, m} \leq m$. If $m>M$ we may set $S_{m}=0$.

Proof. - If $m>M$, then we may take $c_{i, m}=b_{i, m}$. So we may assume that $m \leq M$. Consider the subset $\left\{b_{i, m}=p_{i, m}(x) \partial^{i}+w_{i, m} \mid i \geq 0\right\}$ of $R^{\prime}$. Let $E_{M, N}=\{r \in E \mid x-\operatorname{deg} r \leq M$ and $y-\operatorname{deg} r \leq N\}$, and let $V$ be the vector space spanned by $\left\{w_{i, m} \mid i \geq 0\right\}$. Set $W=\{x-\mathrm{gr} w \mid w \in V\} \cap E$. Note that $W$ is a subspace of $E_{M, N}$. It is clear that $E_{M, N}$ and hence $W$ is a finite dimensional subspace of $E$. So there is an $S_{m}>0$ such that $W$ is spanned by a subset of

$$
\left\{x-\operatorname{gr} w \mid w \text { is in the span of the set }\left\{w_{i, m} \mid S_{m} \geq i \geq 0\right\}\right\}
$$

It follows that for $i>S_{m}$, there exist complex numbers $\alpha_{k, m}$ for $S_{m} \geq k \geq 0$ such that

$$
\begin{gathered}
x-\operatorname{deg}\left(w_{i, m}-\sum_{k=0}^{S_{m}} \alpha_{k, m} w_{k, m}\right)<0 \quad \text { and } \\
\partial-\operatorname{deg}\left(w_{i, m}-\sum_{k=0}^{S_{m}} \alpha_{k, m} w_{k, m}\right)<0 .
\end{gathered}
$$

tome $118-1990-\mathrm{N}^{\circ} 2$

We may now set $c_{i, m}=b_{i, m}-\sum_{k=0}^{S_{m}} \alpha_{k, m} b_{k, m}$.
The next corollary follows immediately from Lemma 2.6 .
Corollary 2.7. - We have $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / x-\mathrm{gr} R^{\prime}<\infty$.
Lemma 2.8
Let $W$ be a linear subspace of $A_{1}$. Then $\operatorname{dim}_{\mathbb{C}} W=\operatorname{dim}_{\mathbb{C}} \operatorname{gr}_{\alpha, \beta} W$.
Proof. - Suppose that $W$ is a vector space and that

$$
\left\{W_{i} \mid i \text { is an integer }\right\}
$$

is a filtration for $W$ such that the vector spaces $W_{i}=0$ for $i<0$ and $W=\bigcup_{i>0} W_{i}$. Then clearly $W$ and $\bigoplus W_{i} / W_{i-1}$ are isomorphic as vector spaces. Hence $\operatorname{dim}_{\mathbb{C}} W=\operatorname{dim}_{\mathbb{C}} \bigoplus W_{i} / W_{i-1}$. In particular if $W$ is a linear subspace of $A_{1}$, then $\operatorname{dim}_{\mathbb{C}} W=\operatorname{dim}_{\mathbb{C}} \operatorname{gr}_{\alpha, \beta} W$.

We are now ready to prove Proposition $2.4^{\prime}$.
Proof of Proposition 2.4 . - Note that $R^{\prime}$ is a linear subspace of $\mathbb{C}[x, \partial]$. Hence, it follows from the definition of $\mathrm{gr}_{\alpha, \beta} R^{\prime}$ that $\mathrm{gr}_{\alpha, \beta} R^{\prime}$ is a linear subspace of $\operatorname{gr}_{\alpha, \beta} \mathbb{C}[x, \partial]$. Thus we only need to prove the statement about dimensions.

Set $V_{n}=\left\{x^{i} y^{j} \mid \alpha i+\beta j \leq n\right\}$ for all $n \geq 0$. Note that each $V_{n}$ has finite dimension and that $\bigcup_{n \geq 0} V_{n}=\mathbb{C}[x, y]$. Set $W_{n}=\left\{w \in R^{\prime} \mid \operatorname{gr}_{\alpha, \beta} w \in V_{n}\right\}$. Since $\operatorname{gr}_{\alpha, \beta} R^{\prime} \subset \mathbb{C}[x, y]$, we have that $\bigcup_{n \geq 0} W_{n}=R^{\prime}$. Suppose that $w \in W_{n}$. We can write $w=p(x) \partial^{k}+c$ for some $p(x) \in \mathbb{C}[x]$ and $k \geq 0$ such that $\partial-\operatorname{deg}(c)<k$ and $\alpha \operatorname{deg} p(x)+\beta k \leq n$. So $\partial-\operatorname{gr} w=p(x) y^{k}$ is also in $V_{n}$. Thus $\partial$-gr $W_{n} \subset V_{n}$ for all $n \geq 0$.

Set $L=\alpha M+\beta N$. We will show that $\partial-\mathrm{gr} W_{n}=\partial-\mathrm{gr} R^{\prime} \cap V_{n}$ for all $n \geq$ $L$. Since $\partial-\operatorname{gr} W_{n} \subset V_{n}$, it is clear that $\partial-\operatorname{gr} W_{n} \subset \partial-\operatorname{gr} R^{\prime} \cap V_{n}$. Suppose $\partial-\operatorname{gr} w=p(x) y^{j}$ is an element of $\partial-\operatorname{gr} R^{\prime} \cap V_{n}$. So $\alpha \operatorname{deg} p(x)+\beta j \leq n$. By Lemma 2.5, we may find in $R^{\prime}$ an element $w=p(x) \partial^{j}+g_{N}(x) \partial^{N}+\cdots+$ $g_{0}(x)$ and $\operatorname{deg} g_{k}(x) \leq M_{k}$ for each $k$ such that $N \geq k \geq 0$. Now

$$
V_{\alpha, \beta}\left(g_{N}(x) \partial^{N}+\cdots+g_{0}(x)\right) \leq \alpha M+\beta N=L
$$

Hence $V_{\alpha, \beta}(w) \leq \max \{\alpha \operatorname{deg} p(x)+\beta j, L\}$. If $\alpha \operatorname{deg} p(x)+\beta j>L$, then $V_{\alpha, \beta}(w)=\alpha \operatorname{deg} p(x)+\beta j \leq n$ since $p(x) y^{j}$ is an element of $V_{n}$. Hence $w \in W_{n}$. If $\alpha \operatorname{deg} p(x)+\beta j \leq L$, then $V_{\alpha, \beta}(w) \leq L \leq n$, hence again $w \in W_{n}$. Therefore $\partial-\operatorname{gr} W_{n}=\partial-\operatorname{gr} R^{\prime} \cap V_{n}$ for all $n \geq L$.

Since $W_{n}$ is a linear subspace of $\mathbb{C}[x, \partial]$, by Lemma 2.8 , we have that

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}} W_{n}=\operatorname{dim}_{\mathbb{C}} \partial-\operatorname{gr} W_{n} \text { and } \\
\operatorname{dim}_{\mathbb{C}} W_{n}=\operatorname{dim}_{\mathbb{C}} \operatorname{gr}_{\alpha, \beta} W_{n}
\end{gathered}
$$

Furthermore, for all $n \geq L$, we have that $\operatorname{dim}_{\mathbb{C}} \partial-g r R^{\prime} \cap V_{n}=\operatorname{dim}_{\mathbb{C}} W_{n}=$ $\operatorname{dim}_{\mathbb{C}} \operatorname{gr}_{\alpha, \beta} W_{n}$. Since $\operatorname{dim}_{\mathbb{C}} V_{n}$ is finite, it follows that $\operatorname{dim}_{\mathbb{C}} V_{n} / \partial-\operatorname{gr} R^{\prime} \cap$ $V_{n}=\operatorname{dim}_{\mathbb{C}} V_{n} / \operatorname{gr}_{\alpha, \beta} W_{n}$ for all $n \geq L$. Clearly

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \partial-\operatorname{gr} R^{\prime}=\lim _{n \rightarrow \infty} \operatorname{dim}_{\mathbb{C}} V_{n} / \partial-\mathrm{gr} R^{\prime} \cap V_{n} \quad \text { and } \\
\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \operatorname{gr}_{\alpha, \beta} R^{\prime}=\lim _{n \rightarrow \infty} \operatorname{dim}_{\mathbb{C}} V_{n} / \operatorname{gr}_{\alpha, \beta} W_{n}
\end{gathered}
$$

Therefore $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \partial-\mathrm{gr} R^{\prime}=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \operatorname{gr}_{\alpha, \beta} R^{\prime}$.
By Corollary 2.7, we have that $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / x-\mathrm{gr} R^{\prime}<\infty$. So we may apply the first part of the proof with $x$ replaced by $\partial$ and vice versa to show that $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / x$-gr $R^{\prime}=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \mathrm{gr}_{\alpha, \beta} R^{\prime}$ which completes the proof of Proposition 2.4 and therefore of Proposition 2.4.

Recall that $\operatorname{codim} R$ is defined to be $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \partial-\mathrm{gr} R$. Proposition 2.4 implies that $\operatorname{codim} R=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[x, y] / \operatorname{gr}_{\alpha, \beta} R$ for any two nonnegative not both zero real numbers $\alpha$ and $\beta$. We will eventually show that $\operatorname{codim} R$ is an invariant of $R$.

## 3. Ad-Nilpotent subalgebras of $D(X)$

Suppose that $D(X) \cong D(Y)$. Then $D(X)$ contains a maximal commutative ad-nilpotent subalgebra isomorphic to $O(Y)$. So it is interesting to understand the maximal commutative ad-nilpotent subalgebras of $D(X)$. Let $D$ denote the quotient field of the first Weyl algebra, $A_{1}$. In this section, we show that if $B$ is a maximal commutative ad-nilpotent subalgebra of $D(X)$, then there exists an element $b \in D$ such that $B$ is a subring of $\mathbb{C}[b]$.

Lemma 3.1. - Suppose that $R$ is a subalgebra of $D$ so that the quotient ring of $R$ is $D$, and that $u$ is an element of $D-\mathbb{C}$ that acts ad-nilpotently on $R$. Then there exists $a v \in D$ such that $[u, v]=1$. Furthermore, for any $v \in D$ such that $[u, v]=1$, we have $R \subset C_{D}(u)[v]$ where $C_{D}(u)$ denotes the centralizer of $u$ in $D$.

Proof. - Define $R_{0}=C_{D}(u)$ and $R_{i}=\left\{z \in D \mid[z, u] \in R_{i-1}\right\}$.
Now $R \subset \bigcup_{i \geq 0} R_{i}$ since $u$ acts ad-nilpotently on $R$. Let $a$ be a nonzero element of $R_{1}-R_{0}$. (Note that $R_{1}-R_{0}$ is nonempty since $u \notin \mathbb{C}$ and $\mathbb{C}$ is the center of $R$.) Then $0 \neq[u, a]=b \in R_{0}$. So $\left[u, b^{-1} a\right]=b^{-1}[u, a]=1$. Set $v=b^{-1} a$.

