BULLETIN DE LA S. M. F.

ZBIGNIEW PIOTROWSKI Continuity points in $\{x\} \times Y$

Bulletin de la S. M. F., tome 108 (1980), p. 113-115

© Bulletin de la S. M. F., 1980, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 108, 1980, p. 113-115.

CONTINUITY POINTS IN $\{x\} \times Y$

BY

ZBIGNIEW PIOTROWSKI (*)

RÉSUMÉ. – Le résultat principal de cet article est un peu plus fort que le théorème suivant : soit X un espace à base dénombrable en tout point soit Y un espace de Baire et soit Z un espace métrique. Si une fonction $f: X \times Y \rightarrow Z$ est séparément continue, l'ensemble des points de continuité de f est un dense G_{δ} dans $\{x\} \times Y$, pour chaque $x \in X$.

ABSTRACT. — The main result of this paper is somewhat stronger than the following: let X be a first countable space, let Y be a Baire one and let Z be a metric space. If a function $f: X \times Y \rightarrow Z$ is separately continuous, then the set of points of continuity of f is a dense G_{δ} subset in $\{x\} \times Y$, for all $x \in X$.

There are many papers which deal with the classical problem of determination of points of continuity of a separately continuous function, for some references, see [1].

The general problem is: find conditions on topological spaces X, Y and Z so that each separately continuous function $f: X \times Y \rightarrow Z$ (i. e., function continuous in each variable while the other is fixed) is jointly continuous at points of a "substantial" (in some topological sense) subset of $X \times Y$, cf. [1], p. 515.

We will answer this problem showing how the set of points of continuity looks like in the sets of form $\{x\} \times Y$, for each x, while X is assumed to be first countable, Y is Baire, Z is metric and f is somewhat weaker than separately continuous. As a useful tool we make use of quasi-continuous functions. Namely:

A function $f: X \to Y$ is called *quasi-continuous* if for every point $x \in X$ and every neighborhoods U of x and V of f(x), there exists an open, non-empty set G, $G \subset U$, such that $f(G) \subset V$.

^(*) Texte reçu le 12 février 1979, révisé le 22 octobre 1979.

Z. PIOTROWSKI, Institute of Mathematics, University, pl. Grunwaldzki 2/4, 50-384, Wrocław, Poland.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE - 0037-9484/1980/113/\$ 5.00 © Gauthier-Villars

Recall that S. Marcus proved that there exists a quasi-continuous function which is not Lebesgue measurable. Of course, every continuous function is quasi-continuous.

A function $f: X \times Y \to Z(X, Y, Z)$, arbitrary topological spaces) is said to be quasi-continuous with respect to the variable x, if for every point (p, q) of $X \times Y$ and for every neighborhood N of f(p, q) and for every neighborhood $U \times V$ of (p, q) there exists a neighborhood U' of p, with U' \subset U and a nonempty open set $V' \subset V$ such that for all $(x, y) \in U' \times V'$ we have $f(x, y) \in N$. Analogously, one may define functions which are quasi-continuous with respect the variable y. If f is quasi-continuous with respect to the variable x and quasi-continuous with respect to the variable y, then we say that f is symmetrically quasi-continuous.

One can easily construct symmetrically quasi-continuous functions which are not separately continuous. From [2], Theorem 1 it follows:

LEMMA. – Let X be first countable, Y be Baire and Z be metric. If $f: X \times Y \rightarrow Z$ is a function such that all its x-sections f_x are quasi-continuous and all its y-sections f_y are continuous, then f is quasi-continuous with respect to x.

Now, under the same assumptions as in Lemma, let us fix an arbitrary element x from X. Consider the function $y \rightarrow \omega(x, y)$. Observe, that the open set $\{y | \omega(x, y) < 1/n\}$ is dense in Y! Hence, standard arguments let us state the following:

THEOREM. – Let X be first countable, Y be Baire and Z be metric. If a function $f: X \times Y \rightarrow Z$ has all its x-sections f_x quasi-continuous and all its y-sections f_y continuous, then for all $x \in X$, the set of points of continuity of f is a dense, G_{δ} subset in $\{x\} \times Y$.

COROLLARY. – Let X and Y be first countable, Baire spaces and Z be metric. If a function $f: X \times Y \rightarrow Z$ is separately continuous, then the set of points of continuity of f is dense, G_{δ} in the sets of form $X \times \{y\}$ and $\{x\} \times Y$, for all $x \in X$ and all $y \in Y$.

The following Question remains open:

Question. – For which "nice" topological (neither metric nor satisfying any sort of countability conditions, see [1], p. 515_{20}) spaces X and Y, our Lemma holds?

Good answers to this Question will let to extend our Theorem.

tome 108 - 1980 - Nº 1

REFERENCES

- NAMIOKA (I.). Separate continuity and joint continuity, Pacific J. Math., vol. 51, 1974, p. 515-531.
- [2] PIOTROWSKI (Z.). Quasi-continuity and product spaces, Proc. Conf. Geom. Topology, Warsaw, 1978.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE