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ENDOMORPHISMS OF GROUP SCHEMES
AND RATIONAL POINTS ON CURVES

BY

M. L. BROWN(*)

REsUME. — Nous considérons les points rationels sur les revétements ramifiés abéliens
des courbes. Une technique essentielle est 1'étude de hauteurs de Weil sur les schémas en
groupes commutatifs.

ABSTRACT. — We consider the rational points on abelian ramified covers on curves. A
basic technique for this is a study of the behaviour of Weil heights on commutative group
schemes.

1. Introduction

Let k be a number field or a function field over a finite field; let G/k
be a smooth commutative group scheme. The object of this paper is to
study the k-rational points on curves lying (as closed subschemes) in G/k
and their inverse images under endomorphisms of G.

One knows from Serre [7] that all abelian galois covers of curves are
given by isogenies of their generalised jacobians. We consider here those
abelian covers produced by isogenies of one group scheme to itself which
generate a ring R of endomorphisms isomorphic to an order in a number
field. The arithmetic of R enters into one of the main results
(Theorems 3.6, 3.7) of this paper, that the inverse image r* C of the
curve C by the isogeny re R has “trivial” k-rational points for almost all
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2 M. L. BROWN

r (under suitable conditions); this result is obtained by a simple sieving
argument extending that of HeaTH-BrowN [4]. One consequence of this
(Example 1. §3) is that over any finitely generated extension k of the
rationals @ Fermat's Last Theorem is true for “*almost all” exponents (for
k = Q. this is due to HEATH-BrOWN [4]). Naturally, we assume Mordell's
conjecture for number fields (Faltings Theorem) and for function fields
(Manin-Grauert-Samuel theorem).

Our results on rational points depend on estimates for the behaviour of
the Weil height on commutative group schemes. We derive fairly precise
estimates for this in paragraph 2, thus improving the quadratic upper
bound of SERRE [6]; in fact, it is the lower bound that is essential for our
application to rational points. We end this paper with some Diophantine
equation examples.

It is a pleasure to thank the referee for his numerous suggestions and
corrections to this paper and his generosity for suggesting further results
leading from this work.

2. Heights on commutative group schemes

Throughout this section k will be a number field or a function field
over a finite field k,, with its usual proper set of normalised absolute
values M,. with its usual proper set of normalised absolute values M,
satisfying the product formula. For any point xe Pj(k), we take h(x) to
be the logarithmic Weil height,

h(x)=Y . sup,—v(x).
with respect to some choice of coordinates x,. . . .. X, fo:V-oPlisa

morphism of k-schemes. we define h,(x). for xe V' (k). to be h(¢p(x)).

Suppose that G k is a connected commutative group scheme of finite
type. The object of this section is to determine how the height hj(x),
x€ G (k). behaves with respect to the group law on G For abelian
vaneties, a definitive answer to this was given by Néron [5]. In the
general case. Scrrc showed that A, (x) 1s at most a quadratic function of
A, as 1 vanes over a finitely generated subgroup of G(k). Our main
result (Theorem 2. 6) gives sharp upper and lower bounds to h.
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GROUP SCHEMES AND RATIONAL POINTS 3

We derive these estimates by first examining the behaviour of the height
on the additive and multiplicative group schemes G, and G, and then
appealing to the structure theory of commutative group schemes which
asserts that (many) such are extensions of abelian varieties by products of
G,.’s and G, ’s; nevertheless, we have to assume in positive characteristic p
that the unipotent part of G has period p, in order to construct a suitable
compactification.

We first define some relations between real-valued functions f, g defined
onasetS. Write f~gif f(s)—g(s)is a bounded function of s€ S. Write
f«g if there are constants ¢, >0, ¢, such that f(s)<c,g(s)+c,, for all
se S (note: this is slightly different from the number theorist’s Vinogradov
notation). Write f> <g if we have both f>g and f<g.

The next result is a particular case of a well-known theorem of Néron.

THeoreM 2.1 (Néron). — Let A/k be an abelian variety with a projective
embedding @: A — P;. Then there is a positive definite quadratic function
pon A(k) (i.e. p=q+1, q a quadratic form and | a linear function on the
group A (k)/A (k),,,s) so that h,~p.

