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OCTAHEDRA AND BRAIDS

BY

BIRGER IVERSEN (*)

RESUME. — La categoric homotopique des complexes sur une categoric additive est une
categoric triangulee au sens de Verdier ct satisfait comme telle Faxiome d'octaedre. Beilinson,
Bernstein et Deligne ont observe qiTun diagramme d'octaedre donne naissance a deux suites
de Mayer-Vietoris qui, dans les cas connus, sont des triangles distingues.

Dans cet article nous donnons d'une part un exemple d'un octaedre dont les suites de
Mayer-Vietoris ne sont pas des triangles distingues, et d'autrc part nous presentons un
nombre d'octaedres utiles dont les suites de Mayer-Vietoris sont des triangles distingues.
Ces exemples sont trouves en essayant d'implementer la theorie des triangles sur la topologie
algebrique; D'apres C. T. C. Wall et d'autres on salt qu'une grande partie de Falgebre
utilisee par Eilenberg et Steenrod peut etre systematisee en utilisant un type de diagrammes
s'appellant des tresses. Les octacdres et les tresses sont au fond la meme chose.

ABSTRACT. - The homotopy category of complexes over an additive category is a
triangulated category in the sense of Verdier and satisfies as such the octahedral axiom. It
has been observed by Beilinson. Bernstein and Deligne that an octahedral diagram gives rise
to two Mayer-Vietoris sequences and they have pointed out that these sequences in all
known cases are distinguished triangles.

In this paper we give on the one hand an example of an octahedron whose Mayer-Vietoris
sequences arc not distinguished triangles on the other hand present some useful octahedra
whose Mayer-Vietoris sequences are distinguished mangles. These examples were found in
an attempt to implement the theory of mangles on algebraic topology. It has been observed
by C.T.C. Wall and others that large pans of the algebra used by Eilenberg and Steenrod
can be systematiciscd using a type of diagrams called braids. Octahedra and braids are
really the same thing.
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198 B. IVERSEN

The homotopy category of complexes over an additive category is a
triangulated category in the sense of VERDIER [7] and satisfies as such the
octahedral axiom. In [1] 1.1.13 BEILINSON, BERNSTEIN and DELIGNE point

out that an octahedral diagram gives rise to two "Mayer-Vietoris"
sequences, which in all known cases are distinguished triangles: "Nous
ignorons ce qu'il en est en general. Si ces triangles devenaient utiles, il y
aurait peut-etre lieu de renforcer Faxiome TR 4. . .".

In this paper we shall on the one hand give an example of an octahedron
whose Mayer-Vietoris sequences are not distinguished triangles on the
other hand present some usefull octahedra whose Mayer-Vietoris sequences
are distinguished triangles. These examples were found in an attemp to
implement the theory of triangles on algebraic topology along the lines
suggested by a paper by C. T. C. WALL [8]. This can be done once the
observation is made that an octahedron can be represented as a
braid. —Our main result on the positive side, 4.6 provides the missing
link to lift some long exact sequences in singular homology to the level of
triangles, the best example being the homology sequence of an adjunction
space [4], p. 117.

Contents. — § 1, Triangles; §2, Octahedra; §3, Mayer-Vietoris sequences;
§4, Some usefull octahedra; §5, A counterexample.

1. Triangles

In the first four sections of this paper we work in the category of
complexes over a fixed additive category or the corresponding homotopy
category.

We use the notation X' ==(X, c) for a complex, in the sense that the
symbol X which is X' with the dot removed, denotes the graded object
underlying the complex X\ For an integer ncZ. we put X'[n]=(X[n],
{- IFr) where X[n] is given by (A^n])^^^. A morphism of complexes
u: X9 -»• y* will induce a morphism u[n]:A'*[n] -»• Y ' [ n ] by the convention
(u[n])p=uu + p . This will often cause notational inconvenience, and we
write u instead of u [n].

