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THE LAGRANGE COMPLEX

BY

WLODZIMIERZ M. TULCZYJEW
[University of Calgary, Alberta]

RESUME. — Nous definissons Ie complexe de co-chaines (A, §), et nous prouvons
Ie lemme de Poincare pour Foperateur 8. L'operateur § est utilise dans Ie calcul des
variations en vue de deduire les equations d'Euler-Lagrange. Le lemme de Poincare
fournit alors le critere suivant lequel un systeme d'equations est un systeme
d'Euler-Lagrange.

ABSTRACT. — A cochain complex (A, §) is defined, and the 5-Poincare lemma is
proved. The work is motivated by applications to the calculus of variations. The
operator § is used in the calculus of variations to construct the Euler-Lagrange
equations, and the 5-Poincare lemma provides criteria for partial differential equations
to be Euler-Lagrange equations.

The present paper generalizes results contained in earlier publica-
tions ([6], [8]) which were applicable to ordinary differential equations
of the Euler-Poisson type.

1. Jets and tangent vectors

Let M be a C°°-manifold. We denote by T ( k ) M the manifold J^ (W, M)
of jets of order k from W to M with source 0 called by EHRESMANN [1]
pk•'vitesses in M. Elements of T(k) M are equivalence classes of smooth
mappings of R^ into M. Two mappings y and y' are equivalent if
^" (/° Y) (0) = ^n (/° Y') (0) for each C°° -function / on M and each
n = (n^ . . . , rip) e W such that [ n \ = n^ + . . . +^p ^ k. The symbol
D" g (0) is used to denote the partial derivative of a function g :

R^R: Oi, ...,^)^g0i, . . . ,^)

of orders n^ ..., rip with respect to the arguments ^, . . . , tp respectively
at (^, ..., t p ) = (0, . . . , 0). We denote byy^ (y) the jet of the mapping y.
For each k e N, there is the projection

T(,): T^M-^M: ^(7)^7(0)
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420 W. M. TULCZYJEW

and, if k' ^ k, then there is the projection

P(^ (,): T^ M -> T^ M : /o (Y) ̂ o (Y).

The manifold T(o) Mis identified with M, and T^ Mis the tangent bundle
TM of M. For each n e W such that | n \ ^ ^ and each C°°-function /
on M there is a C°°-function/, defined on T^ Mby/ (j^ (y)) = ^" (/°y) (0).

For each k e N, we introduce an equivalence relation in the set of smooth
mappings of Rp+l into M. Two mappings % and ^' will be considered
equivalent if D^^ (fo ^) (0) = D^^ (/o ̂ ) (0) for each C°°-function /
on M, each 72 e W such that [ n \ ^ A: and r = 0,1. The symbol D^'^ g (0)
denotes the partial derivative of a function g :

R^-^R: (5,^, ...,^g(,,^, . . . ,^)

of orders r, ^i, . . . , rip with respect to the arguments s, t^ . . . , ^ respecti-
vely at (s, t^ . . . , tp) = (0, 0, . . . 0). We denote the equivalence class of
the mapping % by/01'^ Qc). The set of equivalence classes can be canoni-
cally identified with the tangent bundle TT^ M in such a way that

<j(ol)k\^df^=D(lfn\f^)W

for each function/on M and each n e W such that | n | ̂  k and also

^^WM(/ol'fc)(x))=/o(Xo).

where T^(^^ : TT^ M -> T^ M is the tangent bundle projection, and /o
is the mapping

X o : R^M: Oi, . . . ,^)^x(0,^, . . . ,^ ) [7].

The tangent mapping T p^ ̂  : TT^ M-^ TT^^ M is given by

^P(^)wO•(ol'fc)(x))=/ol'fc/)(x).
For each k e N and each m e W there is the mapping

F,: TT^M-.TT^M: /o1'fc) (x) ̂ /o1'k) (X.),
where ^^ is the mapping

X,: R^^M: (5,^, ...,^)^x(^,^, . . . ,^) ,

and t"1 = t^1 . . . ̂  . Diagrams

TT^M^TT^M

T^M= T^M
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LAGRANGE COMPLEX 421

and
TT^M^TT^M

T p(k') (k) TP(k') (k)
4. 4'

TT^M^TT^M
are commutative.

For each a = 1, . . . , p and each k e N, there is the mapping

T' : r<"+1) M ̂  '̂ ^w M : /o""1 (v) '-^/o1'<0 W,
where y" is the mapping

y": R^^M: (s,(i, ...,(p)^y((i, ...,(,+s, ...,t,) (1).

Diagrams

T^+DM-^rT^M

and
TWM== T^M

T^^M^TT^M
P(k'+l) ( k + 1 ) ^PCc')^)

T^^DM^TT^M

are commutative.

2. Forms and derivations

Let Qj^ denote the R-linear space of q-forms on T^ M, and let Q(^ be
the nonnegative graded linear space { Q.^ }. The exterior differential dis a
collection { </q } of linear mappings

/ye . o^ —». o^4'1a • ^'(fc) ̂  &2(fc)
and the exterior product A is a collection { A^'^ } of operations
A^'^ :Q^xQ^->f2^< For each k ' ^ k and each ^, there is the
cotangent mapping p*^ ̂  : n^/) —> Q^) corresponding to the mapping
P ( k ' ) ( k ) •• T^ M^ T^ M, and, if A;" ^ k ' ^ k, then

P(fc') (fc)0 P(fc") (&') = P(fc") (fe)-

(1) The mappings T° are related to the holonomic lift ^ defined by KUMPERA [3].
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422 W. M. TULCZYJEW

Hence (%, p*̂  ̂ ) is a directed system. Let W denote the direct limit of
this system, and let Q be the graded linear space { ̂  }. The underlying
set ofO^ is the quotient set of [j,, ̂ ) by the equivalence relation according
to which two forms 1.1 e Q?^ and v e Q^) are equivalent if k' ^ k and
^ = P*fe') (fc) v? or kt ^ ^ and v = P*fc) (fc') U- The exterior differential d and
the exterior product A extend in a natural way to the direct limits giving
the graded linear space D the structure of both a cochain complex and a
commutative graded algebra. We write n e f2^ for an element a of W if jj,
has a representative in Q^. This notation could be justified by identifying
Q^) with the image of the canonical injection Q^. —> Q^. A collection
a = { a^ } of linear mappings ^ : ̂  —^+r : p —^ ^ is called a graded
linear mapping of degree r. We write a instead of ^ if this can be done
without causing any confusion. The exterior differential d is a graded
linear mapping of degree 1.

DEFINITION 2.1. - A graded linear mapping a = {a^} of degree r is
called a derivation of Q of degree r if

a(jiAv)= a n A v + C - r r ^ A f l v , where q =degree|^.

The exterior differential d is a derivation of Q of degree 1. If a and b
are derivations of Q, of degrees r and s respectively, then

[a, Z>] = {aq+sbq-(-l)rsbq+raq}

is a derivation of Q of degree r+5- called the commutator of a and 6.
It follows from the general theory of derivations [2] that derivations of Q

are completely characterized by their action on Q° and Q1. In fact, a
derivation is completely determined by its action on equivalence classes
offn and dfn for each function/on M and each n e W\ Following FROLICHER
and NIJENHUIS [2], we call a derivation a a derivation of type ^ if it acts
trivially on Q°. We call a a derivation of type d^ if [a, d} = 0.

For each m e W, each k e N and each q > 0 there is a linear mapping

^ %-^)^ ^'-^F^

defined by

< W i A . . . A i ^ , ^n>

== <Fm(M ; l )Aw2A . . . At^, a>

+OiAF^(w2)A . . . Ai^, n > + . . . +OiA^A . . . AF^(^), n>,
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LAGRANGE COMPLEX 423

where w^ ..., ̂  are vectors in TT^ M such that T^.)^ (w^) =... = T^^ (i^)
and F^ : TT^ M ̂  TT^ M is the mapping defined in Section 1. Due to
commutativity of diagrams

%')—>^')
I I *P(k') (k) P(k') (k)

' ^ '

%————%)

the mappings ̂  extend to a derivation z'p, of Q of type ̂  and degree 0. If
[i e Q^), then ̂  ^ e Q^ and ̂  ILI = 0 if [i e Q.^ and [ m \ > k.

For each a = 1, . . . , /? , each /:eN, and each ^eN, there is a linear
mapping

IT<X : 0^1 -> Q^+1): ^i-> f^ ̂
defined by

< W i A . . . A w ^ , I'TaH) = < x A M i A . . . AM^, n>,
where

X = T\V), V = Tr(k+i)M(Wl) = . . . = T^4-i)^(^),

MI = Tp^+i),(h)(w^, ..., ^ = Tp^+i),^^),

and T" : T^^ M-. TT^ M is the mapping defined in Section 1. Due
to commutativity of diagrams

lya

--(^) I ^ ( f c ' + i )
PffcQ (k) P*(k'+l) ( k+1 )

4. ^
iToc

Q^+l___vQ^
^^(fc) ^^(fe+l)

the mappings i^ extend to a derivation ^a of n of type ^ and degree — 1.
A derivation d^ of Q of type ̂  and degree 0 is defined by d^ = [^a, <].
If 1̂ e Q^ S then i^ [i e ̂  ̂  and d^ n e D^\).

For each a = 1, .. . , p let ^ denote the element (e\, . . . , ^a) of W
defined by ̂  = 1 if a = P, and ̂  = 0 if a ^ P. Let ^ denote the partial
ordering relation in W defined by (n^ . . . , rip) ^ ( '̂̂  .., n ' ) if

HI ^ HI, . . . , ^_i > n p _ i and n^n'y

For each w e N^, let m\ denote m^! . . . m T .
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424 W. M. TULCZYJEW

PROPOSITION 2.1. - Ifm ^ e^ then

DF^ ̂  = 7—^——, ̂ -.- ^ DF^ ^ToJ = 0(m—e)\

in all cases other than m ^ e^.

Proof. - The commutator [fp^, d^~\ is a derivation and it is of type ^
since it acts trivially on Q. It can be easily shown for each n e W and
each function / on M that ^ ̂  = (n\l(n-m)^ df^_^ if n ̂  m, and
^ ̂  = 0 in all other cases. Also d^f^ =/^+ga. It follows that

OF,.. ^T-] ̂ /n = , m ' . , ̂ ,-^ 4/. it m ̂  e\
(m - ̂  )!

and [;F^^, ^r"] ^/n = 0 in all cases other than m ^ e". This completes the
proof since a derivation of type ^ is completely determined by its action
on equivalence classes of df^ for each/and each n e W.

PROPOSITION 2.2. - For each a, P = 1, . . . , /? , [^oc, ^rp] = °-
Proof. — Obvious.

3 The Lagrange complex (A, 5) (2)

Let T = { T^ } be the graded linear mapping of Q into ^ of degree 0
defined by T° = 1 and

^^Si.i^-i^Wr1^^
q

where q > 0, a e Q^) and J^ = (^i)^ . . . (^ )mp• The sum in the above
definition contains all nonzero terms (— 1)! m! (m!)-1 d^ iy [i since iy a = 0
unless | m \ ^ k. We write

^^(-^'(m!)-1^
^

without explicitely restricting the summation range which is understood
to be wide enough to include in the sum all nonzero terms when T^ is applied
to an element of W.

PROPOSITION 3.1. - Ifq > 0, then ̂  d^ = Q for each a = 1, . . . , p.

(2) For definitions of algebraic topology terms used in this and the following
sections, see reference [5].
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LAGRANGE COMPLEX 425

Proof :

^^T^^ZmC-l)"1^!)-1^^^
q

=lE.(-l)lml(m!)-lW+ea^+^[^M)q

-^(-l)1'1^!)-1^-^
q

+lEm^«(-l)lml((m-^)!)-l^^-^=0.
^

It follows from proposition 3.1, that TT = T and T JT = T d.

PROPOSITION 3.2. - 77;̂  graded linear mapping x d = {^+1 d ^ } is a
differential of degree 1.

Proof. — i d ^ d = ^ d d = 0 and degree (r d ) = degree T + degree d = 1.
We introduce the graded linear space A = { A^ }, where A^ = im T^.

The differential T ̂  can be restricted to A due to T dx = T .̂
The restriction of T J to A is a differential of degree 1 denoted by 5.

DEFINITION 3.1. - The differential 8 = { 54 } is called the Lagrange
differential, and the cochain complex { A3,54 } is called the Lagrange complex,

THEOREM 3.1 (o-Poincare lemma). — If the manifold M is contractible
then the Lagrange complex { Aq, 5^ } is acyclic/or q > 0.

Let R denote the subspace of A° = 0° consisting of equivalence classes
of constant functions and let y : G —> A° be the canonical injection of the
subspace G = R © (d^ (0°) + . . . +d^ (0°)).

THEOREM 3.2. — The mapping y : G —> A° is an augmentation of the
Lagrange complex and the sequence

7 r. 6° . 51 89-1 59
0^ G->A°->A1-^... --^A^ ...

is a resolution of G.
We give proofs of the two theorems in the following section after having

constructed a resolution of the graded linear space A' = { A9 }q>o-

4. A resolution of A'

Let K be the simplicial complex with vertices 1, . . . , p, and let A^ (K)
denote the free abelian group generated by the ordered r-simplexes of K [5].

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 28



426 W. M. TULCZYJEW

We introduce a bigraded linear space 0 = { 0^ }, where ̂  = A^_ ^ (AT) ® D^
for r > 0, Og = Q4, and O? = 0 for r < 0. Elements of <^ are said to be
of bidegree (q, r ) . The exterior differential in D is extended to a bigraded
linear mapping d = { d^ ] of bidegree (1, 0) by the formula

d?((oci, . . . , a,) 00 u) = (ai, . . . , a,) ® ^u,

where (ai, . . . , a,.) is an ordered ^+1-simplex and |ieQ4. A bigraded
linear mapping S = { ̂  } of bidegree (0, — 1) is defined by

^((oci, . . . , oc,)(g)H)=^i ^^rC-l)1"1^!, . . . , a,, . . . , a,)® d^[i.

For each fixed r, {<^, ̂  } is a cochain complex, and for each fixed ^
{ ̂  ̂  } is a chain complex. Since ^+1 ̂  = ^_i ̂ , for each fixed r
the collection { ̂  : ̂  —> 0^_ i } is a cochain mapping, and for each fixed q
the collection { d^ : 0;? —> ̂ +1} is a chain mapping.

PROPOSITION 4.1.- For each fixed q > 0 //?^ c/^ complex [ 0^, ̂  } fj
acyclic for r > 0.

Proof. — For each a = 1, . . . , 7?, let a graded linear mapping
a,={^:Q^^}

be defined by <J^ = 0 and

cr^-^.e^C-l)"1^!)-1^^ where ^ > 0,
<?

/^ = ^ ̂  e W; m^ > 0, Wp = 0 for P > a } and the summation range is
governed by a convention similar to the one used in the definition of T in
Section 3. From Proposition 2.1, it follows easily for q>0 that
OT^TP = C ^ P < ^^T« = l-E,<,^<anda^TP =^TP<^P > 0^
A bigraded linear mapping D = { Z)^ } is defined by Z)^ u, = ^p (?) 0 cr| u,

D?((oci, . . . , a , ) ® H ) = ^ p < ^ ( P , o C i , . . . ,a,)®cr|u,

where jieQ^ and oci < a^ < . . . < a,.. Relations ^+1 Z)^+D^_i ̂  = 1
for r > 0, q > 0 are readily verified using the above stated properties of
o-^. It follows that for each fixed q > 0 the graded mapping Z)^ = { D^ ]
defines a chain contraction of { 0^, ̂ } for r > 0. Hence { 0^, ̂  } is
acyclic for r > 0.

PROPOSITION 4.2. — For each q > 0, ^ mapping ^q : Og—^ A4 ^ <7/a
augmentation of the chain complex { 0^, ̂  } wz^ ̂  sequence

8; 8;-i 8?
. . . -^-^-i-^ ...-xDo'-^-.O

f5' a resolution of A4.
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Proof. — The mapping T^ : 0^ —> A^ is an epimorphism, and ^ ()\ = 0
follows from Proposition 3.1. Further T^+^ Z>^ = 1, where Z)g is the
mapping defined in the proof of Proposition 4.1. Hence T^ a = 0 implies
H = ̂  Z)^ for each |̂  e Q .̂ It follows that ker ̂  = im Q\.

Proof of Theorems 3.1 and 3 . 2 . — We define a nonnegative graded linear
space C = { C, } by Co = R and C, = A,_i (7s:) ® R for r > 0, and a
collection n = { n, : C, —^ 0,° } by n, = 1 ® r(o» where r|o : R -^ 0° is the
canonical injection of the space R c Q° of equivalence classes of constant
functions identified with the field R of constants. If the manifold M is
contractible, then all rows except the bottom row of the commutative
diagram

0 0 0

o_c^^^...->^...

[^? k Ie;
i d° i d1 i d

o^tS-^...^...
1 + 6° T. 61 '- 89

0-^ G->AO^A1^.. .^A' '^. . .

1 1 1
0 0 0

are known to be exact and all columns for q > 0 are exact. For each q > 0,
the top tatement in the sequence

ker^^^im^-1,

ker(c^ d^,-1) = im^-'+im^-1,

ker (^+ 2 d^ 1) = im ̂  + im o^ \

ker(^4-1 4) = imd^+miai,

is true, and each of the remaining statements follows from the one immedia-
tely above. Hence the bottom statement is true. The same holds for
q = 0 if the bottom statement is replaced by

ker (r1 d^o) = im rio ® im S^.
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428 W. M. TULCZYJEW

I f ^ > 0 a n d ^ is an element ofA^ c: ̂ , then T^ = n, and 84^ = ^+1 ̂  n.
If 8 ^ a = = 0 , then there are elements xe0^~1 and Ke^ such that
H = ̂ -1 x+B^ X. It follows that

1̂  = T^H = ^dqo~lK= T^S"1^"^ = S^T^q.

Hence ker 84 = imS^"1 and the Lagrange complex is acyclic for ^ > 0.
We note that 5° = T1 d^ and

G = R (g) (^1 (^°)+ • • . +^(^°)) = imxo ® imB?.

Hence ker §° == G. It follows that the sequence

Y r» 60 1 §1 ^0-^ G^A°-^A1-->... -^A^-^
is exact.

5 . Applications of the 5-Poincare lemma in the calculus of variations

A smooth mapping ̂ '.W^1 —> M :(s, t^ ..., tp) i-> ̂  (s, t^ . . . , t p ) will
be called a homotopy. For each s e R, we denote by 7, the mapping

7,: R^M:^, ..., r^x(s, ^i, ..., tp\

The mapping y = Xo wln be called the &a^ of the homotopy %. We say
that the homotopy % is constant on ^4 c= R^if^^,^, .. . , ^ )=x(0»^ i? - • .^p)
for each s e R and each (t^ . . . , t p ) e A. For each mapping

(p: R^-^M:^!, . . . , ^)^(p0i, . . . , ^),

we denote by q/^ the mapping

^); R^T^M:^, ..,^)^^ ,,^((p).

For each homotopy ^, we denote by //(fc) the mapping

^(.)^ R^TT^M:^, ...,^)^;:^....^)(X),

where y^'^ t ) (x)ls a jet-like object similar toj^'^ (7) defined in terms
of partial derivatives at (0, t^ . . . , tp) instead of (0, 0, . . . , 0) and identified
with an element of TT^ M.

Each element L e Q^ gives rise to a family of functions

./^ f T ..Wy^ Loy^,
Jv

TOME 105 — 1977 - N° 4



LAGRANGE COMPLEX 429

defined on the set of smooth mappings of R^ into M for each domain
V c= RP.

DEFINITION 5.1. - A mapping y : R^ —> M is called an extremal of the
family of functions

y ^ f L o y W if ^[Lo^ =0,
Jv dsjv s=o

for each domain V c= R^ and each homotopy %, with base y constant on the
boundary SV of V.

DEFINITION 5.2. — A form ^ e Q(^) is called an Euler-Lagrange form
associated with L e Q^ if Zp.^ X. = 0 for each w > 0 and if

[<^,dL>=f
J^ J^

^^\dL^=\ a^U)1^ j^
for each domain V c= R^ and each homotopy ^ constant on S V.

It is clear from the definition of F^ that if \ e Q(^) satisfies fp^ ?i = 0
for each m > 0, then X can be interpreted as a mapping X : T^/) M —> T* M.
If X is an Euler-Lagrange form associated with L then

^f Lox^ = f < X ' w ^ >
flsjr s=o Jv

-[^^^

=[ <X'(OU°Y(fe/)>,
J^

for each homotopy ̂  with base y constant on S V. It follows that y : R^ —> M
is an extremal of the family

Y ^ f Loy^,

if, and only if, y satisfies the equation ^ o y^^ = 0 called the Euler-Lagrange
equation.

We show that K = 5° L is the unique Euler-Lagrange form associated
with L e Q°. We also show that ip ^ = 0 for each m > 0 means that
?ieQ1 is in A1. These statements imply applications of the 5-Poincare
lemma. A form X e Q1 is an Euler-Lagrange form if, and only if, 'k e A1

and 51 ̂  = 0. Euler-Lagrange forms associated with two elements L and
V ofQ° are the same if, and only if, L' - L e R © (d^ (Q°) + . . . +^p (Qo))-
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430 W. M. TULCZYJEW

PROPOSITION 5.1.- A form K e Q1 belongs to A1 (/; 0/2^ only if, ip 'k = 0
/or ^flc/z m > 0.

P/-OO/. - If ̂  ?i = 0 for each m > 0, then

^^=E. ( - l ) l m l (m!) - l ^fF^=fp^=^

Hence ?i e im T1 = A1. From Proposition 2.1, it follows that

i^ = ̂ ^+(m!/(m-^)!)^-ea^o

if w ^ ^a and ip^ d^ = df ip^ in all other cases. Since fp iy [i = iy [i
for each n e Q1, it follows that

^T^E^-l)"1^!)-1^^^

=S.(-l)lml(m!)-l^^.^
+E^..(-l)IMI((m-^)!)-l^-ea^=0.

Consequently, fp^ r1 = 0 for each m > 0, and if ?i e A1 then ;p ?i = 0 for
each m > 0.

PROPOSITION 5.2. - The space fl1 ^ ̂  direct sum of A1 and

^(^1)+...+^TP(^1).

Proof. - Let a be an element ofQ1. Then [i = ̂  +v, where X, == r1 u, e A1,
and

v==-E.>o(-l)lwl(m!)-l^^ae^l(^l)+...+^(^l).

It follows from r1 T1 = r1 and T1 d^ = 0 that this decomposition of ^ into
elements of A1 and d^ (Q1)+ . . . +^rp (P11) ls unique.

PROPOSITION 5.3.- Let [i be an element of^y Then

f <x 'w^0=o,
J^

for each domain V c= W and each homotopy % : Rp+l —> M constant on QV
if, and only if, a e d^ (Q1) + . . . +d^ (Q1).

Proo/. - It a = Ea d^ (oa then

f < x ' w ^ > = L f ^ < x / w c o a > = E f n.a^o)-),
J^ J^^r" Jer
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LAGRANGE COMPLEX 431

where n^ are the components of the normal vector. If % is constant on SV,
then

f <^)^>=o.
Jv

Let a == ?i+v be the unique decomposition of [i e Q1 used in the proof of

proposition 5.2. If < ^'(fc), ^ > = 0, then
J v

f a^^f <^<°Uoy^)>=o,
Jv Jv

where y is the base of/, and X, is interpreted as a mapping 'k : T^ M—> T*M.
It follows that ?i = 0 and [i = v. Hence ^ e 6^1 C^1) + . . . +^ (Ql)-

COROLLARY. — If L is an element of Q°, then X = 5° L is the unique
element of A1 such that dL-\ e ̂ ,1 (Q1) + . . . +^p (Q1). /^ follows that
^ is the unique Euler-Lagrange form associated with L.
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