
BULLETIN DE LA S. M. F.

GAIL LETZTER

LEONID MAKAR-LIMANOV
Rings of differential operators over rational
affine curves
Bulletin de la S. M. F., tome 118, no 2 (1990), p. 193-209
<http://www.numdam.org/item?id=BSMF_1990__118_2_193_0>

© Bulletin de la S. M. F., 1990, tous droits réservés.

L’accès aux archives de la revue « Bulletin de la S. M. F. » (http:
//smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=BSMF_1990__118_2_193_0
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Bull. Soc. math. France,

118, 1990, p. 193-209.

RINGS OF DIFFERENTIAL OPERATORS OVER
RATIONAL AFFINE CURVES

BY

GAIL LETZTER, LEONID MAKAR-LIMANOV (*)

RESUME. — Soit X une courbe algebrique irreductible sur C dont la normalisee
est la droite affine et telle sur Ie morphisme de normalisation est injectif. Soit
D(X) Panneau des operateurs differentiels sur X. Nous etudions un invariant pour
1'anneau D(X) des operateurs differentiels sur X, note codimD(X). En particulier,
nous montrons que D(X) ^ D(Y) implique codimD(X) = codimD(y). Cela permet
de distinguer dans certains cas les anneaux d'operateurs differentiels de courbes non-
isomorphes. En outre, nous decrivons les sous-algebres ad-nilpotentes maximales de
D(X). Nous montrons que si B est une sous-algebre ad-nilpotente maximales de D(X),
alors B est un sous-anneau de type fini d'un C[b] ou b designe un element du corps des
fractions de D(X); de plus, la cloture integrale de B est C[b\.

ABSTRACT. — Let X be an irreducible algebraic curve over the complex num-
bers such that its normalization is the affine line, and the normalization map is in-
jective. Let D(X) denote its ring of differential operators. We find an invariant for
D(X) denoted as codimD(X). In particular, we show that D(X) ^ D(Y) implies
codimD(X) = codimD(y). This allows us to distinguish certain rings of differential
operators of non-isomorphic curves. We also describe the maximal ad-nilpotent subal-
gebras of D(X). We show that if B is a maximal ad-nilpotent subalgebra of D(X), then
B is a finitely generated subring of C[b] for some element b of the quotient field of D(X)
and the integral closure of B is C[b].

1. Introduction
Let X and Y be irreducible algebraic curves over the complex num-

bers, C. Let D(X) and D(Y) denote their ring of differential operators,
respectively. (For definition see [9]). This paper is motivated by the follow-
ing open question^ Does D(X) ̂  D(Y) imply that X ^ Y ? Let X denote

(*) Supported by a grand from the National Science Foundation. Texte recu Ie 29 juin
1989, revise Ie 11 mai 1990.
G. LETZTER, L. MAKAR-LIMANOV, Dept. of. Mathematics, Wayne State University,
Detroit, Michigan 48202, USA
'*' G. LETZTER has now found nonisomorphic curves X and Y with isomorphic rings of
differential operators (see [4]).
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194 G. LETZTER, L. MAKAR-LIMANOV

the normalization of X. MAKAR-LIMANOV [5] shows that the set of ad-
nilpotent elements N(X) is exactly 0(X) whenever 0{X) is not a subring
of a polynomial ring in one variable over C. He thus answers the question
affirmatively for these curves. Let A1 denote the affine line. PERKINS [8]
extends this result showing that D(X) ^ D(Y) implies X ^ Y whenever
X ̂  A1, or X = A1 but the normalization map TT : X —> X is not injec-
tive. Thus, in the paper, we are interested in curves X such that X ^ A1

and TT : X —> X is injective. STAFFORD [10] shows the conjecture holds
the following two examples of such curves : when X is the affine line A1,
or when X is the cubic cusp y2 = x3.

For the remainder of the paper, assume that X is a curve such that
its normalization is isomorphic to the affine line A1 with an injective
normalization map. We may therefore assume that the coordinate ring
of X, denoted 0(X), is a subring of a polynomial ring in one variable C[x]
such that the integral closure of 0(X), written 0(X), is equal to C [x].
Furthermore D{X) is a subring of C(rc)[9] where [9, x] = 1. Here 9
is just 9/9x and the element fn(x)9n + • • • + fo(x) of D(X) sends
g{x) C 0{X) to fnWg^^x) + • • • + fo(x)g(x) where g^^x) denotes
the 71th derivative of g{x).

PERKINS studies rings that satisfy these conditions in [8]. He shows
that in many cases, D(X) contains maximal commutative ad-nilpotent
subalgebras not isomorphic to 0(X). Thus, for these curves, the set N(X)
of ad-nilpotent elements does not determine 0(X).

In this paper, we obtain an invariant for D{X) and a nice description of
the maximal ad-nilpotent subalgebras of D(X). Set T = C(:r)[<9] and set
9-degw = n where w = fn(x)9n + • • • + fo(x) is an element of T. Define a
filtration on T by Ti == {w C T \ 9-degw < i} and hence on any subring
R of T by Ri = R H T,. (Note that this is the same filtration on D(X) as
the one defined by the order of the differential operator.) We may form
the associated graded ring 9-grR == Q^Rz/Ri-i. We define codimJ? to
be equal to dime 9-grC[x,9}/9-giR for those subrings R of T such that
9-grRc9-grC[x,9}.