We next state some well known general properties of Weil heights.

LEmMMA 2.2. — (a) Let,
¢o: VP, Vv: V-Pp,

be morphisms of the k-scheme V to projective spaces. Suppose that @ is
an immersion. Then h,<h,. In particular, if both ¢ and ¥ are immersions
then h,» <h,.

(b) Let f: V — W be a finite morphism of projective k-schemes, with closed
immersions @, ¥ of V, W, respectively, into projective spaces. Then
hyof > <h,.

The next result determines the behaviour of the height on a torus.

LemMma 2.3. — Let G/k be a torus with a projective embedding
@:G— P;. Let i be the natural map from the abelian group G (k) to the
vector space V=G (k)®;R. Then there is a norm || || on V so that
hy(x) > < ||i(x)]. x€G (k).

Proof. — As a torus is isotrivial, that is becomes isomorphic to (G_)
over some finite extension field k* of k, and as the (normalised) height 1s
invanant under such a base change, we may assume that

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCF



4 M. L. BROWN

G=(G,). Further, by lemma 2.2 we may choose any projective embed-
ding that is convenient in place of ¢: therefore we embed G,, in P!, so
that the point xek*=G,_ (k) is identified with the point (1:x) on the
projective line, and then ¢ is induced by this and the Segre embedding of
(P')". The Weil height on the latter is then the sum of the Weil heights
on the component P!'s; we may therefore reduce to the case G=G,, with
the specified projective embedding.
We then have,

hy(xy)=Y,. w, MaX (=0 (xy), 0)<hy (x)+h, (),

for all x, yek*. Further, h,(a’)=|t|h,(a) for any integer t. Finally,
- h,(a)=0 if and only if a is a torsion point of G (k), that is to say if and
only if a is in the kernel of i. It therefore follows that h, extends to a
norm on G, (k)®, R, and we are finished.

We now estimate the height on a unipotent group scheme.

LemMA 2.4, — Let G/k be a unipotent commutative group scheme with
projective embedding ©:G — P;. Let T be a finitely generated subgroup
of G(k). Then, if k is a number field, there is a norm | || on the
real vector space T®,R, with i:-T -=T'®,R the natural map, so that
hy(y) » < log|li(y)||. YeT, (log 0=0). If k is a function field, then h, is
bounded on T.

Proof. — Suppose first that char k=p>0. Then G has a composition
series with factors isomorphic to G,; it follows that p" G=0 for some r>0,
and therefore I' is a finite group, whence h, is bounded; this completes
the proof for a function field over a finite field. :

Suppose now that k is a number field. Then G is isomorphic to (G,)’,
for some s>0. Embed (G,) in P} so that the point (x,,..., x,)ek’
corresponds to the point (1:x,:...:x,). Denote this embedding by o;
then by lemma 2.2 it is enough to evaluate the height given by this choice
of projective embedding.

Let y,.....v, be a basis for ' over Z; let y, have components
(v),=7v,, If vis non-archimedean, then we have,

2.1 v(X, m,y,) > min, (t (m,) + v (,)) >min, v (y,).

It follows from (2. 1) that the non-archimedean valuations contribute hittle
towards h,(y): that is to say. there 1s a constant C, depending on I', so

ToME 115 — 1987 — ~ |



GROUP SCHEMES AND RATIONAL POINTS 5

that,
(2.2) [he (N =Y., wnmax(0, log|(y);: j=1, ..., 9)|<C,

for all yeT.

Let k_ be the completion of k with respect to v. Condider the embed-
ding,

Vi k= ([, en ko) = K(say),

where k, =R or C and where the product is taken over all the archimedean
valuations of k. Now K is a vector space of dimension s[k: Q)] over R
and contains Y (I") as a discrete lattice.

The elementary inequality,
max; (| Z,a;,, )<Y, max;(|a;|,. 1),
implies,
2=3) [l .enmax; (| a5l D
<[, aeen (Zimax, (| ayl.. 1)
S TLL seenmax (| ayle DI* O
Therefore, taking logarithms in (2. 3), we have from (2. 2),

(2.4) he (Cmi¥)<cy+[k: Q)(c;+log (X [my])),

for some constants c,, c,, and where log 0=0. This gives our expected
upper bound to h,.

- We now derive a lower bound to h,. As Y(I') is a discrete lattice in
K, it follows that for each archimedean valuation ¢ on k there is a constant
d,>0 with the following property. For each y=Y m,y,el, there is an
archimedean valuation v and an integer j with,

|M;le>d. 3 |m,].
It follows that,
(2.5 Il .oomax;(|Y, my,]. D>(min d,)X|m,|.
for some constants ¢,, ¢;>0. The lemma follows from this and (2. 4).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 M. L. BROWN

Remark. — The proof of this lemma shows that if k is a function field
over an arbitrary field k,, including characteristic zero, then h is bounded
on any finitely generated subgroup of G (k).

We now consider the behaviour of the height on a commutative group
scheme G/k of finite type. We shall need a slight generalization of
SERRE's compactification [6] of commutative group schemes to the case of
characteristic p>0. Unfortunately we shall have to impose a restriction
on our group schemes in this case [see () below].

Suppose then that G/K is a smooth connected commutative group
scheme, where k is any field.

Then G is an extension of an abelian variety A/k by a linear algebraic
group L’k. Further, L contains a torus group T/k so that the quotient
group scheme L T is unipotent. We shall assume that, for characteristic
p>0.

(¥%) G K has unipotent part of period p=char k,

that is to say, L T is isomorphic to (G,)* for some s=>0 ([7], Ch. VII,
Prop. 11]. Indeed. one then has the unique decomposition L=Tx, U in
any characteristic, assuming (%) ([2), Exposé XVII, Th. 6.1.1.A)
(i1)]. In characteristic zero, any commutative unipotent group is a product
on G,'s: but in non-zero characteristic this is false, as group schemes of
truncated Witt vectors show ([7], Ch. VII, §7, Cor. §10-12].

Suppose now that k is algebraically closed and G/k satisfies (yk), in the
case of posiuive characteristic. Then one may construct a compactification
G of G exactly as in [6}; we shall sketch this for the convenience of the
reader. The lincar algebraic subgroup L of G is now a direct product of
copies of G, and G,. say L=I1L,, Then we may embed each L; in P!
so that the multiplication on L, extends to a group action of L; on
P':L xP'—=P' Take L as the product of these P''s, then the multipli-
cation on L extends to an action of L on [: LxL - L. Now take
G =G x L, then we have an induced action of the group scheme G on G
viaGxGwviaGxG -G Ths G s our required smooth compactification
of G

Plainly. G* =G -G is a positive divisor on G.  Suppose now that D is
a positive divisor on A=G L and D=p*D 1s its pull back to G via
p.G— A Asn (6] (Prop. | and Cor.) we now have,

ToMe 118 - 1987 - w1}



GROUP SCHEMES AND RATIONAL POINTS 7

LEMMA 2.5. — Suppose that D is ample. Then there are integers a1,
b>1, so that D, ,=aD +bG= is ample on G.

The next result is our main height estimate; we once again assume that
k is a number field or a function field over a finite field.

ProrosiTION 2.6. — Let G/k be a smooth commutative connected group
scheme, satisfving () in the case of positive characteristic. Let T be a
finitely generated subgroup of G(k) and ¢ a projective embedding of
G. Then there is a decomposition, I'/T,,,, =T, @I ,@®TI'; and positive defi-
nite quadratic forms q; on I';,i=1, 2, 3, (I'y and q, are zero if k is a
function field) so that,

hylr > < q,+ /g, +logq,  (log0=0).

Proof. — As the normalised height is invariant under finite base change,
we may base change from k to the algebraic closure k. By lemma 2.1,
we may choose any convenient projective embedding to compute the
height. so we take ¢ to be given by D, , for suitable a. b by
lemma 2.5. Therefore,

(2.6) h,~ahj+ bhg-.

