BULLETIN DE LA S. M. F.

WOLDZIMIERZ M. TULCZYJEW The Lagrange complex

Bulletin de la S. M. F., tome 105 (1977), p. 419-431 http://www.numdam.org/item?id=BSMF_1977_105_419_0 >

© Bulletin de la S. M. F., 1977, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 105, 1977, p. 419-431.

THE LAGRANGE COMPLEX

BY

WLODZIMIERZ M. TULCZYJEW [University of Calgary, Alberta]

Résumé. — Nous définissons le complexe de co-chaînes (Λ , δ), et nous prouvons le lemme de Poincaré pour l'opérateur δ . L'opérateur δ est utilisé dans le calcul des variations en vue de déduire les équations d'Euler-Lagrange. Le lemme de Poincaré fournit alors le critère suivant lequel un système d'équations est un système d'Euler-Lagrange.

ABSTRACT. – A cochain complex (Λ, δ) is defined, and the δ -Poincaré lemma is proved. The work is motivated by applications to the calculus of variations. The operator δ is used in the calculus of variations to construct the Euler-Lagrange equations, and the δ -Poincaré lemma provides criteria for partial differential equations to be Euler-Lagrange equations.

The present paper generalizes results contained in earlier publications ([6], [8]) which were applicable to ordinary differential equations of the Euler-Poisson type.

1. Jets and tangent vectors

Let M be a C^{∞} -manifold. We denote by $T^{(k)} M$ the manifold $J_0^k(\mathbb{R}^p, M)$ of jets of order k from \mathbb{R}^p to M with source 0 called by EHRESMANN [1] p^k -vitesses in M. Elements of $T^{(k)} M$ are equivalence classes of smooth mappings of \mathbb{R}^p into M. Two mappings γ and γ' are equivalent if $D^n(f \circ \gamma)(0) = D^n(f \circ \gamma')(0)$ for each C^{∞} -function f on M and each $n = (n_1, \ldots, n_p) \in \mathbb{N}^p$ such that $|n| = n_1 + \ldots + n_p \leq k$. The symbol $D^n g(0)$ is used to denote the partial derivative of a function g:

$$\mathbf{R}^{p} \rightarrow \mathbf{R}: (t_{1}, \ldots, t_{p}) \mapsto g(t_{1}, \ldots, t_{p})$$

of orders n_1, \ldots, n_p with respect to the arguments t_1, \ldots, t_p respectively at $(t_1, \ldots, t_p) = (0, \ldots, 0)$. We denote by $j_0^k(\gamma)$ the jet of the mapping γ . For each $k \in N$, there is the projection

$$\tau_{(k)}: T^{(k)}M \to M: j_0^k(\gamma) \mapsto \gamma(0)$$

and, if $k' \leq k$, then there is the projection

 $\rho_{(k')(k)}: \quad T^{(k)}M \to T^{(k')}M: j_0^k(\gamma) \mapsto j_0^{k'}(\gamma).$

The manifold $T^{(0)}$ M is identified with M, and $T^{(1)}$ M is the tangent bundle TM of M. For each $n \in \mathbb{N}^p$ such that $|n| \leq k$ and each C^{∞} -function f on M there is a C^{∞} -function f_n defined on $T^{(k)}$ M by $f_n(j_0^k(\gamma)) = D^n(f \circ \gamma)$ (0).

For each $k \in \mathbf{N}$, we introduce an equivalence relation in the set of smooth mappings of \mathbf{R}^{p+1} into M. Two mappings χ and χ' will be considered equivalent if $D^{(r,n)}(f \circ \chi)(0) = D^{(r,n)}(f \circ \chi')(0)$ for each C^{∞} -function f on M, each $n \in \mathbf{N}^p$ such that $|n| \leq k$ and r = 0,1. The symbol $D^{(r,n)}g(0)$ denotes the partial derivative of a function g:

$$\mathbf{R}^{p+1} \to \mathbf{R}: (s, t_1, \ldots, t_p) \mapsto g(s, t_1, \ldots, t_p)$$

of orders r, n_1, \ldots, n_p with respect to the arguments s, t_1, \ldots, t_p respectively at $(s, t_1, \ldots, t_p) = (0, 0, \ldots, 0)$. We denote the equivalence class of the mapping χ by $j_0^{(1,k)}(\chi)$. The set of equivalence classes can be canonically identified with the tangent bundle $TT^{(k)} M$ in such a way that

$$\langle j_0^{(1,k)}(\chi), df_n \rangle = D^{(1,n)}(f \circ \chi)(0)$$

for each function f on M and each $n \in \mathbb{N}^p$ such that $|n| \leq k$ and also

$$\tau_{T^{(k)}M}(j_0^{(1,k)}(\chi)) = j_0^k(\chi_0),$$

where $\tau_{T^{(k)}M} : TT^{(k)} M \to T^{(k)} M$ is the tangent bundle projection, and χ_0 is the mapping

$$\chi_0: \quad \mathbf{R}^p \to M: \quad (t_1, \ldots, t_p) \mapsto \chi(0, t_1, \ldots, t_p) \quad [7].$$

The tangent mapping $T \rho_{(k')(k)} : TT^{(k)} M \to TT^{(k')} M$ is given by

$$T\rho_{(k')(k)}(j_0^{(1,k)}(\chi)) = j_0^{(1,k')}(\chi)$$

For each $k \in \mathbb{N}$ and each $m \in \mathbb{N}^p$ there is the mapping

$$\mathbf{F}_{m}: \quad TT^{(k)} M \to TT^{(k)} M: \quad j_{0}^{(1,k)}(\chi) \mapsto j_{0}^{(1,k)}(\chi_{m}),$$

where χ_m is the mapping

$$\chi_m: \mathbf{R}^{p+1} \to M: (s, t_1, \ldots, t_p) \mapsto \chi(st^m, t_1, \ldots, t_p),$$

and $t^m = t_1^{m_1} \dots t_p^{m_p}$. Diagrams

tome 105 - 1977 - N° 4

and

are commutative.

For each $\alpha = 1, \ldots, p$ and each $k \in \mathbb{N}$, there is the mapping

$$\mathbf{T}^{\alpha}: \quad T^{(k+1)}M \to TT^{(k)}M: \quad j_0^{k+1}(\gamma) \mapsto j_0^{(1,k)}(\gamma^{\alpha}),$$

where γ^{α} is the mapping

$$\gamma^{\alpha}: \mathbf{R}^{p+1} \to M: (s, t_1, \ldots, t_p) \mapsto \gamma(t_1, \ldots, t_{\alpha} + s, \ldots, t_p)$$
⁽¹⁾.

Diagrams

$$T^{(k+1)} M \xrightarrow{\mathbf{T}^{\alpha}} TT^{(k)} M$$

$$\stackrel{\mathsf{p}_{(k)}}{\longrightarrow} T^{(k)} M \longrightarrow T^{(k)} M$$

$$T^{(k)} M \longrightarrow T^{(k)} M$$

and

are commutative.

2. Forms and derivations

Let $\Omega_k^{(q)}$ denote the **R**-linear space of q-forms on $T^{(k)}$ M, and let $\Omega_{(k)}$ be the nonnegative graded linear space $\{\Omega_{(k)}^q\}$. The exterior differential d is a collection $\{d^q\}$ of linear mappings

$$d^q: \Omega^q_{(k)} \to \Omega^{q+1}_{(k)}$$

and the exterior product \wedge is a collection $\{\wedge^{(q,q')}\}$ of operations $\wedge^{(q,q')}: \Omega^q_{(k)} \times \Omega^{q'}_{(k)} \to \Omega^{q+q'}_{(k)}$. For each $k' \leq k$ and each q, there is the cotangent mapping $\rho^*_{(k')(k)}: \Omega^q_{(k')} \to \Omega^q_{(k)}$ corresponding to the mapping $\rho_{(k')(k)}: T^{(k)} M \to T^{(k')} M$, and, if $k'' \leq k' \leq k$, then

$$\rho_{(k')(k)}^* \circ \rho_{(k'')(k')}^* = \rho_{(k'')(k)}^*.$$

(1) The mappings T^{α} are related to the *holonomic lift* λ defined by Kumpera [3]. BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE Hence $(\Omega_{(k)}^q, \rho_{(k')(k)}^*)$ is a directed system. Let Ω^q denote the direct limit of this system, and let Ω be the graded linear space $\{\Omega^q\}$. The underlying set of Ω^q is the quotient set of $\bigcup_k \Omega_{(k)}^q$ by the equivalence relation according to which two forms $\mu \in \Omega_{(k)}^q$ and $\nu \in \Omega_{(k')}^q$ are equivalent if $k' \leq k$ and $\mu = \rho_{(k')(k)}^* \nu$, or $k' \geq k$ and $\nu = \rho_{(k)(k')}^* \mu$. The exterior differential d and the exterior product \wedge extend in a natural way to the direct limits giving the graded linear space Ω the structure of both a cochain complex and a commutative graded algebra. We write $\mu \in \Omega_{(k)}^q$ for an element μ of Ω^q if μ has a representative in $\Omega_{(k)}^q$. This notation could be justified by identifying $\Omega_{(k)}^q$ with the image of the canonical injection $\Omega_{(k)}^q \to \Omega^q$. A collection $a = \{a^q\}$ of linear mappings $a^q : \Omega^q \to \Omega^{q+r} : \mu \to a^q \mu$ is called a graded linear mapping of degree r. We write a instead of a^q if this can be done without causing any confusion. The exterior differential d is a graded linear mapping of degree 1.

DEFINITION 2.1. – A graded linear mapping $a = \{a^q\}$ of degree r is called a *derivation* of Ω of degree r if

$$a(\mu \wedge \nu) = a \mu \wedge \nu + (-1)^{qr} \mu \wedge a \nu$$
, where $q = \text{degree } \mu$.

The exterior differential d is a derivation of Ω of degree 1. If a and b are derivations of Ω of degrees r and s respectively, then

$$[a, b] = \{a^{q+s}b^{q} - (-1)^{rs}b^{q+r}a^{q}\}$$

is a derivation of Ω of degree r+s called the commutator of a and b.

It follows from the general theory of derivations [2] that derivations of Ω are completely characterized by their action on Ω^0 and Ω^1 . In fact, a derivation is completely determined by its action on equivalence classes of f_n and df_n for each function f on M and each $n \in \mathbb{N}^p$. Following FRÖLICHER and NIJENHUIS [2], we call a derivation a a derivation of type i_* if it acts trivially on Ω^0 . We call a a derivation of type d_* if [a, d] = 0.