Now assume that both X and Y are affine curves with normalization
equal to the affine line and injective normalization map. By [9], both
9-gi D{X) and 9-grD(Y) are subrings of 9-grC[x,9] and codimD(X)
and codimD(y) are finite numbers.

Our main results are :
THEOREM. — Suppose that B is a maximal a,d-nilpotent subalgebra

of D(X). Then there exists elements x' and 9' in the quotient field of
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RINGS OF DIFFERENTIAL OPERATORS 195

C(x)[9} such that [Q',x1} = 1, D(X) is a subring of C{x')[Q'}, D(X) H
C(x') = B, and the integral closure of B is C[x1}. Furthermore, Q'-grD^X)
is a subring of Q'-gi C[x', Q'} and

dime Q'-giC^'.Q^/Q'-gvD^X) = codimD(X).

COROLLARY. — If D(X) ^ D(Y), then codimD(X) = codimD(Y).

This result permits one to distinguish many rings of differential opera-
tors. For example, set 0(Xn) = C + ^^C^]. Then it will follow from the
COROLLARY, that D(Xn) ̂  D(Xm) implies that n = m.

2. Graded Algebras of D(X)
In this section, a and f3 are nonnegative real numbers with a + f3 > 0.

Define valuations V^,/? o11 C(;r)[<9] as follows. Set

Va^ (wn(x)9n + Wn-^Q71-1 + • • • + Wo(^))

equal to max{ad^ + /3m | n > m > 0} where dm = deg(wn(x)).
This extends the notion of valuations introduced by DIXMIER in [2] for
the Weyl algebra. For each valuation Va,/3 we may define a filtration of
C(:r)[<9], and hence on any subring R of C(.r)[<9] as follows. Recall that
T = C(x)[9}. Set T, = {z e T \ Va^{z) <, i} and R, = R n T,. We
may then define the associated graded algebra gr^^R = @Ri/Ri-i.
Now the commutator [xi^j,xk9i} = (kj - z^)a•^+fc-19J+^-l+ terms with
re-degree less than i + k — 1 and 9-degree less than j + i — 1. Therefore
Va^x'Q^x^^}) < a{i + k) + f3{i + j). It follows that gi^^{C{x)[9}) is
a commutative algebra.

Note that when a = 0 and f3 is positive, then the filtration defined
by Vo^ on D(X) is the same filtration on D(X) as the one defined by
9-deg in the introduction. We will write 9-gr D(X) for giQ^D(X) and
(9-deg for Vo,/3- Similarly, when f3 = 0 and a is positive the graded algebra
determined by Va o is the same as rc-gr R determined by x-deg defined in
[8].

Set g^a,(^x = x anc^ ^a,/?^ = y_ Since D(X) is just the first Weyl
algebra, Ai, we have that 9-gr D(X) =C[x,y} where 9-grx = x and
9-gr9 = y . By [9, Proposition 3.11], it follows that 9-gr D(X) is a subring
of C[x,y} and by [8, Lemma 2.3], x-gvD(X) is also a subring of C[x,y}.
In the following lemma, we extend this to other gradings.

LEMMA 2.1. — LetR be a subring ofC{x)[9} such that9-grR C C[x^y}.
Then the graded algebra gv^^R is a subring of C[x,y}.
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196 G. LETZTER, L. MAKAR-LIMANOV

Proof. — If a = 0 then gr^^R = 9-gr R. So we may assume
that a is positive. Let w be a typical element of D(X). Write w =
gm(x)9m + • • • + ^o(^) where ^(a:) C C(rr) for 0 < z < m. Set degree
of gi(x) equal to c^ for 0 < i < m. Since 9-gv R C C[x,y], it follows that
gm{x) C C[x] and thus dm > 0. Set N = Va^(w). By the definition
of Va,(3, it follows that N = max{^a 4- if3 | 0 < i < m}. Hence
g^(w) = Eo<.<m 7A' where 7. = 0 if Va^x^O8) < N , and
75^ is the leading term of gs{x) if Va^x^Q8) = N. We need to show
that whenever 75 / 0, we have x^y8 € C[x,y}. In particular, since
0 < s < m, we need to show that ds > 0 whenever 75 7^ O. Now
N = Va,/3(w) > ^^(^(a*)^) = rimQ/+^. Hence d^+s/8 > d^a+m/3.
Recall that m > s,dm > 0, and that a is positive. It follows that
ds > dm > 0. The lemma now follows.

Define a linear map (f> : C(x)[9} —^ C[x,9] as follows. Suppose that
w = gmWQ171 + • • • + go(x) is an element of C{x)[9\. For each i such
that 1 < i < m, there exists a unique polynomial fi(x) such that
deg(^Or) -/^)) < 0. Set

W=fmW9m+•••+fo(x).

Now consider two rational functions gi(x) and g^^x) such that (f)(gi(x)) =
/i (re) and (j>{g2(x)) = /^{x). Then clearly

deg(\igi(x) + \2g2{x) - (\ifi(x) + ̂ 2/2^)) < 0 and

(f)(\igi(x) + A2^(^)) = AiA(^) + >2/2{x).