Now, hz~h, p where p is the projection from G to A and h, is the
height on A relative to the divisor D. After Néron (Th. 2. 1), h, » < ¢q
where g is a positive definite quadratic form on A4 (k)/A (k). LetI, be
the group p(IN);p(IN),,,, and let I'" be the kernel of the map ' = I',. Then
we have the splitting =TI, @I". Therefore by (2. 6) we have,

(2.7 holr » € qlr,(=q,) +hge |r.

So 1t only remains to estimate hgx.

Let f be the automorphism x = x+x, of G. The compactification G
was constructed in such a way that this extends to an automorphism of G
and that f*G* =G*. It follows that h;» f ~hg«. Using \w'q_, as a
norm on I, it follows that for y,eI",. y'e "', we have the estimate,

(2.8 - g (Y +hgs (Y) <€hgs (Y, DY) < +\.?f.(y.)+har (Y.

for we may take a basis of I', and one by one remove elements from the
component y, using the ‘“invanance” property of hg: under

BULLFTIN DF LA SOCIETF MATHEMATIQUF DF FRANCF



8 M. L. BROWN

translation. Combining (2.7) and (2. 8) we have
2.9 h.lr><ql+hc“ lr'-

Now, the group I'" lies in a commutative group scheme which is a finite
extension of the affine group scheme L. It follows that L’ is an affine
commutative group scheme, possibly disconnected. We now consider the
cases of k being a number field or a function field separately.

Let k be a function field. Over the algebraic closure k of k, we have
that L'= T x ;U where T, U are multiplicative or unipotent group schemes,
respectively. Let p,, p,- L’ = T, U be the projection morphisms. By the
construction of G*, this divisor clearly induces very ample Cartier divisors
on T, U; we again denote these by G®. Again we have (compare the
proof of lemma 2. 3),

(2.10) hgo (x)=hge (py (X)) + hge (p; (x)), forall xeL'=Tx U.

But, U is a torsion group in characteristic p#0 so that the kernel of p, |
and the image of p,|r are finite groups. It follows from (2.10) and
lemma 2.3 that there is a decomposition I''=TI',@F, where I, is torsion
free and F is a torsion group, and a positive definite quadratic form q,

on I', so that,
hg=|r » < \/q—z

The result now follows from (2.9).
Suppose now that k is a number field. There is an integer m>0 so

that mI"<L. The endomorphism G ZGon G of multiplication by m

extends to a finite morphism G — G by the construction of G (see, for
example [6], Prop. 2). this is false in positive characteristic p as one sees
by taking multiplication by p). By lemma 2.2 we have hge *m » <€ hg«,
where G® now denotes the very ample Cartier divisor induced on L. So
it is enough to compute hg- on mI"c L. Now, L is a product of a torus
and a unipotent group: as the heights on these add to give the height on
L, as in (2. 10), the result follows from lemmas 2.3, 2.4 and (2.9).

COROLLARY 2.7. - Suppose that G'k satisfies (¥) in the function field
case. Let Ulk be the umipotent subgroup of G and i:G -G =G U the
natural map. Then there is a norm |i || on G'(k)®, R and a constant ¢ so

TOME 115 — 1987 - ~ 1



GROUP SCHEMES AND RATIONAL POINTS 9

that for all xe G (k),
hy (x)=]i(x) || +ec.

Proof. — If h, denotes a height on G’, for some projective embedding
V of G, then by lemma 2.2, h, (i(x)) < h,(x). Now, G’ is a group scheme
of unipotent rank zero. As the estimates of lemma 2.3 and theorem 2. 1
hold on all the k-rational points of the respective group schemes (instead
of just finitely generated subgroups) we may use these in the proof of
Proposition 2.6 (I', being finitely generated by Mordell-Weil) and the
result, and more, follows.

It is a straighforward matter to extend the upper bound of
Proposition 2.6 to function fields over number fields; for lemmas 2.3
and 2.4 easily extend to this case, and the generalization of Theorem 2.1
is known in this case. A sharp lower bound of the same kind can be
shown now for affine group schemes, but the same lower bound for
general commutative group schemes (as in Proposition 2. 6) does not seem
as simple to obtain.