For each $m \in \mathbb{N}^p$, each $k \in \mathbb{N}$ and each q > 0 there is a linear mapping

$$i_{\mathbf{F}_m}: \quad \Omega^q_{(k)} \to \Omega^q_{(k)}: \quad \mu \mapsto i_{\mathbf{F}_m} \mu,$$

defined by

$$\langle w_1 \wedge \ldots \wedge w_q, i_{\mathbf{F}_m} \mu \rangle$$

= $\langle \mathbf{F}_m(w_1) \wedge w_2 \wedge \ldots \wedge w_q, \mu \rangle$
+ $\langle w_1 \wedge \mathbf{F}_m(w_2) \wedge \ldots \wedge w_q, \mu \rangle + \ldots + \langle w_1 \wedge w_2 \wedge \ldots \wedge \mathbf{F}_m(w_q), \mu \rangle,$

томе 105 — 1977 — n° 4

where $w_1, ..., w_q$ are vectors in $TT^{(k)} M$ such that $\tau_{T^{(k)}M}(w_1) = ... = \tau_{T^{(k)}M}(w_q)$ and $\mathbf{F}_m : TT^{(k)} M \to TT^{(k)} M$ is the mapping defined in Section 1. Due to commutativity of diagrams

the mappings $i_{\mathbf{F}_m}$ extend to a derivation $i_{\mathbf{F}_m}$ of Ω of type i_* and degree 0. If $\mu \in \Omega^q_{(k)}$, then $i_{\mathbf{F}_m} \mu \in \Omega^q_{(k)}$ and $i_{\mathbf{F}_m} \mu = 0$ if $\mu \in \Omega^q_{(k)}$ and |m| > k.

For each $\alpha = 1, ..., p$, each $k \in \mathbb{N}$, and each $q \in \mathbb{N}$, there is a linear mapping

$$i_{\mathbf{T}^{\alpha}}: \quad \Omega^{q+1}_{(k)} \to \Omega^{q}_{(k+1)}: \quad \mu \mapsto i_{\mathbf{T}^{\alpha}} \mu,$$

defined by

$$\langle w_1 \wedge \ldots \wedge w_q, i_{\mathbf{T}^{\alpha}} \mu \rangle = \langle x \wedge u_1 \wedge \ldots \wedge u_q, \mu \rangle,$$

where

$$x = \mathbf{T}^{\alpha}(v), \quad v = \tau_{T^{(k+1)}M}(w_1) = \ldots = \tau_{T^{(k+1)}M}(w_q),$$
$$u_1 = T\rho_{(k+1), (h)}(w_1), \quad \ldots, \quad u_q = T\rho_{(k+1), (h)}(w_q),$$

and $\mathbf{T}^{\alpha}: T^{(k+1)} M \to TT^{(k)} M$ is the mapping defined in Section 1. Due to commutativity of diagrams

the mappings $i_{\mathbf{T}^{\alpha}}$ extend to a derivation $i_{\mathbf{T}^{\alpha}}$ of Ω of type i_* and degree -1. A derivation $d_{\mathbf{T}^{\alpha}}$ of Ω of type d_* and degree 0 is defined by $d_{\mathbf{T}^{\alpha}} = [i_{\mathbf{T}^{\alpha}}, d]$. If $\mu \in \Omega_{(k)}^{q+1}$, then $i_{\mathbf{T}^{\alpha}} \mu \in \Omega_{(k+1)}^{q}$, and $d_{\mathbf{T}^{\alpha}} \mu \in \Omega_{(k+1)}^{q+1}$.

For each $\alpha = 1, \ldots, p$ let e^{α} denote the element $(e_1^{\alpha}, \ldots, e_p^{\alpha})$ of \mathbf{N}^p defined by $e_{\beta}^{\alpha} = 1$ if $\alpha = \beta$, and $e_{\beta}^{\alpha} = 0$ if $\alpha \neq \beta$. Let \geq denote the partial ordering relation in \mathbf{N}^p defined by $(n_1, \ldots, n_p) \geq (n'_1, \ldots, n'_p)$ if

 $n_1 \ge n'_1, \ldots, n_{p-1} \ge n'_{p-1}$ and $n_p \ge n'_p$.

For each $m \in \mathbb{N}^p$, let m! denote $m_1! \dots m_p!$.

PROPOSITION 2.1. - If $m \ge e^{\alpha}$ then

$$\begin{bmatrix} i_{\mathbf{F}_m}, d_{\mathbf{T}^{\alpha}} \end{bmatrix} = \frac{m!}{(m - e^{\alpha})!} i_{\mathbf{F}_{m - e^{\alpha}}}, \quad and \quad \begin{bmatrix} i_{\mathbf{F}_m}, d_{\mathbf{T}^{\alpha}} \end{bmatrix} = 0$$

in all cases other than $m \ge e^{\alpha}$.