It follows that ^ is a well defined linear map from C(:r)[<9] to C[.r,9].

COROLLARY 2.2. — Let R be a subring of C(x)[9} such that 9-gvR C
C[x,y}. Ifw is an element of R, then gr^ <^(w) = gr^^(w).

Proof. — This is clear since gr^(w - (f)(w)) does not contain any
monomials xd3y8 with ds > 0.

Remark 2.3. — Note that <^(JZ) is a linear subspace of the first Weyl
algebra Ai == C[x,9], but, generally speaking, is not a subalgebra.
Nevertheless a, (3 gradings are defined on (/)(R) and gr^ <^(-R) = g^,/? ̂ •
Now

dime C[a:,?/]/a-gr^(X) < oo ([9, 3.12]) and
dime C[x,y]/x-grD(X) < oo ([8, Lemma 2.5])

In the next proposition, we will show that these two finite numbers are
equal. We will later show that this codimension is an invariant for D(X).
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RINGS OF DIFFERENTIAL OPERATORS 197

PROPOSITION 2.4. — Suppose that R is a subring of C(x)[9} such that
9-gr R C C[x,y] and dime C[x,y]/9-gv R < oo. Then gr^ R is a subring
of C[x, y\ and dime C[x, y}/ gr^ R = dime C[x, y}/9-gv R.

Using COROLLARY 2.2 and REMARK 2.3, we may replace R by (j){R)
and prove the following.

PROPOSITION 2.4'. — Suppose that R' is a linear subspace of the Weyl
algebra C[x, 9} and that dime C[rc, y}/9-gv R' < oo. Then g^a,/3 ̂  ls a ^m~
ear subspace of C[x,y} and dime C[x,y}/ gr^^R' = dime C[x,y}/9-gr R1.

Before proving PROPOSITION 2.4', we need some additional notation
and lemmas. Set, for i > 0,

EI = C[x} + C[x}y + • • • + C^y' and
B, ={w € R! 15-grw eEi}.

Note that |Jz>o B! = JR/- set E = Uz>o ̂  = c[tzl' v}'
In PROPOSITION 2.4', we assume that dime E/9-gr R' < oo. Since

9-grw e Ei if and only if w C B^ for any w € JB', it follows that
dime Ei/9-grBi < oo for all i > 0, and that there exists an N > 0
such that dimcEz/9-giBi = dime E / 9-gi R' for all i > N. Hence for
each i > 0, there exists an integer Mi > —1 such that for each m > Mi
there exists a monic polynomial pz,m(x) of degree m in C[x] such that
Pi,m(x)y'1 is an element ot9-gv Bi. Furthermore, for i > N , we may assume
that Mi = -1.

We have the following lemmas.

LEMMA 2.5
Suppose that R' satisfies the conditions of PROPOSITION 2.4'. Suppose

that w = (axd + /^(rz'))^^1 + • • • + fo{x) is an element of JE^+i where
a e C — {0} and degfz^(x) < d. Then there exists a w' e £^+i such that
w' = (a^+^+i^))^1 + g^{x)9^ + • • • + go(x) anddeggk(x) < Mk for
each k such that i + 1 > k > 0.

Proof. — Let us use the following induction. Set w-i = w. Suppose
that

w, = (axd + g^(x))9^1 + • • • + gz-kW^

+/.-,-l(rr)9^-fc- l+•••+/o(^

where deg^(a;) < Mj, is defined. There exists b C Bz-k-i such that
<9-gr6 == (A-fc-i - ̂ -fc-i)^"^"1 where deg^_fe-i ^ M,_^_i by the
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198 G. LETZTER, L. MAKAR-LIMANOV

paragraph preceding the lemma. So we can define wj^+i as Wk — &, and w'
as Wi.

Let Pi be the set of positive integers m such that there exists a nonzero
polynomial qi,m(x) of degree m in C[x] with qi,m{x)y1 G 9-gi R ' . Note that
if n is an integer such that n > M^ then n € P^. By LEMMA 2.5, it now
follows that for each m € P^ there exists a monic polynomial pi,m(x) of
degree m € C[x} such that 6^rn = Pi,m{x)91 + ̂ -i^)^"1 + • • • + ^o(^) is
an element of Bi with deggk(x) < Mk for i — 1 > k > 0. Furthermore, for
i > N , we may assume that pi^mW = x1^. Note that the set

{^,m h > 0 and m e Pz}
forms a basis for R over C, and

{pi,m{x)y1' | % > 0 and m C Pi}
forms a basis for 9-giR over C. Thus if w C R, with 9-grw = f(x)y\
then for z > k > 0, there exist fk(x) e C[x] with degfk(x) < Mk, such
that f{x)Q1 + /z-i^)^"1 + • • • + /o(^) is an element of J?'.

Set M = max{M^ | N > k > 0}. Then we may assume that
bi,m = Pi,mW9^Wi,m with 9-degw^yn < mm(i,N) and .r-degw^yn < M.

LEMMA 2.6
Assume that R satisfies the conditions of PROPOSITION 2.4'. For each

m > 0, ^ere exists a positive integer Sm such that for all i > Sm^ there is
an element ci^m in R' of the form pi,m{x)91 + t^m ^th degp^^(rc) = m
and 9-degtz^rn < i and x-degti^m < m. If m > M we may set Sm = 0.

