Woldzimierz M. Tulczyjew

The Lagrange complex

Bulletin de la S. M. F., tome 105 (1977), p. 419-431
http://www.numdam.org/item?id=BSMF_1977__105__419_0

© Bulletin de la S. M. F., 1977, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE LAGRANGE COMPLEX

BY

Wlodzimierz M. TULCZYJEW
[University of Calgary, Alberta]

Résumé. - Nous définissons le complexe de co-chaînes (Λ, δ), et nous prouvons le lemme de Poincaré pour l'opérateur δ. L'opérateur δ est utilisé dans le calcul des variations en vue de déduire les équations d'Euler-Lagrange. Le lemme de Poincaré fournit alors le critère suivant lequel un système d'équations est un système d'Euler-Lagrange.

Abstract. - A cochain complex (Λ, δ) is defined, and the δ-Poincaré lemma is proved. The work is motivated by applications to the calculus of variations. The operator δ is used in the calculus of variations to construct the Euler-Lagrange equations, and the δ-Poincaré lemma provides criteria for partial differential equations to be Euler-Lagrange equations.

The present paper generalizes results contained in earlier publications ([6], [8]) which were applicable to ordinary differential equations of the Euler-Poisson type.

1. Jets and tangent vectors

Let M be a C^{∞}-manifold. We denote by $T^{(k)} M$ the manifold $J_{0}^{k}\left(\mathbf{R}^{p}, M\right)$ of jets of order k from \mathbf{R}^{p} to M with source 0 called by Ehresmann [1] p^{k}-vitesses in M. Elements of $T^{(k)} M$ are equivalence classes of smooth mappings of \mathbf{R}^{p} into M. Two mappings γ and γ^{\prime} are equivalent if $D^{n}(f \circ \gamma)(0)=D^{n}\left(f \circ \gamma^{\prime}\right)(0)$ for each C^{∞}-function f on M and each $n=\left(n_{1}, \ldots, n_{p}\right) \in \mathbf{N}^{p}$ such that $|n|=n_{1}+\ldots+n_{p} \leqslant k$. The symbol $D^{n} g(0)$ is used to denote the partial derivative of a function g :

$$
\mathbf{R}^{p} \rightarrow \mathbf{R}: \quad\left(t_{1}, \ldots, t_{p}\right) \mapsto g\left(t_{1}, \ldots, t_{p}\right)
$$

of orders n_{1}, \ldots, n_{p} with respect to the arguments t_{1}, \ldots, t_{p} respectively at $\left(t_{1}, \ldots, t_{p}\right)=(0, \ldots, 0)$. We denote by $j_{0}^{k}(\gamma)$ the jet of the mapping γ. For each $k \in N$, there is the projection

$$
\tau_{(k)}: \quad T^{(k)} M \rightarrow M: \quad j_{0}^{k}(\gamma) \mapsto \gamma(0)
$$

and, if $k^{\prime} \leqslant k$, then there is the projection

$$
\rho_{\left(k^{\prime}\right)(k)}: \quad T^{(k)} M \rightarrow T^{\left(k^{\prime}\right)} M: j_{0}^{k}(\gamma) \mapsto j_{0}^{k^{\prime}}(\gamma) .
$$

The manifold $T^{(0)} M$ is identified with M, and $T^{(1)} M$ is the tangent bundle $T M$ of M. For each $n \in \mathbf{N}^{p}$ such that $|n| \leqslant k$ and each C^{∞}-function f on M there is a C^{∞}-function f_{n} defined on $T^{(k)} M$ by $f_{n}\left(j_{0}^{k}(\gamma)\right)=D^{n}(f \circ \gamma)(0)$.

For each $k \in \mathbf{N}$, we introduce an equivalence relation in the set of smooth mappings of \mathbf{R}^{p+1} into M. Two mappings χ and χ^{\prime} will be considered equivalent if $D^{(r, n)}(f \circ \chi)(0)=D^{(r, n)}\left(f \circ \chi^{\prime}\right)(0)$ for each C^{∞}-function f on M, each $n \in \mathbf{N}^{p}$ such that $|n| \leqslant k$ and $r=0,1$. The symbol $D^{(r, n)} g(0)$ denotes the partial derivative of a function g :

$$
\mathbf{R}^{p+1} \rightarrow \mathbf{R}: \quad\left(s, t_{1}, \ldots, t_{p}\right) \mapsto g\left(s, t_{1}, \ldots, t_{p}\right)
$$

of orders r, n_{1}, \ldots, n_{p} with respect to the arguments s, t_{1}, \ldots, t_{p} respectively at $\left(s, t_{1}, \ldots, t_{p}\right)=(0,0, \ldots 0)$. We denote the equivalence class of the mapping χ by $j_{0}^{(1, k)}(\chi)$. The set of equivalence classes can be canonically identified with the tangent bundle $T T^{(k)} M$ in such a way that

$$
\left\langle j_{0}^{(1, k)}(\chi), d f_{n}\right\rangle=D^{(1, n)}(f \circ \chi)(0)
$$

for each function f on M and each $n \in \mathbf{N}^{p}$ such that $|n| \leqslant k$ and also

$$
\tau_{T^{(k)} M}\left(j_{0}^{(1, k)}(\chi)\right)=j_{0}^{k}\left(\chi_{0}\right)
$$

where $\tau_{T^{(k)} M}: T T^{(k)} M \rightarrow T^{(k)} M$ is the tangent bundle projection, and χ_{0} is the mapping

$$
\chi_{0}: \quad \mathbf{R}^{p} \rightarrow M: \quad\left(t_{1}, \ldots, t_{p}\right) \mapsto \chi\left(0, t_{1}, \ldots, t_{p}\right) \quad[7]
$$

The tangent mapping $T \rho_{\left(k^{\prime}\right)(k)}: T T^{(k)} M \rightarrow T T^{\left(k^{\prime}\right)} M$ is given by

$$
T \rho_{\left(k^{\prime}\right)(k)}\left(j_{0}^{(1, k)}(\chi)\right)=j_{0}^{\left(1, k^{\prime}\right)}(\chi)
$$

For each $k \in \mathbf{N}$ and each $m \in \mathbf{N}^{p}$ there is the mapping

$$
\mathbf{F}_{m}: \quad T T^{(k)} M \rightarrow T T^{(k)} M: \quad j_{0}^{(1, k)}(\chi) \mapsto j_{0}^{(1, k)}\left(\chi_{m}\right),
$$

where χ_{m} is the mapping

$$
\chi_{m}: \quad \mathbf{R}^{p+1} \rightarrow M: \quad\left(s, t_{1}, \ldots, t_{p}\right) \mapsto \chi\left(s t^{m}, t_{1}, \ldots, t_{p}\right),
$$

and $t^{m}=t_{1}^{m_{1}} \ldots t_{p}^{m_{p}}$. Diagrams

tome 105 - 1977 - $\mathrm{N}^{\circ} 4$
and

$$
\begin{gathered}
T T^{(k)} M \xrightarrow{\mathbf{F}_{m}} T T^{(k)} M \\
T \rho_{\left(k^{\prime}\right)(k)} \downarrow \\
T T^{\left(k^{\prime}\right)} M \xrightarrow{\mathbf{F}_{m}} T T^{\left(k^{\prime}\right)} M
\end{gathered}
$$

are commutative.
For each $\alpha=1, \ldots, p$ and each $k \in \mathbf{N}$, there is the mapping

$$
\mathbf{T}^{\chi}: \quad T^{(k+1)} M \rightarrow T T^{(k)} M: \quad j_{0}^{k+1}(\gamma) \mapsto j_{0}^{(1, k)}\left(\gamma^{\alpha}\right)
$$

where γ^{α} is the mapping

$$
\begin{equation*}
\gamma^{\alpha}: \quad \mathbf{R}^{p+1} \rightarrow M:\left(s, t_{1}, \ldots, t_{p}\right) \mapsto \gamma\left(t_{1}, \ldots, t_{\alpha}+s, \ldots, t_{p}\right) \tag{}
\end{equation*}
$$

Diagrams

$$
\begin{aligned}
& T^{(k+1)} M \stackrel{\mathbf{T}^{\alpha}}{\rightarrow} T T^{(k)} M \\
& \rho_{(k)(k+1)} \downarrow \\
& T^{(k)} M \stackrel{\downarrow}{\downarrow_{T}} \begin{array}{l}
\tau_{T}^{(k)_{M}} \\
\end{array} T^{(k)} M
\end{aligned}
$$

and

$$
\begin{aligned}
& T^{(k+1)} M \xrightarrow{\mathbf{T}^{\alpha}} T T^{(k)} M \\
& \rho_{\left(k^{\prime}+1\right)(k+1)} \downarrow \downarrow \downarrow^{T\left(k^{\prime}\right)(k)} \\
& T^{\left(k^{\prime}+1\right)} M \xrightarrow{\mathbf{T}^{\alpha}} T T^{\left(k^{\prime}\right)} M
\end{aligned}
$$

are commutative.

2. Forms and derivations

Let $\Omega_{k}^{(q)}$ denote the \mathbf{R}-linear space of q-forms on $T^{(k)} M$, and let $\Omega_{(k)}$ be the nonnegative graded linear space $\left\{\Omega_{(k)}^{q}\right\}$. The exterior differential d is a collection $\left\{d^{q}\right\}$ of linear mappings

$$
d^{q}: \quad \Omega_{(k)}^{q} \rightarrow \Omega_{(k)}^{q+1}
$$

and the exterior product Λ is a collection $\left\{\Lambda^{\left(q, q^{\prime}\right)}\right\}$ of operations $\wedge^{\left(q, q^{\prime}\right)}: \Omega_{(k)}^{q} \times \Omega_{(k)}^{q^{\prime}} \rightarrow \Omega_{(k)}^{q+q^{\prime}}$. For each $k^{\prime} \leqslant k$ and each q, there is the cotangent mapping $\rho_{\left(k^{\prime}\right)(k)}^{*}: \Omega_{\left(k^{\prime}\right)}^{q} \rightarrow \Omega_{(k)}^{q}$ corresponding to the mapping $\rho_{\left(k^{\prime}\right)(k)}: T^{(k)} M \rightarrow T^{\left(k^{\prime}\right)} M$, and, if $k^{\prime \prime} \leqslant k^{\prime} \leqslant k$, then

$$
\rho_{\left(k^{\prime}\right)(k)}^{*} \circ \rho_{\left(k^{\prime \prime}\right)\left(k^{\prime}\right)}^{*}=\rho_{\left(k^{\prime \prime}\right)(k)}^{*} .
$$

${ }^{(1)}$ The mappings \mathbf{T}^{a} are related to the holonomic lift λ defined by Kumpera [3].
bulletin de la société mathématique de france

Hence $\left(\Omega_{(k)}^{q}, \rho_{\left(k^{\prime}\right)(k)}^{*}\right)$ is a directed system. Let Ω^{q} denote the direct limit of this system, and let Ω be the graded linear space $\left\{\Omega^{q}\right\}$. The underlying set of Ω^{q} is the quotient set of $\bigcup_{k} \Omega_{(k)}^{q}$ by the equivalence relation according to which two forms $\mu \in \Omega_{(k)}^{q}$ and $v \in \Omega_{\left(k^{\prime}\right)}^{q}$ are equivalent if $k^{\prime} \leqslant k$ and $\mu=\rho_{\left(k^{\prime}\right)(k)}^{*} v$, or $k^{\prime} \geqslant k$ and $v=\rho_{(k)\left(k^{\prime}\right)}^{*} \mu$. The exterior differential d and the exterior product \wedge extend in a natural way to the direct limits giving the graded linear space Ω the structure of both a cochain complex and a commutative graded algebra. We write $\mu \in \Omega_{(k)}^{q}$ for an element μ of Ω^{q} if μ has a representative in $\Omega_{(k)}^{q}$. This notation could be justified by identifying $\Omega_{(k)}^{q}$ with the image of the canonical injection $\Omega_{(k)}^{q} \rightarrow \boldsymbol{\Omega}^{q}$. A collection $a=\left\{a^{q}\right\}$ of linear mappings $a^{q}: \Omega^{q} \rightarrow \Omega^{q+r}: \mu \rightarrow a^{q} \mu$ is called a graded linear mapping of degree r. We write a instead of a^{q} if this can be done without causing any confusion. The exterior differential d is a graded linear mapping of degree 1.

Definition 2.1. - A graded linear mapping $a=\left\{a^{q}\right\}$ of degree r is called a derivation of Ω of degree r if

$$
a(\mu \wedge v)=a \mu \wedge \nu+(-1)^{q r} \mu \wedge a v, \quad \text { where } \quad q=\text { degree } \mu
$$

The exterior differential d is a derivation of Ω of degree 1 . If a and b are derivations of Ω of degrees r and s respectively, then

$$
[a, b]=\left\{a^{q+s} b^{q}-(-1)^{r s} b^{q+r} a^{q}\right\}
$$

is a derivation of Ω of degree $r+s$ called the commutator of a and b.
It follows from the general theory of derivations [2] that derivations of Ω are completely characterized by their action on Ω^{0} and Ω^{1}. In fact, a derivation is completely determined by its action on equivalence classes of f_{n} and $d f_{n}$ for each function f on M and each $n \in \mathbf{N}^{p}$. Following FröLICher and Nijentuis [2], we call a derivation a a derivation of type i_{*} if it acts trivially on Ω^{0}. We call a a derivation of type d_{*} if $[a, d]=0$.

For each $m \in \mathbf{N}^{p}$, each $k \in \mathbf{N}$ and each $q>0$ there is a linear mapping

$$
i_{\mathbf{F}_{m}}: \quad \Omega_{(k)}^{q} \rightarrow \Omega_{(k)}^{q}: \quad \mu \mapsto i_{\mathbf{F}_{m}} \mu,
$$

defined by

$$
\begin{aligned}
\left\langle w_{1}\right. & \left.\wedge \ldots \wedge w_{q}, i_{\mathbf{F}_{m}} \mu\right\rangle \\
= & \left\langle\mathbf{F}_{m}\left(w_{1}\right) \wedge w_{2} \wedge \ldots \wedge w_{q}, \mu\right\rangle \\
& +\left\langle w_{1} \wedge \mathbf{F}_{m}\left(w_{2}\right) \wedge \ldots \wedge w_{q}, \mu\right\rangle+\ldots+\left\langle w_{1} \wedge w_{2} \wedge \ldots \wedge \mathbf{F}_{m}\left(w_{q}\right), \mu\right\rangle
\end{aligned}
$$

tome $105-1977-\mathrm{N}^{\circ} 4$
where w_{1}, \ldots, w_{q} are vectors in $T T^{(k)} M$ such that $\tau_{T^{(k)} M}\left(w_{1}\right)=\ldots=\tau_{T^{(k)} M}\left(w_{q}\right)$ and $\mathbf{F}_{m}: T T^{(k)} M \rightarrow T T^{(k)} M$ is the mapping defined in Section 1. Due to commutativity of diagrams

the mappings $i_{\mathbf{F}_{m}}$ extend to a derivation $i_{\mathbf{F}_{m}}$ of Ω of type i_{*} and degree 0 . If $\mu \in \Omega_{(k)}^{q}$, then $i_{\mathbf{F}_{m}} \mu \in \Omega_{(k)}^{q}$ and $i_{\mathbf{F}_{m}} \mu=0$ if $\mu \in \Omega_{(k)}^{q}$ and $|m|>k$.

For each $\alpha=1, \ldots, p$, each $k \in \mathbf{N}$, and each $q \in \mathbf{N}$, there is a linear mapping

$$
i_{\mathbf{T}^{\alpha}}: \quad \Omega_{(k)}^{q+1} \rightarrow \Omega_{(k+1)}^{q}: \quad \mu \mapsto i_{\mathbf{T}^{\alpha}} \mu,
$$

defined by

$$
\left\langle w_{1} \wedge \ldots \wedge w_{q}, i_{\mathbf{T}^{\alpha}} \mu\right\rangle=\left\langle x \wedge u_{1} \wedge \ldots \wedge u_{q}, \mu\right\rangle
$$

where

$$
\begin{aligned}
x & =\mathbf{T}^{\alpha}(v), \quad v=\tau_{T^{(k+1) M}}\left(w_{1}\right)=\ldots=\tau_{T^{(k+1)} M}\left(w_{q}\right), \\
u_{1} & =T \rho_{(k+1),(h)}\left(w_{1}\right), \quad \ldots, \quad u_{q}=T \rho_{(k+1),(h)}\left(w_{q}\right),
\end{aligned}
$$

and $\mathbf{T}^{\alpha}: T^{(k+1)} M \rightarrow T T^{(k)} M$ is the mapping defined in Section 1. Due to commutativity of diagrams

the mappings $i_{\mathbf{T}^{\alpha}}$ extend to a derivation $i_{\mathbf{T}^{\alpha}}$ of Ω of type i_{*} and degree -1 . A derivation $d_{\mathbf{T}^{\alpha}}$ of Ω of type d_{*} and degree 0 is defined by $d_{\mathbf{T}^{\alpha}}=\left[i_{\mathbf{T}^{\alpha}}, d\right]$. If $\mu \in \Omega_{(k)}^{q+1}$, then $i_{\mathbf{T}^{\alpha}} \mu \in \Omega_{(k+1)}^{q}$, and $d_{\mathbf{T}^{\alpha}} \mu \in \Omega_{(k+1)}^{q+1}$.

For each $\alpha=1, \ldots, p$ let e^{α} denote the element $\left(e_{1}^{\alpha}, \ldots, e_{p}^{\alpha}\right)$ of \mathbf{N}^{p} defined by $e_{\beta}^{\alpha}=1$ if $\alpha=\beta$, and $e_{\beta}^{\alpha}=0$ if $\alpha \neq \beta$. Let \geqslant denote the partial ordering relation in \mathbf{N}^{p} defined by $\left(n_{1}, \ldots, n_{p}\right) \geqq\left(n_{1}^{\prime}, \ldots, n_{p}^{\prime}\right)$ if

$$
n_{1} \geqslant n_{1}^{\prime}, \ldots, n_{p-1} \geqslant n_{p-1}^{\prime} \quad \text { and } \quad n_{p} \geqslant n_{p}^{\prime}
$$

For each $m \in \mathbf{N}^{p}$, let $m!$ denote $m_{1}!\ldots m_{p}!$.
bulletin de la société mathématique de france

Proposition 2.1. - If $m \geqslant e^{\alpha}$ then

$$
\left[i_{\mathbf{F}_{m}}, d_{\mathbf{T}^{\alpha}}\right]=\frac{m!}{\left(m-e^{\alpha}\right)!} i_{\mathbf{F}_{m}-e^{\alpha}}, \quad \text { and } \quad\left[i_{\mathbf{F}_{m}}, d_{\mathbf{T}_{\alpha}}\right]=0
$$

in all cases other than $m \geqslant e^{\alpha}$.
Proof. - The commutator [$i_{\mathbf{F}_{m}}, d_{\mathbf{T}^{x}}$] is a derivation and it is of type i_{*} since it acts trivially on $\boldsymbol{\Omega}$. It can be easily shown for each $n \in \mathbf{N}^{p}$ and each function f on M that $i_{\mathbf{F}_{m}} d f_{n}=(n!/(n-m)!) d f_{n-m}$ if $n \geqslant m$, and $i_{\mathbf{F}_{m}} d f_{n}=0$ in all other cases. Also $d_{\mathbf{T}^{\alpha}} f_{n}=f_{n+e^{\alpha}}$. It follows that

$$
\left[i_{\mathbf{F}_{m}}, d_{\mathbf{T}^{\alpha}}\right] d f_{n}=\frac{m!}{\left(m-e^{\alpha}\right)!} i_{\mathbf{F}_{m-e^{\alpha}}} d f_{n} \quad \text { if } \quad m \geqslant e^{\alpha}
$$

and $\left[i_{\mathbf{F}_{\boldsymbol{m}}}, d_{\mathbf{T}^{\alpha}}\right] d f_{n}=0$ in all cases other than $m \geqslant e^{\alpha}$. This completes the proof since a derivation of type i_{*} is completely determined by its action on equivalence classes of $d f_{n}$ for each f and each $n \in \mathbf{N}^{p}$.

Proposition 2.2. - For each $\alpha, \beta=1, \ldots, p,\left[d_{\mathbf{T}^{\alpha}}, d_{\mathbf{T}^{\beta}}\right]=0$.
Proof. - Obvious.

3 The Lagrange complex $(\Lambda, \delta)\left({ }^{2}\right)$
Let $\tau=\left\{\tau^{q}\right\}$ be the graded linear mapping of Ω into Ω of degree 0 defined by $\tau^{0}=1$ and

$$
\tau^{q} \mu=\frac{1}{q} \sum_{|m| \leqslant k}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}} \mu,
$$

where $q>0, \mu \in \Omega_{(k)}^{p}$ and $d_{\mathbf{T}}^{m}=\left(d_{\mathbf{T}^{1}}\right)^{m_{1}} \ldots\left(d_{\mathbf{T}_{p}}\right)^{m_{p}}$. The sum in the above definition contains all nonzero terms $(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}} \mu$ since $i_{\mathbf{F}_{m}} \mu=0$ unless $|m| \leqslant k$. We write

$$
\tau^{q}=\frac{1}{q} \sum_{m}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}}
$$

without explicitely restricting the summation range which is understood to be wide enough to include in the sum all nonzero terms when τ^{q} is applied to an element of Ω^{q}.

Proposition 3.1. - If $q>0$, then $\tau^{q} d_{\mathbf{T}^{\alpha}}=0$ for each $\alpha=1, \ldots, p$.
$\left.{ }^{(2}\right)$ For definitions of algebraic topology terms used in this and the following sections, see reference [5].

```
tome 105 - 1977 - No 4
```

Proof:

$$
\begin{aligned}
\tau^{q} d_{\mathbf{T}^{\alpha}}= & \frac{1}{q} \sum_{m}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}} d_{\mathbf{T}^{\alpha}} \\
= & \frac{1}{q} \sum_{m}(-1)^{|m|}(m!)^{-1}\left(d_{\mathbf{T}}^{m+e^{\alpha}} i_{\mathbf{F}_{m}}+d_{\mathbf{T}}^{m}\left[i_{\mathbf{F}_{m}}, d_{\mathbf{T}^{\alpha}}\right]\right) \\
= & \frac{1}{q} \sum_{m}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m+e^{\alpha}} i_{\mathbf{F}_{m}} \\
& \quad+\frac{1}{q} \sum_{m \geqslant e^{\alpha}}(-1)^{|m|}\left(\left(m-e^{\alpha}\right)!\right)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m-e^{\alpha}}}=0 .
\end{aligned}
$$

It follows from proposition 3.1, that $\tau \tau=\tau$ and $\tau d \tau=\tau d$.
Proposition 3.2. - The graded linear mapping $\tau d=\left\{\tau^{q+1} d^{q}\right\}$ is a differential of degree 1 .

Proof. $-\tau d \tau d=\tau d d=0$ and degree $(\tau d)=$ degree $\tau+$ degree $d=1$.
We introduce the graded linear space $\Lambda=\left\{\Lambda^{q}\right\}$, where $\Lambda^{q}=\operatorname{im} \tau^{q}$. The differential τd can be restricted to Λ due to $\tau d \tau=\tau d$.

The restriction of τd to Λ is a differential of degree 1 denoted by δ.
Definition 3.1. - The differential $\delta=\left\{\delta^{q}\right\}$ is called the Lagrange differential, and the cochain complex $\left\{\Lambda^{q}, \delta^{q}\right\}$ is called the Lagrange complex.

Theorem 3.1 (δ-Poincaré lemma). - If the manifold M is contractible then the Lagrange complex $\left\{\Lambda^{q}, \delta^{q}\right\}$ is acyclic for $q>0$.

Let \mathbf{R} denote the subspace of $\Lambda^{0}=\Omega^{0}$ consisting of equivalence classes of constant functions and let $\gamma: G \rightarrow \Lambda^{0}$ be the canonical injection of the subspace $G=\mathbf{R} \oplus\left(d_{\mathbf{T}^{1}}\left(\Omega^{0}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{0}\right)\right)$.

Theorem 3.2. - The mapping $\gamma: G \rightarrow \Lambda^{0}$ is an augmentation of the Lagrange complex and the sequence

$$
0 \rightarrow G \xrightarrow{\gamma} \Lambda^{0} \xrightarrow{\delta^{0}} \Lambda^{\Lambda^{\delta^{1}}} \ldots \xrightarrow{\delta^{q-1}} \Lambda^{q} \xrightarrow{\delta^{q}} \ldots
$$

is a resolution of G.
We give proofs of the two theorems in the following section after having constructed a resolution of the graded linear space $\Lambda^{\prime}=\left\{\Lambda^{q}\right\}_{q>0}$.

4. \mathbf{A} resolution of Λ^{\prime}

Let K be the simplicial complex with vertices $1, \ldots, p$, and let $\Delta_{r}(K)$ denote the free abelian group generated by the ordered r-simplexes of K [5].

We introduce a bigraded linear space $\Phi=\left\{\Phi_{r}^{q}\right\}$, where $\Phi_{r}^{q}=\Delta_{r-1}(K) \otimes \Omega^{q}$ for $r>0, \Phi_{0}^{p}=\Omega^{q}$, and $\Phi_{r}^{p}=0$ for $r<0$. Elements of Φ_{r}^{p} are said to be of bidegree (q, r). The exterior differential in Ω is extended to a bigraded linear mapping $d=\left\{d_{r}^{q}\right\}$ of bidegree $(1,0)$ by the formula

$$
d_{r}^{q}\left(\left(\alpha_{1}, \ldots, \alpha_{r}\right) \otimes \mu\right)=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \otimes d \mu
$$

where $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ is an ordered $r+1$-simplex and $\mu \in \Omega^{q}$. A bigraded linear mapping $\partial=\left\{\partial_{r}^{p}\right\}$ of bidegree $(0,-1)$ is defined by

$$
\partial_{r}^{q}\left(\left(\alpha_{1}, \ldots, \alpha_{r}\right) \otimes \mu\right)=\sum_{1 \leqslant i \leqslant r}(-1)^{i-1}\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{r}\right) \otimes d_{\mathbf{T}^{\alpha_{i}}} \mu .
$$

For each fixed $r,\left\{\Phi_{r}^{q}, d_{r}^{q}\right\}$ is a cochain complex, and for each fixed q, $\left\{\Phi_{r}^{q}, \partial_{r}^{q}\right\}$ is a chain complex. Since $\partial_{r}^{q+1} d_{r}^{q}=d_{r-1}^{q} \partial_{r}^{q}$, for each fixed r the collection $\left\{\partial_{r}^{q}: \Phi_{r}^{q} \rightarrow \Phi_{r-1}^{q}\right\}$ is a cochain mapping, and for each fixed q the collection $\left\{d_{r}^{q}: \Phi_{r}^{q} \rightarrow \Phi_{r}^{q+1}\right\}$ is a chain mapping.

Proposition 4.1. - For each fixed $q>0$ the chain complex $\left\{\Phi_{r}^{q}, \partial_{r}^{q}\right\}$ is acyclic for $r>0$.

Proof. - For each $\alpha=1, \ldots, p$, let a graded linear mapping

$$
\sigma_{\alpha}=\left\{\sigma_{a}^{q}: \Omega^{q} \rightarrow \Omega^{q}\right\}
$$

be defined by $\sigma_{\alpha}^{0}=0$ and

$$
\sigma_{\alpha}^{q}=-\frac{1}{q} \sum_{m \in I_{\alpha}}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}}, \quad \text { where } \quad q>0
$$

$I_{\alpha}=\left\{m \in \mathbf{N}^{p} ; m_{\alpha}>0, m_{\beta}=0\right.$ for $\left.\beta>\alpha\right\}$ and the summation range is governed by a convention similar to the one used in the definition of τ in Section 3. From Proposition 2.1, it follows easily for $q>0$ that $\sigma_{\alpha}^{q} d_{\mathbf{T}^{\beta}}=0$ if $\beta<\alpha, \sigma_{\alpha}^{q} d_{\mathbf{T}^{\alpha}}=1-\sum_{\gamma^{<}<\alpha} d_{\mathbf{T}^{\gamma}} \sigma_{\gamma}^{q}$, and $\sigma_{\alpha}^{q} d_{\mathbf{T}^{\beta}}=d_{\mathbf{T}^{\beta}} \sigma_{\alpha}^{q}$ if $\beta>\alpha$. A bigraded linear mapping $D=\left\{D_{r}^{q}\right\}$ is defined by $D_{0}^{q} \mu=\sum_{\beta}(\beta) \otimes \sigma_{\beta}^{q} \mu$ and

$$
D_{r}^{q}\left(\left(\alpha_{1}, \ldots, \alpha_{r}\right) \otimes \mu\right)=\sum_{\beta<\alpha_{1}}\left(\beta, \alpha_{1}, \ldots, \alpha_{r}\right) \otimes \sigma_{\beta}^{q} \mu
$$

where $\mu \in \Omega^{q}$ and $\alpha_{1}<\alpha_{2}<\ldots<\alpha_{r}$. Relations $\partial_{r+1}^{q} D_{r}^{q}+D_{r-1}^{q} \partial_{r}^{q}=1$ for $r>0, q>0$ are readily verified using the above stated properties of σ_{α}. It follows that for each fixed $q>0$ the graded mapping $D^{q}=\left\{D_{r}^{q}\right\}$ defines a chain contraction of $\left\{\Phi_{r}^{q}, \partial_{r}^{q}\right\}$ for $r>0$. Hence $\left\{\Phi_{r}^{q}, \partial_{r}^{q}\right\}$ is acyclic for $r>0$.

Proposition 4.2. - For each $q>0$, the mapping $\tau^{q}: \Phi_{0}^{q} \rightarrow \Lambda^{q}$ is an augmentation of the chain complex $\left\{\Phi_{r}^{q}, \partial_{r}^{q}\right\}$ and the sequence

$$
\ldots \rightarrow \Phi_{r}^{q} \xrightarrow{\delta_{r}^{q}} \Phi_{r-1}^{q} \xrightarrow{\delta_{r-1}^{q}} \ldots \xrightarrow{\delta_{1}^{q}} \Phi_{0}^{q} \xrightarrow{\tau^{q}} \Lambda^{q} \rightarrow 0
$$

is a resolution of Λ^{q}.

$$
\text { tome } 105-1977-\mathrm{N}^{\circ} 4
$$

Proof. - The mapping $\tau^{q}: \Omega^{q} \rightarrow \Lambda^{q}$ is an epimorphism, and $\tau^{q} \partial_{1}^{q}=0$ follows from Proposition 3.1. Further $\tau^{q}+\partial_{1}^{q} D_{0}^{q}=1$, where D_{0}^{q} is the mapping defined in the proof of Proposition 4.1. Hence $\tau^{q} \mu=0$ implies $\mu=\partial_{1}^{q} D_{0}^{q} \mu$ for each $\mu \in \Omega^{q}$. It follows that $\operatorname{ker} \tau^{q}=\operatorname{im} \partial_{1}^{q}$.

Proof of Theorems 3.1 and 3.2. - We define a nonnegative graded linear space $C=\left\{C_{r}\right\}$ by $C_{0}=\mathbf{R}$ and $C_{r}=\Delta_{r-1}(K) \otimes \mathbf{R}$ for $r>0$, and a collection $\eta=\left\{\eta_{r}: C_{r} \rightarrow \Phi_{r}^{0}\right\}$ by $\eta_{r}=1 \otimes \eta_{0}$, where $\eta_{0}: \mathbf{R} \rightarrow \boldsymbol{\Omega}^{0}$ is the canonical injection of the space $\mathbf{R} \subset \Omega^{0}$ of equivalence classes of constant functions identified with the field \mathbf{R} of constants. If the manifold M is contractible, then all rows except the bottom row of the commutative diagram

are known to be exact and all columns for $q>0$ are exact. For each $q>0$, the top tatement in the sequence

$$
\begin{aligned}
& \operatorname{ker}\left(\partial_{p}^{q+p+1} d_{p}^{q+p}\right)=\operatorname{im} d_{p}^{q+p-1}, \\
& \operatorname{ker}\left(\partial_{p-1}^{q+p} d_{p-1}^{q+p-1}\right)=\operatorname{im} d_{p-1}^{q+p-2}+\operatorname{im} \partial_{p}^{q+p-1}, \\
& \cdots \\
& \operatorname{ker}\left(\partial_{1}^{q+2} d_{1}^{q+1}\right)=\operatorname{im} d_{1}^{q}+\operatorname{im} \partial_{2}^{q+1}, \\
& \operatorname{ker}\left(\tau^{q+1} d_{0}^{q}\right)=\operatorname{im} d_{0}^{q-1}+\operatorname{im} \partial_{1}^{q},
\end{aligned}
$$

is true, and each of the remaining statements follows from the one immediately above. Hence the bottom statement is true. The same holds for $q=0$ if the bottom statement is replaced by

$$
\operatorname{ker}\left(\tau^{1} d_{0}^{0}\right)=\operatorname{im} \eta_{0} \otimes \operatorname{im} \partial_{1}^{0} .
$$

If $q>0$ and μ is an element of $\Lambda^{q} \subset \Omega^{q}$, then $\tau^{q} \mu=\mu$, and $\delta^{q} \mu=\tau^{q+1} d_{0}^{q} \mu$. If $\delta^{q} \mu=0$, then there are elements $x \in \Phi_{0}^{q-1}$ and $\lambda \in \Phi_{1}^{q}$ such that $\mu=d_{0}^{q-1} x+\partial_{1}^{q} \lambda$. It follows that

$$
\mu=\tau^{q} \mu=\tau^{q} d_{0}^{q-1} x=\tau^{q} d_{0}^{q-1} \tau^{q-1} \mathrm{q}=\delta^{q-1} \tau^{q-1} \mathrm{q} .
$$

Hence $\operatorname{ker} \delta^{q}=\operatorname{im} \delta^{q-1}$ and the Lagrange complex is acyclic for $q>0$. We note that $\delta^{0}=\tau^{1} d_{0}^{0}$ and

$$
G=\mathbf{R} \otimes\left(d_{\mathbf{T}^{1}}\left(\Omega^{0}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{0}\right)\right)=\operatorname{im} \chi_{0} \otimes \operatorname{im} \partial_{1}^{0}
$$

Hence $\operatorname{ker} \delta^{0}=G$. It follows that the sequence

$$
0 \rightarrow G \xrightarrow{\gamma} \Lambda^{0} \xrightarrow{\delta^{0}} \Lambda^{1} \xrightarrow{\delta^{1}} \ldots \rightarrow \Lambda^{q} \xrightarrow{\delta^{q}} \ldots
$$

is exact.

5 . Applications of the δ-Poincaré lemma in the calculus of variations

A smooth mapping $\chi: \mathbf{R}^{p+1} \rightarrow M:\left(s, t_{1}, \ldots, t_{p}\right) \mapsto \chi\left(s, t_{1}, \ldots, t_{p}\right)$ will be called a homotopy. For each $s \in \mathbf{R}$, we denote by χ_{s} the mapping

$$
\chi_{s}: \quad \mathbf{R}^{p} \rightarrow M:\left(t_{1}, \ldots, t_{p}\right) \mapsto \chi\left(s, t_{1}, \ldots, t_{p}\right)
$$

The mapping $\gamma=\chi_{0}$ will be called the base of the homotopy χ. We say that the homotopy χ is constant on $A \subset \mathbf{R}^{p}$ if $\chi\left(s, t_{1}, \ldots, t_{p}\right)=\chi\left(0, t_{1}, \ldots, t_{p}\right)$ for each $s \in \mathbf{R}$ and each $\left(t_{1}, \ldots, t_{p}\right) \in A$. For each mapping

$$
\varphi: \quad \mathbf{R}^{p} \rightarrow M:\left(t_{1}, \ldots, t_{p}\right) \mapsto \varphi\left(t_{1}, \ldots, t_{p}\right)
$$

we denote by $\varphi^{(k)}$ the mapping

$$
\varphi^{(k)}: \quad \mathbf{R}^{p} \rightarrow T^{(k)} M:\left(t_{1}, \ldots, t_{p}\right) \mapsto j_{\left(t_{1}, \ldots, t_{p}\right)}^{(k)}(\varphi) .
$$

For each homotopy χ, we denote by $\chi^{\prime(k)}$ the mapping

$$
\left.\chi^{\prime(k)}: \quad \mathbf{R}^{p} \rightarrow T T^{(k)} M:\left(t_{1}, \ldots, t_{p}\right) \mapsto j_{\left(0, t_{1}, \ldots, t_{p}\right.}^{(1, k)}\right)(\chi),
$$

where $j_{\left(0, t_{1}, \ldots, t_{p}\right)}^{(1, k)}(\chi)$ is a jet-like object similar to $j_{0}^{(1, k)}(\chi)$ defined in terms of partial derivatives at $\left(0, t_{1}, \ldots, t_{p}\right)$ instead of $(0,0, \ldots, 0)$ and identified with an element of $T T^{(k)} M$.

Each element $L \in \Omega_{(k)}^{0}$ gives rise to a family of functions

$$
\gamma \mapsto \int_{V} L \circ \gamma^{(k)}
$$

томе $105-1977-\mathrm{N}^{\circ} 4$
defined on the set of smooth mappings of \mathbf{R}^{p} into M for each domain $V \subset \mathbf{R}^{p}$.

Definition 5.1. - A mapping $\gamma: \mathbf{R}^{\boldsymbol{p}} \rightarrow M$ is called an extremal of the family of functions

$$
\gamma \mapsto \int_{V} L \circ \gamma^{(k)} \quad \text { if }\left.\quad \frac{d}{d s} \int_{V} L \circ \chi_{s}^{(k)}\right|_{s=0}=0
$$

for each domain $V \subset \mathbf{R}^{p}$ and each homotopy χ with base γ constant on the boundary ∂V of V.

Definition 5.2. - A form $\lambda \in \Omega_{\left(k^{\prime}\right)}^{1}$ is called an Euler-Lagrange form associated with $L \in \Omega_{(k)}^{0}$ if $i_{\mathbf{F}_{m}} \lambda=0$ for each $m>0$ and if

$$
\int_{V}\left\langle\chi^{\prime(k)}, d L\right\rangle=\int_{V}\left\langle\chi^{\prime\left(k^{\prime}\right)}, \lambda\right\rangle
$$

for each domain $V \subset \mathbf{R}^{p}$ and each homotopy χ constant on ∂V.
It is clear from the definition of \mathbf{F}_{m} that if $\lambda \in \Omega_{\left(k^{\prime}\right)}^{1}$ satisfies $i_{\mathbf{F}_{\boldsymbol{m}}} \lambda=0$ for each $m>0$, then λ can be interpreted as a mapping $\lambda: T^{\left(k^{\prime}\right)} M \rightarrow T^{*} M$. If λ is an Euler-Lagrange form associated with L then

$$
\begin{aligned}
\left.\frac{d}{d s} \int_{V} L \circ \chi_{s}^{(k)}\right|_{s=0} & =\int_{V}\left\langle\chi^{\prime(k)}, d L\right\rangle \\
& =\int_{V}\left\langle\chi^{\prime\left(k^{\prime}\right)}, \lambda\right\rangle \\
& =\int_{V}\left\langle\chi^{\prime(0)}, \lambda \circ \gamma^{\left(k^{\prime}\right)}\right\rangle,
\end{aligned}
$$

for each homotopy χ with base γ constant on ∂V. It follows that $\gamma: \mathbf{R}^{p} \rightarrow M$ is an extremal of the family

$$
\gamma \rightarrow \int_{V} L \circ \gamma^{(k)},
$$

if, and only if, γ satisfies the equation $\lambda \circ \gamma^{\left(k^{\prime}\right)}=0$ called the Euler-Lagrange equation.
We show that $\lambda=\delta^{0} L$ is the unique Euler-Lagrange form associated with $L \in \Omega^{0}$. We also show that $i_{\mathbf{F}_{m}} \lambda=0$ for each $m>0$ means that $\lambda \in \Omega^{1}$ is in Λ^{1}. These statements imply applications of the δ-Poincaré lemma. A form $\lambda \in \Omega^{1}$ is an Euler-Lagrange form if, and only if, $\lambda \in \Lambda^{1}$ and $\delta^{1} \lambda=0$. Euler-Lagrange forms associated with two elements L and L^{\prime} of Ω^{0} are the same if, and only if, $L^{\prime}-L \in \mathbf{R} \oplus\left(d_{\mathbf{T}^{1}}\left(\Omega^{0}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{0}\right)\right)$.

Proposition 5.1. - A form $\lambda \in \Omega^{1}$ belongs to Λ^{1} if, and only if, $i_{\mathbf{F}_{m}} \lambda=0$ for each $m>0$.

Proof. - If $i_{\mathbf{F}_{m}} \lambda=0$ for each $m>0$, then

$$
\tau^{1} \lambda=\sum_{m}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}} \lambda=i_{\mathbf{F}_{0}} \lambda=\lambda .
$$

Hence $\lambda \in \operatorname{im} \tau^{1}=\Lambda^{1}$. From Proposition 2.1, it follows that

$$
i_{\mathbf{F}_{e^{\alpha}}} d_{\mathbf{T}}^{m}=d_{\mathbf{T}}^{m} i_{\mathbf{F}_{e^{\alpha}}}+\left(m!/\left(m-e^{\alpha}\right)!\right) d_{\mathbf{T}}^{m-e^{\alpha}} i_{\mathbf{F}_{0}}
$$

if $m \geqslant e^{\alpha}$ and $i_{\mathbf{F}_{\sigma^{\alpha}}} d_{\mathbf{T}}^{m}=d_{\mathbf{T}}^{m} i_{\mathbf{F}_{e^{\alpha}}}$ in all other cases. Since $i_{\mathbf{F}_{m}} i_{\mathbf{F}_{n}} \mu=i_{\mathbf{F}_{m+n}} \mu$ for each $\mu \in \Omega^{1}$, it follows that

$$
\begin{aligned}
i_{\mathbf{F}_{e^{\alpha}}} \tau^{1}= & \sum_{m}(-1)^{|m|}(m!)^{-1} i_{\mathbf{F}_{e^{\alpha}}} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}} \\
= & \sum_{m}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m+e^{\alpha}}} \\
& +\sum_{m \geqslant e^{\alpha}}(-1)^{|m|}\left(\left(m-e^{\alpha}\right)!\right)^{-1} d_{\mathbf{T}}^{m-e^{\alpha}} i_{\mathbf{F}_{m}}=0 .
\end{aligned}
$$

Consequently, $i_{\mathbf{F}_{m}} \tau^{1}=0$ for each $m>0$, and if $\lambda \in \Lambda^{1}$ then $i_{\mathbf{F}_{m}} \lambda=0$ for each $m>0$.

Proposition 5.2. - The space Ω^{1} is the direct sum of Λ^{1} and

$$
d_{\mathbf{T}^{1}}\left(\Omega^{1}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{1}\right) .
$$

Proof. - Let μ be an element of Ω^{1}. Then $\mu=\lambda+v$, where $\lambda=\tau^{1} \mu \in \Lambda^{1}$, and

$$
v=-\sum_{m>0}(-1)^{|m|}(m!)^{-1} d_{\mathbf{T}}^{m} i_{\mathbf{F}_{m}} \mu \in d_{\mathbf{T}^{1}}\left(\Omega^{1}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{1}\right)
$$

It follows from $\tau^{1} \tau^{1}=\tau^{1}$ and $\tau^{1} d_{\mathbf{T}^{\alpha}}=0$ that this decomposition of μ into elements of Λ^{1} and $d_{\mathbf{T}^{1}}\left(\Omega^{1}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{1}\right)$ is unique.

Proposition 5.3. - Let μ be an element of $\Omega_{(k)}^{1}$. Then

$$
\int_{V}\left\langle\chi^{\prime(k)}, \mu\right\rangle=0,
$$

for each domain $V \subset \mathbf{R}^{p}$ and each homotopy $\chi: \mathbf{R}^{p+1} \rightarrow M$ constant on ∂V if, and only if, $\mu \in d_{\mathbf{T}^{1}}\left(\Omega^{1}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{1}\right)$.

$$
\begin{aligned}
& \text { Proof. - If } \mu=\sum_{\alpha} d_{\mathbf{I}^{\alpha}} \omega^{\alpha} \text { then } \\
& \qquad \int_{V}\left\langle\chi^{\prime(k)}, \mu\right\rangle=\sum_{\alpha} \int_{V} \frac{\partial}{\partial t^{\alpha}}\left\langle\chi^{\prime(k)}, \omega^{\alpha}\right\rangle=\sum_{\alpha} \int_{\partial V} n_{\alpha}\left\langle\chi^{\prime(k)}, \omega^{\alpha}\right\rangle,
\end{aligned}
$$

$$
\text { томе } 105-1977-\mathrm{N}^{0} 4
$$

where n_{α} are the components of the normal vector. If χ is constant on ∂V, then

$$
\int_{V}\left\langle\chi^{\prime(k)}, \mu\right\rangle=0 .
$$

Let $\mu=\lambda+\nu$ be the unique decomposition of $\mu \in \Omega^{1}$ used in the proof of proposition 5.2. If $\int_{V}\left\langle\chi^{\prime(k)}, \mu\right\rangle=0$, then

$$
\int_{V}\left\langle\chi^{\prime(k)}, \lambda\right\rangle=\int_{V}\left\langle\chi^{\prime(0)}, \lambda \circ \gamma^{\left(k^{\prime}\right)}\right\rangle=0,
$$

where γ is the base of χ, and λ is interpreted as a mapping $\lambda: T^{(k)} M \rightarrow T^{*} M$. It follows that $\lambda=0$ and $\mu=v$. Hence $\mu \in d_{\mathbf{T}^{1}}\left(\Omega^{1}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{1}\right)$.

Corollary. - If L is an element of Ω^{0}, then $\lambda=\delta^{0} L$ is the unique element of Λ^{1} such that $d L-\lambda \in d_{\mathbf{T}^{1}}\left(\Omega^{1}\right)+\ldots+d_{\mathbf{T}^{p}}\left(\Omega^{1}\right)$. It follows that λ is the unique Euler-Lagrange form associated with L.

REFERENCES

[1] Ehresmann (C.). - Les prolongements d'une variété différentiable, C. R. Acad. Sc. Paris, t. 233, 1951, p. 598-600.
[2] Frölicher (A.) and Nieenhuis (A.). - Theory of vector valued differential forms, Nederl. Akad. Wetensch., Proc., série A, t. 59, 1956, p. 338-359.
[3] Kumpera (A.). - Invariants différentiels d'un pseudogroupe de Lie, I., J. Differential Geometry, t. 10, 1975, p. 289-345.
[4] Lawruk (B.) and Tulczyjew (W. M.). - Criteria for partial differential equation to be Euler-Lagrange equations, J. differential Equations, t. 24, 1977, p. 211-225.
[5] Spanier (E. H.). - algebraic topology, New York, McGraw-Hill, 1966.
[6] Tulczyjew (W. M.). - Sur la différentielle de Lagrange, C. R. Acad. Sc. Paris, t. 280, 1975, série A., p. 1295-1298.
[7] Tulczyjew (W. M.). - Les jets généralisés, C. R. Acad. Sc. Paris, t. 281, 1975 série A, p. 349-352.
[8] Tulczyjew (W. M.). - The Lagrange differential, Bull. Acad. polon. Sc., Sér. Sc. math., astron., phys., t. 24, 1976, p. 1089-1096.
(Texte reçu le 29 juin 1976.)
Wlodzimierz M. Tulczyjew
Dept of Math. and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada.