Let us be quite specific with respect to the notion of triangle, which we
use as a synonym to distinguished triangle. —Given a chainwise split
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OCTAHEDRA AND BRAIDS 199

exact sequence of complexes

/ 9
1.1 P' ^Q' ^R\

Choose a section s:R-^Q to g:Q-> R and let k: R -^ P [1] denote the
morphism given by

1.2 jk^Ss-sS.

This defines a morphism fc : R9 -^ P' [1] whose homotopy class is indepen-
dent of s. We call k: R9 -*> P9 [1] the homotopy invariant of the sequence
1.1. From these data we can build a diagram in the homotopy category

D •

1.3 k/ \?
P- " f x Q-

A triangle is by definition a diagram in the homotopy category isomorphic
to a diagram of the form 1.3.

Given a morphism u: P* -^ Q9 of complexes. To this we associate the
the mapping cone

1 . 4 Con-d^fpmffiC,^ °)\
\ V-" S j j

Which give rise to the mapping cone triangle

Con*(u)

Any triangle is isomorphic to a mapping cone triangle.
Reference: [7], [I], [5], [6]. Notice that we follow the sign convention

of Deligne and Verdier as opposed to that of Hartshome and Illusie. We
have changed the mapping cone accordingly, as proposed by BOURBAKI
[2].

1 Octahedra

By an octahedron we understand a diagram in the homotopy category
of the form

BULLETIN DE LA SOCIETE MATHfeMATIQUE DE FRANCE



200 B. IVERSEN

2.1

,^^^, „ ^ ~ - -

consisting of four triangles and such that

2.2 gi=jf, cp=dq.

The first of these relations expresses commutativity of the middle diamond
in 2.1. The second relation is nicely realized by reflecting the diagram
2.1 in the line AY and attaching it to the old diagram:

Alternatively the diagram can be represented as a braid in the homotopy
category

2.4

This representation reveals that an octahedron contains four morphisms
of triangles.

To explain the name of the diagram 2.1 we shall represent it as an
octahedron

TOME 114 - 1986 - ?2



OCTAHEDRA AND BRAIDS 201

2.5

upper cap

where the shaded areas represent triangles and the unshaded areas repre-
sent commutative diagrams. This representation is copied from [1].

3. Mayer-Vietoris sequences

Let us consider a quite general octahedron in the homotopy category

3.1

This gives rise to two sequences

(.). \-f/ (tf.j) cp
A ——> ^©B*——>Y—— . /T[l] ,3.2

9i \ P I (c. d}
A'-^r ——. C' [1]©D' ——. ^'[l],3.3

which we call the Mayer-Vietoris sequences of the octahedron. —These
are interesting in virtue of

LEMMA 3.4. — Given an arbitrary object Z' in the homotopy
category. Then each of the functors Horn (Z*, —), Horn ( — , Z*) transforms
the Mayer-Vietoris sequences into long exact sequences of abelian groups.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



202 B. IVERSEN

This lemma is easily proved by using the braid representation 2.4, compare
Wall [8]:

LEMMA 3.5. — Given a braid of abelian groups, i.e. a commutative
diagram of the form

consisting of four long exact sequences. Then the following sequence of
abelian groups is exact

^ A" ̂  y^y ^ y" ̂  ̂ n+1 ̂

where all morphisms are those of the diagram except A" -+ Jf which is the
one from the diagram with the opposite sign.

Proof. — Diagram chasing.
Q.E.D.

Let us give a proof of the octahedral axiom of Verdier. We offer the
excuse, that virtually all details will be used later.

THEOREM 3.6. (Verdier). — Any diagram consisting of two triangles with
a common vertex can be completed to an octahedron whose Mayor- Vietoris
sequences are triangles.