Clearly $R_{0} \subset C_{D}(u)$. We will show by induction on $i$ that

$$
R_{i} \subset C_{D}(u) v^{i}+\cdots+C_{D}(u) \text { for all } i \geq 0
$$

tome $118-1990-\mathrm{N}^{\circ} 2$

Assume that $R_{i-1} \subset C_{D}(u) v^{i-1}+\cdots+C_{D}(u)$ and choose $z \in R_{i}$. Then $[z, u] \in R_{i-1}$, hence $[z, u]=\sum_{0 \leq m \leq i-1} f_{m}(u) v^{m}$. Then

$$
\left[z-\sum_{0 \leq m \leq i-1} f_{m}(u) \frac{v^{m+1}}{m+1}, u\right]=0
$$

Hence $z-\sum_{0 \leq m \leq i-1} f_{m}(u) v^{m+1} /(m+1) \in C_{D}(u)$. Therefore

$$
z \in C_{D}(u) v^{i}+\cdots+C_{D}(u) .
$$

We may define the graded algebra $v-\operatorname{gr} C_{D}(u)[v]$ by setting $v-\operatorname{gr} a=$ $u_{i} w^{i}$ where $a=u_{i} v^{i}+\cdots+u_{0}$ is an element of $C_{D}(u)[v]$ with $u_{k} \in C_{D}(u)$ for $i \geq k \geq 0$.

We will show that $C_{D}(u)$ is in fact a rational function field in one variable.

The next lemma is well known. See for example [3, Corollary 3.2].
Lemma 3.2. - If $f \in D-\mathbb{C}$ then $C_{D}(f)$ is commutative.
Lemma 3.3. - If $u \in D$ acts ad-nilpotently on $R$, where $R$ is a subalgebra of $D$ such that the quotient ring of $R$ is $D$, then there exists $z \in D$ such that $C_{D}(u)$ is isomorphic to a rational function field $\mathbb{C}(z)$.

Proof. - Let us call an element $a \in D$ ad-nilpotent if it acts adnilpotently on some subalgebra $R(a)$ of $D$ such that the quotient ring of $R(a)$ is $D$. By Lemma 3.1, there exists an element $v \in D$ such that $[v, u]=1$ and $D=C_{D}(u)(v)$.

We will first assume that there exists an ad-nilpotent element $a$ of $D$ with $v-\operatorname{deg} a \neq 0$. Now for each element $c \in C_{D}(u)$, there exists elements $c_{1}=c_{1}(c)$ and $c_{2}=c_{2}(c)$ in $R(a)$ such that $c=c_{1} c_{2}^{-1}$. It is clear that $v$-gr $a$ acts nilpotently by Poisson bracket action on $v$-gr $c_{1}$ and $v$-gr $c_{2}$. Let $v-\operatorname{gr} a=a_{0} w^{n}, v-\operatorname{gr} c_{1}=c_{1,0} w^{m}$, and $v-\mathrm{gr} c_{2}=c_{2,0} w^{m}$. (Since $c \in C_{D}(u)$, it is clear that $v-\operatorname{deg} c_{1}=v-\operatorname{deg} c_{2}$.)

By the same arguments as in [5, Lemma 7], there exists an element $b$ in the algebraic closure of $C_{D}(u)$ such that $c_{1,0} w^{m}=\left(a_{0} w^{n}\right)^{m / n} p_{1}(b)$ and $c_{2,0} w^{m}=\left(a_{0} w^{n}\right)^{m / n} p_{2}(b)$ where $p_{1}(b)$ and $p_{2}(b)$ are polynomials.

Since $v-\operatorname{deg} c=0$, we have that $c=c_{1} c_{2}^{-1}=c_{1,0} c_{2,0}^{-1}=p_{1}(b)\left(p_{2}(b)\right)^{-1}$. Therefore $C_{D}(u) \subset \mathbb{C}(b)$. By Luroth's theorem, $C_{D}(u)$ is isomorphic to a field of rational functions in one variable.

Now assume that $v-\operatorname{deg} a=0$ for all ad-nilpotent elements. Consider the standard generators $x$ and $\partial$ for $D$. These are ad-nilpotent elements of $D$ since they act ad-nilpotently on $\mathbb{C}[x, \partial]$. Therefore $1=[\partial, x]$ has negative $v$-degree which is impossible.

## 4. Codim is an invariant of $D(X)$

In this section $R=D(X)$ for a curve $X$ satisfying the conditions of the introduction. Suppose that $u$ and $v$ are elements of $D$ with commutator $[v, u]=1$ such that $D(X) \subset \mathbb{C}(u)[v]$ and $v-\operatorname{gr} D(X)$ is a subring of the polynomial ring in two generators, $u=v-\operatorname{gr} u$ and $w=v-\operatorname{gr} v$. We may define $\operatorname{codim}_{u, v} D(X)$ as $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[u, w] / v-\mathrm{gr} D(X)$. In this section, we will show that $\operatorname{codim}_{u, v} D(X)=\operatorname{codim} D(X)$. So codim does not depend on the embedding of $D(X)$ inside of $\mathbb{C}(x)[\partial]$.

Note that $u$-gr $\mathbb{C}[u, v]$ and $v$-gr $\mathbb{C}[u, v]$ are isomorphic polynomial rings. We will identify these isomorphic rings and thus write $u-\mathrm{gr} u=v-\mathrm{gr} u=u$ and $u$-gr $v=v-\mathrm{gr} v=w$.

Lemma 4.1. - Suppose that $R \subset \mathbb{C}(u)[v] \subset D$, where $[v, u]=1$, such that the quotient ring of $R$ is $D$, the graded algebra $v-\operatorname{gr} R$ is a subset of $\mathbb{C}[u, w]$, and $\operatorname{codim}_{u, v} R$ is finite. Then there exist elements $u^{\prime}$ and $v^{\prime}$ of $D$ such that $u-\operatorname{gr} v^{\prime}=w$ and $u$-gr $u^{\prime}=-u$, the commutator $\left[u^{\prime}, v^{\prime}\right]$ is 1 , and the ring $R$ is a subring of $\mathbb{C}\left(v^{\prime}\right)\left[u^{\prime}\right]$. Moreover, there is an isomorphism from $u^{\prime}-\mathrm{gr} \mathbb{C}\left[u^{\prime}, v^{\prime}\right]$ to $u-\mathrm{gr} \mathbb{C}[u, v]$ which restricts to an isomorphism from the graded algebra $u^{\prime}-\mathrm{gr} R$ to $u$-gr $R$, and $\operatorname{codim}_{v^{\prime}, u^{\prime}} R=\operatorname{codim}_{u, v} R$.

