BULLETIN DE LA S. M. F.

J.P. LABUTE Demuškin groups of rank &₀

Bulletin de la S. M. F., tome 94 (1966), p. 211-244 http://www.numdam.org/item?id=BSMF_1966_94_211_0

© Bulletin de la S. M. F., 1966, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 94, 1966, p. 211 à 244.

DEMUŠKIN GROUPS OF RANK **s**₀

BY

JOHN P. LABUTE (*).

In this paper, we extend the notion of a Demuškin group to prop-groups of denumerable rank, cf. Definition 1. The classification of Demuškin groups of finite rank is complete (cf. [1], [2], [3], [7], [8], [11]), and the purpose of this paper is to extend this classification to Demuskin groups of rank \mathbf{R}_0 (cf. [9]). This is accomplished in Theorems 3 and 4, leaving aside an exceptional case when p = 2. We then apply our results (cf. Theorem 5) and determine for all p, the structure of the p-Sylow subgroup of the Galois group of the extension \overline{K}/K , where Kis a finite extension of the field \mathbf{Q}_p of p-adic rationals and \overline{K} is its algebraic closure. This answers a question posed to the author by J.-P. SERRE.

1. Definitions and Results.

1.1. **Demuškin Groups.** — Let p be a prime number, and let G be a pro-p-group (i. e., a projective limit of finite p-groups, cf. [4], [12]). Throughout this paper $H^{q}(G)$ will denote the cohomology group $H^{r}(G, \mathbb{Z}/p\mathbb{Z})$, the action of G on the discrete group $\mathbb{Z}/p\mathbb{Z}$ being the trivial one. (\mathbb{Z} is the ring of rational integers.) The dimension of $H^{r}(G)$ over the field $\mathbb{Z}/p\mathbb{Z}$ is called the rank of G and is denoted by n(G).

^(*) The author is the recipient of a post-doctorate overseas fellowship given by the National Research Council of Canada.

DEFINITION 1. — A pro-p-group G of rank $\leq \aleph_0$ is said to be a Demuskin group if the following two conditions are satisfied :

(i) $H^2(G)$ is one-dimensional over the field $\mathbf{Z}/p\mathbf{Z}$;

(ii) The cup product : $H^{1}(G) \times H^{1}(G) \to H^{2}(G)$ is a non-degenerate bilinear form, i. e., $a \cup b = o$ for all b in $H^{1}(G)$ implies a = o.

Remark. — The definition of non-degeneracy given above is equivalent to the one we gave in [9], thanks to results obtained by KAPLANSKY in [6], cf. § 2.4.

Our first result relates Demuškin groups of rank \aleph_0 to Demuškin groups of finite rank.

THEOREM 1. — If G is a Demuškin group of rank \aleph_0 , there is a decreasing sequence (H_i) of closed normal subgroups of G with $\bigcap_i H_i = 1$ and with

each quotient G/H_i a Demuškin group of finite rank.

Conversely, if G is a pro-p-group of rank \aleph_0 having such a family of closed normal subgroups, then G is either a free pro-p-group or a Demuškin group.

If G is a pro-p-group, we let cd(G) denote the cohomological dimension of G in the sense of TATE; recall (cf. [4], p. 189-207, or [12], p. I-17) that cd(G) is the supremum, finite or infinite, of the integers n such that there exists a discrete torsion G-module A with $H^n(G, A) \neq 0$. Since G is a pro-p-group, cd(G) is also equal to the supremum of the integers n with $H^n(G) \neq 0$ (cf. [12], p. I-32). We then have the following result :

COROLLARY. — If G is a Demuškin group of rank \mathfrak{R}_0 , then cd(G) = 2.

Indeed, by Theorem 1, G is the projective limit of Demuskin groups G_i of finite rank. Moreover, since G is of rank \aleph_0 , we may assume that $n(G_i) \neq 1$ for all *i*, and hence that $cd(G_i) = 2$ for all *i* (cf. [11], p. 252-609). Since $H^{q}(G) = \varinjlim H^{q}(G_i)$ (cf. [12], p. 1-9), it follows that $cd(G) \leq 2$. But $H^2(G) \neq 0$ by the definition of a Demuskin group. Hence cd(G) = 2.

Our next result gives the structure of the closed subgroups of a Demuskin group.

