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THE LERAY-SCHAUDER INDEX
AND THE FIXED POINT THEORY FOR ARBITRARY ANRs (1)

ANDRZEJ GRANAS

1. Introduction

The Leray-Schauder theory of the degree or the equivalent notion
of the fixed point index ([18], [19]) ha,s played a basic role in non-linear
functional analysis. In this note, we intend to show that the suitably
modified and supplemented theory of the Leray-Schauder index belongs
to topology and occupies in fact the central place in topological fixed
point theory.

Let U be an open subset of a normed space E, and f: U -> E be a
compact map with a compact set of fixed points. To every such f,
we assign an integer Ind (/*), the Leray-Schauder index of f, which satisfies
a number naturally expected properties; among those that supplement
the classical ones the following two are of especial importance : (i) the
Leray-Schauder index Ind (/') is topologically invariant, and (ii) when
f ' U -> U, it is equal to the (generalized) Lefschetz number A (f) of f
[and hence A (f) -^- 0 implies that /"has a fixed point].

Now let X be a space which is r-dominated by an open set V in E
[= a metric ANR (2)], r : V ->• X, s : X-> V a pair of maps with rs == l;c.
Let U be open in X and f: U —^ X be a compact map with a compact
set of fixed points. Then the map sfr : r-1 (U) -> V is also compact,
and we define Ind (f) to be the Leray-Schauder index of sfr. Properties
of the Leray Schauder index imply that Ind (f) is the extension of the

(1) This research was supported by a grant from the National Research Council
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(2) ANR = Absolute Neighbourhood Retract.
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former over the larger category of spaces and thus we obtain the topolo-
gical fixed point index theory for compact maps of arbitrary ANR-s.
This theory contains several basic known results in topology (for example,
the well-known theory of the fixed-point index for compact ANR-s) and
non-linear functional analysis (e. g. the Schauder fixed point theorem,
the BirkhofT-Kellogg theorem). It contains also the authors genera-
lization [11] of the Lefschetz fixed point theorem to compact maps of
arbitrary ANR-s.

The treatment of the fixed point index theory presented in this note
has as its starting point the fixed point index in R" due to A. DOLD [8]
and depends also on the notion of the generalized trace as given by
J. LERAY in [16]. A part of results presented here was announced
earlier in some detail in [12].

The author whishes to thank R. KNILL for several helpful discussions.

2. The Leray trace

In what follows an essential use will be made of the notion of the
generalized trace and the Lefschetz number as given by J. LERAY in [16].
We shall consider vector spaces only over the field of rational numbers Q.

A graded vector space E = j Eq } is of a finite type provided : (i)
dim Eq < oo for all q, and (ii) Eq = 0 for almost all q. If f == {fq } is
an endomorphism. of such a space, then the Lefschetz number A (f) of f
is given by

^(f)=^(-l).tr(/,),

where tr stands for the ordinary trace function.
Let f:E->E be an endomorphism of an arbitrary vector space E,

Let us put
N (f) = u.^ ker f^, E = £/N (f)

where f^ is the n-th iterate of f. Since f (N (f)) c N (f), we have the
induced endomorphism f'.E-^E. Assume that dim £<oo; in this
case, we define the generalized trace Tr (f) of fby putting Tr (f) == tr(f).

Now let f = { fq } : E -> E be an endomorphism of degree zero of a
graded vector space E = { Ey { . Call /"the Leray endomorphism provided
the graded space E = { Eq} if of a finite type. For such an /, we define
the (generalized) Lefschetz number A (f) by putting

A(/-)=^(-l).Tr(/,).
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The following important property of the Leray endomorphisms [18]
is a consequence of the well-known formula tr (uu) = tr (uu) for the
ordinary trace :

(2.1) LEMMA. — Assume that in the category of graded vector spaces
the following diagram commutes

E —^ E"
-^ K -4-'\ \ \-
E'^E"

Then, if f or f" is a Leray endomorphism, then so is the other and in that
case A (f) = A (f).

3. Lefschetz maps

Let H be the singular homology functor (with the rational coefficients)
from the category of topological spaces and continuous mappings to the
category of graded vector spaces and linear maps of degree 0. Thus
H (X) == { Hq (X)} is a graded vector space, Hq (X) being the g-dimen-
sional singular homology group of X. For a continuous mapping
f:X->Y, H (f) is the induced linear map f^ == j fq }, where
f,:H,(X)-^H,(Y).

A continuous map f: X -> X is called a Lefschetz map provided
f^ : H (X) -^ H (X) is a Leray endomorphism. For such f, we define
the Lefschetz number A (f) of f by putting A (/) = A (f^).