Proof. - Define subalgebras $R_{i}$ of $R$ for $i \geq 0$ as follows :

$$
R_{i}=\{z \in R \mid u-\operatorname{deg}(z) \leq 1\} .
$$

(The following argument is similar to [8, Theorem 2.7].) Now

$$
u-\operatorname{gr}\left[f(v) u^{i}, g(v)\right]=u-\operatorname{gr}\left(-i f(v) g^{\prime}(v) u^{i-1}\right) \quad \text { for } i \geq 0
$$

Also $u$-gr $R$ is a subset of $\mathbb{C}[u, w]$ by Lemma 2.1. Hence, it is easy to see that $R_{0}$ is a maximal commutative ad-nilpotent subalgebra of $R$. Furthermore the map which sends $z$ to $u-\mathrm{gr} z$ is an isomorphism of $R_{0}$ to $u$-gr $R_{0}=u$-gr $R \cap \mathbb{C}[w]$. By assumption, $\operatorname{codim}_{u, v} R<\infty$, hence $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[w] / u$-gr $R_{0}<\infty$. So the integral closure of $u$-gr $R_{0}$ is $\mathbb{C}[w]$, and thus the integral closure of $R_{0}$ is $\mathbb{C}\left[v^{\prime}\right]$ for some $v^{\prime} \in D$ with $u$-gr $v^{\prime}=w$ and $R_{0}=R \cap \mathbb{C}\left[v^{\prime}\right]$ for some $v^{\prime} \in D$ with $u-\operatorname{gr} v^{\prime}=w$ and $R_{0}=R \cap \mathbb{C}\left[v^{\prime}\right]$. Note that $u$-gr $p\left(v^{\prime}\right)=p(w)$ for any polynomial $p(t) \in \mathbb{C}[t]$.

By Lemma 3.3, $C_{D}\left(v^{\prime}\right)$ is a rational function field in one variable. Let us check that $C_{D}\left(v^{\prime}\right)=\mathbb{C}\left(v^{\prime}\right)$. Let $f \in C_{D}\left(v^{\prime}\right)$. Then $u-\operatorname{deg} f=0$, because otherwise $\left[v^{\prime}, f\right] \neq 0$, and $u$-gr $f=r(w)$ where $r(w) \in \mathbb{C}(w)$. Therefore $f=r\left(v^{\prime}\right)+f_{1}$ where $u-\operatorname{deg} f_{1}<0$. But $f_{1} \in C_{D}(u)$ and can not have a negative degree. Hence $f_{1}$ is 0 . Now, according to Lemma 3.1, there exists a $u^{\prime} \in D$ such that $\left[u^{\prime}, v^{\prime}\right]=1$ and $R \subset \mathbb{C}\left(v^{\prime}\right)\left[u^{\prime}\right]$.
tome $118-1990-\mathrm{N}^{\circ} 2$

Suppose that $u-\operatorname{gr} u^{\prime}=f(w) u^{i}$. Since $u-\operatorname{gr} v^{\prime}=w$, we must have $u-\operatorname{gr}\left[u^{\prime}, v^{\prime}\right]=-i f(w) u^{i-1}$ unless $i=0$. If $i=0$, then either $\left[u^{\prime}, v^{\prime}\right]=$ 0 or $u$ - $\operatorname{deg}\left[u^{\prime}, v^{\prime}\right]<-1$. Since $\left[u^{\prime}, v^{\prime}\right]=1$, it follows that $i \neq 0$. Hence $-i f(w) u^{i-1}$ must equal 1. Therefore $i=1$ and $f(w)=-1$ and $u$-gr $u^{\prime}=-u$.

Suppose that $z$ is an element of $R \subset \mathbb{C}\left(v^{\prime}\right)\left[u^{\prime}\right]$. We may write $z=f\left(v^{\prime}\right)\left(u^{\prime}\right)^{j}+e$ where $u^{\prime}-\operatorname{deg} e<j$, and $f\left(v^{\prime}\right)$ is a polynomial, and $j \geq 0$. Since $u-\operatorname{deg} v^{\prime}=0$ and $u-\operatorname{deg} u^{\prime}=1$, we must have that $u$-deg $e<j$ and $u$-gr $z=u$-gr $f\left(v^{\prime}\right)\left(u^{\prime}\right)^{j}$. Since $u$-gr $f\left(v^{\prime}\right)=f(w)$ and $u-\mathrm{gr} u^{\prime}=-u$, it follows that $u-\mathrm{gr} z=f(w)(-u)^{j}$. Hence the isomorphism from $u^{\prime}-\mathrm{gr} \mathbb{C}\left[u^{\prime}, v^{\prime}\right]$ to $u-\operatorname{gr} \mathbb{C}[u, v]$ which sends $u^{\prime}-\mathrm{gr} u^{\prime}$ to $u-\operatorname{gr} u^{\prime}=-u$ and $u^{\prime}-\operatorname{gr} v^{\prime}$ to $u$-gr $v^{\prime}=w$ restricts to an isomorphism from $u^{\prime}$-gr $R$ to $u$-gr $R$. Since $\operatorname{codim}_{u, v} R$ is finite, by Proposition 2.4, we have that $\operatorname{codim}_{u, v} R=\operatorname{dim}_{\mathbb{C}} \mathbb{C}[u, w] / u$-gr $R$. It follow immediately that $\operatorname{codim}_{u, v} R=\operatorname{codim}_{v^{\prime}, u^{\prime}} R$.

