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DEMUSKIN GROUPS OF RANK .So

JOHN P. LABUTE (*)

In this paper, we extend the notion of a Demuskin group to pro-
p-groups of denumerable rank, cf. Definition 1. The classification
of Demuskin groups of finite rank is complete (cf. [I], [2], [3], [7], [8], [11]),
and the purpose of this paper is to extend this classification to Demuskin
groups of rank ^o (cf. [9]). This is accomplished in Theorems 3 and 4,
leaving aside an exceptional case when p = 2. We then apply our
results (c/1. Theorem 5) and determine for all p, the structure of the
p-Sylow subgroup of the Galois group of the extension K / K , where K
is a finite extension of the field Q/, of p-adic rationals and K is its alge-
braic closure. This answers a question posed to the author by
J.-P. SERRE.

1. Definitions and Results.

1.1. Demuskin Groups. — Let p be a prime number, and let G be
a pro-p-group (i. e., a projective limit of finite p-groups, cf. [4], [12]).
Throughout this paper H ' i ( G ) will denote the cohomology group
H ' { G , Z/pZ), the action of G on the discrete group Z/pZ being the
trivial one. (Z is the ring of rational integers.) The dimension
of H ' ( G ) over the field Z/pZ is called the rank of G and is denoted
by n(G).

(*) The author is the recipient of a post-doctorate overseas fellowship given by
the National Research Council of Canada.
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DEFINITION 1. —A pro-p-group G of rank ̂  ̂  is said to be a Demuskin
group if the following two conditions are satisfied :

(i) H'-(G) is one-dimensional over the field Z/pZ;
(ii) The cup product : H^G^xH^G) ^H^G) is a non-degenerate

bilinear form, i. e., au b = o for all b in H ' ( G ) implies a == o.

Remark. — The definition of non-degeneracy given above is equi-
valent to the one we gave in [9], thanks to results obtained by
KAPLANSKY in [6], cf» §2.4.

Our first result relates Demuskin groups of rank ^o to Demuskin
groups of finite rank.

THEOREM 1. — If G is a Demuskin group of rank ^o, there is a decreasing

sequence (Hi) of closed normal subgroups of G with F^ Hi==i and with
i

each quotient G/7^ a Demuskin group of finite rank.

Conversely, if G is a pro-p-group of rank ^o having such a family of
closed normal subgroups, then G is either a free pro-p-group or a Demuskin
group.

If G is a pro-p-group, we let cd(G) denote the cohomological dimension
of G in the sense of TATE; recall (cf. [4], p. 189-207, or [12], p. 1-17)
that cd(G) is the supremum, finite or infinite, of the integers n such
that there exists a discrete torsion G-module A with JP(G,A)^o.
Since G is a pro-p-group, cd(G) is also equal to the supremum of the
integers n with H'^G) ̂  o (cf. [12], p. 1-32). We then have the following
result :

COROLLARY. — If G is a Demuskin group of rank ^u, then cd(G) = 2.
Indeed, by Theorem 1, G is the project! ve limit of Demuskin groups G/

of finite rank. Moreover, since G is of rank ^o, we may assume that
n(Gi)^i for all i, and hence that cd(Gi) = 2 for all i (cf. [II],
p. 252-609). Since JT/(G) =lim^/(GO (cf. [12], p. 1-9), it follows
that cd(G)^2. But H^G^^o by the definition of a Demuskin
group. Hence cd(G) == 2.

Our next result gives the structure of the closed subgroups of a
Demuskin group.

THEOREM 2. — If G is a Demuskin group of rank 7^1, then
(i) every open subgroup is a Demuskin group',
(ii) every closed subgroup of infinite index is a free pro-p-group.

The proof of these two theorems can be found in paragraph 3.
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1.2. Demuskin Relations. — As in the case of Demuskin groups
of finite rank, we work with relations. Let G be a Demuskin group,
and let F be a free pro-p-group of rank n(G). Then there is a continuous
homomorphism f of F onto G such that the homomorphism H^(f) :
H^G) ^H^F) is an isomorphism (cf. [12], p. 1-36). If R = Ker (/•),
we identify G with F/J? by means of f. Making use of the exact sequence

o->H^G) ^->H^ (F) -Re^ (R)0 -^ ( G) ̂ H1 (F)

(c/*. [12], p. I-i5), we see that the transgression homomorphism tg is
injective since the first inflation homomorphism is bijective. Since
^(F^o (cf. [12], p. 1-25) it follows that H^Ry'^ H^G) ̂  Z/pZ.
Hence R is the closed normal subgroup of F generated by a single element
r(cf. [12], p. I-4o). Moreover, since ^ ( r )=o for every %e^'(F),
we have r e FP (F, F). [ If H, K are closed subgroups of a pro-p-group F,
we let (H, K) denote the closed subgroup of F generated by the commu-
tators (h, k) =h-lk-ihk with h^.H, A-eK.] The purpose of this paper
is to find a canonical form for the Demuskin relation r.

1.3. The invariants. — In order to state our classification theorem
we have to define certain invariants of a Demuskin group.

1.3.i. The invariants s(G), Im(/). — Let G be a Demuskin group
of rank 7^1. Since H'-(G, Z/pZ) is finite, it follows, by « devissage »,
that H^G, M) is finite for any finite p-primary G-module M (cf. [12],
p. 1-32). Since cd(G) = 2, it follows that G has a dualizing module I ,
that is, the functor T(M) = Horn (JP(G, M), Q/Z), defined on the
category of p-primary G-modules M, is representable (c/*. [12], p. 1-27).
If n (G)<^o, then I is isomorphic, as an abelian group, to Q/,/Z/,
(cf. [12], p. 1-48). If n(G) ==^o, then I is isomorphic, as an abelian
group, to either Q/,/Z/, or Z/p^Z. Indeed, it suffices to show that the
group I p = Hom(Z/pZ, I ) is cyclic of order p. But I p is the inductive
limit of the groups Horn (H1 (U), Q/Z), where U runs over the open
subgroups of G, the maps being induced by the corestriction homo-
morphisms (c/1. [12], p. I-3o). Moreover, if U is an open subgroup of G,
we have H'-{U) ̂  Z/pZ by Theorem 2. Hence I p is cyclic of order ̂  p.
Since I p ^ o , the result follows. The s-inuariant of G is defined by
setting s(G) =o if I is infinite, and letting s(G) be the order of I if I is
a finite group.

The ring E of endomorphisms of I is canonically isomorphic to Z^
if s(G) ==o, and to Z/p^Z if s(G) ^p^. Hence, if U is the compact
group of units of E, we have a canonical homomorphism % : G->U.
Since % is continuous, it follows that the invariant Im(/) is a closed
subgroup of the pro-p-group U ( ' ) = = i + p E .

BULL. SOC. MATH. — T. 94, PASC. 3. 14
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We shall need a list of the closed subgroups of U ' . Consider first
the case where s(G) = o. Then we have

U^)=U^=i+pZ,. .

If p ̂  2, then U^ is a free pro-p-group of rank i generated by any
element u with Vp(u—i) ==i , and the closed subgroups of U,^ are the
subgroups

Uy = i + p/Z/, with /•€ N = N u ; oc ;.

(We let N denote the set of integers ^i; by convention x ^q
for any Q € N and a^ = o for any aeN.) If p = 2, we have
U . J ' = ; ± i ;xU^, and U^ is a free 2-group of rank i generated by
any element u with Ui(u—i) =2. The closed subgroups of U'r are
therefore of three distinct types :

(i) the groups U^ with /*eN, f^2;
(ii) the groups { ± i .'xU^ with /"eN, /^2;
(iii) the groups U/, where for /*€ N, /^ 2, UV is the closed subgroup

of UJ ' generated by —u, where u is a generator of U1/1.
If s(G)==p^o, then U ' ' = U^/U^, and the closed subgroups

of U^ are in one-to-one correspondence with the closed subgroups of U/^
which contain U^.

1.3.2. The invariant t(G). — Suppose that the Demuskin group G
is of rank ^o, and let 9 : H ' (G) x H 1 (G) —^H^G) be the cup product.
Then 9 is a non-degenerate skew-symmetric bilinear form on the vector
space V == H^ (G). Let |3 be the linear form on V defined by 3(y) === uuu,
and let A == Ker (,3). If A == V, i. e., if 9 is alternate, we set t{G) = i.
If A ^z± V, which can happen only if p == 2, the vector space Y/A is
one-dimensional, and hence A ' ' , the orthogonal complement of A in Y,
is at most one-dimensional. In this case, we define t(G) as follows :
set t(G) =i if dim(A') == i and A^cA; set t(G) ==—i if dim (A') =i
and A'(fA\ set t{G)=o if A' = o.

Remark. — We shall see (cf. § 2.4) that the definition of t(G) given
above is equivalent to the one we gave in [9].

1.3.3. The invariants h(G), q(G). — Let G be a Demuskin group
and let G,, = GI(G, G). Representing G as a quotient Fl(r), where F
is a free pro-p-group and r ^ F / ( F , F), we see that either I G,/ is torsion-
free or the torsion subgroup of Gu is cyclic of order p7'. The h-inuariant
of G is defined by setting h(G) •==- ̂  in the first case and h (G) == h in
the second. The q-inuariant is defined by setting q(G) =ph^}. If r is
the above relation, then q ==q(G) is the highest power of p such that
r e F ^ F ^ F ) .
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1.4. The Classification Theorem. — Recall (cf. [12], p. 1-5) that
if F is the free pro-p-group generated by the elements x,; feJ ,
then x, -> i in the sense of the filter formed by the complements of the
finite subsets of J. If (^)/e/ is a family of elements in a pro-p-group G
with gi->i, we call (gi) a generating system of G if the continuous homo-
morphism f : F-> G sending x, into g , is surjective. The homo-
morphism fis surjective if and only if Tit' (/) : TiZ' (G) -^7iZ1 (F) is injective
(cf. [12], p. 1-35). Hence (g,) is a minimal generating system if and
only if H ' (f) is bijective. If G is a free pro-p-group and (g^) is a minimal
generating system of G, then fis bijective, i. e. (g,) is a basis of G (e/'. [12],
p. 1-36).

The main results of this paper are contained in the following two
theorems :

THEOREM 3. — Let r ^ F ^ ( F , F), where F is a free pro-p-group of
rank ^o. Suppose that G = F/(r) 15 a Demuskin group, and let q = q(G\
h=h(G), t=t(G). Then :

(i) If q -^ 2, there is a basis (^)<€N of F such that r is equal to

(1) î, ̂ j'J^L-i (̂ -i, x,,),

with s = p^, e € N, e ̂  h.
(ii) J/' q = 2, / == i, ^ere is a ^asfs (rc/)<eN o/* F such that, either r is

equal to

(2) x\^ (x,, x.,) (x,, x,) \\xii_, (^•-1, x,,),

with s = 2^, ee N, /'€ N, e > /^ 2, or r is ^uaZ to

(3) .rf (;T|, .z;,) x^\x^ x^^^x^ , (x.u-\, x,i),
i ̂  :i

with s = 2^, e, f € N, e ̂  /*^ 2.
(iii) Ifq='2, t =—i, /Tien? is a 6asis (^)^N 0/' 77 size/? that r is

equal to

(4) x]xV\x,, x^Y^x^(x^, x.^),

with 5=2', e,/'eN, e^/*^2.
(iv) J/* q == 2, t = o, there is a basis (x^^s of F such that r is equa

to

(5) ĵ J ;r:7,_, (^_,, ̂ /) ]" [ (x,, x^j,
^l <<7
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with ^ye2Z2. ^The product TT is taken with respect to an arbitrarily

\ i<]
given linear order of N x N. ^

THEOREM 4. — Lef F be a free pro-p-group with basis (^)/eN, and let
G = F/(r). Then :

(i) If r is a relation of the form (i) with q =p / l , s =p , e, AeN,
e=,h, then G is a Demuskin group with q(G)=q, s(G)==s,
y(x.i)=(i—q)-\ y(xj)=i for 1^-2. (% is the character associated
to the dualizing module of G.)

(ii) If p == 2 and r is a relation of the form

(6) ^(x,, x,) xf(x^ x,) [J x^_, (x,,-^ x,^

with s=<2e, e , / , ^eN, e^/'^2, e^^^2, then G is a Demuskin
group with q(G) --= 2, t(G) = i, s(G) = s, %(^) -—(i + 2<)-',
'/^x,) = ( i— 2^-', y^Xj) = i for i -^ 2, 4.

(iii) If p = 2 and r is a relation of the form (4) with s = 2'', e, fe. N,
e^/*^2, then G is a Demuskin group with q(G) = 2, t(G) =—i,
s(G)==s, ^(x,)=—i, ^(x.,)= (1—2.0-', ^/)=i /br i ^ i , 3 .

(iv) If p = 2 anrf r is a relation of the form (5) i^i77i hi, e 2Z.^, ^en G
is a Demuskin group with q(G) = 2, t(G) = o, s(G) = 2.

COROLLARY 1. — Let G, G' be Demuskin groups of rank ^o with q(G) 7^ 2.
Then G^ G' if and only if q(G) =q{G'\ s(G) =s(G^

COROLLARY 2. — Let G, Gr be Demuskin groups of rank ^o with t(G) ̂  o.
Then G ^ G ' if and only if t(G) = t(G'), s(G) = s(G'), Im (%) = Im(y/).

COROLLARY 3. — Let r, r ' ^ . F / ' ^ F , F), where F is a free pro-p-group
of rank ^o. Suppose that G = F/(r), G' = F l ( r ' ) are Demuskin groups
with /((7)7^0. Then G ̂  G' if and only if there is an automorphism a-
of F with cr(r) = r ' .

COROLLARY 4. — For each eeN there is a Demuskin group G with
s(G) =pe. If G is such a group and M is a torsion G-module, then
p^a == o for any ^^J-P-^G, M).

Remark. — The invariant q(G) can be determined from the invariants
s(G), Im(%). In_fact, if s ( G ) = p ' and E =Z/,/p-Z/,, then h(G)
is the largest heN with h^e and Im(%)c i +p/'£'.

1.5 . Application to Galois Theory. — If F is a profinite group,
i. e. a projective limit of finite groups, then a Sylow p-subgroup of r
is a closed subgroup G which is a pro-p-group with (r : U) prime to p



DEMUSKIN GROUPS OF RANK ^o. 217

for any open sub-group U containing G. Every profinite group has
Sylow p-subgroups and any two are conjugate (cf. [12], p. 1-4).

Now let K be a finite extension of Q/, and let r be the Galois group
of the extension K / K , where K is an algebraic closure of K. Given
the Krull topology, the group F is a profinite group. If G is a Sylow
p-sub-group of r, we have the following result :

THEOREM 5. — The group G is a Demuskin group of rank ^o and its
dualizing module is p.p-^ = \ ] ̂ , where y.pn is the group of p^-th roots

a ̂  i
of unity. If ^ is a primitive p-th root of unity and K' =X(^), then
t{G) =(—1)", where a=[Kf : Q/J.

COROLLARY 1. — If K'=K(^p), then q=q(G) is the highest power
of p such that K ' contains a primitive q-th root of unity.

Indeed, if o-e G, then %(o-) is the unique p-adic unit such that
o"(0 =^^ for any £€^oo. If Sy is a primitive q-th root of unity,
it follows that ^ is left fixed by o- if and only if % (o-) € i + gZ/,. If L
is the fixed field of G, it follows that ̂  e L if and only if Im (-/) c i + qZ^.
But S./eL if and only if t,,^K1 since L and K''(^) are linearly disjoint
over K ' .

COROLLARY 2. — If K == Qp with p 7^ 2, there exists a generating
system (o-^eN of G having the single relation

0-?(0-1, 0-2) [̂ | (0-2Z-1, 0^) = I.

i'^2

In fact, q{G) = p ^ 2 (cf. [10], p. 85).
COROLLARY 3. — If K = Q.2, there exists a generating system (o-/);eN

of G having the single relation

(7'i (71, (0-2, 0-3)j_~)' (<7.2/, O-^+i) == I.

z^2

Indeed, t(G) =—i and lm('/) =IL.

2. Preliminaries.

2.1. The Descending Central Series. — The descending central
series of a pro-p-group J7 is defined inductively as follows : Fi = F,
Fn+i = (Fn, F). The sequence of closed subgroups F/, of F have the
following properties :

(i) F,=F;
(ii) F^cF^,
(iii) (F,,F/,)cF/^//,
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The first two properties are obvious, and the third is proved by induc-
tion. Such a sequence of subgroups is called a filtration of F. Let gr(F)
be the direct sum of the ^.-modules gr,(F) = F,/F/^. Then gr(F) is,
in a natural way, a Lie algebra over Z/, (cf. [13], page LA 2.3) the bracket
operation for homogeneous elements being defined as follows :
If i,/ : F/^gr/,(F) is the canonical homomorphism and u<^F^ ueF^,
then

[^("), im(u)] = in^n((U, V)).

Suppose now that F is the free pro-p-group of rank n generated by
the elements a;,, . ... x,. If ^ is the image of x, in gr, (F), we have the
following proposition :

PROPOSITION 1. — The Lie algebra gr(F) is a free Lie algebra (over Z/,)
with basis E i , . . . , £«.

Proof. — Let L be the free Lie algebra (over Z^) on the letters ^,, . . . , ̂ ,
and let cp : L-^gr(F) be the Lie algebra homomorphism sending £/
into \,. Using the fact that the x, form a generating system of F, one
shows by induction that the elements ^egri(F) generate the Lie
algebra gr(F). Hence cp is surjective.

To show that cp is injective, let A be the ring of associative but non-
commutative formal power series on the letters /,, .... ^, with coeffi-
cients in Z/,. Let m' be the ideal of A consisting of those formal power
series whose homogeneous components are of degree ̂  i. The ring A/nr
is a compact topologlcal ring if we give it the p-adic topology, and,
as a ring, A is the projective limit of the rings A/rrr. We give A the
unique topology which makes it the projective limit of the compact
topological rings Aim'. Let C/' be the multiplicative group of formal
power series with constant term equal to i. Then, with the induced
topology, U1 is a pro-p-group containing the elements i + //. Since (x,)
is a basis of the free pro-p-group F, there is a continuous homo-
morphism s of F into [/' sending x, into i + t,. If

z(x)=i+u, £ ( y ) = = i + y , with uerrr, uew,

then using the fact that z(xy) = z(yx) z ((x, y)), an easy calculation with
formal power series shows that

(?) ^ ((^, y ) ) =i + (uv — vu) + higher terms.

If Oo : F-^m1 is defined by Oo(.r) ==z(x)—i, then, applying (7) induc-
tively, we see that e^cnr. If x^F., z/€F^,, then Q,(xy) =. Oo(^)
(modm^'), and if x, yeF/, we have

Oo(^) ̂  9o(^) + OoO/) (modm—).
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Hence 0,. induces an additive homomorphism 0 of gr(F) into gr(A),
where gr(A) is the graded algebra defined by the m-adic filtration
of A. Moreover, (7) shows that 0 is a Lie algebra homomorphism.
If T, is the image of // in gr,(A), then gr(A) is a free associative algebra
with basis (r/). By the theorem of BirkhofT-Witt (cf. [13], page LA 4.4)
the Lie algebra homomorphism ' L : L —^ gr (A) sending ^/ into T/ is injec-
tive. Since r^ = 0 o 9, we see that 9 is injective, and hence bijective,

Q. E. D.

If F is a free pro-p-group of infinite rank, then F is the projective
limit of free pro-p-groups F (i) of finite rank, and gr,/(F) is the projective
limit of the gronps gr,/(F(i)). In particular, this gives the following
resnit :

PROPOSITION 2. — If (F//) is the descending central series of a free pro-
p-group F, then gr//(F) == F///F/,,^i is a torsion-free Z/ -module,

We shall need the following result on free Lie algebras, the proof of
which was communicated to me by J.-P. SERRE :

PROPOSITION 3. — Let L be the free Lie algebra (over k) on the tetters
o, . . . , ; : / / . Then [L, L] is generated, as a k-module, by the elements
ad (^,).. .ad(;i^)^ with i/,+,^i,, . . . , i / , .

Proof. — For i ̂  m ̂  n, let L/// be the subalgebra generated by
lii , . . ., i,a, and let A/// be the ideal of L,,, generated by \,n. Then, as
a A-module, A// / is generated by 'in, and the elements ad(i/ ,) . . .ad(^,) \,n
with 11, . . . , i/^m. Indeed, the ideal A,n contains these elements,
and the submodule they generate is invariant under the ad(i/)
for i ^_ m. We now show that L is the direct sum of the submodules A,//,
from which the proposition immediately follows. It suffices to show
that L///= L^_i Q) Am for 2^m^n. To do this let ^,n : L/^—^L/«_i
be the Lie algebra homomorphism such that ^m(ijii) == o, 9^(1,) = \,
if i < m. Since L^/A/» is the free Lie algebra generated by the images
of ^ i , . . . , \,n-\ and Ker (9/«)3A///, it follows that o,n induces an isomor-
phism of L////A//, onto L/«-i. Hence Ker(9///) = A/«. Since o//, is the
identity on L/^_i, the result follows.

Now let F be a free pro-p-group of rank ^o with basis (rc/)/<=N. Let (F//)
be the descending central series of F, and let \i be the image of x,
in gr, (F). If N , is the closed normal subgroup of F generated by the x ,
with j^, i, let Fm=Fn^Ni, and let B,,i be the image of F//, in gr/,(F).
We then have the following result :

PROPOSITION 4. — If Tn is the closed subgroup of gr//^,(F) generated
by the subgroups ad (^) B,,i, then T,, ==gr/<_i(F) for n^i.
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Proof, — The pro-p-group gr/z+i(F) is generated by the elements of
the form ad (^).. .ad(^J ̂ ^. However, by Proposition 3, each
such element is a linear combination of elements of the same form but
with i/^i^ii. Since each of these latter elements belongs to Tn, it
follows that Tn contains a generating system of gr/,+i(F). Since Tn
is closed, the result follows.

COROLLARY. — Every element of gr/,+j (F) can be written in the form
[£„ T,] with T,egr/,(F), T,—O.2

2.2. The Descending g-Central Series. — We shall need the
following group-theoretical result :

PROPOSITION 5. — Let (Fn) be a filtration of a group F. If x^Fi,

y € Fy, a e N, b == ( L ^en :

(i) (^ ^x-ydj.xY (modF^O;
(ii) (rr, y) =E (x, yY^x, y), x^ (mod F^,);
(iii) (^ ?/") ̂  (x, yY({x, y), y^ (mod F^^Q.

Proof. — Assertion (iii) follows easily form (ii). We now prove (i)
and (ii) by induction on a using the following formulae (c/*. [13],
page LA 2.1) :
^ ( ( /̂, -0 == (̂  )̂ ((̂  ̂  ?/) (!/» ^)»

( (x, yz) == (x, z) (x, y) ((x, y), z).

For a =i, the proposition is obvious.
(i) Working modulo F/^y+i, we have

(xy)a+l=xy(xy)a^=xyxaytl(y, x)b==xa^y(y, x^y^y, x)'\

which in turn is congruent to x^'y^^y, x^^, and a + b = ( ) •

(ii) Modulo F(+y+2, we have

(r^', y) = (xx\ y) = (x, y) ((x, y), x'1) (x\ y)
== (x, y) ((:r, y), x)a(x, y)^, y), x)^ (x, y)^ ((x, y), x)^.

Now let F be a pro-p-group, and let q = p ' 1 with h e N. The descending
q-central series of F is defined inductively by F, = F, F/^i=F^(F, F,<,).
The groups Fn define a filtration of F. If gr(F) is the associated Lie
algebra, then gr(F) is a Lie algebra over Z/^Z. If P : F -> F is the
mapping x h> x^, we have P(F,,)cF/,4.i for n ̂ i. Using Proposition 5,
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we see that P induces a map TT : gr/,(F) ->gr,,+i(F) for n^i . The
following result is an immediate consequence of Proposition 5 :

PROPOSITION 6. — Let(F,i) be the descending q-central series of a pro-
p-group F. If ^egr,(F), Yiegry(F), then :

(1) 7T(^ + Y}) == ̂  + TTYi I/' I =J ̂  I ;

(ii) 7 r ( ^ + y , ) = 7 r ; + ^ + (q\[^ ri\ if i=j =i ;
\ ^./

(iii) [7: ,̂ Y}] = TT^, ^] i/" i ̂  i;

(iv) [TT,, ^ = 7r[,, ^] + ̂ [[E, ^, ^ 17 i = i.

Remarks. — Using the fact that ( ^ ) ̂  o (mod^) if p ̂  2, we see

that gr(F) is a Lie algebra over Z/^Z [7;] for p -^ 2. If g == 27', then

(^=2 A - 1 (mod ^). Hence in this case gr(F) is not a Lie algebra

over Z/^Z[TT]. However, if gr'(F) ==^gr/,(F), then gr'(F) is a Lie
/; ̂  -2

algebra over Z/^Z [71]. Also, gr(F) (g) Z/pZ is a Lie algebra over
ZlqZ [n] 0 Z/pZ if q -/- 2.

Now let F be a free pro-p-group of rank ^o with basis (x^^y, and
let (F//) be the descending ^-central series of F. Let ^ be the image
of Xi in gr,(F). Let N, be the closed normal subgroup of F generated
by the x/ with j ̂  i, let Fm = F,,nN;, and let Bni be the image of F/«
in gr/,(F). We then have the following result :

PROPOSITION 7. — Let Tn be the dosed subgroup of gr/;+i (F) generated
by the subgroups ad(^)5/«, and let D be the closed subgroup of gr^F)
generated by the elements TT^. Then the group gr/,+,(F) is generated
by Tn and T^-'I).

Proof. — Using Proposition 6, we see that gr/,+,(F) is generated by
elements of the form
(9) ^ ^"'ad (^).. .ad (^) ^4-.-

It follows, by Proposition 3, that gr/,+i(F) is generated by elements
of the form (9) with i/,+i=±ij. Since

7^~%, T]] ==[^, 7^-^] if 7?egr/«(F), with m^2,
and

^-J[^ U - [S. ^-1 ^•] + [£/, (^) ̂ [S. S/] | for n ̂  2,

it follows that each of the elements in (9) is in the closed subgroup
T/,+ Tr^-'A

Q. E. D.
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COROLLARY. — Every element of gr,_,(F) can be written in the form

^•r^+^.T/.],
/^ i / ^ j

where a.eZfqZ, T,egr,,(F), -,-> o.

2.3. Cohomology and Filtrations. — Let F be a free pro-p-group,
and let q = p^ with /I€=N. Let reF/(F, F) with r^ i , and let J? be
the closed normal subgroup of F generated by r. If G = F/J? and
k = Z/^Z, we have the exact sequence

o^H^G, k^J^F.k)1^^, k)^^(G, k) ̂ (F, k).

Since R c F ' / ( F , F), the first inflation homomorphism is bijective, and
we use this homomorphism to identify H ' (G, k) with H ' (F, k). Hence tg
is injective. But tg is also surjective since H^F, k) = o. Now
let geG, cpeJf'(J?, k). If xeR, then (^9)^) = o(g-^xg). Hence
^cp ==cp if and only if cp((rr, ^)) == o for all x^R. Thus o e H ' ( R , ky-
if and only if cp vanishes on ^/(7?, F). We may therefore identify
H ' ( R , k)^ with the dual of the pro-p-group RIR/(R, F). We now show
that RIR^R, F) is cyclic of order q. This follows immediately form
the following lemma :

LEMMA. — The Zp-module N = R/(R, F) is free of rank i.

Proof. — Let (Fn) be the descending central series of F. Since the F,,
intersect in the identity and r ^i, there is an n e N with reF//, r^F//+i.
Hence RcF, and (2?,F)cF/^,. Passing to quotients, we obtain
a homomorphism /" of N into gr//(F) sending the generator o === r(J?, F)
of N into a non-zero element T of gr/,(F). Since gr,/(F) is a torsion-
free Z/.-module (cf. Proposition 2), it follows that f(N) is free of rank i
generated by T, and hence that N is free of rank i generated by p.

Using the above results, we see that the homomorphism
o-.H^G, k)--^k, defined by p(a) =— tg-'(a) (r), is an isomorphism.
Given the relation r, we always use this isomorphism to identify H1 (G, k)
with k.