3. Rational points on curves

Suppose that k is a number field or a function field over a finite
field. By a curve C/k we mean a smooth geometrically irreducible 1-di-
mensional k-scheme (not necessarily projective). Let G/k be a smooth
connected commutative group scheme and suppose that the curve C/k is
a closed subscheme of G. Let R be a ring of endomorphisms of G/k
which is isomorphic to an order in a number field. In this section, we
shall study the k-rational points on the inverse images r* C as r runs over
the elements of R.

The group G (k) inherits the structure of an R-module. As G is uniquely
an extension of an abelian variety A/k by a linear algebraic group L/k,
we also have that A(k) and L (k) have R-module structures. Now, L
contains a unique torus T such that U=L/T is a unipotent group scheme;
again T(k) and U (k) inherit R-module structures (for generalitites on
group schemes with R-actions see [1)).

After base changing by some purely inseparable extension k* of k, U
becomes a subgroup of L, so that L, =T, xU,. It therefore makes

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



10 M. L. BROWN

sense to define U’ as the subgroup of G (k) of points P for which
mPeU,. (k') N\ G (k) for some 0#m e Z; plainly, U’ is independent of the
choice of k’. As R is an order in'a number field, we have that for each
non-zero r€ R, there is r' € R so that rr’ is a non-zero integer: the following
lemma is therefore obvious.

LEMMA 3.1. — The R-module G (k)/U’ is torsion free.

As the units of R are k-automorphisms of G, they also induce k-auto-
morphisms of L, T and U. Call 2 non-zero elements of R equivalent if
their quotient is a unit of R. It follows that the number and distribution,
relative to L, T, U, of rational points of r*C depends only on the
equivalence class of r. Put R(r)=4# R/rR.

ProrosiTioN 3.2. — If QeG(k), Q¢U’, then the set of principal
ideals acR such that QeaG(k) is finite. That is to say.
li_m’principll. craG(k)SU".

Proof. — We may first extend the ground field, by a purely inseparable
extension, so that U exists as a subgroup scheme of G. By considering
the image of Q in G/U we may then reduce to the case when G k has
unipotent rank zero.

Take a projective embedding of G/k and let h be the associated Weil
height on G(k). Let G’ be the torsion free R-module G(k)Ll"
(lemma 3.1). Let M be the submodule of G’ of those elements of the
form sQ, for some sefract(R). Then Q — | identifiess M with an
R-submodule of fract(R), also denoted by M. By Corollary 2.7 and as
G has zero unipotent rank, there is a norm || || on M®, R so that.

[Im||<h(m)+ec, forall meM.

In particular. there are only finitely many me M of given bounded norm,
as the Weil height h has the same property. By considering a g-basis of
fract (R) it now easily follows that M has a common denominator and so
it i1s contained in 7 R for some Aefract(R). Therefore. if Qe M, Q#0.
the set of ideals ac R such that Q ea M is finite: for the nng R (» ' Q)R
is finite and so has only finitely many ideals.

We may apply this proposition to curves lying in G.  If A 1s a function
field over a field A, recall that the curve C/k is wsotrivial af there s a fimite
extenston K A so that C®, K is birationally isomorphic to C'&,, K where

TOME 115 - [9K” N



GROUP SCHEMES AND RATIONAL POINTS 11

C’ is a curve defined over k,. Suppose then that k is a number field
(respectively, a function field over a finite field).

CoROLLARY 3.3. — Suppose that C 'k is a smooth curve of genus 22
(resp. and which is not isotrivial) in the group scheme G k. Then.,

(1) for all but finitely many equivalence classes of re R. the k-rational
points of r* C are precisely (r* (C N U")) (k).

(2) if G has zero unipotent rank. then the k-rational points of r* C are
torsion points of G (k) for all but finitely many equiralence classes of re R.

Proof. — Clearly. (1) implies (2). So to prove (1). by Faltings’ theorem
(respectively, Manin-Grauert-Samuel theorem) C (k) is finite; thus
Pe(r* C)(k) implies that rP lies in this finite set. The result follows
immediately from Proposition 3. 2.