Clearly, if fand g are homotopic, f ̂  g, then A (f) = A (g).

(3.1) LEMMA. — Assume that in the category of topological spaces
the following diagram commutes

X—^ Y

4\ t^,P

X-^ Y
Then :

(a) if one of the maps cp or ^ is a Lefschetz map, then so is the other and
in that case A (9) == A (^);

(b) cp has a fixed point if and only if^ does.

Proof. — The first part follows (by applying the homology functor
to the above diagram) from lemma 2.1. The second part is obvious.
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The following are the two instances in which the above lemma is used :

(3.2) Example. — Let f: X -> X be a map such that f (X) c K c X.
Then we have the commutative diagram

K-^X

r.\ \ .
K-^X

with the obvious contractions (3).

(3.3) Example. — Let r : Y -> X, s : X -̂  Y be a pair of continuous
mappings such that rs = Ijc. In this case, X is said to be r-dominated
by Y and r is said to be an r-map. In this situation, given a map
cp : X —>- X, we have the commutative diagram

X——> Y
^ \ ^4 \ r»
X—> Y

with 4' = 5 cp r.

4. Compact maps

A continuous map f'.X-^Y between topological spaces is called
compact provided it maps X into a compact subset of Y. Let hi: X -> Y
be a homotopy and h: X x I -> Y be defined by h (x, t) = ht (x) for
(x, t) e X x I ; then hi is said to be a compact homotopy provided the map h
is compact. Two compact maps f, g : X -> Y are compactly homotopic
provided there is a compact homotopy hi: X -> Y with ho === f and
Ai = ^. If Y is a linear space then f (resp. ht) is said to be finite dimen-
sional provided it is compact and the image f (X) [resp. h (X)] is contained
in a finite dimensional subspace of Y.

In what follows, we shall combine the Schauder approximation theo-
rem [20] and a result of P. ALEKSANDROV concerning the maps of compacta
into the polyhedra.

(4.1) THEOREM (cf. [II], [18]). — Let U be an open subset of a normed
space E and let f: X-> U be a compact mapping. Then for every suffi-

(3) Let f : X-> Y be a map such that f(A)cB, where AcX and Be Y. By
the contraction of f to the pair (A, B), we understand a map f : A -> B with the same
values as f. A contraction of f to the pair (A, Y) is simply the restriction f \ A of f
to A.
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ciently small s > 0 there exists a finite polyhedron K^cU and a mapping
/£: X ->• U, called an ^-approximation of f, such that:

(i) I I f^) — A W I I < s for all x^X;
(ii) /s(X)c^s;
(iii) the formula hf (x) = t /e (x) + (1 — /) f (x) defines a compact

homotopy hi: X ->- U joining /g, with /*.

Proof. — Given s > 0 (which we may assume to be sufficiently small)
f(X) is contained in the union of a finite number of open balls
V (Vi, Oc U (i = 1, 2, ..., k). Putting for xeX,

U (x) = (Z, ̂  (x) y,)l(l, ̂  (x)), l^i^k, l ^ j ^k ,

where
^ (a ; )=max{0 , s - [ | / ' ^ ) - ^ [ | i ,

we obtain the map fs, satisfying (i). Clearly, the values of fs, are in
a finite polyhedron K^c U with vertices yi, 1/2, . . . » ^- Property (iii)
is evident.

The proof of the following elementary fact is left as an easy exercise
for the reader (cf. [10]).

(4.2) LEMMA. — Let V be open in a normed space E and assume that
f:V-^E is a compact map with no fixed points on the boundary 0V
of V. Then :

(i) the number Y] = inf^^ || x — f(x) [ i is positive;
(ii) if £ < T], then any ^-approximation f^ offis fixed point free on ()V;

(iii) given any two ^-approximations fs. and f^ of f with s < (1 /2) T],
the formula

h,(x)==tfi(x)+(l -0^

defines a finite dimensional -n-homotopy (4) joining f and f" which has no
fixed points on 0V.

5. The axioms for the fixed point index

Let f: U -> X be a continuous map between topological spaces. Call
f admissible provided U is an open subset of X and the fixed point set
of/-.

^={x^U,f(x)==x}cU

(4) A homotopy h^ : X -> Y into a metric space (Y, 9) is said to be an s-homotopy
provided p (h^ (x), h^, (x)) < s for all rceX and t, Fe(0, 1). If f, g : X-^ Y can be
joined by an s-homotopy, then we say that f is s-homotopic to g and write f^g;
clearly f^g implies, in particular, that p (f(x), g (x)) < s for all xeX.
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is compact. A homotopy hi: U-> X will be called admissible provided
the set x ({ hi}) == Uo^^i ^ (hf) is compact.

DEFINITION (A. DOLD [8]). — Let £ be a category of topological
spaces in which a class 91 = 91 ((£) of admissible maps and homotopies
is distinguished. By a fixed-point index on 91 we shall understand a
function Ind : 91 ->- Z which satisfies the following conditions :

(I) Excision. — If U' c U and xy c £7', then the restriction

f =f\U1 :U'->X

is in 91 and Ind (f) = Ind (f).

(II) Additiuity. — Assume that U = u, ^, l^i^^, f,==f\U
and the fixed point set ^ = %yn L^ are mutually disjoint, x.nxy = 0
for 1^7. Then

Ind f = ̂  Ind /;, l^i^k.

(Ill) Ff^d pom/s. — If Ind f-^ 0, then x/ 7^ 0, i. e., the map /"has
a fixed point.

(TV) Homotopy. — Let ht:U->X, O^t^l, be an admissible
homotopy in 91. Then Ind (ho) = Ind (Tii).

(V) Multiplicatiuity. — If f,: U, -> X, and f,: U, -^ X, are in 91
then so is the product map /i x /2 : U, x U^ -> Xi x Xa and

Ind (/i x A) = Ind (/•,). Ind (/•,).

(VI) Commutatiuity. — Let £/cX, U ' c X be open and assume
f: U ->X, g : U' —^X are maps in £. If one of the composites

^: V = /•-1 (£/') -^X or fg: V = ̂  (£/)-> X'

is in 91, then so is the other and, in that case,

Ind (gf) = Ind (fg).

(VII) Normalization. — If U == X and f: X->X is in 91, then f is
a Lefschetz map, and Ind (f) = A (/).

6. The fixed point index in ̂

In the following definition H is the singular homology over the
integers Z. Let us fix for each n an orientation le^^) of the
n-th sphere Sn = {rceR714-1; [| x [| = 1 } and accordingly identify
Hn (S^ w Z with the integers Z.
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DEFINITION (cf. A. DOLD [8]). — Let f\ U -> R" be an admissible map.
Denote by K = x/ the fixed point set for /"and by

( i - f ) : ( U , U - K ) ^ ( R n , R n - { 0 } )

the map given by (i — f) (re) == x — f (a;). The fixed point index Ind f
of the map f is defined to be the image of 1 under the composite map

Z = Hn (S^-^Hn (S'S Sn - K) -^ Hn (U, U - K) ̂ -f^-^Hn^R^ - 0) w Z.

The following theorem established by A. DOLD [8] represents a moder-
nized version of the classical result due essentially to H. HOPF.

(6.1) (The fixed point index in R"). Let (£ be the category of open
subsets of euclidean spaces and 91 (£) the class of all continuous admissible
maps in £. Then the integer valued function f-> Ind f defined above
satisfies the properties (I)-(VII). In (VII), it is assumed that f is compact.

We note that the excision and the commutativity implies the following
property of the index :

(VIII) Contraction. — Let U be open in R^ and f: U-> R^ be an
admissible map such that f^cR^ Denote by f'-.U'-.R1 the
contraction of /; where U ' = Uc\Rn. Then Ind (f) = Ind (f).

7. The Leray-Schauder index

Let U be an open subset of a normed space E and let f: U ->- E be
an admissible compact map. Take an open set Vc U such that ()Vc U
and x/c V. Then the number Y] == (1/2) inf [| x— f(x) [\ for X€()Y is
positive.

Let g == f\ V: V -> E. From the definition of Y] and lemma (4.2)
it follows that :

(i) if s < T], then every s-approximation ^: V -> E of g is admissible;
(ii) given two s-approximations g'e, gl: V -> E of g with s < Y? there

exists an admissible finite dimensional compact homotopy hi: V ->- E
0 ̂  t ̂  1, such that Ao = ^', hi = g " .

Let /*: U -> £ be an admissible compact map and gs,: V -^ £ be an
s-approximation of ^ = f \ V as above. Denote by E" a finite dimensional
subspace of E which contains gs, (V) and by g's.: E" n V -> E71 the
evident contraction of g^

Let us put Ind (/, V) = Ind (g',). It follows from (i) and (ii) and the
homotopy and contraction properties of the index in R71, that Ind (/, V)
does not depend on the choice ^e. Moreover, given Vi, ¥2 with the
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same properties as V, we have

(7.1.1) Ind (f, VQ = Ind (f, V,).

For the proof of (7.1.1) we distinguish two cases :
(i) ViCV.;
(ii) Yi and V2 are arbitrary.

In the first case, our assertion follows by the excision of the index in R"
and the second case reduces, evidently, to the first.

DEFINITION. — For an admissible compact map f: U -> X, we define
the Leray-Schauder index Ind (f) of f by putting

Ind (/•) = Ind (/, Y)=Ind(^) .

It follows from (7.1.1) that Ind (f) is well defined.
We may state now the first main result of this note :

(7.1) THEOREM. — Let £ be the category of open subsets in linear
normed spaces and let 91 be the class of all admissible compact maps in £.
Assume that all admissible homotopies are compact. Then, defined on 91,
the Leray-Schauder index f->- Ind (f) satisfies the properties (I)-(VII).
In (VI), it is assumed that one of the maps f or g is compact.

Proof. — Using the approximation theorem (4.1), lemma (4.2),
properties (I)-(V) follow in a straightforward manner from the corres-
ponding properties of the index in R". The proof of property (VI),
which is somewhat more involved, will be given separately in section 8.
It remains to establish the normalization property.

Proof of property (VII). — Given a compact map f: U -> U let s > 0
be smaller than dist (x/, ()U), f^:U—^U be an s-approximation of f
such that its values are in a finite dimensional subspace E71 of E and let
Un = Ur^E". Clearly every such /e is admissible and f ~ fg.

Consider the following commutative diagram in which all the arrows
represent either the obvious inclusions or the contractions of the map fe:

Un^>U
^ \ ^4 \ }fs

Vn-^U

By the definition Ind (f) = Ind (fg). By lemma (3.1) [Example (3.2)],
we have A (/"')= A (f,,) and, consequently, in view of theorem (7.1)
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(property VII), Ind (/*) == A (/s). Since fis homotopic to /e, this implies
that Ind (f) == A (f) and the proof is completed.

We remark that theorem (7.1) (the commutativity) contains the
following important property of the Leray-Schauder index :

(IX) Topological Invariance. — Let f: U -> E be an admissible
compact map, and h: E --> E' be a homeomorphism. Then
h o fo 7r-1: h (U) -^ £" is also an admissible compact map and

lnd(hofoh-1) == Ind(/-).

8. Proof of the commutativity

In the proof of commutativity, we shall use the fact that the Leray-
Schauder index satisfies properties (I), (IV) (V) and (VII).

Let UcE, U' cE' be open in normed spaces E and £', respectively,
f: U' -> E, g : U —> E' be continuous and consider the composites

g o h : f^(U)->E\ f o g : g-^U^-^E.

We note that the maps f: x (gf) -^ x (fg) and g : x (fg) -> x (gf) are
inverse to each other and hence the fixed point sets x (gf) and x (fg)
are homeomorphic; thus, if one of them is compact, then so is the other.
In the proof of commutativity, we shall distinguish two cases :

Special case (both f and g are compact) : In this case, we proceed
essentially as in DOLD [8].

We let c p : U ' X U -> E' x E be given by

(8.1.1) ^ ( x , y ) = ( g ( y ) , f ( x ) ) .

And we define the homotopies :

ht,h'i : U ' x U - ^ E ' x E ,
H, : U ' x E - ^ E ' x E ,
H\ : E ' x U - ^ E ' x E ,

by the following formulas :

h(x,y)=[tgf(x)
. +^-t)g(y),f(x)], ( x , y , t ) ( E U / x U x I ,/s 1 o\ hft (^y)=^(y)'^(y)(°-1-2) +(i-o^)],

Hi(x,y) == [gf{x\ (1 - t)f(x)], (x, y, QeE/'xExJ,
H',(x,y) = [(1 - 0 g(y), fg(y)], (x, y, Qet/x^xJ.
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We have

(8.1.3) c p = A o = A , .

By assumption, f and g are compact; this implies that cp and all the
above homotopies are compact; since the fixed point sets x<p and x^y
are homeomorphic under x h> (x, f(x)), (x, y) h> x, 9 is admissible.

Moreover, simple computation shows that the fixed point sets

x, = x 0 h,}) = x (( A; 0

coincide and, therefore, the homotopies ht and h'^ are admissible. By
straightforward argument, one shows that Ht and Hi are also admissible.

Therefore, by homotopy, we have, in view of (8.1.3),

(8.1.4) Ind (9) == Ind (Ai) = Ind (h\).

On the other hand, since

h, = Uo [ U ' x U, h\ = H, \UfxU,

we get by excision and homotopy,

(8.1.5) Ind (9) = Ind (H,) = Ind (H\).

Both Hi and H\ are product maps

(8.1.6) H, == (gf) x (Cte), H\ = (Cte) x (fg).

By multiplicativity, in view of (8.1.5) and (8.1.6),

Ind (gf). Ind (Cte) = Ind (Cte). Ind (fg)

and hence by normalization [since A (Cte) == 1] we get Ind (gf) === Ind (fg).

General case: We assume now that f: Ur -> E is compact and g : U -> E^
continuous. To show that

Ind (gf | f-^ (U))== Ind (fg ] g-1 (U%

we assume that gf (and hence fg) is admissible.
Take a smaller open set 0 c U such that :

(i) 0 isbounded;
(ii) 00 c£7;

(iii) x/^c0,



LERAY-SCHAUDER INDEX 219

and put 0' = f-1 (0). Clearly x ((//*) c 0', and we may assume that
WcU' (5).

Now both ^f : f-1 (0) -^ £' and fg : g-1 (0') ->- E are compact. By
excision, it is sufficient to show that

(8.1.7) Ind (gf \ f-1 (0)) = Ind (fg \ <r1 (0')).

Let us put
Y)I = inf || x - g f(x) \\ for rre ̂ -1 (0),

(8.1.8) ^==inf | | ! / - f (70 / ) | | for y€()g-1 (()'),
Y} == min (Y?i, Yia).

By lemma 4.2, the number YI is positive.
Let K be a compact set containing f(U')cE. Consider the map

g : U -> E' at points of a compact set JCn (7c U. Continuity of g implies
that for each ye.Kr\0 there is a 8y > 0 such that :

(i) the open ball V (y, ^y) with center y and radius 3y is contained
in U;

(ii) ^, y"e V (y, ^) => || (g (if) - g (y") || < ̂
From the compactness of Kr\0 it follows that a finite number of balls
V(y., ^), . . . . V(^. ̂ ) covers XnO:

We let
^ = min (( .̂,, . . . , 8y^),

(8.1.9) V = U. V (yk, ̂ ), 1 ̂  i ̂  A:,
s = min (3, Y?).

Clearly, from (8.1.9), it follows that

if yeKr\0 and || y ' — y ]| < s, then

(8.1.10) \\9(y)~ ^ ( y ^ l K ^
and
^ 4- (i _ t) y ' e y for all fe (0,1).

Now let /*£: [// --> E be an s-approximation of f: V ->E and TI( : U ' -> E
be given by hi (x) = t f(x) + (1 — t) f^ (x) clearly; ht is an s-homotopy
joining compactly f anf fe. Since on f-1 (0) c f-1 (0) the values of A<
are in a compact subset of V c U, we may consider on f~1 (0) the compo-

(5) In view of the excision we may suppose (by taking slightly smaller open sets)
that f and g are denned in fact on <)\J and ^U' respectively.
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sition ghi. It follows clearly from (8.1.10) that gft is an n-homotopy
and therefore by lemma 4.2 (in view of the definition of Y]) it has no fixed
points on ()f~1 (0); thus

gh, : f-^O^E'

is an admissible homotopy joining gf, and gf on f~1 (0).
Consequently, by homotopy, we have

(8.1.11) Ind (gf\ f-1 (0)) = Ind (gf, \ f-^ (0)).

Next, since f, is finite dimensional, f, (U^cE", we may write the
following contractions

( A : f^W^E-^O,
( g : En^O—Ef(8.1.12)

of /£ and g respectively. On f-1 (0), we have g o f^ == g o f, and, therefore

(8.1.13) Ind (gf, \ f-1 (0)) == Ind {g f, \ f-1 (0)).

Further, since g c g | E11 n 0" and 0 is bounded, we conclude that g
is compact. Thus, both f, and ^ being compact, we may apply the special
case of commutativity., We have

(8.1.14) Ind {g f, \ /•-1 (0)) == Ind (^ o g \ g-^ /--i (0))

and finally, since 0' = f-1 (0), we obtain from (8.1.11), (8.1.13)
and (8.1.14),

(8.1.15) Ind (gf f-1 (0)) = Ind (f, o g [ g-^ (0')).

On the other hand, consider the composition htg on g~^ (O')cg~1 (O7).
Clearly htg is a compact s-homotopy joining fg and f^o g ; since s < y?,
it is an Yj-homotopy and, hence, by lemma 4.2, it is fixed point free
on ()g-1 (()'). In other words, hi g : g~1 ( ( ) ' ) -> E is an admissible
compact homotopy joining f, o g and fg on g~1 (0'), and consequently
(by homotopy) we have

(8.1.16) Ind (fg \ <r1 (0')) = Ind (f, o g \ g-^ (0')).

Since the values of fs, o g are in E" n 0, we have, by the definition
of the Leray-Schauder index,

(8.1.17) Ind (fs o g | g-^ (()')) == Ind (f, o g \ g-^ (O^nOn^),
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and hence, because g-1 (CQnOnE^ == g-1 (O'), we get

(8.1.18) Ind (fg \ g-^ (0')) = Ind (f, o g [ ^-i (0')).

By comparing formulas (8.1.18) and (8.1.15), we obtain the desired
conclusion (8.1.7), and thus, the proof of commutativity is completed.

9. Compact maps of the ANR-spaces

We propose now as the first consequence of the Leray-Schauder index
a general fixed point theorem which on the one hand contains the classical
Lefschetz theorem for compact ANR-s, and on the other hand contains
various fixed point theorems of the non-linear functional analysis.

We denote by ANR (resp. AR) the class of metrizable absolute neigh-
bourhood retracts (resp. absolute retracts). We recall (cf. [3]) that a
metrizable space Y is an ANR (resp. AR) provided for any metrizable
pair (X, A), with A closed in X and any continuous fo:A->Y, there
exists an extension f : U —^ Y of fo over a neighbourhood U of A in X
(resp. an extension f : X -> Y of fo over X).

(9.1) Example. — The following are some typical and important
properties of the ANR spaces :

(i) If X is /-dominated by Y, then Ye ANR implies XeANR;
(ii) If U is open in X, and XeANR, then L^eANR;

(iii) If X is convex subset of a normed (or locally convex metrizable)
linear space, then XeAR (J. DUGUNDJI [9]).

(iv) A metrizable space which is locally ANR is an ANR; in particular
manifolds, Banach manifolds are ANR-s.

In what follows, we shall use essentially the following fact from general
topology :

(9.2) (ARENS-EELLS [1]) : Every metrizable space can be embedded
as a closed subset of a linear normed space.

The above Arens-Eells embedding theorem permits to give the following
simple characterization of the ANR-s :

(9.3) In order that Ye ANR (resp, YeAR, it is necessary and suffi-
cient that Y be r-dominated by an open set of a normed space (resp. by
a normed space).

Proof. — Let Ye ANR. By theorem (9.2), there exists an embedding
Sr : Y -> E of Y into a normed space E such that Sr (Y) is closed in E.
Take a retraction r : U-^^(Y) of an open set £/3^(Y). Then
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2r-1 r : U -> Y is clearly an r-map. The converse follows from the general
properties of the ANR-s [cf. Example (9.1)]. The proof of the second
part is similar.

(9.4) THEOREM (cf. [12]). — Let X be an ANR and f : X-.X be a
compact map. Assume further that U is open in a normed space E and
s : X-> U, r : U ->X be an arbitrary pair of maps with rs == Ijc. Then
f is a Lefschetz map and the Lefschetz number of f is equal to the Leray-
Schauder index of the map sfr, A (f) = Ind (sfr) == A (sfr).

Proof. — Theorem (9.4) clearly follows from theorem (7.1) and
lemma (3.1) [Example (3.3)].

As a consequence of theorems (9.4), (7.1), we get the following gene-
ralization of the Lefschetz fixed point theorem, established by the
author in [11].

(9.5) THEOREM. — Let X be an ANR and f : X-> X be a compact
map. Then :

(i) f is a Lefschetz map;
(ii) A (f) 7^ 0 implies that f has a fixed point.

As an illustration, we list a number of well-known consequences of
theorem (9.5) :

COROLLARY 1 (Lefschetz fixed point theorem for compact ANR-s). — Let
X be a compact ANR and f : X—^X be continuous. Then ^ (f) -^ 0
implies that f has a fixed point.

COROLLARY 2. — Let X be an acyclic ANR or, in particular, an AR.
Then any compact map f : X -> X has a fixed point.

COROLLARY 3 (Schauder fixed point theorem [20]). — Let X be a convex
(not necessarily closed) subset of a normed (or locally convex metrizable)
linear space. Then any compact f: X-> X has a fixed point.

Proof. — X is an AR [cf. Example (9.1)] and hence the assertion
follows from corollary 3.

COROLLARY 4 (Birkhoff-Kellog theorem [2]). — Let S = { x^E; [| x \\ = 1}
be the unit sphere in an infinite dimensional normed space E and f: S-^E
be a compact map satisfying

(9.5.1) \\f(x)\\^o^>0 forallxeS.

Then there exists an invariant direction for f, i. e., for some Xo^S and
fJi > 0, we have f(xo) = ^ Xo.
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Proof. — Let us put for each x e S,

^(x)=f(x)l\\f(x)\\.

Then (9.5.1) implies that the map q? : S->S is compact. Since S is
clearly an acyclic ANR (and even an AR, cf. [9]), cp has a fixed point, i. e.,

<?(Xo)=f(x,)l\\f(x,)\\==X,.

for some rKo and the proof of our assertion is competed.

COROLLARY 5 (BROWDER-EELLS [6]). — Let X be a Banach (or more
generally a Frechet) manifold and f : X-> X a compact map. Then A (f)
is defined, and A (f) -^ 0 implies that f has a fixed point.

10. Fixed point index theory for arbitrary ANR-s

Now we turn to the main application of the Leray-Schauder index
by establishing the existence of the fixed point index theory for compact
maps of arbitrary ANR-s.

DEFINITION (cf. [7] and [8]). — Let X be an ANR, and f : U -> X
an admissible compact map. To define Ind (f), take an open set V
in a normed space E which r-dominates X. Let s : X —>- V, r : V -> X
be a pair of maps with rs == 1. Since the composite map

r-^U)^ Ut-^X^V

is compact and admissible [because x (f) = x (sfr)] its Leray-Schauder
index is defined by theorem (7.1), and we define

(10.1.1) Ind (f) =df Ind (sfr).

Let Vr c Er be another open set in a normed space E ' , which r-dominates
X, with s ' : X-> V, r' : V ->X, r^ == 1. Then, since the second of
the maps sr' : V -> V, s ' fr : r-1 (U) — V is compact we may apply
the commutativity property for the Leray-Schauder index and hence

Ind ((s' fr) o (sr') [ (sr')-1 (r-1 (U)) = Ind ((sr') o (s7 fr) \ r-1 (£/)).

Since (s'fr) o (sr') = s ' fr', (sr') o (s' fr) = sfr and because

(sr')-1 (r-1 (U)) = r'-1 (U),
we get

Ind (s' fr' | r'-1 (U)) == Ind (s/r | r-1 ([/)),

which proves that our definition is independent of the choices involved.
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Now we may state our second main result :

(10.1) THEOREM. — Let £ be a category of metric ANR-s and 91 be
a class of all admissible compact maps in (£. Assume further that all
admissible homotopies are compact. Then the fixed point index function
f-> Ind (f) defined by formula (10.1.1) satisfies all the properties (I)-(VII).
In (VI), it is assumed that one of the maps for g is compact, which implies
that the fixed point index is a topological invariant.

Proof. — The normalization property was already established in the
previous section. All the remaining properties follow easily from the
corresponding properties of the Leray-Schauder index. Let us prove for
instance property (VI). The proofs of other properties, being similar,
are omitted.

Proof of property (VI). — Let X, X' e ANR, f: J J 1 -> X, g : U -^ X' be
admissible maps and assume that f is compact. Let V (resp. V) be
an open set in a normed space E (resp. E ' ) which r-dominates X (resp. X');
denote by X s-^ V r-^ X, X' ^-> V r'-. X' two pairs of maps satisfying
TS = IA, r ' s ' = l;r.

Consider the following maps :

sfr' : r'-^U')-^ V,
s' gr : r-1 (U) -> V\

and note that the first of them is compact. It follows by commutativity
of the Leray-Schauder index (applied to the above maps) that

Ind ((5/r') (s' gr) \ (s' gr)-1 r'-1 (U7)) = Ind ((s' gr) (sfr') \ (sfr')-1 r-1 (£/))

and hence, in view of

(5' gr)-1 r'-1 (U') = r-1 g-1 (E77),
(5/r')-1 r-1 (U) = r'-i f-1 (U);

we get
Ind (sfgr \ r-1 g-1 ([/')) = Ind (s' gfr' \ r'-1 f-1 (U)).

From this (in view of the definition of the fixed point index), we get

Ind (fg | g-1 (U')) = Ind (gf\ f-1 (U)),

and the proof is completed.
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11. Remarks on the non-metrizable case

First, we note that the approximation theorem (4.1) extends (with
appropriate modifications) to the case when U is open in locally convex
topological space E.

This fact permits to extend the Leray-Schauder index to the case of
locally convex spaces and to state theorem (7.1) in the following more
general form :

(11.1) THEOREM. — Let £ be the category of open subsets of locally
convex topological spaces. Let 91 === 91 ((£) be the class of all admissible
compact maps and assume that all admissible homotopies are compact.
Then, there exists a functions Ind : 91->Z (the Leray'Schauder index)
which satisfies the properties (I)-(VII). In (VI), it is assumed that one
of the maps f or g is compact.

Now, by proceeding as in the metrizable case, one gets from
theorem (11.1) the following generalization of theorem (10.1) :

(11.2) THEOREM. — Let £ be the category of spaces which are r-domi-
nated by open sets in linear locally convex topological spaces. Let 91 = 91 (®)
be the class of all admissible compact maps and assume that all admissible
homotopies are compact. Then, there is on 91 an integer valued function
f-> Ind (/*), which satisfies all the properties (I)-(VII). In (VI), it is
assumed that one of the maps f or g is compact; in particular, Ind (f) is
topologically invariant.

Let X be a compact ANR for normal spaces and h : X -> E' be an
embedding of X into a locally convex space £". It can be shown that
the linear span E of the compact set h (X) in E' is normal. It follows
that X is r-dominated by a set open in a locally convex space. We obtain,
therefore, as a special case of theorem (11.2) the following :

COROLLARY (Fixed point index for compact non-metrizable ANR-s). —
Let £ be the category of compact ANR-s for normal spaces and 91 be the
class of all continuous admissible maps in £. Then there is on 91 the fixed
point index which satisfies all the properties (I)-(VII).

We remark that the fixed point index for compact (non metrizable)
ANR-s was established previously by combinatorial means (and in a
different form) by several authors (cf. J. LERAY [15], A. DELEANU [7],
D. BOURGIN [4], F. BROWDER [5]).
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12. Other generalizations

In the definition of the fixed point index of f, only of importance is
the behaviour of f in the neighbourhood of the fixed point set xy. This
general remark indicates how to enlarge the class of maps for which
the fixed point index is defined.

DEFINITION. — Let X be an ANR and f : U->X an admissible map
satisfying the following condition :

(12.1.1) for some neighbourhood V of the fixed point set x/-, the
restriction f | V i s compact.

For such fwe define the fixed point index of fby putting

(12.1.2) Ind(/-)= Ind(/* V).

[Example : every admissible map which is locally compact satisfies
condition (12.1.1).]

With the above definition, we have the following generalization of
theorem (10.1):

(12.1) THEOREM. — Let £ be the category of metric ANR-s and 91
a class of all admissible maps satisfying condition (12.1.1). Assume
further that, given an admissible homotopy ht there is a neighbourhood
W of x (•} ht j) such that ht is compact on W. Then the function f-> Ind (/)
defined by (12.1.2) satisfies properties (I)-(VII). In (VI), it is assumed
that f is compact in some neighbourhood of^ (gf) and in (VII) it is assumed
that f is compact.

13. The uniqueness of the fixed point index

Let (£o be the category of open sets in finite dimensional normed space
and 9Io the class of admissible maps. It can be proved that the Dold
index Ind : 9Io -> Z, defined in section 6, is determined uniquely by
properties (I)-(VII). We indicate now how the uniqueness of DokTs
index implies that of the other fixed point indices discussed in this
paper.

Let (£1 (resp. 6:2) be the category of open subsets of normed (resp. ANR)
spaces, 9Ii (resp. Sla) the class of admissible compact maps and assume
that all admissible homotopies are compact. Let ind : 9ti-^Z be an
integer valued function satisfying properties (I)-(VII). The excision and
commutativity imply that ind satisfies also the contraction property
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(similar to that in section 6). Since every compact map is compactly
homotopic to a finite dimensional map, it follows by homotopy, excision
and contraction, that the function ind is completely determined by its
values on maps in 9Io. Consequently, in view of the uniqueness of
DokTs index on 3lo, ind must coincide with the Leray-Schauder index Ind.

Next, let ind : % -> Z be defined on SIa and assume that it satisfies
properties (I)-(VII). Let f : U -> X be a map in SIa, V be an open set
in as normed space which r-dominates X with s : X —^ V, r : V -> X,
rs = 1. By commutativity applied to maps

s : X—V., fr : r-^^-^X
we get

ind (frs \ s-1 r-1 (U)) = ind (f) = ind (sfr \ r-1 (I/)).

Thus if the function ind satisfies commutativity, then it is completely
determined by its values on maps in 9Ii. Consequently, if it satisfies
also properties (I)-(VI), it must necessarily be the unique extension
of the Leray Schauder index from 9Ii over ^la. Thus we get the unique-
ness of the index constructed in section 7.
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