Proof. — If m > M, then we may take Ci^m = ^,m- So we may assume
that m < M. Consider the subset {6z,m = Pi,m(x)9'1 + w^rn 1^0} of R ' .
Let EM,N =- {r ^. E \ rr-degr < M and ^/-degr < N}^ and let V be the
vector space spanned by {w^rn 1^0}. Set W == {a;-grw | w e V} H E.
Note that W is a subspace of EM,N- It is clear that EM,N and hence W
is a finite dimensional subspace of E. So there is an Sm > 0 such that W
is spanned by a subset of

^ x-gvw | w is in the span of the set {wi^m I Sm ^ ^ > 0} ?••

It follows that for i > Sm^ there exist complex numbers Ok,m t011

Sm > k > 0 such that
Srn

x-degfw^m - ̂ ^k,m^k,m) < 0 and

^m

9-deg(w^m - ̂ O^m^m) < 0.
A;==0
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RINGS OF DIFFERENTIAL OPERATORS 199

We may now set c^rn = ̂ ,m - Ef^o ̂ m^m.

The next corollary follows immediately from LEMMA 2.6.

COROLLARY 2.7. — We have dime C[.r,i/]/a'-gri?' < oo.
LEMMA 2.8
Let W be a linear subspace of Ai. Then dime W = dime gr^ ^ TV.

Proo/. — Suppose that TV is a vector space and that

{Wi | i is an integer }

is a filtration for W such that the vector spaces Wi = 0 for z < 0 and
W = U^o ̂ - Then clearly W and © W^/W^-i are isomorphic as vector
spaces. Hence dime W = dime © T^/H^-i. In particular if TV is a linear
subspace of Ai, then dime W = dime gr^ ^ TV.

We are now ready to prove PROPOSITION 2.4'.

Proof of PROPOSITION 2.4'. — Note that R is a linear subspace of
C[x, 9}. Hence, it follows from the definition of gr^ ̂  fi' that gr^ J?' is a
linear subspace of gr^ C[x, 9}. Thus we only need to prove the statement
about dimensions.

Set Vn = [x'y3 | m+/y < n} for all n > 0. Note that each Vn has finite
dimension and that Un>o ̂  = C[:r, ^/]. Set Wn = {w e R \ gr^ w € Vn}.
Since g^a^P' C C[:r,i/], we have that Un>o ̂  = R ' . Suppose that
w C Wn. We can write w = p(x)9k + c for some p(x) C C[.r] and k > 0
such that 9-deg(c) < k and adegp(.r) + /3k < n. So 9-grw = p^x^ is
also in Vn. Thus B-gr TVy, C Vn for all n > 0.

Set L = aM+f3N. We will show that 9-gr Wn = 9-gr R'nVn for all n >
L. Since 9-giWn C Vn, it is clear that 9-giWn C 9-gv R' H Vn. Suppose
9-grw = p{x)y3 is an element of 9-gr R' H Vn. So adegp(a;) + f3j < n. By
LEMMA 2.5, we may find in R' an element w = p{x)9j + gN(x)9N + • • • +
^o(^) and deggk(x) < M^ for each k such that N > k >0. Now

^(^(r^ + • • • + ̂ o(.r)) < aM + /57V = L.

Hence Va^(w) < max{adegj?(a;) + f3j,L}. If adegp(x) + ̂ ' > L, then
^a,/?('^) = adegp(x) + 0j < n since j)(a;)i/-7 is an element of Vn. Hence
w e TT^. If adegp(.r) + f3j < L, then Va^(w) < L < n, hence again
w e TV^. Therefore 9-gr Wn = 9-gv R1 H Vn for all n > L.

Since Wn is a linear subspace of C[x,9], by LEMMA 2.8, we have that

dime Wn = dime 9-gr Wn and
dime Wn = dime gr^ Wn.
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200 G. LETZTER, L. MAKAR-LIMANOV

Furthermore, for all n > L, we have that dime 9-gr R'nVn = dime Wn =
dime gr^ Wn. Since dime Vn is finite, it follows that dime Vn/Q-giR' D
In = dime Vn/ gr^ IVn for all n > L. Clearly

dime C[x, y]/9-gr R' = lim dime Vn/9-gr R1 n Vn and
n—>oo

dime C[x, y}/ gr^ R1 = Jlim^ dime Vn/ gr^ Wn.

Therefore dime C[x,y]/9-gi R' = dime C[x,y}/ gr^ fi'.

By COROLLARY 2.7, we have that dime C[x, y]/x-gr R1 < oo. So we may
apply the first part of the proof with x replaced by 9 and vice versa to
show that dlmcC[x,y]/x-grRf = dimcC[x,y}/gv^ R' which completes
the proof of PROPOSITION 2.4' and therefore of PROPOSITION 2.4.

Recall that codimfi is defined to be dime C[x,y}/ 9-gr jR.
PROPOSITION 2.4 implies that codimfi = dime C[x,y}/gr^ Q R for any
two nonnegative not both zero real numbers a and f3. We will eventually
show that codim R is an invariant of R.