Proof. — The commutator $[i_{\mathbf{F}_m}, d_{\mathbf{T}^{\alpha}}]$ is a derivation and it is of type i_* since it acts trivially on Ω . It can be easily shown for each $n \in \mathbf{N}^p$ and each function f on M that $i_{\mathbf{F}_m} df_n = (n!/(n-m)!) df_{n-m}$ if $n \ge m$, and $i_{\mathbf{F}_m} df_n = 0$ in all other cases. Also $d_{\mathbf{T}^{\alpha}} f_n = f_{n+e^{\alpha}}$. It follows that

$$\left[i_{\mathbf{F}_m}, d_{\mathbf{T}^{\alpha}}\right] df_n = \frac{m!}{(m-e^{\alpha})!} i_{\mathbf{F}_{m-e^{\alpha}}} df_n \quad \text{if} \quad m \ge e^{\alpha},$$

and $[i_{\mathbf{F}_m}, d_{\mathbf{T}^{\alpha}}] df_n = 0$ in all cases other than $m \ge e^{\alpha}$. This completes the proof since a derivation of type i_* is completely determined by its action on equivalence classes of df_n for each f and each $n \in \mathbf{N}^p$.

PROPOSITION 2.2. - For each α , $\beta = 1, \ldots, p$, $[d_{\mathbf{T}^{\alpha}}, d_{\mathbf{T}^{\beta}}] = 0$.

Proof. - Obvious.

3 The Lagrange complex (Λ, δ) (²)

Let $\tau = \{\tau^q\}$ be the graded linear mapping of Ω into Ω of degree 0 defined by $\tau^0 = 1$ and

$$\tau^{q} \mu = \frac{1}{q} \sum_{|m| \leq k} (-1)^{|m|} (m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}} \mu,$$

where q > 0, $\mu \in \Omega_{(k)}^p$ and $d_{\mathbf{T}}^m = (d_{\mathbf{T}^1})^{m_1} \dots (d_{\mathbf{T}_p})^{m_p}$. The sum in the above definition contains all nonzero terms $(-1)^{|m|} (m!)^{-1} d_{\mathbf{T}}^m i_{\mathbf{F}_m} \mu$ since $i_{\mathbf{F}_m} \mu = 0$ unless $|m| \leq k$. We write

$$\tau^{q} = \frac{1}{q} \sum_{m} (-1)^{|m|} (m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}}$$

without explicitly restricting the summation range which is understood to be wide enough to include in the sum all nonzero terms when τ^q is applied to an element of Ω^q .

PROPOSITION 3.1. – If q > 0, then $\tau^q d_{\mathbf{T}^{\alpha}} = 0$ for each $\alpha = 1, \ldots, p$.

(²) For definitions of algebraic topology terms used in this and the following sections, *see* reference [5].

томе 105 — 1977 — N° 4

Proof :

$$\begin{aligned} \tau^{q} d_{\mathbf{T}^{\alpha}} &= \frac{1}{q} \sum_{m} (-1)^{|m|} (m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}} d_{\mathbf{T}^{\alpha}} \\ &= \frac{1}{q} \sum_{m} (-1)^{|m|} (m!)^{-1} (d_{\mathbf{T}}^{m+e^{\alpha}} i_{\mathbf{F}_{m}} + d_{\mathbf{T}}^{m} [i_{\mathbf{F}_{m}}, d_{\mathbf{T}^{\alpha}}]) \\ &= \frac{1}{q} \sum_{m} (-1)^{|m|} (m!)^{-1} d_{\mathbf{T}}^{m+e^{\alpha}} i_{\mathbf{F}_{m}} \\ &+ \frac{1}{q} \sum_{m \ge e^{\alpha}} (-1)^{|m|} ((m-e^{\alpha})!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m-e^{\alpha}}} = 0. \end{aligned}$$

It follows from proposition 3.1, that $\tau \tau = \tau$ and $\tau d\tau = \tau d$.

PROPOSITION 3.2. – The graded linear mapping $\tau d = \{\tau^{q+1} d^q\}$ is a differential of degree 1.

Proof. $-\tau d\tau d = \tau dd = 0$ and degree $(\tau d) = \text{degree } \tau + \text{degree } d = 1$.

We introduce the graded linear space $\Lambda = \{\Lambda^q\}$, where $\Lambda^q = \operatorname{im} \tau^q$. The differential τd can be restricted to Λ due to $\tau d\tau = \tau d$.

The restriction of τd to Λ is a differential of degree 1 denoted by δ .

DEFINITION 3.1. – The differential $\delta = \{\delta^q\}$ is called the Lagrange differential, and the cochain complex $\{\Lambda^q, \delta^q\}$ is called the Lagrange complex.

THEOREM 3.1 (δ -Poincaré lemma). – If the manifold M is contractible then the Lagrange complex { Λ^q , δ^q } is acyclic for q > 0.

Let **R** denote the subspace of $\Lambda^0 = \Omega^0$ consisting of equivalence classes of constant functions and let $\gamma : G \to \Lambda^0$ be the canonical injection of the subspace $G = \mathbf{R} \oplus (d_{\mathbf{T}^1}(\Omega^0) + \ldots + d_{\mathbf{T}^p}(\Omega^0)).$

THEOREM 3.2. — The mapping $\gamma : G \to \Lambda^0$ is an augmentation of the Lagrange complex and the sequence

$$0 \to G \xrightarrow{\gamma} \Lambda^0 \xrightarrow{\delta^0} \Lambda^1 \xrightarrow{\delta^1} \dots \xrightarrow{\delta^{q-1}} \Lambda^q \xrightarrow{\delta^q} \dots$$

is a resolution of G.

We give proofs of the two theorems in the following section after having constructed a resolution of the graded linear space $\Lambda' = \{\Lambda^q\}_{q>0}$.

4. A resolution of Λ'

Let K be the simplicial complex with vertices 1, ..., p, and let $\Delta_r(K)$ denote the free abelian group generated by the ordered r-simplexes of K[5].

We introduce a bigraded linear space $\Phi = \{ \Phi_r^q \}$, where $\Phi_r^q = \Delta_{r-1}(K) \otimes \Omega^q$ for r > 0, $\Phi_0^p = \Omega^q$, and $\Phi_r^p = 0$ for r < 0. Elements of Φ_r^p are said to be of bidegree (q, r). The exterior differential in Ω is extended to a bigraded linear mapping $d = \{ d_r^q \}$ of bidegree (1, 0) by the formula

$$d_r^q((\alpha_1, \ldots, \alpha_r) \otimes \mu) = (\alpha_1, \ldots, \alpha_r) \otimes d\mu,$$

where $(\alpha_1, \ldots, \alpha_r)$ is an ordered r+1-simplex and $\mu \in \Omega^q$. A bigraded linear mapping $\partial = \{\partial_r^p\}$ of bidegree (0, -1) is defined by

$$\partial_r^q((\alpha_1,\ldots,\alpha_r)\otimes\mu)=\sum_{1\leqslant i\leqslant r}(-1)^{i-1}(\alpha_1,\ldots,\alpha_i,\ldots,\alpha_r)\otimes d_{\mathbf{T}^{\alpha_i}}\mu.$$

For each fixed r, $\{\Phi_r^q, d_r^q\}$ is a cochain complex, and for each fixed q, $\{\Phi_r^q, \partial_r^q\}$ is a chain complex. Since $\partial_r^{q+1} d_r^q = d_{r-1}^q \partial_r^q$, for each fixed r the collection $\{\partial_r^q: \Phi_r^q \to \Phi_{r-1}^q\}$ is a cochain mapping, and for each fixed q the collection $\{d_r^q: \Phi_r^q \to \Phi_r^{q+1}\}$ is a chain mapping.

PROPOSITION 4.1. – For each fixed q > 0 the chain complex $\{\Phi_r^q, \partial_r^q\}$ is acyclic for r > 0.

Proof. – For each $\alpha = 1, ..., p$, let a graded linear mapping

$$\sigma_{\alpha} = \left\{ \sigma_{a}^{q} : \Omega^{q} \to \Omega^{q} \right\}$$

be defined by $\sigma_{\alpha}^{0} = 0$ and

$$\sigma_{\alpha}^{q} = -\frac{1}{q} \sum_{m \in I_{\alpha}} (-1)^{|m|} (m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}}, \quad \text{where} \quad q > 0,$$

 $I_{\alpha} = \{ m \in \mathbb{N}^{p}; m_{\alpha} > 0, m_{\beta} = 0 \text{ for } \beta > \alpha \}$ and the summation range is governed by a convention similar to the one used in the definition of τ in Section 3. From Proposition 2.1, it follows easily for q > 0 that $\sigma_{\alpha}^{q} d_{\mathbf{T}^{\beta}} = 0$ if $\beta < \alpha, \sigma_{\alpha}^{q} d_{\mathbf{T}^{\alpha}} = 1 - \sum_{\gamma < \alpha} d_{\mathbf{T}^{\gamma}} \sigma_{\gamma}^{q}$, and $\sigma_{\alpha}^{q} d_{\mathbf{T}^{\beta}} = d_{\mathbf{T}^{\beta}} \sigma_{\alpha}^{q}$ if $\beta > \alpha$. A bigraded linear mapping $D = \{ D_{r}^{q} \}$ is defined by $D_{0}^{q} \mu = \sum_{\beta} (\beta) \otimes \sigma_{\beta}^{q} \mu$ and $D_{\alpha}^{q} ((r_{\alpha} - r_{\alpha}) \otimes \mu) = \sum_{\alpha} (\beta, \alpha, \beta) \otimes \sigma_{\beta}^{q} \mu$

$$D^q_r((\alpha_1, \ldots, \alpha_r) \otimes \mu) = \sum_{\beta < \alpha_1} (\beta, \alpha_1, \ldots, \alpha_r) \otimes \sigma^q_{\beta} \mu,$$

where $\mu \in \Omega^q$ and $\alpha_1 < \alpha_2 < \ldots < \alpha_r$. Relations $\partial_{r+1}^q D_r^q + D_{r-1}^q \partial_r^q = 1$ for r > 0, q > 0 are readily verified using the above stated properties of σ_{α} . It follows that for each fixed q > 0 the graded mapping $D^q = \{D_r^q\}$ defines a chain contraction of $\{\Phi_r^q, \partial_r^q\}$ for r > 0. Hence $\{\Phi_r^q, \partial_r^q\}$ is acyclic for r > 0.

PROPOSITION 4.2. – For each q > 0, the mapping $\tau^q : \Phi_0^q \to \Lambda^q$ is an augmentation of the chain complex $\{\Phi_r^q, \partial_r^q\}$ and the sequence

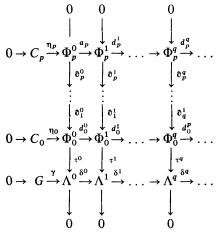
$$\ldots \to \Phi_r^q \xrightarrow{\delta_r^q} \Phi_{r-1}^q \xrightarrow{\delta_{r-1}^q} \ldots \xrightarrow{\delta_1^q} \Phi_0^q \xrightarrow{\tau^q} \Lambda^q \to 0$$

is a resolution of Λ^q .

томе 105 — 1977 — N° 4

Proof. — The mapping $\tau^q : \Omega^q \to \Lambda^q$ is an epimorphism, and $\tau^q \partial_1^q = 0$ follows from Proposition 3.1. Further $\tau^q + \partial_1^q D_0^q = 1$, where D_0^q is the mapping defined in the proof of Proposition 4.1. Hence $\tau^q \mu = 0$ implies $\mu = \partial_1^q D_0^q \mu$ for each $\mu \in \Omega^q$. It follows that ker $\tau^q = \text{im} \partial_1^q$.

Proof of Theorems 3.1 and 3.2. — We define a nonnegative graded linear space $C = \{C_r\}$ by $C_0 = \mathbf{R}$ and $C_r = \Delta_{r-1}(K) \otimes \mathbf{R}$ for r > 0, and a collection $\eta = \{\eta_r : C_r \to \Phi_r^0\}$ by $\eta_r = 1 \otimes \eta_0$, where $\eta_0 : \mathbf{R} \to \Omega^0$ is the canonical injection of the space $\mathbf{R} \subset \Omega^0$ of equivalence classes of constant functions identified with the field \mathbf{R} of constants. If the manifold M is contractible, then all rows except the bottom row of the commutative diagram



are known to be exact and all columns for q > 0 are exact. For each q > 0, the top tatement in the sequence

is true, and each of the remaining statements follows from the one immediately above. Hence the bottom statement is true. The same holds for q = 0 if the bottom statement is replaced by

$$\ker \left(\tau^1 \, d_0^0\right) = \operatorname{im} \eta_0 \otimes \operatorname{im} \partial_1^0.$$

If q > 0 and μ is an element of $\Lambda^q \subset \Omega^q$, then $\tau^q \mu = \mu$, and $\delta^q \mu = \tau^{q+1} d_0^q \mu$. If $\delta^q \mu = 0$, then there are elements $\varkappa \in \Phi_0^{q-1}$ and $\lambda \in \Phi_1^q$ such that $\mu = d_0^{q-1} \varkappa + \partial_1^q \lambda$. It follows that

$$\mu = \tau^{q} \, \mu = \tau^{q} \, d_{0}^{q-1} \, \varkappa = \tau^{q} \, d_{0}^{q-1} \, \tau^{q-1} \, q = \delta^{q-1} \, \tau^{q-1} \, q.$$

Hence ker $\delta^q = \operatorname{im} \delta^{q-1}$ and the Lagrange complex is acyclic for q > 0. We note that $\delta^0 = \tau^1 d_0^0$ and

 $G = \mathbf{R} \otimes (d_{\mathbf{T}^1}(\Omega^0) + \ldots + d_{\mathbf{T}^p}(\Omega^0)) = \operatorname{im} \chi_0 \otimes \operatorname{im} \partial_1^0.$

Hence ker $\delta^0 = G$. It follows that the sequence

$$0 \to G \xrightarrow{\gamma} \Lambda^0 \xrightarrow{\delta^0} \Lambda^1 \xrightarrow{\delta^1} \ldots \to \Lambda^q \xrightarrow{\delta^q} \ldots$$

is exact.

5 . Applications of the δ -Poincaré lemma in the calculus of variations

A smooth mapping $\chi : \mathbb{R}^{p+1} \to M : (s, t_1, \ldots, t_p) \mapsto \chi (s, t_1, \ldots, t_p)$ will be called a *homotopy*. For each $s \in \mathbb{R}$, we denote by χ_s the mapping

$$\chi_s: \mathbf{R}^p \to M: (t_1, \ldots, t_p) \mapsto \chi(s, t_1, \ldots, t_p).$$

The mapping $\gamma = \chi_0$ will be called the *base* of the homotopy χ . We say that the homotopy χ is *constant* on $A \subset \mathbf{R}^p$ if $\chi(s, t_1, \ldots, t_p) = \chi(0, t_1, \ldots, t_p)$ for each $s \in \mathbf{R}$ and each $(t_1, \ldots, t_p) \in A$. For each mapping

$$\varphi: \quad \mathbf{R}^p \to M: (t_1, \ldots, t_p) \mapsto \varphi(t_1, \ldots, t_p),$$

we denote by $\varphi^{(k)}$ the mapping

$$\varphi^{(k)}: \quad \mathbf{R}^p \to T^{(k)} M : (t_1, \ldots, t_p) \mapsto j^{(k)}_{(t_1, \ldots, t_p)}(\varphi).$$

For each homotopy χ , we denote by $\chi'^{(k)}$ the mapping

$$\chi'^{(k)}: \quad \mathbf{R}^p \to TT^{(k)}M: (t_1, \ldots, t_p) \mapsto j^{(1,k)}_{(0,t_1, \ldots, t_p)}(\chi),$$

where $j_{(0,t_1,\ldots,t_p)}^{(1,k)}(\chi)$ is a jet-like object similar to $j_0^{(1,k)}(\chi)$ defined in terms of partial derivatives at $(0, t_1, \ldots, t_p)$ instead of $(0, 0, \ldots, 0)$ and identified with an element of $TT^{(k)} M$.