Now let (F,/) be the descending ^-central series of F. If (x^^ is
a basis of F, then

r ̂ n ̂ al\ \{xi9 x^ l i j (mod F:I)^i ;•</



DEMUSKIN GROUPS OF RANK ^o. 223

with a,, a/ /ek. If (7,) is the basis of H^G, k) defined by y j ( x / ) = ^y,
we have the following proposition :

PROPOSITION 8.

(a) If ^u/./e^G, k) =k is ^ c^p prorfud o/* //, y j , then

7.i ̂  7J = ̂ 7 ^ i < ]. and '/j \j'/, = (q \ a,.
\ 2 /

(b) If ^'.H^G, k)->7^(G, k) =k is the homomorphism defined
by the exact sequence

o -> ZlqZ -> Zfq2 Z -> ZfqZ -> o,

then : (i) ? (%/)= a., and (ii) ^ u ^ = ( q } ^ ( y ) for any ' / e H ^ G , k).
\ 2 /

Proof. — The proof of (a) when F is of finite rank can be found
in [8] (p. 15). The proof given there applies immediately to the case F
is of infinite rank. We now prove (6).

(i) Let % = /^ and let s : Z/qZ -^Z/^Z be defined by

s(n + qZ) = n + q^Z for o ̂ n ̂ q—i.

Let 7; = s o y, and let c ' ( g , h) = •// {g) + //(/?) — //(^) for ^, Tze G.
Then c' (g, h) == qc(g, h) for a unique element c(g, h)eZ/^Z. The
2-cochain c is a cocycle whose cohomology class a is i3(/). Let
9 = tg~' (a). Then by the definition of the transgression, the homo-
morphism o is the restriction of a continuous function f ' . F - ^ Z / q Z
such that (in Z/^Z)

Q(fW + f(y) - f(xy)) = '/:(x) + y; O/) - y:(xy)

for any ^, y € i7. Moreover, after subtracting from /* a suitable homo-
morphism, we can suppose that f(x,) = o for all j. An easy calcu-
lation then shows that f(x'ft =— c^/ and f{(x/,, a;/,)) == o for all h,j, A-e N.
It follows that cp(r) = = — a / , and hence that ,3(//) == a/.

(ii) Using (a) and (i) above, we see that

/^X^f^^/J.\2 /

If y ==^ u///, then

^x^^^Ux^S^f^^X^Su^)?^)^^)?^

since u^ q \ = u,•(. q \ in Z/^Z.

Q. E. D.
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2.4. Bilinear Forms on (Z/^Z)^. — We begin with a proposition
which is due to KAPLANSKY [6].

PROPOSITION 9. — Let V be a vector space of dimension ^o, and let cp
be a non-degenerate alternate bilinear form on V. Then V has a symplectic
basis, i. e. a basis (u^^with ^(v.u-\, u.zi) =— ^(v.^u.u-\) == i for 1^1,
and ^(pi, Uy) == o for all other i, j.

Proof. — Let (^)<eN ^e an arbitrary basis of V, and suppose that
we have already chosen Ui, ..., v.m. If X is the subspace generated
by Ui, . . . , u.in, let u,n be the first of the u.i such that u^X. Since 9
is non-degenerate on X, the space V is the direct sum of X and its ortho-
gonal complement X.'. Let w be the X^component of u^, and choose
weX' with 9(^,2)== i. We may then choose y^+i == w, v,i+-i == z.
Proceeding in this way, we eventually pick up all the u,.

Q. E. D.

The following proposition generalizes a result of KAPLANSKY [6] :

PROPOSITION 10. — Let V be a free ZlqZ-module of rank ^o, where q = p 1 ' ,
with h e N, and let 9 be a skew-symmetric bilinear form on V whose reduc-
tion modulo p is non-degenerate. Let (3 be a linear form on V, and suppose

that either cp is alternate, or q ̂  2 and ^(v, v) == ( ' ) ^(u) for any u^ V.

Then there exist integers c, d with o^c^d^h and a basis (y^eN
of V such that

( a ) ^ ( u , ) = p , P(^)=o, and ;3(^-,) = p ' , ,3(^) = o for 1^2;
(b) cp(^_i, u.n) =i for i^i, and cp(^, Vj) =o for all other u / , Vj

with i <:j.

Proof. — Since the reduction of cp modulo p is non-degenerate and
alternate, there exists by Proposition 9 a symplectic basis (Ui)
of V I p V . If (Vi) is a family of elements of V lifting the v\, then it is easy
to see that the v, form a basis of V. Moreover, suitably choosing the
basis (u'i), we can choose Ui to be a given element u^pV. In particular,
we can choose v\ so that ^(Ui) = p ' , where c is the unique integer with
o^c^h such that p generates Im((3).

Now (b) holds modulo p, and, replacing u.a by ^(v.u-i, v^-^v-n, we
may assume that cp(i^_i, v-n) === i for all i^i. Then, replacing u/ by

vi+ ^j (?(^' ^/-l)y-2/+ ?(y-2/, •̂) ^7-1),

/<^/2

we obtain a basis (^) such that condition (b) is satisfied and such that
^(ui) = p ' . Let d be the smallest integer with c^d^h such that
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there is an infinite subset Sci of N with the property that for i € Sd we
have ^ ( u / ) =pdUi with u^ o (mod p), and let N be the smallest even
integer ^2 such that |3(y;)=Eo (mod p ' 1 ) for all i > N. Then it is
possible to choose a strictly increasing sequence (n<)/eN °f even

integers with n i == N so that, for i ̂  i, we have j e -S^ for at least
one j with n /_i<j^n, . Let Wi be the submodule generated by
yj , . . . , u^, and for i > i let W, be the submodule generated by the vj
with n<_ i< j^n / . The following lemma applied to Wi shows that
we may assume N = 2, and another application to the W; yields the
result.

LEMMA. — Let W be a free ZlqZ-module of rank 2n, n^i, and let 9, ^
be forms on W as in Proposition 10. If Ui, ..., u^n generate Im(j3),
there exists a basis (wi) ofW such that: (a) ^(Wi) = u;; (b) 9(^-1» Wn) == i
for i ̂  i ̂ n, and ^(wi, Wj) =-- o for all other i, j with i <j.

Proof. — We first prove the lemma for the case Ui = u is a generator
of Im({3) and u ;=o otherwise. Let(w,) be a basis of W such that
[3(Wj) = u and (3(w<) == o for i 7^1. Since the reduction of 9 modulo p
is non-degenerate and alternate, there is an 1^2 and a unit t in Z/^Z
such that cp(wj, w<) = /. After a permutation, we may assume that i = 2,
and, after multiplying w^ by /-1, we may even assume that cp(wj, w^) =i.
If Q?(wi, Wi) == 0.1^- o for some i > 2, replace Wi by w;—a;W2. In this
way we may also assume that cp(wi, Wi) = o for i > 2.

If N is the submodule generated by w^ . . ., w.zn, then, on N, the
form cp is alternate and its reduction modulo p is non-degenerate. Hence
we may choose w;;, ..., w-^n^N so that (6) is satisfied for i,j > 2. Condi-
tion (a) still holds, and (6) is true for all i, j except possibly we may
have ^(w.2, wj) 7^ o for some i > 2. If this is so, replace w^ by
w-i + a:}W?, +. . . + CLinW-zn, where a-a == ^(w-z, Wu-\) and a^-i == cp(w2;» ^2).
Then the resulting basis is the one required.

For the general case, let Ui, . .., v-zn be an arbitrary basis of W. Let j3'
be the linear form on W such that ^(ui) = Ui, and let ^ ' be the bilinear
form on W defined by

^(Ui, Vi) = ( q } ^(Pz), ?'(^-i, U2i) ===— ̂ '(V^ U2i-i) = I,
V 2 /

and
^ ' ( p i , vf) == o for all other i,j.

Then the pair (q/, p') satisfies the hypotheses of the lemma, and, by
what we have shown above, there is an automorphism o- of W (as a module)
such that

?(^ y) - ?'(^ ^(y)\ W = p )̂)
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for all x, y^W. If w,•= c -'(^), then(^) is a basis of W, and

9(w/, w,) = c/(/;,, .̂), ^(w,) = ^(y/.).

Hence (w/) is the required basis.
Q. E. D.

Remark. — The integer d in Proposition 10 can be invariantly described
as follows : For o ̂  e ̂  h, let V, = Y/jr V, and let Q,, 5, be the forms
obtained from o, ^ on reducing modulo p'\ Let d^ be the homo-
morphism of Ve into its dual defined by the bilinear form d^,, and
let ^ == ^,,. Then p e Im(^) if and only if d == h. If ,5 ̂  Im(^), then d
is the smallest integer ^o such that i3,/+j^Im(^/+i).

The last proposition of this section, and which again is due to
KAPLANSKY [6], classifies non-alternate symmetric bilinear forms on
vector spaces of dimension ^o over a perfect field k of characteristic 2.
Recently (cf. Notices of the A. M. S., 66 T-4, January 1966), H. GROSS
and R. D. ENGLE have classified such forms replacing the condition
[k : k2] =i by the condition [k : kl]<cc. In this paper, we are interested
in the case k == Z/2Z.

PROPOSITION 11. — Let k be a perfect field of characteristic 2, and let V
be a vector space over k of dimension ^,. If c? is a non-degenerate non-
alternate symmetric bilinear form on V, then precisely one of following
three possibilities holds :

(i) V is the orthogonal direct sum of subspaces W, Z with W one-
dimensional and Q alternate on Z;

(ii) V is the orthogonal direct sum of subspaces W, Z with W two-
dimensional, 9 non-alternate on W, and 9 alternate on Z;

(iii) V has an orthonormal basis.