For the next three lemmas, assume that $R$ is a subring of $\mathbb{C}(u)[v] \subset D$, where $u$ and $v$ are elements of $D$ whose commutator is 1 , and that $v$-gr $R \subset \mathbb{C}[u, w]$ with $\operatorname{codim}_{u, v} R<\infty$. Write $R_{0}$ for the ad-nilpotent subalgebra $\{z \in R \mid u$-gr $z=0\}$. We may define valuations $V_{\alpha, \beta}$ and corresponding graded algebras on $R$ as in Section 1 using $u$ and $v$ instead of $x$ and $\partial$. For example, $V_{\alpha, \beta}\left(u^{i} v^{j}\right)=\alpha i+\beta j$.

Lemma 4.2. - Suppose that $r$ is an ad-nilpotent element of $R$ that is not contained in $\mathbb{C}(u)$ and is not contained in $R_{0}$. Then there exist positive integers $n$ and $m$ and complex numbers $\lambda$ and $\gamma$ such that $u-\operatorname{gr} r=(\lambda u)^{n}$ and $v-\mathrm{gr} r=(\gamma w)^{m}$. Furthermore, $V_{m, n}(r)=m n$.

Proof. - Since $r$ is not an element of $\mathbb{C}(u)$ and is not an element of $R_{0}$, it follows that $u-\operatorname{deg} r>0$ and $v-\operatorname{deg} r>0$. We will argue as in [2, Lemma 8.7]. We may write

$$
r=\sum_{i \geq 0, j \geq 0} \sigma_{i, j} u^{i} v^{j}+f_{k}(u) v^{k}+\cdots+f_{0}(u)
$$

where $\operatorname{deg} f_{j}(u)<0$ for $k \geq j \geq 0$. Clearly, $v-\operatorname{deg} r>k$. Let $n$ be the smallest nonnegative integer such that $\sigma_{j, 0}=0$ for all $j>n$. Let $m$ be the smallest nonnegative integer such that $\sigma_{0, k}=0$ for all $k>m$. We claim that $\sigma_{i, j}=0$ for all pairs $i, j$ such that $m i+n j>m n$.

Assume the claim is false. Then there exist positive real numbers $\alpha$ and $\beta$ and a pair of positive integers $i$ and $j$ with $\sigma_{i, j} \neq 0$, such that $\operatorname{gr}_{\alpha, \beta} r=\sigma_{i, j} u^{i} w^{j}$. Without loss of generality, $\sigma_{i, j}=1$. First assume $i \geq j$.

Now there exists a monic polynomial $p(t)$ such that $p(u) \in R$. Since both $\alpha$ and $\beta$ are positive, we have that $\operatorname{gr}_{\alpha, \beta} p(u)=u^{d}$ where $d=\operatorname{deg} p(u)$. Note that $\operatorname{gr}_{\alpha, \beta}[r, p(u)]=d j u^{i-1+d} w^{j-1}$. Suppose that

$$
\operatorname{gr}_{\alpha, \beta} \operatorname{ad}_{r}^{k}(p(u))=\alpha_{k} u^{k(i-1)+d} w^{k(j-1)}
$$

Then

$$
\begin{aligned}
& \operatorname{gr}_{\alpha, \beta} \operatorname{ad}_{r}^{k+1}(p(u))= \\
& \quad \alpha_{k}[(k(i-1)+d) j-i k(j-1)] u^{(k+1)(i-1)+d} w^{(k+1)(j-1)} .
\end{aligned}
$$

Now $(k(i-1)+d) j-i k(j-1)=(i-j) k+d j>0$ for all $k \geq 0$ since $i \geq j$. This contradicts the fact that $r$ is ad-nilpotent.

Now assume that $i<j$. Consider a nonconstant element $z \in R_{0}$. Recall that $R_{0}$ sits inside a polynomial algebra $\mathbb{C}\left[v^{\prime}\right]$ where $v^{\prime} \in D$ where $u$-gr $v^{\prime}=w$. So $z=q\left(v^{\prime}\right)$ for some nonconstant polynomial $q(t)$. Since both $\alpha$ and $\beta$ are positive, it follows that $\mathrm{gr}_{\alpha, \beta} z=w^{k}$ where $k=\operatorname{deg} q(t)$. The argument now follows as in the preceding paragraph.

We have shown that $\sigma_{i, j}=0$ for all pairs of positive integers $i$ and $j$ such $m i+n j>n m$. In particular, $u-\mathrm{gr} r=\sigma_{n, 0} u^{n}$, and $v-\mathrm{gr} r=\sigma_{0, m} w^{m}$, and $V_{m, n}(r)=m n$.

Lemma 4.3. - Suppose that $r$ is an ad-nilpotent element of $R$ that is not contained in $\mathbb{C}(u)$ and is not contained in $R_{0}$. Set $n=u-\operatorname{deg} r$ and $m=v-\operatorname{deg} r$. Then one of the following two statements hold where $\lambda, \lambda^{\prime}, \gamma, \gamma^{\prime}$ are elements of $\mathbb{C}$, and $i$ is an integer such that $n \geq i \geq 0$.
(1) If $n \geq m$, then $n$ is a multiple of $m$ and

$$
\mathrm{gr}_{m, n} r=\left((\lambda u)^{n / m}+\gamma w\right)^{m} .
$$

(2) If $m>n$, then $m$ is a multiple of $n$ and

$$
\operatorname{gr}_{n, m} r=\left(\lambda u+(\gamma w)^{m / n}\right)^{n}
$$

Proof. - By Lemma 4.2, both $n$ and $m$ are positive. So there exist nonzero complex numbers $\sigma_{1}$ and $\sigma_{2}$ such that $u-\mathrm{gr} r=\sigma_{1} u^{n}$ and $v-\mathrm{gr} r=$ $\sigma_{2} w^{m}$. Now by Lemma 2.1, $\operatorname{gr}_{m, n} R \subset \mathbb{C}[u, w]$, and by Proposition 2.4, $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[u, w] / \operatorname{gr}_{m, n} R<\infty$. Hence we may apply the arguments of [2, Lemma 7.3] to the ad-nilpotent element $r$ of $R$.