THEOREM 2. — If G is a Demuskin group of rank \neq 1, then

(i) every open subgroup is a Demuškin group;

(ii) every closed subgroup of infinite index is a free pro-p-group.

The proof of these two theorems can be found in paragraph 3.

1.2. **Demuškin Relations.** — As in the case of Demuškin groups of finite rank, we work with relations. Let G be a Demuškin group, and let F be a free pro-p-group of rank n(G). Then there is a continuous homomorphism f of F onto G such that the homomorphism $H^{1}(f)$: $H^{1}(G) \rightarrow H^{1}(F)$ is an isomorphism (cf. [12], p. I-36). If R = Ker(f), we identify G with F/R by means of f. Making use of the exact sequence

$$0 \to H^{1}(G) \xrightarrow{\operatorname{Inf}} H^{1}(F) \xrightarrow{\operatorname{Res}} H^{1}(R)^{G} \xrightarrow{\operatorname{Ig}} H^{2}(G) \xrightarrow{\operatorname{Inf}} H^{2}(F)$$

(cf. [12], p. I-15), we see that the transgression homomorphism tg is injective since the first inflation homomorphism is bijective. Since $H^2(F) = o$ (cf. [12], p. I-25) it follows that $H^1(R)^G \cong H^2(G) \cong \mathbb{Z}/p\mathbb{Z}$. Hence R is the closed normal subgroup of F generated by a single element r (cf. [12], p. I-4o). Moreover, since $\chi(r) = o$ for every $\chi \in H^1(F)$, we have $r \in F^p(F, F)$. [If H, K are closed subgroups of a pro-p-group F, we let (H, K) denote the closed subgroup of F generated by the commutators $(h, k) = h^{-1}k^{-1}hk$ with $h \in H$, $k \in K$.] The purpose of this paper is to find a canonical form for the Demuškin relation r.

1.3. The invariants. — In order to state our classification theorem we have to define certain invariants of a Demuškin group.

1.3.1. The invariants s(G), $Im(\chi)$. — Let G be a Demuskin group of rank $\neq 1$. Since $H^2(G, \mathbb{Z}/p\mathbb{Z})$ is finite, it follows, by « dévissage », that $H^2(G, M)$ is finite for any finite p-primary G-module M (cf. [12], p. I-32). Since cd(G) = 2, it follows that G has a dualizing module I, that is, the functor $T(M) = \text{Hom}(H^2(G, M), \mathbb{Q}/\mathbb{Z})$, defined on the category of p-primary G-modules M, is representable (cf. [12], p. I-27). If $n(G) < \aleph_0$, then I is isomorphic, as an abelian group, to $\mathbf{Q}_p / \mathbf{Z}_p$ (cf. [12], p. I-48). If $n(G) = \mathfrak{R}_0$, then I is isomorphic, as an abelian group, to either $\mathbf{Q}_{p}/\mathbf{Z}_{p}$ or $\mathbf{Z}/p^{e}\mathbf{Z}$. Indeed, it suffices to show that the group $I_p = \text{Hom}(\mathbf{Z}/p\mathbf{Z}, I)$ is cyclic of order p. But I_p is the inductive limit of the groups Hom $(H^2(U), \mathbf{Q}/\mathbf{Z})$, where U runs over the open subgroups of G, the maps being induced by the corestriction homomorphisms (cf. [12], p. I-30). Moreover, if U is an open subgroup of G, we have $H^2(U) \cong \mathbb{Z}/p\mathbb{Z}$ by Theorem 2. Hence I_p is cyclic of order $\leq p$. Since $I_p \neq 0$, the result follows. The s-invariant of G is defined by setting s(G) = 0 if I is infinite, and letting s(G) be the order of I if I is a finite group.

The ring **E** of endomorphisms of *I* is canonically isomorphic to \mathbf{Z}_{ρ} if s(G) = 0, and to $\mathbf{Z}/p^{e}\mathbf{Z}$ if $s(G) = p^{e}$. Hence, if **U** is the compact group of units of **E**, we have a *canonical homomorphism* $\chi : G \to \mathbf{U}$. Since χ is continuous, it follows that the *invariant* $\operatorname{Im}(\chi)$ is a closed subgroup of the pro-*p*-group $\mathbf{U}^{(1)} = \mathbf{I} + p\mathbf{E}$.

