Bulletin de la S. M. F.

François Parreau
 Yitzhak Weit
 Schwartz's theorem on mean periodic vector-valued functions

Bulletin de la S. M. F., tome 117, n 3 (1989), p. 319-325
http://www.numdam.org/item?id=BSMF_1989_117_3_319_0
© Bulletin de la S. M. F., 1989, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

SCHWARTZ'S THEOREM ON MEAN PERIODIC VECTOR-VALUED FUNCTIONS

BY
François Parreau and Yitzhak WEIT (*)

RÉSumé. - Nous exposons une preuve plus simple du théorème de Schwartz sur les fonctions continues à valeurs dans \mathbb{C}^{N}.

Abstract. - A simpler proof to Schwartz's theorem for \mathbb{C}^{N}-valued continuous functions is provided.

1. Introduction and preliminaries

The theorem of L. Schwartz on mean periodic functions of one variable states that every closed translation-invariant subspace of the space of continuous complex functions on \mathbb{R} is spanned by the polynomialexponential functions it contains [4]. In [2, VII], J.-J. Kelleher and B.-A. TAYLOR provide a characterization of all closed submodes of \mathbb{C}^{N}-valued entire functions of exponential type which have polynomial growth on \mathbb{R}. By duality, their result generalizes Schwartz's Theorem to \mathbb{C}^{N}-valued continuous functions.

Our goal is to provide a simple and a direct proof to this result.
$C\left(\mathbb{R}, \mathbb{C}^{N}\right)$ denotes the space of continuous \mathbb{C}^{N}-valued functions on \mathbb{R}, with the topology of uniform convergence on compact sets. By a vectorvalued polynomial exponential in $C\left(\mathbb{R}, \mathbb{C}^{N}\right)$, we mean a function of the form $e^{\lambda x} p(x), x \in \mathbb{R}$, where $\lambda \in \mathbb{C}$ and p is a polynomial in $C\left(\mathbb{R}, \mathbb{C}^{N}\right)$.

Theorem. - Every translation-invariant closed subspace of $C\left(\mathbb{R}, \mathbb{C}^{N}\right)$ is spanned by the vector-valued polynomial-exponential functions it contains.

[^0]For the theory of mean-periodic complex functions, we refer the reader to [4], [1], [3]. We need the following notations and results.

Let $M_{0}(\mathbb{R})$ denote the space of complex Radon measures on \mathbb{R} having compact support. For $\mu \in M_{0}(\mathbb{R})$, the Laplace transform $\hat{\mu}$ of μ is the entire function defined by $\hat{\mu}(z)=\int e^{-z x} d \mu(x), z \in \mathbb{C}$.

We remind that $f \in C(\mathbb{R})$ is mean periodic if $\mu * f=0$ for some $\mu \in M_{0}(\mathbb{R}), \mu \neq 0$. For $f \in C(\mathbb{R}), f^{-}$is the function defined by $f^{-}(x)=f(x)$ if $x \leq 0$ and $f^{-}(x)=0$ if $x>0$. If f is mean-periodic, $\mu \in M_{0}(\mathbb{R}), \mu \neq 0$ and $\mu * f=0$, then the function $\mu * f^{-}$has compact support and the meromorphic function

$$
F=\left(\mu * f^{-}\right)^{\hat{1}} / \hat{\mu}
$$

which does not depend on the choice of μ, is defined to be the Laplace transform of $f([3])$.

The heart of our proof is the fact that F is entire only if $f=0$ (see [3, Theorem X]).