3. Ad-Nilpotent subalgebras of D(X)
Suppose that D{X) ̂  D(Y). Then D(X) contains a maximal commu-

tative ad-nilpotent subalgebra isomorphic to 0(Y). So it is interesting to
understand the maximal commutative ad-nilpotent subalgebras of D(X).
Let D denote the quotient field of the first Weyl algebra, Ai. In this
section, we show that if B is a maximal commutative ad-nilpotent sub-
algebra of D(X), then there exists an element b e D such that B is a
subring of C[b}.

LEMMA 3.1. — Suppose that R is a subalgebra of D so that the quotient
ring of R is D^ and that u is an element of D — C that acts sid-nilpotently
on R. Then there exists a v C D such that [u, v] = 1. Furthermore, for any
v e D such that [u,v] = 1, we have R C CD{U}[V\ where Co(u) denotes
the centralizer of u in D.

Proof. — Define RQ = CoW and R, = {z e D \ [z,u\ C J?,-i}.
Now R C Ui>o Ri since u acts ad-nilpotently on R. Let a be a nonzero

element of R^ — RQ. (Note that J?i — RQ is nonempty since u ^ C and C
is the center of R.) Then 0 / [u,a\ = b C RQ. So [^,&-la] == ^[^.a] = 1.
Set v = ̂ a.

Clearly RQ C C^(n). We will show by induction on i that

Rz C CoW + • • • + CD{U) for all i > 0.

TOME 118 —— 1990 —— N° 2



RINGS OF DIFFERENTIAL OPERATORS 201

Assume that R,^ c C^y-1 + • • • + CuW and choose z C Ri. Then
[^] € Ri-i, hence [z,^] = Eo<m<z-i fmW^. Then

[ ^m+1 -]

[z- E .̂.TÎ  =0-
1- 0<m<z-l m 1 1 J

Hence z - Eo<m<z-i /m(^)^m+l/(m + 1) e C^). Therefore

z e C D ( u ) v ^ + ' • • + C D ( u ) .
We may define the graded algebra v-grCi)(n)[v] by setting v-gra =

UiW'1 where a = n^ + • • • -\-UQ is an element of CD{U)[V\ with ̂  € Co{u)
for z > A; > 0.

We will show that Co(u) is in fact a rational function field in one
variable.

The next lemma is well known. See for example [3, Corollary 3.2].
LEMMA 3.2. — If f e D -C then Co^f) is commutative.
LEMMA 3.3. — If u e D acts a.d-nilpotently on R, where R is a

subalgebra of D such that the quotient ring of R is D, then there exists
z e D such that CD^U) is isomorphic to a rational function field C(z).

Proof. — Let us call an element a e D ad-nilpotent if it acts ad-
nilpotently on some subalgebra R(a) of D such that the quotient ring
of R(a) is D. By LEMMA 3.1, there exists an element v € D such that
[v,u] = 1 and D = CD{u)(v).

We will first assume that there exists an ad-nilpotent element a of D
with v-dega / 0. Now for each element c C CoW, there exists elements
ci = ci(c) and c^ = c^(c) in R(a) such that c = cic^"1. It is clear that
v-gra acts nilpotently by Poisson bracket action on -y-grci and v-grc^. Let
v-gra = aow71, v-grci = ci^w771, and v-grc^ = £2^^. (Since c C CD^U),
it is clear that v-degci = v-degcs.)

By the same arguments as in [5, Lemma 7], there exists an element b
in the algebraic closure otCuW such that Ci^w^ = (aow71)771/7^!^) and
c^ow171 = (aow7')771/^^) where p^(b) and p^(b) are polynomials.

Since v-degc = 0, we have that c == cic^1 = c^oc^ = pi(b)(p^(b))~1.
Therefore CD^U) C C(b). By Luroth's theorem, CoW is isomorphic to a
field of rational functions in one variable.

Now assume that v-dega == 0 for all ad-nilpotent elements. Consider
the standard generators x and 9 for D. These are ad-nilpotent elements
of D since they act ad-nilpotently on C[x,9}. Therefore 1 = [3, x] has
negative v-degree which is impossible.
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4. Codim is an invariant of D(X)
In this section R = D(X) for a curve X satisfying the conditions of the

introduction. Suppose that u and v are elements of D with commutator
[v,u] = 1 such that D(X) C C(u)[v] and v-grD(X) is a subring of the
polynomial ring in two generators, u = v-gru and w = v-grv. We may
define codim^-y D(X) as dime C[u,w]/v-gr D(X). In this section, we will
show that codimu,v D(X) = codimD(X). So codim does not depend on
the embedding of D(X) inside of C(x)[9].

Note that u-grC[u^v} and v-grC[u,v] are isomorphic polynomial rings.
We will identify these isomorphic rings and thus write u-gvu = v-gru = u
and u-grv = v-grv = w.

LEMMA 4.1. — Suppose that R C C(u)[v] C D^ where [v,u\ = 1, such
that the quotient ring of R is D, the graded algebra v-gr R is a subset of
C[iA, w], and codim-^ R is finite. Then there exist elements u' and v' of D
such that u-grv' = w and u-gru' = —u, the commutator [u'^v'} is 1, and
the ring R is a subring of C{v')[u'}. Moreover, there is an isomorphism
from u'-grC^^v'] to u-grC[u,v} which restricts to an isomorphism from
the graded algebra u'-gi R to u-gr R, and codimy'^u' R = codim-^ R.