Proof. — Consider the following diagram

TOME 114 - 1986 - N' 2



OCTAHEDRA AND BRAIDS 203

3.7

The differential of the complex in the right center is written to the
right of the octahedron. —The diamond in the middle is homotopy
commutative:

,0. ,C. , d 0 0 ^ , 1 . ,1
( O , f - l ) i = - i B O . ( o ) + ( o ) 8
\ i / \o / \ fo^W W

To verify that the lower right hand corner is a triangle we can consider
the chainwise split exact sequence of complexes

,-300.
,0, -i30
( 0 } v f oa 7 ^ ioo \ / - ^o^\ i / \oio; ^-i^y

B ——» A [ 1 ] ® X ® B —————» A [ 1 ] ® X

This sequence has homotopy invariant ( /, 0) as it follows from the formula

/ - o C O ^ l O x / 1 0 \ / .^v / O x
f ^n^n i ^ f n iV " 9 0 ^ - ( ̂  if r\\i - i30 n 01 » - . 0 1 H _ . ^ J - ( O i l t , 0 )
v f 0^ / v 00 / ^ O O 7 ^ ld/ ^l7

To verify that the upper right hand corner is a triangle notice that the
chainwise split exact sequence

,0, / - ^ O O v
1 , -i30 ^ - 1 0 0 \ f'aG'\

3 ^C 7 v f O ? 7 V 001 ; \-f9/
y. ————» A [ 1 ] ® X ® B ————————» A [ 1 ] ® B

has homotopy invariant ( f , 0) as it follows from

, - ? 0 0 x / 1 0 ^ / ^ O v , . / 0 0^ , 0^
(-uao^oo) - ( o o ! ( - 9 0 = f-u o) = (- t ) (u,o)v ooa^^o i 7 \o1A 'w ^ / ^w 'J \ V 1

The commutativity relations 2.2 are clearely satisfied. Let us prove
that the Mayer-Vietoris sequence 3.3 is a triangle leaving 3.2 to the
reader. Consider the chainwise split exact sequence

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



204 B. IVERSEN

(1 0 0\ / -^O 00\
,-900. 00-1 .-f9 00]
(-i80 1 0 o/ i oo-ao j l 1 . 0 , 1 , 0 )v foa7 01 o/ \ oo-ia/ -a

A [ 1 ] O X ® B —————- A [ 1 ] ® B ® A [ 1 ] ® X ——————————- A [ 1 ]

/°\The homotopy invariant of this sequence is ( 0 | as it follows from thew
following formula

/-.O 00 \ / -1 \ / -1\ / 1 0 0\
-f9 O O l 0\ [ Q\ , f o O - 1 ^ ^
I 00-90H 0 - 0 j^ - 1 0 0 ]\^f
\ 00-i8/ \ O/ \ O/ \01 C/ I

This proves, with the notation of 3. 3. that
Al l ]

^ C * ( 1 ] ® D '

is a triangle. Finally turn this triangle once counterclockwise to see that
3.3 is a triangle.

Q.E.D.

4. Some usefull octahedra

We shall now establish three explicit octahedra whose Mayer-Vietoris
sequences are triangles. They will all arize from diagrams in the category
of complexes (not the homotopy category). In this context we shall
consider the mapping cone as a functor on the category of morphisms of
complexes.

These three octahedra have their counterpart in singular homology: The
long exact sequence of a triple, Eilenberg-Steenrod [3], I, § 10, triads VII,
§ 11 and proper (excisive) triads I, § 15.

THE OCTAHEDRON OF TWO COMPOSABLE MORPHISMS

Two composable morphisms u: X -+ Y and v: Y ̂  Z' give rise to an
octahedron whose Mayer-Vietoris sequences are exact.

TOME 114 - 1986 - ?2



OCTAHEDRA AND BRAIDS 205

4.1

Verification. — The octahedron 4.1 is in fact isomorphic to the octahe-
dron 3.7 but we shall proceed directly. The main point is to establish
the triangle in the lower right hand comer. We shall derive this from

(\ 0\
the standard mapping cone based on F=( j.