In the next lemma, we will show that $\operatorname{codim} R$ is independent of the choice of generator for $\mathbb{C}(u)$.

```
tome 118-1990- No 2
```

Lemma 4.4. - Suppose that $u_{1}$ and $v_{1}$ are elements of $D$ whose commutator is 1 such that $\mathbb{C}(u)=\mathbb{C}\left(u_{1}\right)$, the ring $R$ is a subring of $\mathbb{C}\left(u_{1}\right)\left[v_{1}\right] \subset D$, and that $v_{1}-\operatorname{gr} R \subset \mathbb{C}\left[u_{1}, w_{1}\right]$ with $\operatorname{codim}_{u_{1}, v_{1}} R<\infty$. Then $\operatorname{codim}_{u, v} R=\operatorname{codim}_{u_{1}, v_{1}} R$.

Proof. - Set $B=R \cap \mathbb{C}(u)=R \cap \mathbb{C}[u]$. Since $\mathbb{C}\left(u_{1}\right)=\mathbb{C}(u)$ and $v_{1}-\operatorname{gr} R \subset \mathbb{C}\left[u_{1}, w_{1}\right]$, we have that $B=R \cap \mathbb{C}\left(u_{1}\right)=R \cap \mathbb{C}\left[u_{1}\right]$. By assumption, both $\operatorname{codim}_{u, v} R$ and $\operatorname{codim}_{u_{1}, v_{1}} R$ are finite. Hence both $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[u] / B$ and $\operatorname{dim}_{\mathbb{C}} \mathbb{C}\left[u_{1}\right] / B$ are finite. Therefore the integral closure of $B$ in $\mathbb{C}(u)$ is $\mathbb{C}[u]$ and is also $\mathbb{C}\left[u_{1}\right]$. So $\mathbb{C}[u]=\mathbb{C}\left[u_{1}\right]$ and there exist integers $\alpha$ and $\beta$ such that $u=\alpha u_{1}+\beta$. Since $\left[v_{1}, u_{1}\right]=1$, we have that $\left[\alpha v-v_{1}, u\right]=0$. So $v+g(u)=\alpha^{-1} v_{1}$ for some $g(u) \in \mathbb{C}(u)$. Set $v_{2}=v+g(u)$. Note that $\left[v_{2}, u\right]=1$ and $R \subset \mathbb{C}(u)\left[v_{2}\right]$. Now $f(u) v^{i}=f(u)\left(v_{2}-g(u)\right)^{i}$, hence $v-\operatorname{gr} R=v_{2}$-gr $R$ and $\operatorname{codim}_{u, v} R=$ $\operatorname{codim}_{u, v_{2}} R$. Without loss of generality, we may assume that $v=v_{2}$ and that $v=\alpha^{-1} v_{1}$. The isomorphism of $\mathbb{C}[u, w]$ to $\mathbb{C}\left[u_{1}, w_{1}\right]$ which sends $u$ to $\alpha u_{1}$ and $w$ to $\alpha^{-1} w_{1}$ clearly induces an isomorphism from $v$-gr $R$ to $u$-gr $R$. The result now follows.

We are now ready to show that $\operatorname{codim} D(X)$ is an invariant of $D(X)$.
Theorem 4.5. - Suppose that $X$ is an affine curve such that the normalization of $X$ is the affine line, with the normalization map $\pi$ : $\widetilde{X} \rightarrow X$ injective. Then for any pair of elements $u$ and $v$ in $D$, such that $[v, u]=1$, the ring $D(X)$ is a subring of $\mathbb{C}(u)[v]$, and $v-\operatorname{gr} D(X)$ is a subring of the polynomial ring with generators $v-\operatorname{gr} u$ and $v-\mathrm{gr} v$, we have that $\operatorname{codim}_{u, v} D(X)=\operatorname{codim} D(X)$.

Proof. - Now $D(X)$ is a subring of $\mathbb{C}(x)[\partial]$ and $\operatorname{codim} D(X)=$ $\operatorname{codim}_{x, \partial} D(X)$. Assume that $u$ and $v$ are elements of $D$ such that $[v, u]=1$, the ring $D(X)$ is a subring of $\mathbb{C}(u)[v]$, and $v-\mathrm{gr} D(X)$ is a subring of the polynomial ring $\mathbb{C}[u, w]$ where $v-\operatorname{gr} u=u$ and $v-\operatorname{gr} v=w$. Let $r$ be a nonconstant ad-nilpotent element of $D(X)$ contained inside $\mathbb{C}(u)$. Set $x-\operatorname{deg} r=n$ and $\partial-\operatorname{deg} r=m$. We will induct on $t=m+n$.

If $m=0$, then $r$ is an element of $\mathbb{C}(x)$ and the result now follows by Lemma 4.4.

If $n=0$, then $r$ is an element of $\{z \in D(X) \mid x-\operatorname{deg} z=0\}$, and the result follows from Lemma 4.1 and Lemma 4.4. Hence the theorem holds for $t=0$.