Proof. — Let A be the subspace formed by the elements u with
cp (y, y) === o. Then VyA is one-dimensional, and A ' , the orthogonal
complement of A, is at most one-dimensional.

Case J. — A' is one-dimensional and is not in A. Then V == A ® A',
and cp is of type (i). Conversely, any form of type (i) falls in this cate-
gory.

Case I I . — A' is one-dimensional an is contained in A. Let z be any
element not in A, and let Z be the subspace of A annihilated by z. Then
dim (A/Z) =i, and A' is not contained in Z. Thus A = Z © A ' , and
V = Z ® W, where W is the subspace spanned by A' and z. Hence 9
is of type (ii). Moreover, any form of type (ii) falls in Case II.

Case I I I . — A = o. In this case, we shall show that V has an ortho-
normal basis (y/)<€N- Let (u/),eN be any basis of V with cp(u, , u,) = i,
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and suppose that y,, . . . , Un have already been chosen. If X is the
subspace they span, let u,n be the first of the Ui with u^X, and let z
be the X'-component of u,n. If o(z, z) == a2 ̂  o, we choose y/,+, = az.
If 9(2, z) == o, find weX' with 9(2, w) =i. If 9(11;, w) = ̂ ^ o,
choose Vn+y = b-' w, Un+.z == bz + ^-1 w. If 9(w, w) = o, choose
y/^, = y + w, Vn.-i == v,, + z + w, and replace y,, by y,,+ 2. Proceeding
in this way, we eventually pick up all the i^. Conversely, it is easy
to see that a form with an orthonormal basis falls under Case III.

COROLLARY. — Let 9 be of type (i) or (ii), and let V be the union of an
increasing family (Y/) of finite-dimensional subspaces on which 9 is non-
degenerate. If 9 is of type (i) [resp. (ii)], then dim (V,) is odd (resp. even)
for i sufficiently targe.

Proof. — If W is the subspace found in the Proposition, then V is
the direct sum of W and its orthogonal complement W, and 9 is alternate
on W. Now let X be a finite-dimensional subspace of V on which 9
is non-degenerate. If WcX, then X is the orthogonal direct sum
of W and another subspace Y c W'. Since 9 is non-degenerate and
alternate on Y, it follows that dim(Y) is even, and hence that dim (X)
has the same parity as dim(W). The corollary now follows from the
fact that W is contained in Vi for i sufficiently large.

3. Proof of Theorems 1 and 2.

3.1. Proof of Theorem 1. — If G is a Demuskin group of rank ^o,
then, by Propositions 9 and 11, the vector space H^G) is the union
of an increasing family (V/) of finite-dimensional non-zero subspaces
such that the cup product

9 : Hi(G)xH^G)->Hl(G)

is non-degenerate on each Vi. Choose a basis (%;) of H ' ( G ) such that
%i , . . . , %/^ is a basis of V/. This choice of basis gives an isomorphism
0 : H{(G)->(Z|pZYVI\ Let F be a free pro-p-group of rank ^o, and
let f be a continuous homomorphism of F onto G such that 0 = H ' (f)
(cf. [12], p. 1-36). If J?=Ker(f), then R == (r) with reF^F, F).
We identify G with F / R by means of f. Using the duality between the
compact group F/F^(F, F) = G/G^(G, G) and the discrete group JT(G),
we obtain a generating system (i/) of F/F^(F, F) such that ^(Sy) = c^/.
Now let o- : F/F/' (F, F) —^ F be a continuous section, sending o into i
(cf. [12], p. 1-2, prop. 1). If x,,•== o-(i/), then (x,) is a basis of F. Now
let f,, : F->F be the continuous homomorphism defined by fn(Xi) ==Xi
if i^i^n, f,,(x,)=i if i>n . If n,=dim(VO, let F, = Im (^),
ri==f,^(r), G,=F//(r;), and let 4^ '- G->Gi be the homomorphism
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induced by /^. We shall show that the closed normal subgroups
Hi=Ker(^i) are the ones required. If ^ is the image of x, in G,
then Ker (^) is the closed normal subgroup of G generated by the g^
with j>n, . Hence H^cHi. Since ^->i as i-^oc, it also follows
that the H, intersect in the identity. It remains to show that G, = G\Ri
is a Demuskin group of finite rank. To do this, we use the commutative
diagram

H [ ( G ) x H [ ( G ) —-.H^G)
^ 4 - ^

H^G^xH^Gi)—>H1(G^

where the vertical arrows are the inflation homomorphisms. The
homomorphism Inf : JT (G,) --> H ' (G) maps H^G,) isomorphically
onto V;. Since the cup product 9 is non-degenerate on V,, the above
diagram shows that Inf : H^G^H^G) is not the zero homomorphism.
Since dim JZ2 (G<) ̂  i and dim7^(G)==i, it follows that this homo-
morphism must be bijective. This implies that H^-(Gi) is one-dimen-
sional and that the cup product :

H^G^xH^G^H^G,)

is non-degenerate. Hence G; is a Demuskin group of rank n;.
Conversely, assume that we are given such a family of quotients

G, = GfHi of the pro-p-group G, the group G being of rank ^o. Then
cd(G) ̂  2. If cd(G) < 2, then G is a free pro-p-group (cf. [12], p. 1-37).
So assume that cd(G) = 2. Since H^G) is the direct limit of the one-
dimensional subspaces H^G,), it follows that Inf : H^G^H^G)
is an isomorphism for i sufficiently large. We assume that we have
chosen the Hi so that this is true for all i. If V\ is the image of H1 (G/)
in H^G) under the inflation map, the commutative diagram then shows
that the cup product cp : H^G) X H^G)-^ J^(G) is non-degenerate
on Vi. Since H^G) is the union of the Y;, it follows that cp is non-
degenerate. Hence G is a Demuskin group.

3.2. Proof of Theorem 2. — To prove (i), it suffices to consider
the case G is of rank ^o (c/1. [II], p. 252-809). Let U be an open subgroup
of the Demuskin group G and let (H,) be a decreasing family of closed

normal subgroups of G with /̂ \ Hi == i and each quotient G/jH^ a
;

Demuskin group of finite rank ̂  i. If U,= Ur\H,, then [//[/, = UH^Hi
is an open subgroup of the Demuskin group G/Jf;. Since G\Hi is of
finite rank 7^ i, it follows that UfUi is a Demuskin group of finite rank.
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Since i \ Ui==i, it follows, by Theorem 1, that U is either a free pro-
<

p-group or a Demuskin group. But, since U is open in G and cd(G) == 2,
we have cd(U) == 2 (c/'. [12], p. 1-20, Prop. 14). Hence U is a Demuskin
group.

For the proof of (ii), let K be a closed subgroup of the Demuskin
group G with (G : K) =30. This implies, in particular, that n (G) 7^ i.
If [7, V are open subgroups of G with C7 c V, the corestriction homo-
morphism

Cor : H^^^H^V)

is surjective since cd(V) === 2 (c/*. [12], p. 1-20, lemme 4) and hence is
bijective since H^U) ̂  H^V) ̂  Z/pZ. But, if U^V and

Res : H^^-^H^U)

is the restriction homomorphism, we have

Cor o Res = o since Cor o Res == (V : U) = p\

It follows that Res is the zero homomorphism if U ̂  V. Since K
is the intersection of the open subgroups containing it, H^K) is the
direct limit of the groups ?(£7), where U runs over the open subgroups
of G containing JC, the homomorphisms being the restriction homo-
morphisms. Since (G : K) ==oc, it follows that H'-(K) === o. Hence K
is a free pro-p-group.

^. Proof of Theorem 3.

In this section, F is a free pro-p-group of rank ^o; r ^ F ^ ( F , F);
G = F I ( r ) is a Demuskin group; q==q(G); h=h(G) : t=t(G).
We divide the proof of theorem 3 into cases.

4.1. The Case q == o. — If x = (-rO^N is a basis oi? F^ ^et

ro(a;) ==^(^-1, x..,).

Let (F//) be the descending central series of F. We first show that we
can choose the basis (Xi) so that r=r^(x) modulo Fy.

Let JF(G,Z/.)=nm^(G,Z/p-Z). Then V =^'(G, Z,) can be

identified with the set of continuous homomophisms of G into Z/,,
where Z^ is given the p-adic topology. If (y^eN is a family of elements
of V such that the /; (mod p) form a basis of V/pV == H ' (G), then every

BULL. SOC. MATH. — T. 94, FASO. 3. 15
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element of V can be uniquely written in the form Va,^ with a,eZp

and ai->o. We call such a family of elements a basis of V. Using
the cup product :

H^G, Z/p-Z) x H^G, Z/p-Z)-^J^(G, Z/p-Z)

and passing to the limit we obtain a cup product :

H ' (G, Z/,) x ̂  (G, Z,) -. ̂  (G, Z,)

which is Z^-bilinear (and continuous). Moreover, under the identification
of H^G, Z/p^Z) with Z/p-Z the map H^G, Z/p—'Z)-^^, Z/p-Z)
is the canonical homomorphism of Z/p^'Z onto Z/p^Z. Hence, passing
to the limit, we may identify H^G, Z/,) with Z/,.

If (xi) is a basis of F, then

^Il^^y)'1 ("^od^
i</

where a,y€Z^. Let ^:F->Z^ be the continuous homomorphism
defined by ^(^) = ̂ .. Then (^) is a basis of ^'(G,Z/,). Since
each such homomorphism %, vanishes on (F, F) and since r e (F, F),
we may view the ^ as elements of ^' (G, Z/,). We then have the follo-
wing lemma :

LEMMA 1. — The cup product H ' (G, Z/,) x H ^ ( G , Z/,) -^H^G, Z/,) = Z/,
15 alternating and y,\j^==a^ if i <j.