Con'(V)

Con- (u)—————————»Con* (vu)

v<>

and the following identification of Con'(r) and Con {V}

4.2

/oo\
| 1 0 1

oo i
\o i /

Con * ( v ) Con' (V)

O t u O
'ooor

using the explicit homotopy
/ooroo\ / i ooo \ / -10 00\

' 00 \i0\
[ 0 0 - 1 0 J
\ 00 OQ/

10^01u0\ ( 0 1 0 0 | .
00 \OOOV I 0 0 1 0 J

^oi / \oooi /

:< 0 0 0\ /0010 1

u-5 0 0\[ 0000
1-1 0-3. 0^0000
\ o-v-vu ^ Voooa

To establish the Mayer-Vietoris sequence 3.2 we notice that the chainwise
split exact sequence

BULLETIN DE LA SOCIETY MATH^MATIQUE DE FRANCE



206 B. IVERSEN

( °\f - i j 1 0 0
\ v7 'Ovr

Y - ———,. Con*(u) ® Z ' ———————» Con'(vu)

has homotopy invariant (u, 0) as it follows from
/ -300 / -10^ . / - 1 0 ^ / ^ ,0.
(-i80)( 0 0 i - ( 00 (:^l = (i (i.O)v f o a 7 ^ oi7 v oi^ r d / ^o7

We leave the sequence 3.3 to the reader.

THE OCTAHEDRON OF A SQUARE

A commutative diagram in the category of complexes

4.3 ^XA 'S Y *

B*

give rise to an octahedron whose Mayer-Vietoris sequences are triangles:

Con- (Dm

4.4

C o n ' ( f )

where the upper right hand triangle is a straight mapping cone triangle,
i.e.

(a o o t}
W : A ( 2 ] ® B l 1 ] ® X [ 1 ] ® Y , ^'Q.0 ^

0-j-<? o j

Verification. — Let us write down the octahedron 4.1 for the two
composable morphisms

TOME 114 - 1986 - N 2



OCTAHEDRA AND BRAIDS 207

"•'o^ v-^
Con"(f) Con* ( j f ) » Con*(gi) Con*(g)

From 4.2 we get the homotopy equivalence

Con' ( j ) C o n ' ( U )
0 1 f 0

'COOT
in a similar way we get the homotop\ equivalence

(^); C o n ' ( i ) [ 1 ]

(\ °\
0 g I
0-1 j

^0 O/

Con"(V)
, 1 0 00
'00-10 1

/ 3 o o c^
/gi-3 0 0
l-i 0-8 C
\0 -1 -g 3>

as is seen from the homotopy

(1 0\ /1000\ /O 0 0 0\
0-1-g 0 '

1 0 0 0 O J
\0 0 0-1/

o g l , i o oo. / o l o o 1

o- i / -oo-io ' ~ i o o i o /
0 O/ \OOOV

/ 9 C 0 0\ /0000\ /0000\ / 9 0 0 C}
fgi-8 o o K O O O I ) fooon|gi-9 o o
l-i 0-3 C l ^ O O O O / lOOOOH-i 0-3 0
\ 0-1-g ^/\0000/ \OOOQ/ \ 0-1-g 9/

I. . . rest of the details are left to the reader. Let us remark that the
detour over 4.1 was chosen in order to establish the Mayer-Vietoris
sequences as triangles.

Remark. — In case the diagram 4.3 is merely commutative up to
homotopy an octahedron similar to 4.4 can be established by a triple
application of Verdier's "octahedral axiom" 3.6. The cost is lost control
over the morphisms. The precise form 4.4 is use in the proof of 4.6.