So we may assume that both $n$ and $m$ are positive.
First assume that $n \geq m$. By Lemma 4.3, $n$ is a multiple of $m$ and there exist elements $\lambda$, and $\gamma$ of $\mathbb{C}$ such that $\operatorname{gr}_{m, n} r=\left((\lambda x)^{n / m}+\gamma y\right)^{m}$. Hence

$$
r=\left((\lambda x)^{n / m}+\gamma \partial\right)^{m}+c
$$

where $V_{m, n}(c)<m n$ and $x-\operatorname{deg} c<n$ and $\partial-\operatorname{deg} c<m$. Set $\partial_{1}=$ $\partial-(\gamma)^{-1}(\lambda x)^{n / m}$ and $x_{1}=x$. Note that $\left((\lambda x)^{n / m}+\gamma \partial\right)^{m}=\left(\gamma \partial_{1}\right)^{m}$. Furthermore $(\partial)^{i}=\left(\partial_{1}+(\gamma)^{-1}\left(\lambda x_{1}\right)^{n / m}\right)^{i}$. It follows that $\partial_{1}-\operatorname{deg} c<m$ and $\partial_{1}-\operatorname{deg} r=m$. Also $x_{1}-\operatorname{deg} c \leq(m-1) n / m<n$. Since $r=$ $\left(\gamma \partial_{1}\right)^{m}+c$, we have that $x_{1}$ - $\operatorname{deg} r<n$. By Lemma $4.4, \operatorname{codim}_{x_{1}, \partial_{1}} D(X)=$ $\operatorname{codim}_{x, \partial} D(X)$. Now $\partial_{1}-\operatorname{deg} r+x_{1}-\operatorname{deg} r<t$, hence the result now follows by induction for this case.

Now assume that $n<m$. By Lemma 4.1, there exist elements $x_{1}$ and $\partial_{1}$ in $D$ such that $D(X) \subset \mathbb{C}\left(\partial_{1}\right)\left[x_{1}\right],\left[x_{1}, \partial_{1}\right]=1, x_{1}-\operatorname{gr} \partial=x_{1}-\operatorname{gr} \partial_{1}$, $x_{1}-\mathrm{gr} x=-x_{1}, x_{1}-\mathrm{gr} R \cong x$-gr $R$, and $\operatorname{codim}_{\partial_{1}, x_{1}} R=\operatorname{codim}_{x, \partial} R$. It follows that $x_{1}-\operatorname{deg} r=x-\operatorname{deg} r=n$. If $\partial_{1}-\operatorname{deg} r<m$, then the proof follows by induction.

Otherwise $\partial_{1}-\operatorname{deg} r \geq m>n$ and we may apply the methods used above repeatedly to find elements $\partial_{2}=\partial_{1}$ and $x_{2}=x_{1}+g\left(\partial_{1}\right)$ where $g\left(\partial_{1}\right) \in \mathbb{C}\left(\partial_{1}\right)$ such that $x_{2}-\operatorname{deg} r=n$ and $\partial_{2}-\operatorname{deg} r<m$. The proof again follows by induction.

We are now able to obtain a nice description of the maximal adnilpotent subalgebras of $D(X)$.

Corollary 4.6. - Suppose that $X$ is an affine curve such that the normalization of $X$ is the affine line, with the normalization map $\pi$ : $\widetilde{X} \rightarrow X$ injective. Suppose that $B$ is a maximal ad-nilpotent subalgebra of $D(X)$. Then there exists an element $u$ in $D$ such that $B$ is a commutative finitely generated algebra with integral closure $\mathbb{C}[u]$ and the centralizer of $B$ in $D(X)$ is the rational function field $\mathbb{C}(u)$.

Proof. - By Lemma 3.3 and Lemma 3.4, there exists $u$ in $D$ such that $C_{D}(B)=\mathbb{C}(u)$ and $B \subset \mathbb{C}[u]$. By Lemma 3.1, there exists $v$ in $D$ such that $D(X) \subset \mathbb{C}(u)[v]$. Recall that the set of ad-nilpotent elements of $D(X)$ is strictly larger than the maximal commutative ad-nilpotent subalgebra $O(X)$ of $D(X)$. Since $B$ is commutative, $B$ cannot contain all the ad-nilpotent elements of $D(X)$. Hence $D(X)$ contains an ad-nilpotent element $s$ not contained in $B$. By [8, Lemma 1.7], $v$-gr $s=\lambda w^{n}$ for some $\lambda \in \mathbb{C}$ and $n>0$. Since $s$ acts ad-nilpotently on $D(X)$, it is clear that $v$-gr $D(X) \subset \mathbb{C}[u, w]$. By Theorem $4.5, \operatorname{dim}_{\mathbb{C}} \mathbb{C}[u] / B$ is finite hence the integral closure of $B$ is $\mathbb{C}[u]$. By Eakin's theorem [6, Section 35], $B$ is finitely generated.

The invariant codim $D(X)$ can be used to distinguish rings of differential operators.

Corollary 4.7. - Suppose that $X$ and $Y$ are both affine curves with normalization equal to the affine line and with injective normalization

$$
\text { tome } 118-1990-\mathrm{N}^{\circ} 2
$$

maps. If $D(X) \cong D(Y)$, then $\operatorname{codim} D(X)=\operatorname{codim} D(Y)$.
Proof. - Consider both $D(X)$ and $D(Y)$ as subalgebras of $\mathbb{C}(x)[\partial]$ using the standard embedding. Let $\phi$ be an isomorphism which maps $D(Y)$ to $D(X)$. Set $u=\phi(x)$ and $v=\phi(\partial)$. Clearly $u$ and $v$ satisfy the conditions of Theorem 4.5. Therefore $\operatorname{codim} D(Y)=\operatorname{codim}_{u, v} D(X)=\operatorname{codim} D(X)$.

## 5. Examples

In this section, we will consider two families of curves. We will calculate codimensions to show that their rings of differential operators are mutually nonisomorphic.