Proo/'. — If £//, is the canonical homomorphism of Z/, onto
Z/./p-Z^Z/p-Z, let x^^s/.o^,, a^)=3^(^.). Then, by Propo-
sition 8, ^u^==o and ^)u^=^ if i<j. It follows that
7.i ̂  ̂ •= o and %, u %/ = ^7 for i <j.

Q. E. D.

The basis (7^) of H^G, Z/,) is said to be a symplectic basis if
7^-i u 7^i ==— %2< u %2< -i = i and %; u %y == o for all other i, j. The
existence of a symplectic basis of V == ^'(G, Z/,) follows from the
following lemma together with the existence of a symplectic basis on
V l p V = H ' ( G ) (cf. Proposition 9).

LEMMA 2. — Let M be a free Zf^Z-modute of rank ^, with an alter-
nating form cp. If (^) is a symplectic basis of M/p^-'M, there exists
a symplectic basis of F lifting (^).

Proof. — Let (%;) be a basis of M lifting the symplectic basis (/j).
Then cp(%;, _ j , ^) == i + p^-i u, for i ̂  i and cp (yj, y;) === p/"-' u^
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for all other f, j with 1^7. Replacing ^_, by (i + p7"-' u/:)-'%:,_,,
we may assume that cp(/J>,_,, %L) = i for ali i ̂ i. Then the basis (/,),
where

^ = ̂  + ̂  (? (%L ^y- l) ̂ / + ̂  (^y, Z;) ̂ y-,)

/<^

is the required symplectic basis of M.
Q. E. D.

The existence of a basis x =(x,) of F such that r = r, (x) (modF:>.)
now follows from lemmas 1 and 2 and the following lemma :

LEMMA 3. — If CcO'eN is a basis of H ' ( G , Z/,), there exists a basis (x,)
of F such that yj(x^) == 3,y.

Proof. — If £//, is the canonical homomorphism of Zp onto Z/p^Z,
let ^^s^o^. Using the duality between the compact groups
F/F^'"(F, F) and the discrete group H^F, Z/p^Z), we obtain a gene-
rating system (E^) of F/^'^F, F) such that ^(S/^) = ̂ /. Since
F/(F, F) ==nmF/F^'"(F, F) and the image of ^"+1) in F/F^'"(F, F)

771

is ^m), there exists ^eF/(F, F) such that, for all /n, ^") is the image
of t< in F/F/^(F, F). Moreover, it is easy to see that (^) is a basis
of F/(F, F). If o- : F/(F, F) -> F is a continuous section such that
o-(o) =i and if :r,==cr(^), then (re/) is the required basis of F.

Q. E. D.

Suppose now that we have found a basis (x,) of F such that r == r,, (x)
modulo F//+, for some 77^2. If (^)/€N is a family of elements of F//
with /,->i, and if y ,=^^ 1 , then y==(yi) is a basis of F and
ro(^) =r,(y) dn with d/,eF^,. If T, (resp. ^) is the image of ^(resp. x,)
in gr/,(F) [resp. gri(F)], then, using (8), we see that the image of d,,
in gr/,+,(F) is

W==^([^-^^+[^,^
i^l

where T = (r,). If W,z is the submodule of y/^gr/^F)1^ consisting
of those families T = (^) with T,->O, we obtain a homomorphism
o. : W.-^gr/^(F). If A, : Y,-^gr/,(F) is defined by

•MT) =^[^, ̂ ],
^i

then A/,(W/<) = Im(o/,), and, by the corollary to Proposition 4, we
have A//(W//) =gr/,+i(F). Consequently ^ is surjective. Hence if
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r == ru (rc) e^+j with c/.+ieF/z+i, we may choose T=(T,)eW// so that
—£/,+i=^(r) , where £,,+i is the image of e/,+i in gr//,,(F). If
o- : gr,,(F)—^Fn is a continuous section with o-(o)==i , let ^=O-(T/).
If y,==Xit^, then y == (yi) is a basis of F and r = r ^ ( y ) (modF,,^).

Proceeding in this way, we obtain for each n ̂  2 a basis ̂  == (:r^-)
of -F such that r = r^(x'^) (modF^+i) and such that x^ ^^ x^ (mod F«).
If ^^im.1^, n-> oc, then (Xi) is a basis of F and r ==ry(:r).

Q. E. D.

4.2. The Case ( 7 ^ 0 , 2 . — If Y = H ' ( G , Z/^Z), then V is free
Z/^Z-module of rank ^o, and the cup product

H^G, ZfqZ) x H ' (G, Z/^Z) -^(G, Z/^Z) = Z/gZ

is a bilinear form on V whose reduction modulo p is non-degenerate.

If p is the linear form on V defined in Proposition 8, t h e n ' / ' u ' / = ( y ) [3 (/)

for any y^eV. Moreover, p(V)=Z/^Z since r^F/^^^F, F). Since
q^£ 2, we may apply Proposition 10 to obtain a basis (/,) of V and an
integer d with o^d^h such that

(^(X.)-^ ^-o, and pfo^)=p^, ^(^-o for 1^2.
(6) /.2,-iU7^;=i for i=:i, and y^yj-==o for all other i , j with i<j.

Let (.K;) be a basis of F such that ^(^y) = ^7 and let (F//) be the
descending ^-central series of F. Then by Proposition 8 we have

r = x\ (re,, x:)\\^ x^ (x,^, x,,) (modF,).

Now suppose that for some n=,2, we have found a basis (Xj) of F
and integers a, with q a^-j, g 2 1 0.11 such that

r == x\ (rci, x.i) n .r_/|''r^l^ '̂ (^^-i, x.n) e/<+i,

where ^+i€F/ /+i , and where either all 0.1 are equal to zero, or there
exists an infinite number of i with u^(ai)<nh. If (//)/e=N is a family
of elements t^Fn with ^-^i, then (y/), where y ,==^^ ', is a basis of F
and

(10) r = t/?(z/,, yO]ĵ ':̂ T (^-^ ^/) ̂ ^ -- .
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where d/,eF//+i. If T, (resp. ^) is the image of /, (resp. Xi) in gr,,(F)
[resp. gri(F)], then, using (8) together with Proposition 6, we see that
the image of dn in gr,^i(F) is

W =71-. + (^[T,, „] +[T,, „] +[;„ T,]
\ 2 /

+^(p•^_,+P•/(y)[T..--,,^,_,])

+^([^-1,^]+[^-1,^]).

;^2

If Wn is the subgroup of Vn = gr/, (F)1^ consisting of those families (r,)
with T;—^O, we obtain a homomorphism Qn : W/,-^gr,,+j(F).

LEMMA. — If E is the closed subgroup of gYi(F) generated by the
elements n^- withj^i, 2, then
(i i) gr^i (F) =: Im(o//) + TT^-' £.
Moreover, if p 1 = ^, then ^'ij e Im (o//) for all j.

Proof. — If A/, : V/,—^gr/,_i(F) is the homomorphism defined by

-^-s^9^
we have Im(6/,) == A/,(W/j+7rgr/,(F). By the Corollary to Propo-
sition 7 we have

gr^,(F)=A,(W.)+7Tgr.(F).

Hence, gr/^i(F) == Im(6//) + 7rgr//(F). Since 7rlm(^_i) is contained
in Im (6///) for m ̂  3, it follows that

gr/^(F) = Im(6,,) + Tr-'gr^F).

But, using Proposition 6 and the fact that q -^- 2, we see that
7rgr,(F) == rcD + A,(W,) + P gr3(F),

where D is the closed subgroup of gr^(F) generated by the elements 7:1/.
Hence,

gr, , (F) = Im (o.) + Tr— D + p gr.., (F).

Since n^ci === o/,(r), where T) = 71"-' i.^, T.^ == ( ' ) T) , T< = o otherwise,
and TT^I = O//(T), where

t.-lf-'i.+C)!!--2;;,,;,],

'•=(^-•+(<)"-[ i•• ;•I-'"- :•+(^—————

T;== o for i 711, 2,
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we see that (i i) is true modulo p. Since Im(^) + r^E is a subgroup
of gr/,+i(F), it follows that (10) is true modulo p1 for any feN. Since
p^gr/^F) =o, the result follows.

Now suppose that p^q. If A, : y/,->gr,^(F) is defined by

A,(T)=7TT,+^[,,T,],

;^i

then Im (6,) = A,(W.). If j ̂  3, then T:7^ = A, (r), where

^^-^^^^-^^
\ 2 /

T/ = (!) ̂ -2[^ ̂  + (!)7r/l-1^ + 7:/^
T; = o for i -^ 2, j.

This completes the proof of the lemma.
Returning to (10), the above lemma allows us to choose the i, so that

dnen^ == [J yf-' (modF^Q.
;̂ ::i

Moreover, if all the a, in (10) are equal to zero, in which case q =ph,
then, by the second part of the lemma, we can choose the t, so that
either all a,:= o, or a;^ qZ for an infinite number of i. Then,
since yj71 is in the center of F, modulo Fn^_, we see that

r ̂  yHy^ y0[j y^z-f y^(y^, y^) (modF,,,),
;^2

where b,== ̂ + q'1^, and where either all b, are equal to zero, or there
exists an infinity of i with Vp(bi) < (n -\- i)/z.

Proceeding inductively and passing to the limit, we see the we can
find a basis (x!) of F such that

r ==-xi(x,, ̂ )]^^7-i1 '̂' (̂ --i, x,,),

where c^eZ/, and where either all a, are equal to zero, or there exists
an infinite number of i with Up (ds) = e, where e is the infimum of
the v,, (a,) and q ̂  e < oc. In the latter case, there exists a strictly
increasing sequence (n/)/^ of even integers with n, = 2 such that, for
each i^i, there is a j with n,<j ^n^i and u^(ciy) == e. If for 1^1
we set

Ti= f[ ^X^(X^X^,

"i^J^Vi
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where u,=(n,4- 2)/2, ^•=n,+i/2, then r/ is a Demuskin relation in the
variables Xj, n/<<j^n;+i. The corresponding Demuskin group Gi
is of finite rank with q(Gi) =p"^ 2. If s =q(Gi), then by the theory
of Demuskin groups of finite rank (cf. [1] or [11]) we can choose the Xj
so that

ri== II ^7-1(^7-1,^7).

Since r ==x'{(Xi, x.^) 1TI ^» this completes the proof of case 2.
z'^l

4.3. The Case q = 2, t == i. — Let (F«) be the descending 2-central
series of F. By the definition of the invariant t ==t(G) together with
Propositions 8, 9 and 11, there exists a basis (%;) of H^G) such that
y , u y i = i, /2<-i u ̂  = i for i ̂  i, and /^ u jj•= o for all other i, j
with i ̂ j. if re = (a;/) is a basis of F with 7j(^/) = ̂ 7, then, by Propo-
sition 8, we have

r =^ x\ (x i , x.^) fo (̂ ) (mod F^),

where ro(x) =^(x^, x^).
i^-l

Now assume that for some n ̂  2 we have found a basis ^ = (a*;)
of F and integers a;€4Z such that

r = ̂ ^^(.ri, x,) ro(x) JJ<1 ̂ +i

where e,,+i€-F/,+i. If (^) is a family of elements ti^Fn with ti->i,
then y ==(y;) =(^^7 ') is a basis of .F and

(12) r=y\+^(y„ y.)r,(y) ̂ J^A^i
:̂!

with dn in F/,^i. If T, (resp. ^) is the image of ii (resp. x) in gr,,(F)
[resp. grj(F)], then the image of d,, in gr/,+i(F) is

^n(^) = 7^1 + [^l» Sl] +^([^.-1, ^^ + [^.i-1, .̂]).

;^ l

If W/, is the subspace of Vn = gr^F)1^ consisting of those families T == (r;)
with Ti-> o, then ^/< is a homomorphism of W/< into gr/^i(F), and we
have the following lemma :

LEMMA. — If E is the closed subgroup of gr.2(F) generated by the
elements n^ withj -^ 2, then gr,/+i(F) is generated by Im((^) and T^-'E.



236 J. P. LABUTE.

Proof. — Using the Corollary to Proposition 7, we see that

gr^i(F) = Im(d\) + 7:gr,(F).

Since TT Im(6/,_j)c Im(3,,) for m ̂  3, it follows that gr/^i(F) is gene-
rated by Im(^) and 7^-'gr,(F). Hence, to prove the lemma, it suffices
to show that Tr^elm (0.2) and

^^y 7T[^, ^] (E Im (o,) + TTE
1 </

for arbitrary a^eZ/aZ.
If T == (T,), where T, = 7:1.,, T, = T,, T, = o for i ̂  3, then 7 e W, and

O.,(T) = Tr2!,. Hence Tr^elm^). Now let A : W.-^gr^F) be
defined by

A(T)=7rT,+^[c. T,].

Then clearly Im(6,) === Im(A). Let T == (r,), where

-i-M^ ^]+^aiy^,

T.^= c?j27rii+V^y7r^-,
7^3

^=^y7^^+^^[^, ^] for 1^,3.
/ > ^ J<i

Then reW,, and a straightforward calculation using Proposition 6
shows that

A(r) =(^,7:^,4-^a^7T•2c/+^^7^[^, .̂].
y^! i<f

Hence^^/ n [^, i/] e Im (A) + 7: E.
^y

Q. E. D.

Returning to (12), the above lemma allows us to choose the^eF/,
so that

r = ̂ i^O/i, y.) r,(y) Yfy^mod F^,),

with ^eZ, bi= a, (mods7').
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Proceeding inductively and passing to the limit, we see that there
exists a basis (re/) of F and 2-adic integers di with ^ (a;) ̂  2 such that

12+^,, a%) r^x^Ylx?',r =x^(Xt, x.z) ro^FJrK?'-.

The relation 7-1 = r,)(:r)1 | x^is a Demuskin relation in the variables .r/,
/ ̂  :'•

i^3, and the g-invariant of the corresponding Demuskin group
is 7^ 2. Hence, by what we have shown in sections 4.1 and 4.2, we
may choose the x,, i ̂  3, so that

•^\ i === ̂  ^;>,,ri==^ (;r;>,, ^)JJrc.L-_i(^_i, :̂),

where s == 2®, e, feN, 2 ̂  /'^ e. If

r^ = x^^^x^x.^ x^(x^ x^),

then Ti is a Demuskin relation in the variables x\, . . . , x ' , and the
^-invariant of the corresponding Demuskin group is 2. We now appeal
to the theory of such relations (cf. [3] or [8]). If f^Ui(a^), we can
choose re,, ..., x., so that

Fi == X\{X^ X i ) X^ (X^ X^).

If f> u^(a\) = g, then we can choose Xi, ..., x., so that

r,=X]-^(x^ x.^) (x-,, x,).

Since r== 7-1 rTa^-i(^_,, ^/•), the proof of Theorem 3 for the case

q == 2, / == i is complete.

4.4. The Case ^ == 2, / = —i. — Let (F/,) be the descending 2-central
series of F. Since t =—i, then by the definition of /, together with
Propositions 9 and 11, there exists a basis (%<) of H ' ( G ) such that
y , u / j = = i , % 2 < u ' / 2 ^ i = i for i^i, and ^u ' / /==o for all other i, j
with i^j. If (xi) is a basis of F with ^(rc/) === o^y, then, by Propo-
sition 8, we have r == r^(x) modulo F;,, where

r,(x) =^'[~[(a'2., ^+i).

Now assume that, for some n ̂  2, we have found a basis x == (x^)
of F and integers a, with a /c^Z such that

r=.r,(x)\\x^ (modF/^,).
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Then, proceeding exactly as in the previous section, we obtain a homo-
morphism ^ : W^gr^(F), where

0\(T) = 7TT,+ [^ ^,] + (̂[̂ ., ̂ ] + [„, T,^]).

i ̂  l

LEMMA. — If E is the closed subgroup of gr.,(F) generated by the
elements ̂  with j ^i, then gr,^(F) is generated by Im(o\) and n^E.

Proof. — The proof is exactly the same as the proof of the corres-
ponding lemma in the previous section except for the following changes :
7T2^ = o,(r), where T, == 7^, and T, = o for i ̂  2; the homomorphism A
is defined by

A(T)=7TT,+^.[,,T,],

<^^
and we have

A(T)==^^,7r^,+^^7T[,,, ^,]

7^2 ;•</

if we let

T,=^a,,7r^,
/^2

T^ ==^ a^/7r^ +^ ̂ •[^•, ^•] for f 1̂  2.
/^^ /<;

This completes the proof of the lemma.
Hence, using the above lemma, we see that there is a basis y = (y,)

of F such that

^M^If^' (modF,,,),

where y^ x, (mod F,,), and bi==. a, (mod 27'). Proceeding inductively
and passing to the limit, we see that there exists a basis (x^) of F and
2-adic integers a,e4Z, such that r =^r j , where

^ ==]̂ [(̂ , ^2.4-1) ]~J^?1.
^1 ;^2

The relation r, is a Demuskin relation in the variables x,, i ̂  2, and
the ^-invariant of the corresponding Demuskin group is ^ 2. Hence
we can choose the x; so that

r, = xf(x,, x^Y^x^, x,^),
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where s == p^ e, fe'N, e^/*^2. Since r = x ' ] r i , we have found the
required basis of F.

4. 5. The Case q = 2, / = o. — Let (F/,) be the descending 2-central
series of F. Since t(G) = o, the definition of the invariant t(G) together
with Proposition 11 shows that there is an orthonormal basis (//)
of H^(G). Replacing /^ by ^ .•+ %2/-i, we obtain a basis (%<) of H ' ( G )
such that

%2.-i u 7 -̂1 == 7 -̂1 u 72^ = i and 7, u 77 = o

for all other i, j with i ̂ j. If x = (xi) is a basis of JF with ^(.r/) == o^/,
then, by Proposition 8, we have r := ro(x) modulo Fs, where

r,(x) ^Y^11-1^'11-19 x^'

Now assume that, for some n ̂  2, we have found a basis re = (rr/)
of F and integers a / / e 2 Z such that

r == r, (^)PJ[ (Xi, x^i (mod F,z+i).
^</

Then, proceeding as in the previous sections, we obtain a homomorphism
^n : Wn->grn+i(F), where ^(T) is given by

^(^2.-1+ [̂ -1, £2.-l] + [ .̂-1, .̂] + [̂ -1, ^.]).

^1

LEMMA. — If E is the closed subgroup of gri(F) generated by the
elements [ii, Ey], then gr^i(.F) 15 generated by Im(c^) and n'^E.

Proof. — Since gr,,+i (F) = Im (<^) + TT gr/, (F) by the Corollary to
Proposition 7, it follows that gr/,+i(F) is generated by Im(^)
and Tr^-'gr^F). Hence, it suffices to show that any element of the

formV ^7T2^ belongs to Im(^) + 7r£. If A : Ws-^ gr^CF) is defined by
;^i

A(T)=^7TT,,_,+^K,,T,],

;^1 ;^1

then Im(A) = Im(^2). Now let T = (r;), where

T-2;_i = a2;-l'^2z-l+ a-^'^.h ^2i= ff2;[c2;-l? •̂].
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Then reW^, and a simple calculation using Proposition 6 shows that

A(r) -^7r^+]^7:[^_,, ̂ ].
; ̂ . i / ̂  i

Hence VatTr^eIm^) + 7r£'.

Q. E. D.

Using the above lemma, we find a basis y = (y,) of F such that

r = ̂  (y) [ | (y. V i ) ' ' 1 1 (mod F^),
i</

where Z//EE: Xi (mod J7,/), and ^y=^ a^ (mod 2""1). Proceeding inductively
and passing to the limit, we see that there exists a basis (x/) of F and
2-adic integers ^yesZ^ such that r is of the form (5).

This completes the proof of Theorem 3.

o. Proof of Theorem ^.

5.1. The Properties P//, Qn. — If % is a continuous homomorphism
of a pro-p-group G into the group of units of the compact ring Z/,/p"Z/,,
let J = J(/) be the compact G-module obtained from Z^lp"Z^ by
letting G act on this group by means of ^. If n < c?o, then G is said
to have the property Pn with respect to '/ if the canonical homomorphism

(13) c p : H { ( G , J ) - . H [ ( G , J | p J ) = H f ( G )

is surjective. If n === cc, then G is said to have the property Pn with
respect to / if the canonical homomorphism

(14) c p : H^G, Jlp'-^-^H^G, J l p J ) ==H^(G)

is surjectwe for m ̂ i. The pro-p-group G is said to have the property Q,,
if there exists a unique continuous homomorphism ^ : G -> (Z^/p^Z/,)*
such that G has the property P/z with respect to ^.

Remark. — If G is a free pro-p-group, then G has the property Pn
with respect to any continuous homomorphism / : G —> (Z///p"Z/,)*
since cd(G) ̂ i.

PROPOSITION 12. — Le^ G be a pro-p-group of rank ^o, and /^
'/ '. G -> (Z^/p^Z/,)* be a continuous homomorphism. Then [the following
statements are equivalent :

(a) The group G has the property Pn with respect to ^.
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(b) If (g,) is a minimal generating system of G and (a/) is a family of
elements of J == J(y) with a,-> o, there exists a continuous crossed homo-
morphism D of G into J such that JD(^) == a/.

Proof. — Clearly (b) implies (a). Now assume that (a) is true and
let gi, 0.1 be given as in (6).

If n < x, the surjectivity of (i 3) shows that there is a continuous crossed
homomorphism -D, of G into J such that D^(g,) =E ^(modp). Suppose
that we have found a continuous crossed homomorphism D/ (i^j < n)
of G into J such that D^g,) == ^4- p/&, . Then, as above, there is a
continuous crossed homomorphism D' of G into J, such that
D ' { g i ) EEE ^(modp). If Dy+i == D;—p7^', then Dy+i is a continuous
crossed homomorphism of G into J such that Dy+j (^) ̂  ̂  (modp7-^1).
Proceeding inductively, we see that Dn is the required crossed homo-
morphism.

If n == x, let jjn^ ^m ° /, where £„, is the canonical homomorphism
of Z^, onto Z^/p^Z/,. Then G has the property P,n with respect to /„„
and J / p " ^ == J(y,n) where J == J(/). If a^=£^(a/), then by what
we have shown above, there exists a continuous crossed homo-
morphism D^ of G into J l p ' ^ J such that DI"^^) = a^. Passing to
the limit, we obtain the required crossed homomorphism D.

PROPOSITION 13. — Let G be aDemuskin group of rank ^o with s(G) = p ' ' ,
and let '/ \ G --> (Z^/psZ/,)* be the character associated to the dualizing
module of G. Then G has the property Pc with respect to /.

Proof. — If J = J ( y ) , then I = Hom(J, 0/./Z/,) is the dualizing
module of G. It follows that H^G, J/p'V) is cyclic of order p ' 1 if
i ^ n < e , or if n = e < < o c . This, together with the fact that
cd(G) = 2, shows that the sequence

<i5) o—JT^G, J/p^J^ff^G, J l p - J ) ̂ H^G, J l p J ) - > o

is exact for any integer n with i ̂  n ̂  e. But
Ker(a) == Coker(^'(G, J/p^J)-^ ̂ (G, J/pJ)),

which proves the proposition.

5.2. Proof of Theorem 4. — Let F be a free pro-p-group of rank ^o
with basis (^)<eN» an^ let r be a relation satisfying the hypotheses of
the theorem. The fact that G == -F/(r) is a Demuskin group follows
from Proposition 8, as does the assertion concerning the invariant ^(G).
The rest of the proof deals with the computation of s(G) and /, where /
is the character associated to the dualizing module of G. We do this
for a relation of the form (i), the same method applying, with obvious
modifications, to relations of the form (2), . . . , (5).
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If g, is the image of x, in G, then (^) is a minimal generating system
of G and we have

(16) 9i(g^ g^UgV-^g^, g^ =i,
Z'^.2

where ^ = p ^ , s =p-,, e,/*eN. Suppose that G has the property P,
with respect to some homomorphism 6. Then, by Proposition 12,
there exists a continuous crossed homomorphism D, of G into J(9)
such that A(^y) = ̂ ,-. Applying A to both sides of (16), we obtain

Q(^)y- le(^)- l(0(^)—I)=o,
which implies that O(^) ==i. Similarly, 9(^_,)=i for 1^2.
Applying D, to both sides of (16), we obtain q + 9(^)-'—i = o, which
implies that

^)=(i—^)-'.

Similarly, 9(^)=(i—s)-1 for 1^2. But, since 0 is continuous
and gi->i, we have O(^) -^ o. In view of what we have shown above,
this is possible if and only if n ̂  e. If s(G) == p ', it follows that e ' ^ e
since G has the property P,, with respect to %. It also follows that G
has the property Q,,, and that

^(x.) = (i — q)-', %(^) == i for i ̂  2.

All that remains to be shown is that e' = e. To do this, let
Oo : F -> (Z^lp^pY be the continuous homomorphism defined by

Oo (x^) = (i — ^)-i, 9o (x,) = i otherwise.

Then Oo(r) =i, and Oo induces a homomorphism 6 of G into (Z/./p^Z,)'.
A simple calculation shows that D(r) = o for any continuous crossed
homomorphism D of F into .7(9). In view of Proposition 12, it follows
that G has the property P,, with respect to 9. If n is an integer with
I ^ 7 2 ^^ then an inductive argument using the sequence (i5)
with J = ^(9) shows that Jf^G, J/p"J) is cyclic of order p ' 1 . It follows
immediately that e' == e, which completes the proof of Theorem 4.

6. Proof of Theorem o.

Let K, r, G be as in the statement of the theorem. Let(U,)^y be
a decreasing sequence of open subgroups of T containing G such
that^ Ui= G. Let G, = U,/V, be the largest quotient of U, which

z

is a pro-p-group; if X, is the fixed field of £/„ then G, is the Galois group
of Ki(p)fKi, where K,(p) is the maximal p-extension of K,. Composing
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the inclusion G -> Ui with the canonical homomorphism of Ui onto d,
we obtain a homomorphism :̂ : G -> Gi. It is [easy to see that ^
is surjective and that the subgroups Hi:= Ker (^-) form a decreasing
sequence of closed normal subgroups of G which intersect in the iden-
tity.

If K does not contain a primitive p-th root of unity ^/,, let
K' == K(^), and let P be the Galois group of K / K ' . Then G is a Sylow
p-subgroup of P since (T : P) = [K' : K] is prime to p. Hence, we
are reduced to proving the theorem for the case K contains a primitive
p-th root of unity. In this case Gi is a Demuskin group of rank
[Ki \ Q/J + 2, and its dualizing module is p.p^(cf. [12], p. II-3o).
Since H^G) is the union of the Jf'(G<), it follows that G is of rank ^u.
By Theorem 1, we see that G is either a Demuskin group, or a free pro-
p-group. But, by a theorem of J. TATE, we have cd(G) = 2 (cf. [12],
p. 11-16). Hence, G is a Demuskin group. To show that ;JL/^ is the
dualizing module, it suffices to show that the canonical homomorphism

c?: H^G^^-^H^G,^) = = H ' ( G )

is surjective for n ̂ i (cf. § 5.1). But since ̂  is the dualizing module
of Gi, we have a commutative diagram

H^G,^n)^->W(G)

H^G^^^H^G!)

in which ^ is surjective for n ̂ i. Passing to the limit, we obtain the
surjectivity of cp.

To prove the assertion concerning t(G), it suffices to consider the
case q(G) == 2, for otherwise t(G) =i and [K(^) : Q/J is even.
Let V == H^G), and let V, be the image of H1 (G<) in Y under the homo-
morphism .Hrl(^). Since dim(y,) == [K, : Q,] + 2 and [K, : K] is
odd, we have

(__j)dim(V,) ̂  /__j\[A':Q.^

Moreover, as we have seen in the proof of Proposition 1, the cup-product:
H[(G)xH[(G)-> H^G) is non-degenerate on Vi for i sufficiently large.
[Actually, the cup-product is non-degenerate on each V, since
H2^^: H^Gi)-> H^G) is bijective.] Also, the cup-product is non-
alternate since q(G) = 2, and t(G) ==i or —i since s(G) == o. Hence,
since V is the union of the V;, it follows from the definition of t(G)
together with the proof of Proposition 11 and its Corollary that

t(G)=(-i)^
for i sufficiently large.

Q. E. D.
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