Proof. — Define subalgebras Ri of R for i >_ 0 as follows :

Ri = [z e R | u-deg(z) < l}.

(The following argument is similar to [8, Theorem 2.7].) Now

u-gr[f(v)u\g(v)] == ̂ ^(-^/(^(z')'^"1) for z > 0.

Also u-gr R is a subset of C['u,w] by LEMMA 2.1. Hence, it is easy to
see that -Ro ls a maximal commutative ad-nilpotent subalgebra of R.
Furthermore the map which sends z to u-gi z is an isomorphism of jRo
to u-gi RQ = u-gr R H C[w]. By assumption, codim^ R < oo, hence
dime C[w}/u-grRo < oo. So the integral closure of u'gr RQ is C[w], and
thus the integral closure of RQ is C[v'} for some v ' € D with u-giv1 = w
and RQ = Rr\C[v'} for some v ' C D with u-grv' = w and Ro = Rr\C[v'].
Note that u-gTp(v') = p(w) for any polynomial p(t) e C[t].

By LEMMA 3.3, CD^') is a rational function field in one variable. Let
us check that CD^) = C{v'). Let / e CD^'). Then u-degf = 0, because
otherwise [v',/] ^ 0, and u-gr f = r{w) where r(w) e C(w). Therefore
f = r { v ' ) + /i where u-degf^ < 0. But /i C CoW and can not have a
negative degree. Hence /i is 0. Now, according to LEMMA 3.1, there exists
a u' € D such that [u1\v'\ = 1 and R C C(v')[^].
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Suppose that u-giu' = f(w)u\ Since u-grv' = w, we must have
u-gi[u^v1} = —if(w)u^~l unless z = 0. If i = 0, then either [u' ,v1} =
0 or lA-deg^',^'] < -1. Since [u1',-y'] = 1, it follows that i / 0.
Hence -^/(w)^"1 must equal 1. Therefore i = 1 and /(w) = -1 and
u-gru' = —u.

Suppose that z is an element of -R C C(v') ['?/]. We may write
z = f(v')(u'y + e where u'-dege < j, and f{v') is a polynomial,
and j > 0. Since u-degv' = 0 and -u-deg^' = 1, we must have that
n-dege < j and u-gr z = u-gT f^'^u1)3. Since u-gTf(v') = f(w)
and u-gru' = —u, it follows that u-gr z = /(w)(—^) J . Hence the
isomorphism from u'-gvC[u'\v'\ to u-grC[u,v} which sends u'-gru' to
n-gri^ = —'u and u ' - g r v ' to ZA-gr^ = w restricts to an isomorphism
from u'-giR to u-grR. Since codim^ R is finite, by PROPOSITION 2.4, we
have that codim^ R = dimcC[u,w]/u-gT R. It follow immediately that
codim^ R = codim^/^/ R.

For the next three lemmas, assume that R is a subring of C(n)['y] C D,
where u and v are elements of D whose commutator is 1, and that
v-grR C C[u,w] with codim^ R < oo. Write Ro for the ad-nilpotent
subalgebra {z € -R | u-gi z = 0}. We may define valuations Va,(3 and
corresponding graded algebras on R as in Section 1 using u and v instead
of x and 9. For example, Va^^v3) = ai + /3j.

LEMMA 4.2. — Suppose that r is an a.d-nilpotent element of R that is
not contained in C{u) and is not contained in RQ. Then there exist positive
integers n and m and complex numbers \ and 7 such that u-grr = (Ai^
and v-gvr = (^w)771. Furthermore, Vm,n(r) = mn.

Proof. — Since r is not an element of C(u) and is not an element
of Ro, it follows that u-degr > 0 and v-degr > 0. We will argue as in
[2, Lemma 8.7]. We may write

r= ^ o-zj^^+A(^)^+---+/o(^)
i>0j>0

where degfj(u) < 0 for k > j > 0. Clearly, ,-u-degr > k. Let n be the
smallest nonnegative integer such that a^Q = 0 for all j > n. Let m be
the smallest nonnegative integer such that a-o^ = 0 for all k > m. We
claim that o-ij = 0 for all pairs i,j such that mi + nj > mn.

Assume the claim is false. Then there exist positive real numbers a
and f3 and a pair of positive integers i and j with o-ij / 0, such that
gr^ Q r = (Ti^w3. Without loss of generality, a-ij = 1. First assume i > j.
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Now there exists a monic polynomial p(t) such that p(u) e -R. Since both
a and /3 are positive, we have that g^a^PW = ud where d = degp(u).
Note that gr^^[r,p(u)} = dju^~~l^dw:}~l. Suppose that

gr^ad^)) = a^-^w^-1).
Then

gv^^l(pW)=

Ok [(k{i - 1) + d)j - ik(j - i)]^+W-i)+^ ̂ +i)0-i).

Now (k(i - 1) + d)j - ik(j - ! ) = ( % - j)A; + dj > 0 for all k > 0 since
i > j. This contradicts the fact that r is ad-nilpotent.