Recall that $X$ is a monomial curve if $O(X)$ is generated by monomials $x^{k}$ as an algebra over $\mathbb{C}$. Let $\Lambda$ be the subset $\left\{k \mid x^{k} \in O(x)\right\}$ of the integers. Define the set $\Lambda-i$ to be $\{k-i \mid k \in \Lambda\}$ where $i$ is an integer. Musson gives a complete description of $D(X)$ in [7]. In particular,

$$
D(X)=\sum_{k \in \mathbf{Z}} x^{k} f_{k}(x \partial) \mathbb{C}[x \partial]
$$

where

$$
f_{k}(x \partial)=\prod_{\alpha \in \Lambda-(\Lambda-k)}(x \partial-\alpha)
$$

Let $X_{n}$ be the monomial curve with $O\left(X_{n}\right)=\mathbb{C}+x^{n} \mathbb{C}[x]$ as coordinate ring, where $n$ is a positive integer. Then by the previous paragraph, we have

$$
D\left(X_{n}\right)=\sum_{k \in \mathbb{Z}} x^{k} f_{k}(x \partial) \mathbb{C}[x \partial]
$$

where the polynomial $f_{i}$ is 1 for $i=0$ and $i \geq n$; the polynomial $f_{i}$ is $x \partial$ for $1 \leq i \leq n-1$; the polynomial $f_{i}$ is

$$
\text { (xд) } \prod_{n-i>k \geq n}(x \partial-k) \text { for }-1 \geq i \geq-(n-1)
$$

and the polynomial $f_{i}$ is

$$
\text { (xว) } \prod_{n \leq k<-i}(x \partial-k) \prod_{-i<k<n-i}(x \partial-k) \text { for } i \leq-n \text {. }
$$

Note that if $g(x \partial)$ is a monic polynomial in $\mathbb{C}[x \partial]$, then

$$
\partial-\operatorname{gr} g(x \partial)=x^{d} \partial^{d} \quad \text { where } d=\operatorname{deg} g(x \partial)
$$

Hence $\partial-\operatorname{gr} D\left(X_{n}\right)=\sum_{k \in \mathbb{Z}} g_{k} \mathbb{C}[x y]$ where

$$
\begin{aligned}
& g_{0}=1 ; \\
& g_{i}=x^{i+1} y \quad \text { for } 1 \leq i \leq n-1 ; \quad g_{i}=x^{i} \quad \text { for } i \geq n ; \\
& g_{i}=x y^{i+1} \quad \text { for }-n+1 \leq i \leq-1 ; \quad g_{i}=y^{i} \quad \text { for } i \leq-n .
\end{aligned}
$$

A basis for $\mathbb{C}[x, y] / \partial-\operatorname{gr} D\left(X_{n}\right)$ is just $x, x^{2}, \ldots, x^{n-1}, y, y^{2}, \ldots, y^{n-1}$. Therefore codim $D\left(X_{n}\right)=2(n-1)$. By Corollary 4.7, $D\left(X_{n}\right)$ is isomorphic to $D\left(X_{m}\right)$ if and only if $O\left(X_{n}\right) \cong O\left(X_{m}\right)$.

Now set $Y_{2 n}=\mathbb{C}+\mathbb{C} x^{2}+\cdots+\mathbb{C} x^{2 n} \mathbb{C}[x]$ for $n \geq 1$. A similar calculation shows that $\operatorname{codim} D\left(Y_{2 n}\right)=n(n+1)$. Therefore $D\left(Y_{2 n}\right) \cong D\left(Y_{2 m}\right)$ if and only if $O\left(Y_{2 n}\right) \cong O\left(Y_{2 m}\right)$.

Consider just the curves $X_{4}$ and $Y_{4}$. Now $O\left(X_{4}\right)=\mathbb{C}+x^{4} \mathbb{C}[x]$ and $O\left(Y_{4}\right)=\mathbb{C}+\mathbb{C} x^{2}+x^{4} \mathbb{C}[x]$. Clearly $O\left(X_{4}\right)$ is not isomorphic to $O\left(Y_{4}\right)$. But $\operatorname{codim} D\left(X_{4}\right)=\operatorname{codim} D\left(Y_{4}\right)=6$. Therefore codim does not distinguish between these two rings of differential operators. We should add that it has now been shown that $D\left(X_{4}\right)$ and $D\left(Y_{4}\right)$ are actually isomorphic rings even though $O\left(X_{4}\right)$ and $O\left(Y_{4}\right)$ are not isomorphic (see [4]).

## BIBLIOGRAPHY

[1] Amitsur (S.A.). - Commutative Linear Differential Operators, Pacific Journal of Mathematics, t. 8, 1958, p. 1-10.
[2] Dixmier (J.). - Sur les algèbres de Weyl, Bull. Soc. Math. France, t. 96, 1968, p. 209-242.
[3] Goodearl (K.). - Centralizers in Differential, Pseudodifferential, and Fractional Differential Operator Rings, Rocky Mountain Journal of Mathematics, t. 13, 1983, p. 573-618.
[4] Letzter (G.). - Non Isomorphic Curves with Isomorphic Rings of Differential Operators, preprint.
[5] Makar -Limanov (L.). - Rings of Differential Operators on Algebraic Curves, J. of the London Mathematical Society, t. 21, 1989, p. 538-540.
[6] Matsamura (H.). - Commutative Algebra. - W.A. Benjamin Co, New York, 1970.
[7] Musson (I.M.). - Some Rings of Differential Operators which are Morita Equivalent to the Weyl Algebra $A_{1}$, Proc. Amer. Math. Soc., t. 98, 1986, p. 29-30.
[8] Perkins (P.). - Commutative Subalgebras of the Ring of Differential Operators on a Curve, Pacific J. Math., t. 139, 1989, p. 279-302.
[9] Smith (S.P.) and Stafford (J.T.). - Differential Operators on an Affine Curve, Proc. London Math. Soc., t. 56, 1988, p. 229-259.
[10] Stafford (J.T.). - Endomorphisms of Right Ideals of the Weyl Algebra, Transactions of the AMS , t. 299, 1987, p. 623-639.


[^0]:    ${ }^{(*)}$ Supported by a grand from the National Science Foundation. Texte reçu le 29 juin 1989 , révisé le 11 mai 1990 .
    G. Letzter, L. Makar-Limanov, Dept. of. Mathematics, Wayne State University, Detroit, Michigan 48202, USA
    ${ }^{\dagger}$ G. Letzter has now found nonisomorphic curves $X$ and $Y$ with isomorphic rings of differential operators (see [4]).