The dual of $C\left(\mathbb{R}, \mathbb{C}^{N}\right)$ is the space $M_{0}\left(\mathbb{R}, \mathbb{C}^{N}\right)$ of \mathbb{C}^{N}-valued Radon measures on \mathbb{R} having compact supports. One notices that $M_{0}(\mathbb{R})$ is an integral domain under the convolution product and $M_{0}\left(\mathbb{R}, \mathbb{C}^{N}\right)$ is a module over $M_{0}(\mathbb{R})$ with the coordinatewise convolution. We denote the duality by

$$
\langle\mu, f\rangle=\sum_{j=1}^{N}\left(\mu_{j} * f_{j}\right)(0)
$$

for $\mu=\left(\mu_{j}\right) \in M_{0}\left(\mathbb{R}, \mathbb{C}^{N}\right)$ and $f=\left(f_{j}\right) \in C\left(\mathbb{R}, \mathbb{C}^{N}\right)$. If f is a vectorvalued polynomial-exponential with

$$
f_{j}(x)=\sum_{\ell=0}^{m} \alpha_{j}^{(\ell)} x^{\ell} e^{\lambda x} \quad(1 \leq j \leq N)
$$

we have

$$
\langle\mu, f\rangle=\sum_{j=1}^{N} \sum_{\ell=0}^{m} \alpha_{j}^{(\ell)} \hat{\mu}_{j}^{(\ell)}(\lambda)
$$

For any subset A of $C\left(\mathbb{R}, \mathbb{C}^{N}\right)$ let

$$
A^{\perp}=\left\{\mu \in M_{0}\left(\mathbb{R}, \mathbb{C}^{N}\right) ;\langle\mu, f\rangle=0 \quad \text { for all } \mathrm{f} \in \mathrm{~A}\right\}
$$

If V is a translation-invariant closed subspace of $C\left(\mathbb{R}, \mathbb{C}^{N}\right), \operatorname{Sp}(V)$ denotes the set of all vector-valued polynomial-exponentials that belong to V.

[^1]By duality, V is spanned by $\operatorname{Sp}(V)$ if and only if $\operatorname{Sp}(V)^{\perp} \subset V^{\perp}$. Since V is translation-invariant, V^{\perp} is a submodule of $M_{0}\left(\mathbb{R}, \mathbb{C}^{N}\right)$ and $\mu=\left(\mu_{j}\right) \in V^{\perp}$ if and only if

$$
\sum_{j=1}^{N} \mu_{j} * f_{j}=0 \quad \text { for all } f=\left(f_{j}\right) \in V
$$

2. Main result

In this section, V denotes a given translation-invariant closed subspace of $C\left(\mathbb{R}, \mathbb{C}^{N}\right)$. We have to prove $\langle\mu, f\rangle=0$ for any $\mu \in \operatorname{Sp}(V)^{\perp}$ and $f \in V$. We need some more notation and three lemmas.

Let $0 \leq r \leq N$ be the rank of V^{\perp} as a module over $M_{0}(\mathbb{R})$. That means r is the greatest integer for which there exists a system $\left(\sigma_{\ell}\right)_{1 \leq \ell \leq r}$ where $\sigma_{\ell}=\left(\sigma_{\ell, j}\right)_{1 \leq j \leq N} \in V^{\perp}$ for $1 \leq \ell \leq r$ and with a non-zero determinant of order r. We shall suppose given such a system with, say,

$$
\rho=\operatorname{det}\left(\sigma_{\ell, j} ; 1 \leq \ell, j \leq r\right) \neq 0
$$

One notices that $\hat{\rho}$ is the non identically zero entire function given by

$$
\hat{\rho}(\lambda)=\operatorname{det}\left(\hat{\rho}_{\ell, j}(\lambda) ; 1 \leq \ell, j \leq r\right), \quad \lambda \in \mathbb{C} .
$$

If $r=0$, i.e. $V^{\perp}=\{0\}$, we take for ρ the Dirac measure at 0 and $\hat{\rho}(\lambda)=1$, $\lambda \in \mathbb{C}$.