Each element $L \in \Omega^0_{(k)}$ gives rise to a family of functions

$$\gamma \mapsto \int_{V} L \circ \gamma^{(k)},$$

томе 105 — 1977 — № 4

428

defined on the set of smooth mappings of \mathbb{R}^p into M for each domain $V \subset \mathbb{R}^p$.

DEFINITION 5.1. – A mapping $\gamma : \mathbf{R}^p \to M$ is called an *extremal* of the family of functions

$$\gamma \mapsto \int_{V} L \circ \gamma^{(k)}$$
 if $\frac{d}{ds} \int_{V} L \circ \chi^{(k)}_{s} \Big|_{s=0} = 0$,

for each domain $V \subset \mathbf{R}^p$ and each homotopy χ with base γ constant on the boundary ∂V of V.

DEFINITION 5.2. – A form $\lambda \in \Omega^{1}_{(k')}$ is called an *Euler-Lagrange* form associated with $L \in \Omega^{0}_{(k)}$ if $i_{\mathbf{F}_{m}} \lambda = 0$ for each m > 0 and if

$$\int_{V} \langle \chi'^{(k)}, dL \rangle = \int_{V} \langle \chi'^{(k')}, \lambda \rangle$$

for each domain $V \subset \mathbf{R}^p$ and each homotopy χ constant on ∂V .

It is clear from the definition of \mathbf{F}_m that if $\lambda \in \Omega^1_{(k')}$ satisfies $i_{\mathbf{F}_m} \lambda = 0$ for each m > 0, then λ can be interpreted as a mapping $\lambda : T^{(k')} M \to T^* M$. If λ is an Euler-Lagrange form associated with L then

$$\frac{d}{ds} \int_{V} L \circ \chi_{s}^{(k)} \Big|_{s=0} = \int_{V} \langle \chi'^{(k)}, dL \rangle$$
$$= \int_{V} \langle \chi'^{(k')}, \lambda \rangle$$
$$= \int_{V} \langle \chi'^{(0)}, \lambda \circ \gamma^{(k')} \rangle$$

for each homotopy χ with base γ constant on ∂V . It follows that $\gamma : \mathbb{R}^p \to M$ is an extremal of the family

$$\gamma \to \int_V L \circ \gamma^{(k)},$$

if, and only if, γ satisfies the equation $\lambda \circ \gamma^{(k')} = 0$ called the *Euler-Lagrange* equation.

We show that $\lambda = \delta^0 L$ is the unique Euler-Lagrange form associated with $L \in \Omega^0$. We also show that $i_{\mathbf{F}_m} \lambda = 0$ for each m > 0 means that $\lambda \in \Omega^1$ is in Λ^1 . These statements imply applications of the δ -Poincaré lemma. A form $\lambda \in \Omega^1$ is an Euler-Lagrange form if, and only if, $\lambda \in \Lambda^1$ and $\delta^1 \lambda = 0$. Euler-Lagrange forms associated with two elements L and L' of Ω^0 are the same if, and only if, $L' - L \in \mathbf{R} \oplus (d_{\mathbf{T}^1}(\Omega^0) + \ldots + d_{\mathbf{T}^p}(\Omega^0))$.

PROPOSITION 5.1. – A form $\lambda \in \Omega^1$ belongs to Λ^1 if, and only if, $i_{\mathbf{F}_m} \lambda = 0$ for each m > 0.

Proof. - If $i_{\mathbf{F}_m} \lambda = 0$ for each m > 0, then $\tau^1 \lambda = \sum_m (-1)^{|m|} (m!)^{-1} d_{\mathbf{T}}^m i_{\mathbf{F}_m} \lambda = i_{\mathbf{F}_0} \lambda = \lambda.$

Hence $\lambda \in \operatorname{im} \tau^1 = \Lambda^1$. From Proposition 2.1, it follows that

$$i_{\mathbf{F}_e^{\alpha}} d_{\mathbf{T}}^m = d_{\mathbf{T}}^m i_{\mathbf{F}_e^{\alpha}} + (m!/(m-e^{\alpha})!) d_{\mathbf{T}}^{m-e^{\alpha}} i_{\mathbf{F}_0}$$

if $m \ge e^{\alpha}$ and $i_{\mathbf{F}_{e^{\alpha}}} d_{\mathbf{T}}^{m} = d_{\mathbf{T}}^{m} i_{\mathbf{F}_{e^{\alpha}}}$ in all other cases. Since $i_{\mathbf{F}_{m}} i_{\mathbf{F}_{n}} \mu = i_{\mathbf{F}_{m+n}} \mu$ for each $\mu \in \Omega^{1}$, it follows that

$$i_{\mathbf{F}_{e^{\alpha}}}\tau^{1} = \sum_{m}(-1)^{|m|}(m!)^{-1} i_{\mathbf{F}_{e^{\alpha}}} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}}$$

= $\sum_{m}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m+e^{\alpha}}}$
+ $\sum_{m \ge e^{\alpha}}(-1)^{|m|}((m-e^{\alpha})!)^{-1} d_{\mathbf{T}}^{m-e^{\alpha}} i_{\mathbf{F}_{m}} = 0.$

Consequently, $i_{\mathbf{F}_m} \tau^1 = 0$ for each m > 0, and if $\lambda \in \Lambda^1$ then $i_{\mathbf{F}_m} \lambda = 0$ for each m > 0.