Now assume that i < j. Consider a nonconstant element z C Ro.
Recall that RQ sits inside a polynomial algebra C[z?'] where v ' ^ D where
u-grv' = w. So z = c[{v') for some nonconstant polynomial q(t). Since
both a and /3 are positive, it follows that gr^ Q z = w1^ where k = degq(t).
The argument now follows as in the preceding paragraph.

We have shown that o-ij = 0 for all pairs of positive integers i and j
such mi -h nj > nm. In particular, u-grr = o-^o^ and v'grr = o-o^^771?
and Vm,n(r) = mn.

LEMMA 4.3. — Suppose that r is an a.d-nilpotent element of R that
is not contained in C(u) and is not contained in RQ. Set n = u-degr
and m = v-degr. Then one of the following two statements hold where
A, A', 7,7' are elements o/C, and i is an integer such that n > i > 0.

(1) If n > m, then n is a multiple of m and

gr^r={(\u)n/m+-/w)m.

(2) If m > n, then m is a multiple of n and

gr^r=(AH+(7wr/»)".

Proof. — By LEMMA 4.2, both n and m are positive. So there exist
nonzero complex numbers <j\ and a^ such that u-grr = a^u71 and v-gir =
a-^w171. Now by LEMMA 2.1, gr^ ^ R C C[2A,w], and by PROPOSITION 2.4,
dime C[iA,w]/gr^ ^ R < oo. Hence we may apply the arguments of [2,
Lemma 7.3] to the ad-nilpotent element r of R.

In the next lemma, we will show that codim R is independent of the
choice of generator for C(u).

TOME 118 —— 1990 —— N° 2



RINGS OF DIFFERENTIAL OPERATORS 205

LEMMA 4.4. — Suppose that u^ and v^ are elements of D whose
commutator is 1 such that C(u) = C(^i), the ring R is a subring of
C(ni)[^i] c D, and that v^-grR c C[^i,wi] with codim^,^ R < oo.
Then codim^ R = codim^^ R.

Proof. — Set B = R n C(^) = R n C[u}. Since C(-^i) = C{u) and
^i-grfi C C[iAi,wi], we have that B = R n C(ni) = J? n C[ni]. By
assumption, both codim^ R and codim^^ R are finite. Hence both
dime C[u]/B and dime C[u^]/B are finite. Therefore the integral closure
of B in C(u) is C[^] and is also C[^i]. So C^] = C[^i] and there exist
integers a and /? such that u = au^ + ^. Since [vi,u^] = 1, we have
that [av - v^,u] = 0. So v + ^(n) = a-^i for some g(u) e C(u).
Set z'2 = v + ^(n). Note that [1:2, n] = 1 and R c C^)^]. Now
/('"V = f{u)(v^ - g(u))\ hence v-grR = v^-gr R and codim^^ R =
codim^^ -R- Without loss of generality, we may assume that v = v^ and
that v = a~1^. The isomorphism of C[u,w] to C[-^i,wi] which sends u
to mzi and w to a'^i clearly induces an isomorphism from v-gi R to
u-grR. The result now follows.

We are now ready to show that codim^(X) is an invariant of D(X).
THEOREM 4.5. — Suppose that X is an affine curve such that the

normalization of X is the affine line, with the normalization map TT :
X —^ X injective. Then for any pair of elements u and v in D, such that
[v,u] = 1, the ring D(X) is a subring of C(u)[v}, and v-gr D(X) is a
subring of the polynomial ring with generators v-gru and v-grv, we have
that codim^ D{X) = codimD(X).

Proof. — Now D(X) is a subring of C(x)[9} and codimD(X) =
codim^a.D(X). Assume that u and v are elements of D such that
[v,u] = 1, the ring D{X) is a subring of C(u)[v], and v-grD(X) is a
subring of the polynomial ring C[u,w] where v-gru = u and v-grv = w.
Let r be a nonconstant ad-nilpotent element of D(X) contained inside
C(u). Set rr-degr = n and 9-degr = m. We will induct on t = m + n.

If m = 0, then r is an element of C(x) and the result now follows by
LEMMA 4.4.

If n = 0, then r is an element of {z C D(X) \ x-degz = 0}, and the
result follows from LEMMA 4.1 and LEMMA 4.4. Hence the theorem holds
for t = 0.

So we may assume that both n and m are positive.
First assume that n > m. By LEMMA 4.3, n is a multiple of m and

there exist elements A, and 7 of C such that gr^ ^ r = ((Aa:)71/77' + 7^)m.
Hence

r= ((A^/^ 7(9)^+0
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where Vm,n(c) < mn and x-degc < n and 9-degc < m. Set 9i =
9 - (7)- l(A^)n/m and x^ = x. Note that ((Aa;)^ + ̂ 9)m = (7<^l)m.
Furthermore (Q)1 = (9i + (7)- l(A^l)n/m)^. It follows that 9i-degc < m
and Qi-degr = m. Also rri-degc < (m — l)n/m < n. Since r =
(7(^l)m+c, we have that a;i-degr < n. By LEMMA 4.4, codim^^ -D(^0 =
codim^a D(X). Now c^i-degr+.ri-degr < ^ hence the result now follows
by induction for this case.