For $\mu=\left(\mu_{j}\right) \in M_{0}\left(\mathbb{R}, \mathbb{C}^{N}\right)$ let

$$
\Delta_{j}(\mu)=\operatorname{det}\left|\begin{array}{cccc}
\mu_{1} & \ldots & \mu_{r} & \mu_{j} \\
\sigma_{1,1} & \ldots & \sigma_{1, r} & \sigma_{1, j} \\
\vdots & \ddots & \vdots & \vdots \\
\sigma_{r, 1} & \ldots & \sigma_{r, r} & \sigma_{r, j}
\end{array}\right| \quad(\text { for } 1 \leq j \leq N)
$$

and

$$
\tau_{\ell}(\mu)=\operatorname{det}\left|\begin{array}{ccc}
\sigma_{1,1} & \ldots & \sigma_{1, r} \\
\vdots & \ddots & \vdots \\
\sigma_{\ell-1,1} & \ldots & \sigma_{\ell-1, r} \\
\mu_{1} & \ldots & \mu_{r} \\
\sigma_{\ell+1,1} & \ldots & \sigma_{\ell+1}, r \\
\vdots & \ddots & \vdots \\
\sigma_{r, 1} & \ldots & \sigma_{r, r}
\end{array}\right|
$$

(for $1 \leq \ell \leq r$).
bulletin de la société mathématique de france

From the definition of r, for any $\mu \in V^{\perp}$

$$
\begin{equation*}
\Delta_{j}(\mu)=0 \quad(\text { for } 1 \leq j \leq N) . \tag{1}
\end{equation*}
$$

By expanding the $\Delta_{j}(\mu)$ along the last column, (1) is equivalent to

$$
\begin{equation*}
\rho * \mu_{j}=\sum_{\ell=1}^{r} \tau_{\ell}(\mu) * \sigma_{\ell, j} \quad(\text { for } 1 \leq j \leq N) . \tag{2}
\end{equation*}
$$

Lemma 1. - Let $\lambda \in \mathbb{C}$ such that $\hat{\rho}(\lambda) \neq 0$. For $\alpha=\left(\alpha_{j}\right) \in \mathbb{C}^{N}$, the vector-exponential $e^{\lambda x} \cdot \alpha$ belongs to V if and only if

$$
\begin{equation*}
\sum_{j=1}^{N} \alpha_{j} \hat{\sigma}_{\ell, j}(\lambda)=0 \quad 1 \leq \ell \leq r . \tag{3}
\end{equation*}
$$

Proof. - Let $\alpha \in \mathbb{C}^{N}$. We have $e^{\lambda x} \cdot \alpha \in V$ if and only if, for every $\mu=\left(\mu_{j}\right) \in V^{\perp}$,

$$
\begin{equation*}
\left\langle\mu, e^{\lambda x} \cdot \alpha\right\rangle=\sum_{j=1}^{N} \alpha_{j} \hat{\mu}_{j}(\lambda)=0 . \tag{4}
\end{equation*}
$$

This proves the "only if" part. Conversly, since $\hat{\rho}(\lambda) \neq 0$, (2) implies that for any $\mu \in V^{\perp}$ the equation in (4) is a linear combination of the equations (3).

Lemma 2. - Let $\mu \in M_{0}\left(\mathbb{R}, \mathbb{C}^{N}\right)$. If $\left\langle\mu, e^{\lambda x} \cdot \alpha\right\rangle=0$ for all $\lambda \in \mathbb{C}$ such $\hat{\rho}(\lambda) \neq 0$ and $\alpha \in \mathbb{C}^{N}$ such that $e^{\lambda x} \cdot \alpha \in V$, then $\Delta_{j}(\mu)=0$ for $1 \leq j \leq N$.

Proof. - Let $\lambda \in \mathbb{C}$ with $\hat{\rho}(\lambda) \neq 0$. If μ satisfies the hypothesis, the solutions of (3) are solutions of (4), which implies that the determinants $\Delta_{j}(\mu)^{\wedge}(\lambda)$ for $1 \leq j \leq N$ are equal to zero. Then, since $\hat{\rho}$ and the $\Delta_{j}(\mu)^{\wedge}$ are entire functions and $\hat{\rho} \neq 0$, the $\Delta_{j}(\mu)^{\wedge}$ are identically zero. Hence, $\Delta_{j}(\mu)=0$ for $1 \leq j \leq N$.

Remark. - Lemma 2 shows that any $\mu \in \operatorname{Sp}(V)^{\perp}$ satisfies (1) and (2). If $r=0, \Delta_{j}(\mu)=\mu_{j}$ for $1 \leq j \leq N$; hence $\operatorname{Sp}(V)^{\perp}=\{0\}$ if $V^{\perp}=\{0\}$.

Lemma 3. - Let $\lambda \in \mathbb{C}, m \geq 0$ and $\mu \in \operatorname{Sp}(V)^{\perp}$. There exists $\nu \in V^{\perp}$ such that

$$
\hat{\nu}_{j}^{(\ell)}(\lambda)=\hat{\mu}_{j}^{(\ell)}(\lambda) \quad(\text { for } 1 \leq j \leq N, 0 \leq \ell<m) .
$$

tome $117-1989 — \mathrm{~N}^{\circ} 3$

Proof. - Suppose the element $\left(\hat{\mu}_{j}^{(\ell)}(\lambda)\right)_{1<j<N, 0<\ell-m}$ of $\mathbb{C}^{N m}$ does not belong to the subspace

$$
M(\lambda, m)=\left\{\left(\hat{\nu}_{j}^{(\ell)}(\lambda)\right)_{1 \leq j \leq N, 0 \leq \ell<m} ; \nu \in V^{\perp}\right\} .
$$

Then there exists $\left(\alpha_{j}^{(\ell)}\right)_{1 \leq j \leq N, 0 \leq \ell<m}$ such that

$$
\sum_{j=1}^{N} \sum_{\ell=0}^{m-1} \alpha_{j}^{(\ell)} \hat{\nu}_{j}^{(\ell)}(\lambda)=0 \quad \text { for } \nu \in V^{\perp}
$$

and

$$
\sum_{j=1}^{N} \sum_{\ell=0}^{m-1} \alpha_{j}^{(\ell)} \hat{\mu}_{j}^{(\ell)}(\lambda) \neq 0
$$

Then if

$$
f_{j}(x)=\sum_{\ell=0}^{m-1} \alpha_{j}^{(\ell)} x^{\ell} \quad(\text { for } 1 \leq j \leq N)
$$

the polynomial-exponential $f=\left(f_{j}\right)_{1 \leq j \leq N}$ satisfies

$$
\langle\nu, f\rangle=0 \quad\left(\text { for } \nu \in V^{\perp}\right)
$$

therefore $f \in \operatorname{Sp}(V)$, and

$$
\langle\mu, f\rangle \neq 0
$$

and we have a contradiction, since $\mu \in \operatorname{Sp}(V)^{\perp}$.
Proof of the Theorem. - Let $\mu=\left(\mu_{j}\right) \in \operatorname{Sp}(V)^{\perp}, f=\left(f_{j}\right) \in V$ and

$$
g=\sum_{j=1}^{N} \mu_{j} * f_{j} .
$$

We have to prove that $g=0$. By Lemma $2, \Delta_{j}(\mu)=0$ for $1 \leq j \leq N$ and μ verifies (2); therefore

$$
\rho * \sum_{j=1}^{N} \mu_{j} * f_{j}=\sum_{\ell=1}^{r}\left(\tau_{\ell}(\mu) * \sum_{j=1}^{N} \sigma_{\ell, j} * f_{j}\right) .
$$