PROPOSITION 5.2. – The space Ω^1 is the direct sum of Λ^1 and

 $d_{\mathbf{T}^1}(\Omega^1) + \ldots + d_{\mathbf{T}^p}(\Omega^1).$

Proof. – Let μ be an element of Ω^1 . Then $\mu = \lambda + \nu$, where $\lambda = \tau^1 \mu \in \Lambda^1$, and

$$\mathbf{v} = -\sum_{m>0} (-1)^{|m|} (m!)^{-1} d_{\mathbf{T}}^m \mathbf{i}_{\mathbf{F}_m} \mu \in d_{\mathbf{T}^1}(\Omega^1) + \ldots + d_{\mathbf{T}^p}(\Omega^1).$$

It follows from $\tau^1 \tau^1 = \tau^1$ and $\tau^1 d_{\mathbf{T}^{\alpha}} = 0$ that this decomposition of μ into elements of Λ^1 and $d_{\mathbf{T}^1}(\Omega^1) + \ldots + d_{\mathbf{T}^p}(\Omega^1)$ is unique.

PROPOSITION 5.3. – Let μ be an element of $\Omega^{1}_{(k)}$. Then

$$\int_{V} \langle \chi'^{(k)}, \mu \rangle = 0,$$

for each domain $V \subset \mathbb{R}^p$ and each homotopy $\chi : \mathbb{R}^{p+1} \to M$ constant on ∂V if, and only if, $\mu \in d_{\mathbb{T}^1}(\Omega^1) + \ldots + d_{\mathbb{T}^p}(\Omega^1)$.

Proof. – If $\mu = \sum_{\alpha} d_{\mathbf{T}^{\alpha}} \omega^{\alpha}$ then

$$\int_{V} \langle \chi'^{(k)}, \mu \rangle = \sum_{\alpha} \int_{V} \frac{\partial}{\partial t^{\alpha}} \langle \chi'^{(k)}, \omega^{\alpha} \rangle = \sum_{\alpha} \int_{\partial V} n_{\alpha} \langle \chi'^{(k)}, \omega^{\alpha} \rangle,$$

tome 105 - 1977 - ${\rm N^o}$ 4

430

where n_{α} are the components of the normal vector. If χ is constant on ∂V , then

$$\int_{V} \langle \chi'^{(k)}, \mu \rangle = 0.$$

Let $\mu = \lambda + \nu$ be the unique decomposition of $\mu \in \Omega^1$ used in the proof of proposition 5.2. If $\int_{V} \langle \chi'^{(k)}, \mu \rangle = 0$, then

$$\int_{V} \langle \chi'^{(k)}, \lambda \rangle = \int_{V} \langle \chi'^{(0)}, \lambda \circ \gamma^{(k')} \rangle = 0,$$

where γ is the base of χ , and λ is interpreted as a mapping $\lambda : T^{(k)} M \to T^*M$. It follows that $\lambda = 0$ and $\mu = \nu$. Hence $\mu \in d_{\mathbf{T}^1}(\Omega^1) + \ldots + d_{\mathbf{T}^p}(\Omega^1)$.

COROLLARY. – If L is an element of Ω^0 , then $\lambda = \delta^0 L$ is the unique element of Λ^1 such that $dL - \lambda \in d_{\mathbf{T}^1}(\Omega^1) + \ldots + d_{\mathbf{T}^p}(\Omega^1)$. It follows that λ is the unique Euler-Lagrange form associated with L.

REFERENCES

- [1] EHRESMANN (C.). Les prolongements d'une variété différentiable, C. R. Acad. Sc. Paris, t. 233, 1951, p. 598-600.
- [2] FRÖLICHER (A.) and NIJENHUIS (A.). Theory of vector valued differential forms, Nederl. Akad. Wetensch., Proc., série A, t. 59, 1956, p. 338-359.
- [3] KUMPERA (A.). Invariants différentiels d'un pseudogroupe de Lie, I., J. Differential Geometry, t. 10, 1975, p. 289-345.
- [4] LAWRUK (B.) and TULCZYJEW (W. M.). Criteria for partial differential equation to be Euler-Lagrange equations, J. differential Equations, t. 24, 1977, p. 211-225.
- [5] SPANIER (E. H.). Algebraic topology, New York, McGraw-Hill, 1966.
- [6] TULCZYJEW (W. M.). Sur la différentielle de Lagrange, C. R. Acad. Sc. Paris, t. 280, 1975, série A., p. 1295-1298.
- [7] TULCZYJEW (W. M.). Les jets généralisés, C. R. Acad. Sc. Paris, t. 281, 1975 série A, p. 349-352.
- [8] TULCZYJEW (W. M.). The Lagrange differential, Bull. Acad. polon. Sc., Sér. Sc. math., astron., phys., t. 24, 1976, p. 1089-1096.

(Texte reçu le 29 juin 1976.)

Wlodzimierz M. TULCZYJEW Dept of Math. and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada.