Robert Kaufman
 Fourier analysis and paths of brownian motion

Bulletin de la S. M. F., tome 103 (1975), p. 427-432
http://www.numdam.org/item?id=BSMF_1975__103__427_0

© Bulletin de la S. M. F., 1975, tous droits réservés.
L'accès aux archives de la revue «Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

FOURIER ANALYSIS AND PATHS OF BROWNIAN MOTION

by
Robert KAUFMAN

[Urbana]

Abstract

Résumé. - Le mouvement brownien transforme presque sûrement un ensemble fermé de dimension $>1 / 2$ en ensemble linéaire à intérieur non vide. La preuve se fonde sur les inégalités de Burkholder pour la norme dans L^{p} d'une martingale, et sur l'inversion des transformées de Fourier.

Let μ be a probability measure of compact support E on the line, satisfying a Lipschitz condition in exponent $b>1 / 2: \mu(T) \ll(\operatorname{diam} T)^{b}$ for all measurable sets T. The transform of E by a Brownian motion X, with continuous sample paths, has positive Lebesgue measure, almost surely. Taking a planar process, $Y(t)=\left(X_{1}(t), X_{2}(t)\right)$, we have the same conclusion for each projection $X_{1} \cos \theta+X_{2} \sin \theta$, by a theorem on Fourier-Stieltjes coefficients ([3], p. 165), but it has not been observed that the projected path has non-empty interior, and this seems beyond the reach of the method of estimating individual Fourier coefficients.

In order to treat a more general problem, we write h for a function of class $C^{\beta}\left(R^{2}\right), 1<\beta<2$, whose gradient never vanishes. (By $C^{\beta}\left(R^{2}\right)$, we denote the space of functions defined on R^{2}, whose first partial derivatives are subjects to a Lipschitz condition in exponent $\beta-1$, uniformly on each bounded subset of R^{2}.) S_{θ} denotes the rotation of R^{2} through an angle θ.

Theorem. - With probability 1, all composite mappings $h \circ S_{\theta} \circ Y$ transform E onto a linear set of non-empty interior; in fact, these mappings transform μ to a measure with a continuous density.

In proving that a finite measure λ has a continuous density, we use its Fourier-Stieltjes transform $\hat{\lambda}(u)=\int e(-u t) \lambda(d t)$, where $e(a) \equiv e^{i a}$. To recover λ from $\hat{\lambda}$, we choose and fix a function φ of class

```
bulletin de la société mathématique de france
```

$C^{\infty}(R)$, with support in $(-2,2)$, equal to 1 on $(-1,1)$ and write (for $-\infty<x<\infty, k>1$)

$$
I(x, k)=\int \varphi\left(k^{-1} u\right) e(u x) \hat{\lambda}(u) d u
$$

Then $I(x, k) \rightarrow 2 \pi \lambda(d x)$ in the weak* topology of measures, so that λ has a continuous density if some subsequence converges uniformly on compact subsets of the x-axis. A closer look yields the formula

$$
I(x, k)=\int k \hat{\varphi}(k t-k x) \lambda(d t)
$$

now if $\eta>0$ is arbitrary but fixed, and $|x-t|>k^{\eta-1}$, then

$$
|k \hat{\varphi}(k t-k x)|<k^{-L} \quad \text { for any constant } L \text { and } k>k(L, \eta)
$$

Thus our method leads us to investigate the total λ-measure of intervals of length k^{n-1}. Another stage in the estimation of $I(x, k)-I(x, 2 k)$ uses a Fourier-type integral, arising as an expected value. The final step of the proof is a reduction of $I(x, k)-I(x, 2 k)$ to a martingale and application of L^{p}-inequalities about the square function S of a martingale ([1], [2]). I thank D. L. Burkholder for help with the theory of martingales and distribution function inequalities.

1. In the program outlined above, it is expedient to eliminate all values of Y outside some ball in R^{2}. Therefore we choose a function ψ of class $C^{\infty}\left(R^{2}\right), 0 \leqslant \psi \leqslant 1$, with compact support. We then work with the transforms of $\mu_{0}=\psi(Y) \cdot \mu$, but by using an appropriate sequence of test-functions ψ, we obtain all our assertions for the measure μ itself. We write g for any of the composites $h \circ S_{\theta}$, and denote by $M(x, r)$ the μ_{0}-measure of the t-set defined by

$$
|g \circ Y(t)-x| \leqslant r, \quad 0<r<1, \quad-\infty<x<\infty .
$$

The analysis in the lemmas below is used extensively in [3], and in [4], to obtain bounds very similar to those needed here.

Lemma 1.-Each L^{p}-norm $\|M(x, r)\|_{p} \leqslant B_{p} r, p=1,2,3, \ldots$
In the proof, we operate with μ-measure, adding the inequality $\|Y(t)\|<C(\psi)$, since ψ has compact support. To bound the p-th

```
tome 103-1975 - No 4
```

moment of $M(x, r)$, we integrate the p-fold product measure of the set in R^{p} :

$$
\left|g \circ Y\left(t_{n}\right)-x\right| \leqslant r, \quad\left|Y\left(t_{n}\right)\right|<C, \quad 1 \leqslant n \leqslant p
$$

We can adjoin the inequalities $t_{1} \leqslant t_{2} \leqslant \ldots \leqslant t_{p}$, because this decreases the product measure by a factor p !. The event so obtained is a subset of the event

$$
\begin{aligned}
&\left|g \circ Y\left(t_{1}\right)-x\right| \leqslant r, \quad\left|g \circ Y\left(t_{n+1}\right)-g \circ Y\left(t_{n}\right)\right| \leqslant 2 r, \quad 1 \leqslant n<p, \\
&\left|Y\left(t_{n}\right)\right|<C, \quad 1 \leqslant n \leqslant p .
\end{aligned}
$$

Now h is of class $C^{1}\left(R^{2}\right)$ and has a gradient vanishing nowhere; by independence of increments, we can conclude that the p-th moment has a magnitude comparable with the p-th power of

$$
\sup _{s} \int \min \left(1, r|t-s|^{-1 / 2}\right) \mu(d t) \leqslant r \sup _{s} \int|t-s|^{-1 / 2} \mu(d t) \ll r
$$

Lemma 2.-Let E_{j} be disjoint closed sets, and $m=\max \mu\left(E_{j}\right)$. Let $M_{j}(x, r)$ be the μ_{0}-measure of the set defined by $|g \circ Y(t)-x| \leqslant r, t \in E_{j}$, and put

$$
M^{*}(x, r)=\sup M_{j}(x, r)
$$

Then $\left\|M^{*}(x, r)\right\|_{p} \leqslant B(p, q) r m^{q}$ for any $q<(2 b-1) / 2 b$.
First we majorize the moments of each $M_{j}(x, r)$, adding the condition $t_{n} \in E_{j}(1 \leqslant n \leqslant p)$ in the product set used in the proof of lemma 1. Hence we obtain p factors $\sup \int_{F}|t-s|^{-1 / 2} \mu(d t)$, with $F=E_{j}$. Now this integral is $<\mu(F)^{q}$ for each q specified. Indeed, the Lipschitz condition imposed on μ yields $\int|s-t|^{-f} \mu(d t)<C(f)$ for each $f<b$, so we can use Hölder's inequality to obtain the factor $\mu(F)^{q}, q$ being the conjugate index to $f / 2$. We apply this bound with $F=E_{j}$, finding that $M^{*}(x, r)$ has p-th moment $\ll r^{p} \sum \mu\left(E_{j}\right)^{p q} \leqslant r^{p} m^{p q-1} ;\left\|M^{*}(x, r)\right\|_{p} \ll r m^{q} m^{-1 / p}$. This yields our lemma because $q-p^{-1}$ can be made arbitrarily close to $(2 b-1) / 2 b$, and the L^{p}-norm increases with p.
2. In this paragraph, we investigate the integral $I(x, k)$ formed from μ_{0}, namely

$$
\iint \varphi\left(k^{-1} u\right) e(u x-u g \circ Y(t)) \psi(Y) \mu(d t) d u
$$

We approximate $I(x, k)-I(x, 2 k)$ by a martingale sum and use the estimates of M and M^{*} already found. There remain some estimates whose derivation is the most technical point in the paper. Let α be fixed once and for all in the interval $(0, \beta-1)$ and T_{j} be the interval $\left(j k^{-\alpha},(j+1) k^{-\alpha}\right]$; then $I(x, k)-I(x, 2 k)$ is correspondingly divided into integrals, over T_{j}, which we name. Because $\Gamma_{2 j}$ is measurable over the σ-field $F_{2 j}$ of the variables $\left\{X(s): s \leqslant(2 j+1) k^{-\alpha}\right\}$, the variables $\Gamma_{2 j}-E\left(\Gamma_{2 j} \mid F_{2 j-2}\right)$ form a sequence of martingale differences. We proceed to a bound of $E\left(\Gamma_{2 j} \mid F_{2 j-2}\right) . \quad \Gamma_{2 j}$ is the integral with respect to μ, over $T_{2 j}$, of

$$
\int\left[\varphi\left(k^{-1} u\right)-\varphi\left(2^{-1} k^{-1} u\right)\right] \psi(Y(t)) e(u x-u g \circ Y(t)) d u
$$

We shall give a uniform bound for the expectation, for $t>2 j k^{-\alpha}$, of this integral. To bound $E\left(\Gamma_{2 j} \mid F_{2 j-2}\right)$, we have only to multiply by $\mu\left(T_{2 j}\right)$.

By the Markoff property, the conditioning depends only on

$$
Y\left((2 j-1) k^{-\alpha}\right)=Y(v),
$$

say, and we have the inequality $t-v \geqslant k^{-\alpha}$. Thus $Y(t)$ has a conditional distribution represented by $Y(v)+|t-s|^{1 / 2} Y(1)$, which we write as $y^{0}+\sigma Y(1), \sigma^{2} \geqslant k^{-\alpha}$. At each point in the ball $\|y\| \leqslant C(\psi)$ in R^{2}, there is a direction τ so that $\partial h / \partial \tau>0$; consequently, there is a finite covering $\bigcup V_{n}$ of the support of ψ by convex open sets, and directions τ_{n}, so that $\partial h / \partial \tau_{n} \geqslant a>0$ on V_{n}. Let $\psi=\sum \psi_{n}$ be a C^{∞}-partition of ψ, wherein ψ_{n} vanishes outside V_{n}. It will be enough to obtain a bound for the integral containing $\psi_{n}(Y)$ in place of $\psi(Y)$, and to take $\theta=0$, $g=h$ (in view of the symmetry of the normal law).

The conditional expectation is given explicitly as an integral involving the normal density $(2 \pi)^{-1} \exp \left(-1 / 2\|y\|^{2}\right)$. In this integral, we make an affine change of variable, $z=y^{0}+\sigma Y(1)$ and then integrate on lines in the τ_{n}-direction. Suppressing the variable of integration in the direction orthogonal to τ_{n}, we obtain

$$
\begin{aligned}
& \iint\left[\varphi\left(k^{-1} u\right)-\varphi\left(2^{-1} k^{-1} u\right)\right] e(u x-u h(y)) \psi_{n}(y) \\
& \quad \times \exp \left(-\frac{1}{2} \sigma^{-2}\left(y-y^{0}\right)^{2}\right) d y d u / \sigma(2 \pi)^{1 / 2}
\end{aligned}
$$

tome $103-1975$ - No 4

The integration is extended over an interval $|y| \leqslant C$, and in fact, we can neglect all of this interval except that part on which $|x-h(y)| \leqslant k^{n-1}$, for the reason explained in the first paragraph. In case $|x-h(y)|<k^{n-1}$ for some y in $[-C, C]$, this inequality defines a subinterval of length $\ll k^{\eta-1}$. In the remainder of this argument, we assume that this interval is included entirely in [$-C, C$], but only minor variations are necessary in other cases. Let us consider the error in replacing $h(y)$ by its tangent line at some point in this interval, say $h_{1}(y)=h\left(y_{0}\right)+\left(y-y_{0}\right) h^{\prime}\left(y_{0}\right)$. Fisrt, the Lipschitz condition on h^{\prime}, and Taylor's formula, yield $\left|h_{1}-h\right| \ll k^{(\eta-1) \beta} \quad$ throughout the interval. Now $|u| \leqslant 2 k$, and the integration with respect to u extends over this range at most, introducing a factor $\ll k^{2}$. But $\sigma^{2} \geqslant k^{-\alpha}$, and the integration with respect to y is confined to an interval of length $<k^{\eta-1}$. Thus the error is $\ll k^{e}$, with $e=2+(\eta-1)(\beta+1)+(1 / 2) \alpha$, approaching

$$
1-\beta+\frac{1}{2} \alpha<\frac{1}{2}(1-\beta)
$$

as η approaches O^{+}. Thus we can choose $\eta>0$ so small that the error is $\ll k^{-\delta}$ for some $\delta>0$.

Next we evaluate the integral in which h has been replaced by the linear function h_{1}; at the end-points of the domain of integration on the y-axis, $\left|x-h_{1}(y)\right| \approx k^{n-1}$. Integration with respect to u gives

$$
k \hat{\varphi}\left(k h_{1}(y)-k x\right)-2 k \hat{\varphi}\left(2 k h_{1}(y)-2 k x\right)
$$

and our plan now is to integrate by parts several times in succession.
The function $r(s) \equiv \hat{\varphi}(s)-2 \hat{\varphi}(2 s)$ is represented by a Fourier transform of C^{∞} function of compact support, and so are each of its indefinite integrals if they are normalized so as to vanish at infinity. Successive integrations of $k r\left(k h_{1}(y)-k x\right)$ with respect to y therefore bring in factors k^{-1}. The L^{1}-norm of the p-th derivative of the cofactor is $<\sigma^{-p}$, and this disposes of the integral obtained in integrating by parts several times. The integrated terms occur at the endpoints, where $k\left|x-h_{1}(x)\right| \sim k^{\eta}$, and the rapid decrease of r and its integrals at infinity enable us to obtain a bound $<k^{-L}$ for any fixed L. In summary, then, we have

$$
\left|E\left(\Gamma_{2 j} \mid F_{2 j-2}\right)\right| \ll k^{-\delta} \mu\left(T_{2 j}\right) \quad \text { for a certain } \delta>0
$$

[^0]3. From the properties of $I(x, k)$ mentioned in the first paragraph, we have $\left|\Gamma_{2 j}\right| \ll k^{1-L} \mu\left(T_{2 j}\right)+k M_{j}\left(x, k^{\eta-1}\right)$. Here M_{j} is the partial μ_{0} measure of lemma 2, and $E_{j}=T_{2 j}$. Thus $m=\max \mu\left(T_{2 j}\right) \ll k^{-\alpha b}$, and $\max \left|\Gamma_{2 j}\right|$ has L^{p}-norms of magnitude $k^{e_{1}}$, with $e_{1}=\eta-\alpha b q$. Taking $\eta<\alpha b q$, we again find $\left\|\max \left|\Gamma_{2 j}\right|\right\|_{p} \ll k^{-\delta}$ for a certain $\delta>0$ and every $p=1,2,3, \ldots$ Using lemma 1 instead of lemma 2, we obtain $\left\|\sum\left|\Gamma_{2_{j}}\right|\right\|_{p} \ll k^{n}$; two applications of Hölder's inequality yield $\left\|\sum\left|\Gamma_{2_{j}}\right|^{2}\right\|_{p} \ll k^{n-\delta}$, and the exponent is negative for small $\eta>0$. In view of the bound on $E\left(\Gamma_{2 j} \mid F_{2 j-2}\right)$ obtained above, the martingale square function defined by $S^{2}=\sum\left|\Gamma_{2_{j}}-E\left(\Gamma_{2_{j}} \mid F_{2 j-2}\right)\right|^{2}$ has L^{p}-norms $\ll k^{-\delta}$ for some $\delta>0$. By a theorem of Burkholder ([1], [2], theorem 3.2), the sum has L^{p}-norms of comparable magnitude; but then there is a $\gamma>0$ so that
$$
P\left(|I(x, k)-I(x, 2 k)|>k^{-\gamma}\right\} \ll k^{-L} \quad \text { for every } L
$$

The integral $I(x, k)-I(x, 2 k)$ depends on the parameters x and θ, but has partial derivatives with respect to these variables $\ll k^{2}$. From this it is easily seen that the probability estimate is valid for the supremum over $0 \leqslant \theta \leqslant 2 \pi$ and $|x| \leqslant k$. Choosing now $k=2^{j}$, we find that $I\left(x, 2^{j}\right)$ converges uniformly on compact subsets of the x-axis, and even uniformly with respect to θ, with probability 1 .

REFERENCES

[1] Burkholder (D. L.). - Martingale transforms, Annals of math. Stat., t. 37, 1966, p. 1494-1504.
[2] Burkholder (D. L.). - Distribution function inequalities for martingales, Annals of Prob., t. 1, 1973, p. 19-42.
[3] Kahane (J.-P.). - Some random series of functions. - Lexington, D. C. Heath, 1968 (Heath mathematical Monographs).
[4] Kaufman (R.). - A metric property of some random functions, Bull. Soc. math. France, t. 99, 1971, p. 241-245.

Robert Kaufman,
Department of Mathematics,
University of Illinois, Urbana, Ill. 61801 (États-Unis).

[^0]: bulletin de la société mathématique de france