Now assume that n < m. By LEMMA 4.1, there exist elements x\ and
<9i in D such that D{X) C C(9i)[.ri], [.ri,<9i] = 1, x^-gr9 = a;i-gr9i,
x^-grx = —rr i , x^-gv R ^ x-gr R, and codimai,a;i-R = codim^^R. It
follows that .ri-degr = x-degr = n. If <9i-degr < m, then the proof
follows by induction.

Otherwise <9i-degr > m > n and we may apply the methods used
above repeatedly to find elements 9^ = <9i and x^ = x-^ + 9(9-^) where
g(Q\} e C(9i) such that x^-degr == n and 9^-degr < m. The proof again
follows by induction.

We are now able to obtain a nice description of the maximal ad-
nilpotent subalgebras of-D(X).

COROLLARY 4.6. — Suppose that X is an affine curve such that the
normalization of X is the affine line, with the normalization map TT :
X —> X injective. Suppose that B is a maximal Qid-nilpotent subalgebra of
D(X). Then there exists an element u in D such that B is a commutative
finitely generated algebra with integral closure C[u] and the centralizer of
B in D{X) is the rational function field C(u).

Proof. — By LEMMA 3.3 and LEMMA 3.4, there exists u in D such
that CI){B) = C(u) and B C C[u}. By LEMMA 3.1, there exists v in D
such that D(X) C C(u)[v}. Recall that the set of ad-nilpotent elements
of D(X) is strictly larger than the maximal commutative ad-nilpotent
subalgebra 0(X) of D(X). Since B is commutative, B cannot contain all
the ad-nilpotent elements of.D(X). Hence D(X) contains an ad-nilpotent
element s not contained in B. By [8, Lemma 1.7], v-gi s = Xw71 for some
A C C and n > 0. Since s acts ad-nilpotently on D(X)^ it is clear that
v-grD(X) C C[iA,w]. By THEOREM 4.5, dimcC[u}/B is finite hence the
integral closure of B is C[u}. By Eakin's theorem [6, Section 35], B is
finitely generated.

The invariant codimD(X) can be used to distinguish rings of differen-
tial operators.

COROLLARY 4.7. — Suppose that X and Y are both affine curves with
normalization equal to the affine line and with injective normalization
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maps. IfD(X) ̂  D(Y), then codimD(X) = codimD(V).

Proof. — Consider both D(X) and D(Y) as subalgebras of C(a;)[9]
using the standard embedding. Let (/) be an isomorphism which maps D(Y)
to D(X). Set u = (f)(x) and v = (j)(Q). Clearly u and v satisfy the conditions
of THEOREM 4.5. Therefore codimD(Y) = codim^ D(X) = codimD{X).

5. Examples
In this section, we will consider two families of curves. We will calculate

codimensions to show that their rings of differential operators are mutually
nonisomorphic.

Recall that X is a monomial curve if 0{X) is generated by monomi-
als xk as an algebra over C. Let A be the subset {k x1^ e 0(x)} of the
integers. Define the set A — z to be {k — i \ k C A} where i is an integer.
MUSSON gives a complete description of D(X) in [7]. In particular,

D(X)=^xkfk(x9)C[x9}
fcGZ

where
fk(x9)= ]̂  (x9-a).

aeA-(A-fc)

Let Xn be the monomial curve with 0{Xn) = C-^-x71^} as coordinate
ring, where n is a positive integer. Then by the previous paragraph, we
have

D(Xn)=Y,xkfk(x9)C[xQ}
fcCZ

where the polynomial fi is 1 for i = 0 and i > n; the polynomial fi is x9
for 1 < i < n — 1; the polynomial fi is

(x9) JJ ( x 9 - k ) for - 1 > i > -{n - 1)
n—i>k>n

and the polynomial fi is
(x9) ]"J (x9 - k ) JJ (x9 - k) for i < -n.

n<k<—i —i<k<n—i

Note that if g(x9) is a monic polynomial in C[.r9], then

9-gr g(x9) = xd9d where d = degg(x9).
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Hence Q-grD(Xn) = Ehez9kC[xy\ where

So = 1;

gi=xt+ly for 1^-^n- l ; ^=^ for z > n ;
ffi = ̂ +1 for - n + 1 ^ ̂  -i; ^ =y« ^ ,- ^ _^

A basis for C[x,y}/9-giD(Xn) is just a;,a;2,... ,;c»-1 y y2 n-i
Therefore codim25(^) = 2(n - 1). By COROLLARY 4.7, D(JM 'is iso-
morphic to D(X^) if and only if 0(Xn) ̂  O(X^).

Now set Y, = C+C^+.. .+C.r27lC[.^] for n > 1. A similar calculation
shows that codim25(r2j = n(n + 1). Therefore D(Y^) - D(Y^) if and
only n U{Y-in) = 0(Y'2m)-

Consider just the curves X, and 14. Now O(^) = C + ̂ C[;E] and
0(14) = C+Cx^x^x]. Clearly 0(^-4) is not isomorphic to 0(Y.} But
codim D(X,) = codim 23(^4) = 6. Therefore codim does not distinguish
between these two rings of differential operators. We should add that it
has now been shown that D(X,) and D(Y^) are actually isomorphic rings
even though 0(X^ and 0(Y^) are not isomorphic (see [4]).
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