For $1 \leq \ell \leq r$, since $\sigma_{\ell} \in V^{\perp}$, we have $\sum_{j=1}^{N} \sigma_{\ell, j} * f_{j}=0$. So

$$
\rho * g=0
$$

bulletin de la société mathématique de france

Hence g is mean-periodic and the Laplace transform G of g may be defined by

$$
G=\left(\rho * g^{-}\right)^{\wedge} / \hat{\rho}
$$

By ($[3$, Theorem X$]$) it is enough to prove that G is entire.
If $[a, b]$ is any interval that contains the supports of the $\mu_{j}(1 \leq j \leq N)$, $\sum \mu_{j} * f_{j}^{-}(x)$ is equal to $g(x)$ for $x<a$ and 0 for $x>b$. Thus the function

$$
s=g^{-}-\sum_{j=1}^{N} \mu_{j} * f_{j}^{-}
$$

has compact support. For $1 \leq \ell \leq r$, let

$$
h_{\ell}=\sum_{j=1}^{N} \sigma_{\ell, j} * f_{j}^{-} .
$$

By the same argument, the functions h_{ℓ} have compact supports and, by (2),

So

$$
\begin{gather*}
\rho * \sum_{j=1}^{N} \mu_{j} * f_{j}^{-}=\sum_{\ell=1}^{r} \tau_{\ell}(\mu) * h_{\ell} . \\
\rho * g^{-}=\sum_{\ell=1}^{r} \tau_{\ell}(\mu) * h_{\ell}+\rho * s \\
G=\frac{1}{\hat{\rho}} \sum_{\ell=1}^{r} \tau_{\ell}(\mu)^{\hat{\imath}} \cdot \hat{h}_{\ell}+\hat{s} . \tag{5}
\end{gather*}
$$

The functions \hat{s} and $\hat{h}_{\ell}(1 \leq \ell \leq r)$ are entire, as Laplace transforms of compactly supported functions.

For any $\nu \in V^{\perp}$, since $\sum \nu_{j} * f_{j}=0, \sum \nu_{j} * f_{j}^{-}$has compact support, and it follows by (2) that the function

$$
\begin{equation*}
\frac{1}{\hat{\rho}} \sum_{\ell=1}^{r} \tau_{\ell}(\nu)^{\hat{}} \cdot \hat{h}_{\ell} \quad \text { is entire } \tag{6}
\end{equation*}
$$

Let $\lambda \in \mathbb{C}$ and let m be the order of $\hat{\rho}$ at λ. By Lemma 3, we can choose $\nu \in V^{\perp}$ so that $\hat{\nu}_{j}^{(k)}(\lambda)=\hat{\mu}_{j}^{(k)}(\lambda)$ for $1 \leq j \leq N, 0 \leq k<m$. Then the functions $\left(\hat{\nu}_{j}-\hat{\mu}_{j}\right) / \hat{\rho}$ for $1 \leq j \leq N$ and the functions

$$
\frac{1}{\hat{\rho}}\left(\tau_{\ell}(\nu)^{\hat{}}-\tau_{\ell}(\mu)^{\wedge}\right) \quad(\text { for } 1 \leq \ell \leq r)
$$

```
tome 117-1989- N
```

are analytic at λ. It follows from (5) and (6) that G is analytic at λ.
Since λ is arbitrary, G is entire. That completes the proof of the Theorem.

BIBLIOGRAPHY

[1] Kahane (J.-P.). - Sur les fonctions moyennes-périodiques bornées, Ann. Inst. Fourier, t. 7, 1957, p. 292-315.
[2] Kellher (J.-J.) and Taylor (B.-A.). - Closed ideals in locally convex algebras of analytic functions, J. Reine Angew. Math., t. 255, 1972, p. 190-209.
[3] Meyer (Y.). - Algebraic Numbers and Harmonic Analysis (V-9). Amsterdam-London, North-Holland Publishing Co, 1972.
[4] Schwartz (L.). - Théorie générale des fonctions moyenne-périodiques, Ann. of Math., t. 48, 1947, p. 857-928.

[^0]: (*) Texte reçu le 16 mai 1988.
 F. Parreau, Dépt. de Mathématiques, C.S.P., Univ. Paris-Nord, 93430 Villetaneuse, France.
 Y. Weit, Dept. of Mathematics, Univ. of Haifa, Haifa 31999, Israël.

 BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE $0037-9484 / 1989 / 319 / \$ 5.00$

[^1]: tome $117-1989-\mathrm{N}^{\circ} 3$