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



208 B. IVERSEN

THE OCTAHEDRON ol \\ I \<. I M M SQl A R l

The commutative diagram 4.3 in the category of complexes give rise to
the following diagram containing 4 triangles

4.5

THEOREM 4.6. - // one of the following 4 induced morphisms is a
homotopy equivalence

Con {i)-^ Con (j),
Con (f)-^ Con (g),

Con (i)©Con" ( f) -^ Con (gi),
Con (gi) -^ Con (j) ©Con' (g),

then so are the three others. In the affirmative case the diagram 4.5 is
an octahedron once we identify Con"(i) with Con (j) and Con(f) with
Con(g). Moreover, the Mayor- Vietoris sequences of this octahedron are
triangles.

Proof. - Consider the octahedron 4.4. It follows from Lemma 3.4
that each of the four conditions are equivalent to W^O, which proves
the first part.

Let us now assume W ^0. The main point is to prove the second of
the commutativity relations 2.2. Consider the following commutative
diagram in the homotopy category.

Con' (i ) —====—» Con * ( j )

where all morphisms are the natural ones. Notice that all diagonal
morphisms are zero as it follows from 4.12, and that the central part of
the diagram contains a direct sum. It follows that the two morphisms

TOME 114 - 1986 - N 2



OCTAHEDRA AND BRAIDS 209

from A to Y obtained by skirting the sides of the hexagon differ in sign
only: Let us put names to the morphism in the diagram

Notice the identity of the centre can be written
-i -i

l=o 9 c+fc <p d,

by the direct sum assumption. This gives

sf^sa 6 cf-^-sb <p d/=r 9 e-\-t (p g

and the relation follows since 5/=0.
In order to prove that the Mayer-Vietoris sequences of this octahedron

are triangles we shall establish an isomorphism from the octahedron 3.7
to the octahedron 4. 5. Let us start with the lower right hand triangles

/Ox
(o)

8 ^i7

B —————

1

n J

f^0\
^

,-dOO.
(-i3o)
v foa7

- A[i]ex«B —————» AM lex -

(0,g

ft00\
<010;

• j )
fo\
V 1 7

^0\
\-i3; ( f ,0)

. B f l l A V • ' 1 0 ^ nf

v-^;

(f0\
\0ql

——————— Bl

-"•

The middle square is homotopy commutative:
/ f 0 \ / 1 0 0 \ ^ 0 \ ^f0 0\ ,
VogAolO; ^i^0^^) -^oo- j ; -

^ ^ o Y o o ^ \ / o o 1 ^ r ^ o o \
\ - j8Aooo^voooA'^°y

The remaining squares are obviously commutative. Thus we have esta-
blished a morphism of triangles. By assumption two of the sides of this
morphism are homotopy equivalences. This implies that we are facing

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



210 B. IVERSEN

an equivalence of triangles. The upper right hand triangles are handled
in a similar way.

Q.E.D.
Remark 4.7. — In case our basic category is abelian. Theorem 4.6

remains valid if we replace "homotopy equivalence" by
"quasi-isomorphism". The output is an octahedron in the derived cate-
gory whose Mayer-Vietoris sequences are triangles. This follows by a
slight modification of the proof of 4.6.

5. A counterexample

In this section we shall construct an octahedron in which one of the
Mayer-Vietoris sequences fails to be a triangle. —Let R denote the
commutative ring

5.1 C[[S, T, [7, V]]1{V(SU-TV),(T-U)UV2}

and let u, v, w denote the residue classes of (7, V and TV respectively. Let
us notice that the first generator gives

5.2 w=0modu, i?w=0moduu.

Consider the following octahedron build over the category of free R-mo-
dules

Con' (v)

5.3

VERIFICATION OF THE OCTAHEDRON

The congruences 5.2 ensure validity of the needed commutativity
relations. To prove that the upper right hand corner of 5.3 is a triangle
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OCTAHEDRA AND BRAIDS 211

we must first remark that the second generator of our ideal provides the
relation (uv—w) ui?==0. This allows us to write the following homotopy
commutative diagram.am. /-

( 1uv * 1 ' d,o)

1, uv <

1
( 0 \

L ^*w; .

/1 ^uv 0\
\0 1 -w^

( 1 . 0 )

1 ( 1 ]

1

r n

Notice that the first row is a triangle. Thus it suffices to prove that the
vertical arrows are homotopy equivalences. This means that

5.4 1 + w is a unit mod uv,

To see this write w=av and v\v=cuv, as we may by 5.2. Then

(1 -t-w)(l —fli?)= 1 —fluw= 1 —acuv= 1 moduv.

The Mayor- Vietoris sequence

( °\5 5 r1) ^ 1 ° ° ^v v7 \0 v 1-w/' (u,0)
R ——————» Con* (u)®R —————————» Con'(uv) ———————» R[ 1 ]

i5 not a triangle:

Assume the Mayer-Vietoris sequence is a triangle. Then we can com-
pare this with the triangle derived from 4.1

(-!) / 1 0 0 \
^Ovi; (u,0)

Con*(u)OR———————» Con'(uv) ———————» R [ 1 ]

and deduce the existence of a commutative diagram in the homotopy
category

BULLETIN DE LA SOCIETY MATHEMATIQUE DE FRANCE



212 B. IVERSEN

5.6

, UuU
1 - u O O ) / 0 0 \

! °,\^J
/a

(^
/ 0,

i (-;)

v ooo' \^-uv oy
, D f 1 1 Ar»An - *•» f « 1 -»»»

W)lî i
^

^ 1 0 0 \
\,ovi+wy

^oo\
yovi;

no\
\01}

J WK

Notice, that the horisontal arrow in the right hand corner is a chainwise
split epimorphism, which implies that we may assume the right hand
square to be commutative, that is

(o^y-^Xl1^--^^^
^i^33
'b y z
S^7

a- a^ a^ \
+c, vy-fc^ vz+c,;

Thus our transformation has the form

/ 1 ° ° ^( b y z
^-vb v-vy 1+W-VZ- '

and must commute with the differential

O O O v / 0
)(-u0o) =(-yi

•vb v-vy 1 -t-w-vz^ O O O 7 ^vu (

v / 1 0 U \ / UUUv / U U U \

^ = f b y z ) -uOO) = -yu 0 0 )
,/ \-<r^-»»-trw i+w-\ /7/ \ nnrv ^ v i i f v - i l o o 7

, O O O v , l 0 0
(-u0o)( b y z

000 ^-vb v-vy 1 •«-w-vz

1 0 0
, = . b y z A"11"".
/ ^ - vbv -vv l ^w-vz 7 ^ 000'

0 0
0 0

^vuly-DO O

which gives the condition u—yu=0. The first square in the diagram 5.6
must be homotopy commutative, i. e.

/ c / i o o \ / °\ / ° \
(-li- b y z )(- l)=!-y^v ^ )
\ y/ \-vb v-vy l+w-vz ' ' v7 ^-v+vy^v+vw-v z7

This gives us — v -h ̂  -h rw — v2 z = 0 and a homotopy between the following
two morphisms from R to Con*(u)

/ 0 \ ( 0 ^
^ -1 ; ^ \ - y ^ z v /

which shows that y — zv — 1 = 0 mod u.

V we collect the three underlined equations together we see that the
following inhomogeneous linear system
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OCTAHEDRA AND BRAIDS 213

- - u 1 -v x h 1
5.7 /o u o^M = /u

[0 v -vn zj v-wv

must admit a solution in R. However the system 5.7 have no solutions
in R:

A look at the second equation shows that

y = 1 4- terms of degree ̂  3.

Substitute this into the third equation to see that if we let r denote the
residue class of T, then

z = t -h terms of degree ̂  2.

Substitute these two relations into the first equation to get

xu = vt -h terms of degree ̂  3.

This implies that VT is divisible by U which is absurd.
An octahedron where both Mayer-Vietoris sequences fails to be triangles

can be obtained by taking the direct sum of the octahedron above and its
dual.
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