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CONTINUITY POINTS IN { x ] x Y

BY

ZBIGNIEW PIOTROWSKI (*)

RESUME. — Le resultat principal de cet article est un peu plus fort que Ie theoreme suivant: soil
X un espace a base denombrable en tout point soil Y un espace de Baire et soit Z un espace
metrique. Si une fonction/: XxY-^Z est separement continue, Fensemble des points de
continuite de/est un dense 65 dans [ x ] xY, pour chaque xeX.

ABSTRACT. — The main result of this paper is somewhat stronger than the following: let A" be a
first countable space, let Vbe a Baire one and let Z be a metric space. If a function/: X x V-» Z
is separately continuous, then the set of points of continuity of/is a dense Gs subset in { x } x Y,
forallxeJif.

There are many papers which deal with the classical problem of
determination of points of continuity of a separately continuous function, for
some references, see [1].

The general problem is: find conditions on topological spaces X, Vand Z
so that each separately continuous function/: X x Y~^Z (i.e., function
continuous in each variable while the other is fixed) is jointly continuous at
points of a "substantial" (in some topological sense) subset ofXxY, cf. [I],
p. 515.

We will answer this problem showing how the set of points of continuity
looks like in the sets of form { x ] x Y, for each x. while X is assumed to be
first countable, Y is Baire, Z is metric and / is somewhat weaker than
separately continuous. As a useful tool we make use of quasi-continuous
functions. Namely:

A function/: X -»Y is called quasi-continuous if for every point x e X and
every neighborhoods 17 ofx and Voff(x), there exists an open, non-empty set
G.Gc: U, such that /(G)c: K
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Recall that S. Marcus proved that there exists a quasi-continuous function
which is not Lebesgue measurable. Of course, every continuous function is
quasi-continuous.

A function/: X x Y-^Z{X, V. Z, arbitrary topological spaces) is said to
be quasi-continuous with respect to the variable x, if for every point (p, q) of
X x Y and for every neighborhood N off(p, q) and for every neighborhood
U x Vof(p, q) there exists a neighborhood V of p. with [/ '<=[/ and a non-
empty open set V c V such that for all (x. y)e V x V we have/(x, y ) e N .
Analogously, one may define functions which are quasi-continuous with
respect the variable y. If/is quasi-continuous with respect to the variable x
and quasi-continuous with respect to the variable y , then we say that / is
symmetrically quasi-continuous.

One can easily construct symmetrically quasi-continuous functions which
are not separately continuous. From [2], Theorem 1 it follows:

LEMMA. — Let X be first countable, Y be Baire and Z be metric. Iff:
X x y-^ Z is a function such that all its x-sectionsfjc are quasi-continuous and
all its y-sectionsfy are continuous, then f is quasi-continuous with respect to x.

Now, under the same assumptions as in Lemma, let us fix an arbitrary
element x from X. Consider the function y-^(Q(x, y). Observe, that the
open set { y \ (o(x, y) < 1 In} is dense in V! Hence, standard arguments let
us state the following:

THEOREM. — Let X be first countable, Y be Baire and Z be metric. If a
function f: X x Y-^Z has all its x-sectionsfjc quasi-continuous and all its
y-sectionsfy continuous, then for all x € X, the set of points of continuity off is a
dense, Gg subset in [ x ] x Y.

COROLLARY. - Let X and Y be first countable, Baire spaces and Z be
metric. If a function f: X x Y-^Z is separately continuous, then the set of
points of continuity off is dense, G sin the sets of form X x {y}and{x} x Y.for
allxeX andallyeY.

The following Question remains open:

Question. — For which "nice" topological (neither metric nor satisfying
any sort of countability conditions, see [I], p. 515 20) spaces X and V, our
Lemma holds?

Good answers to this Question will let to extend our Theorem.
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