Remarks. — (1) In characteristic zero, the restriction of an isogeny of
G to U is necessarily an automorphism of U. Therefore. r* C in this case
always contains the k-rational points r* (C (k) N\ U). if this is non-empty,
and therefore always contains the points (r* (C N U')) (k).

(2) The corollary shows indirectly that if r is an isogeny, then the
geometric components of r* C are not isotrivial. In fact. if C' - C is a
finite morphism of curves of genus 22 over the function field k/k,. where
ko is a finite field, then C is not isotrivial implies that C’ is not isotrivial;
one may see this either by considering the Kodaira-Spencer maps of C,
C’ ([8], Ch. 3, §0], or by using the analogue of the Mordell conjecture
over function fields (C is isotrivial if an only if C'(K) is infinite for some
finite extension field K k).

We say that the closed subscheme X of the group scheme Gk has trivial
k-rational points relative to G. if X(k)cU”. Corollary 3.3 then says. in
particular, that r* C has trivial k-rational points for all but finitely many
equivalence classes of re R. provided g(C)>2.

For curves of genus < 1. one has a similar statement provided the covers
are sufficiently ramified to take them above genus 2 (see theorem 3.6). In
general one then only has a densiy result on the set of r for which r* C
has trivial k-rational points  We now cxaminc this casc of curves of
genus < 1.

LEMMA 3.4, — Let r be un element of R which detines an 1sogeny on
G. Then the degree dcgtri of this 1sogens 1s divisible only by those primes

BULLETIN DE LA SOCIETE MATHEMATIOUE DF tRANCE



12 M. L. BROWN

dividing R (r)=4% R/rR. In particular, if chark y RN (r), then r is a separable
isogeny on G.

Proof. — Let K be the Kernel of G — G. Then K/k is a finite group
scheme which is killed by N (r). Now, K=Spec A, where A4 is a finite
k-algebra and where dim, A =degr. ‘

There is an exact sequence of finite k-group schemes.

0-K°—- K- K*'-0,

where K°/k, K*'/k are connected and etale group schemes respectively. If
K® is non-trivial, then k has positive characteristic p and K° has order p*,
for some p>0. Therefore, degr=p*.order (K*") and as RN (r) kills K° we
must have that p divides N (r)([2], VII,, 8.5]. To prove the lemma, it
only remains to show that m=order(K") is only divisible by primes
dividing RN (r).

Now, RN(r) kills the étale group scheme K*; base changing by the
algebraic closure k of k, K*®,k is a constant group scheme ([2], 1,4.1)
given by a finite abelian group G of order m, and whose exponent divides
RN (r): the result easily follows.

The next lemma delineates the possible separable ramified covers r* C
of C.

LemMma 3.S5. — Suppose that r* C is separable over C [in particular if
chark ¥ N (r)] and that r:G— G is an isogeny. Then the covering
r:r* C — C is principal with group kerr and so all geometric components of
r* C have the same genus and same ramification over C.

(1) If g (C)Y=1, then either the geometric components of r* C are elliptic
curves isogenous to C or all have genus >2.

(2) Suppose that chark y N (r) and g(C)=0. Then every geometric com-
ponent of r* C is ramified over at least two points of C: further if r*C is
ramified at exactly two points, then it is totally ramified and the geometric
components of r* C have genus zero.

(3) If g(C)=0, the geometric points of r* C are ramified over at least 3
points of C. and N (r) is not dirvisible by 2 or 3. then the geometric components
of r* C have genus > 2.

TOME 11§ - 987 L |



GROUP SCHEMES AND RATIONAL POINTS 13

Proof. — Let C’ be a geometric component of r*C. The Riemann-
Hurwitz genus formula becomes, d=deg (r),

(3.1) g(C')>g(C)+1—d+§2,(d—m,),

where the sum is over the branch points P of C and m, are various
integers dividing d(ep=d/m,;); further, we have equality in (3.1) if and
only if the ramification is tame, in particular if chark 9 (r) after
lemma 3.4. The latter remark now gives (2) easily from (3.1). The
statement (1) is obvious.

(3) as N(r) is not divisible by 2 or 3, neither is d by
lemma 3.4. Therefore mp<d/5 for each branch point P of C. The
inequality (3. 1) then becomes,

g(C)21-d+3/2(d-d/S)=1+d/5,

whence g (C’)>2 [in fact this argument shows that if r* C is ramified over
at least 5 points of C, then g(C’)>2 for any geometric component C’ of
r* C whatever the value of 3 (r)}.

Let P(r) be a property of elements re R which depends only on the
equivalence class of . We say that P (r) holds for almost all reR if,

# { principal ideals a, 9 (a) < x such that P(a)}/M (x) - 1, as x — o0,

where M (x) is the number of principal ideals a of norm N(a)<x. We
next have a simple sieving argument.

ProposITION 3.6. — Let X be a subset of G(k). Assume that X N\ rG (k)
is finite, except possibly for those r’s lying in a finite number of proper
ideals of R. Then for almost all re R, we have X N\ rG (k)= U’ (k).

Proof. — Let a,,...,a, be the exceptional ideals, as in the
Proposition. Let | be the conductor of the order R in its integral
closure. Let S be the set of principal prime ideals p of R for which p tf,
a,,...,a, AsS is obtained by deleting a finite set of primes from the
set of all principal prime ideals of R, we have,

Y, s1/R(p)=0o,
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14 M. L. BROWN

by a theorem of Hecke (I thank Prof. R. Odoni for this
observation). Therefore the product,

[Toes(1=19(p)),

diverges to zero.

Select any € >0 and choose a finite subset S’ of S for which the product
n” s (1=19(p))<e. By Proposition 3.2, the set of principal ideals a.
divisible by some p in the finite set S, and for which XN a G (k)¢ U’ (k)
has at most finitely many elements, say N'. Therefore,

N(x)=% ! principalacR; N(a)<xand XNaGKk)EU (k)}

< N’ +{principal a; N(a)<x and p taforall peS’}.
Let u be the Mobius function on the ideals of R (which behaves as one
expects outside the primes in the conductor), let P be the product of all

primes in S’, and let M (x)=cx+o0(x) (c>0) be the number of principal
ideals of R of norm <x. Then we have from the above,

N(X)SN'+zg..,<x Zbl(P.e)p'(b)’

where the sums are over the principal ideals of the specified type; in fact
the b’s still run over ideals prime to f. Therefore,

NOSN 43, R P nw<nbial
SN +Y,, pu(b) M (x/RN(b))
SN +cM(x) Yy 0 (b)/RN(b) +o0(x),
SN +eMx)[]o) (1 =1/ (P) +0(x),
<N +c(e+o(1)) M(x).
It follows that,

limsup, . , N(x), M (x)<ec.

As £>0 was arbitrary, we must have lim N (x)/M (x)=0, as required.

We may now apply this proposition to the coverings r* C of the curve
C.

THeOREM 3. 7. — Suppose that k is a number field or a junction field
over a finite field. Suppose that the curve Cik is a closed subscheme of
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GROUP SCHEMES AND RATIONAL POINTS 15

G/k and has genus 0 (resp. genus 1). Suppose also that for all re R, except
possibly for those lying in a finite number of proper ideals of R, then
r: G — G is a separable isogeny and the geometric components of r* C are
ramified over at least 3 points of C (resp. ramified over C). Then r* C has
trivial k-rational points, relative to G, for almost all re R.

Remark. — By lemma 3.4, r: G — G is a separable isogeny provided r
does not lie in the finitely many prime ideals dividing char k, if this is
non-zero. '

Proof. — Let a,, ..., a, be the exceptional ideals of the theorem; let
Q.4 - - -, , be the prime ideals dividing 2,3 or char k, if the latter is
non-zero. Then by lemma 3. 5(3) [resp. lemma 3. 5(1)] and lemma 3.4,
we have that for all reR, r¢aq, for all i, the geometric components of r* C
are separable over C and have genus >2. It follows from Faltings
theorem, or the Manin-Grauert-Samuel theorem, that r* C (k) is finite, for
such r. Therefore, C (k) N\ rG (k) is finite for all r¢a,, i=1,...,t. The
theorem now follows from Proposition 3.6 and lemma 3. 1.

Examples. — (1) (Fermat curve over a number field). Let C be the
line X+ Y=1 in the group scheme,

G=G2=Speck[X*!, Y*'],

where k is a number field. Let R be the endomorphism ring Z on
G. Then, r*C, teZ, is the Fermat curve,

3.2 X+Y=1

Theorem 3.6 now gives that for almost all integers r>0, the only k-ra-
tional solutions have X, Y either being roots of unity in k or being zero
(for k=Q, this is due to HEATH-BrROWN [4]).

In fact, if K is a function field over a number field k., then for almost
all integers r, the equation (3. 2) has only those K-rational solutions which
are roots of unity in K or zero. For Mordell's conjecture is true in this
case (by Faltings method, see [3], Chapter 6), and the remarks after
Corollary 2.7 give suitable height estimates on G, to prove an analogue
of Theorem 3.6, which then says that for almost all r the K-rational
solutions of (3.2) actually lie in k (k is algebraically closed in K); the
previous paragraph now gives what we want.
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16 M. L. BROWN

(2) Let k be a function field over a finite field k,, where k, is alge-
braically closed in k and of characteristic p#2,3. Let C be the elliptic
curve,

y2=x3+ax+b,

ack, bek which is transcendental over ko, Suppose that C/k is not
isotrivial (this is always possible). Embed C in the group scheme
G2=Spec[X*!, Y*!] via X—x, Y —) (omitting the points given by
xy=0). Then by theorem 3. 6, taking R =27, the equation,

(3.3 yir=x3"+ax"+b,

has only those k-rational solutions given by x, yek, or xy=0. As b is
transcendental over k, we cannot have both x and y in k,. Further, the
solutions given by x) =0, involve taking 2n’th or n’th roots of certain
clements of k., and so only finitely many such n can have solutions of this
kind in k. Thus we have that the equation (3. 3) has no solutions in k
for almost all n.

(3) (Generalised jacobians.) Let k be a number field and C/k a
curve. Let m be a modulus for C, with support S consisting of k-rational
points, and let ¢: C — J_, be the canonical map to the generalised jacobian
(7). with respect to m. Suppose the hypotheses of Theorem 3.7 hold for
C. J_, and a ring of endomorphisms R of J,_.

The function, f:R - Z U { 0} given by,
J()=%(*C(k)),

is then virtually periodic: that is, there is a function g: R — Z whose values
depend only on the residue class of r modulo N for some integer N and
so that f (r)=g (r) for almost all r.

Furthermore, suppose that the field k i1s so large that maximal linear
algebraic group L in J_, splits completely: that is to say ({7), Ch. 5, §3),

LEGLS"' x G:coM‘ISI'

this can always be arranged by a finite extension of k. Then the maximum
value of g(r). and thus the maximum of f(r) attained for a set of re R of
positive density, 1s,

Remar = # (C)NU ) x(# p (k)" x # T (k)
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where p(k) is the group of roots of unity of k and J is the ordinary
jacobian of C/k.

Taking U=G3*®™~ !5, the above results are immediate consequences of
Theorem 3.7 and the exact sequences,

0= G 1 J [U~J—-0
o_-. u(k)degm-l -'(JM/U)IOY - Jlor - 0'

(4) With the same C/k — G2 as in Example (1), where k is a number
field, we now take R to be the order Z| \ﬁ], where n is non-square integer
(not necessarily square free). Then R acts on G2 via the representation,

~ a b x n
(a+b\/n).(x, _v)=[b ]x[}:(x‘y’, xb" y9),

n a )

Therefore, (a+b\/§)‘ C is the curve,
(3.3) X4 xt =1

Then Theorem 3. 7 gives that for almost all (a, b)e Z2, the only k-rational
solutions of (3. 3) have x, v as roots of unity in k or xy=0.
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