BULL. SOC. MATH. - T. 94, FASC. 3.

J. P. LABUTE.

We shall need a list of the closed subgroups of $\mathbf{U}^{(1)}$. Consider first the case where s(G) = 0. Then we have

$$\mathbf{U}^{\scriptscriptstyle(1)} = \mathbf{U}^{\scriptscriptstyle(1)}_{\prime\prime} = \mathbf{I} + p \mathbf{Z}_{\prime\prime}.$$

If $p \neq 2$, then $\mathbf{U}_{p}^{(1)}$ is a free pro-*p*-group of rank 1 generated by any element *u* with $v_{p'}(u-1) = 1$, and the closed subgroups of $\mathbf{U}_{p}^{(1)}$ are the subgroups

$$\mathbf{U}_{p}^{(f)} = \mathbf{I} + p^{f} \mathbf{Z}_{p} \quad \text{with} \quad f \in \overline{\mathbf{N}} = \mathbf{N} \cup \{\infty\}.$$

(We let **N** denote the set of integers $\geq_{\mathbf{I}}$; by convention $\mathbf{x} \geq a$ for any $a \in \overline{\mathbf{N}}$ and $a^{\mathbf{x}} = o$ for any $a \in \mathbf{N}$.) If p = 2, we have $\mathbf{U}_{2}^{(1)} = (\pm_{\mathbf{I}} \times \mathbf{U}_{2}^{(2)})$, and $\mathbf{U}_{2}^{(2)}$ is a free 2-group of rank I generated by any element u with $v_{2}(u-1) = 2$. The closed subgroups of $\mathbf{U}_{2}^{(1)}$ are therefore of three distinct types :

(i) the groups $\mathbf{U}_{2}^{(f)}$ with $f \in \overline{\mathbf{N}}, f \geq 2$;

(ii) the groups $\{\pm 1\} \times \mathbf{U}_2^{(f)}$ with $f \in \mathbf{N}, f \ge 2$;

(iii) the groups $\mathbf{U}_{2}^{(f)}$, where for $f \in \mathbf{N}$, $f \geq 2$, $\mathbf{U}_{2}^{(f)}$ is the closed subgroup of $\mathbf{U}_{2}^{(f)}$ generated by -u, where u is a generator of $\mathbf{U}_{2}^{(f)}$.

If $s(G) = p^e \neq o$, then $\mathbf{U}^{(1)} = \mathbf{U}_p^{(1)} / \mathbf{U}_p^{(e)}$, and the closed subgroups of $\mathbf{U}^{(1)}$ are in one-to-one correspondence with the closed subgroups of $\mathbf{U}_p^{(1)}$ which contain $\mathbf{U}_p^{(e)}$.

1.3.2. The invariant t(G). — Suppose that the Demuškin group G is of rank \mathfrak{R}_0 , and let $\varphi : H^{\scriptscriptstyle 1}(G) \times H^{\scriptscriptstyle 2}(G)$ be the cup product. Then φ is a non-degenerate skew-symmetric bilinear form on the vector space $V = H^{\scriptscriptstyle 1}(G)$. Let β be the linear form on V defined by $\beta(v) = v \cup v$, and let $A = \operatorname{Ker}(\beta)$. If A = V, i. e., if φ is allernate, we set t(G) = 1. If $A \neq V$, which can happen only if p = 2, the vector space V/A is one-dimensional, and hence A', the orthogonal complement of A in V, is at most one-dimensional. In this case, we define t(G) as follows : set t(G) = 1 if dim(A') = 1 and $A' \subset A$; set t(G) = -1 if dim(A') = 1 and $A' \subset A$;

Remark. — We shall see (cf. § 2.4) that the definition of t(G) given above is equivalent to the one we gave in [9].

1.3.3. The invariants h(G), q(G). — Let G be a Demuskin group and let $G_a = G/(G, G)$. Representing G as a quotient F/(r), where F is a free pro-p-group and $r \in F^{p}(F, F)$, we see that either $|G_a|$ is torsionfree or the torsion subgroup of G_a is cyclic of order p^h . The h-invariant of G is defined by setting $h(G) = \infty$ in the first case and h(G) = h in the second. The q-invariant is defined by setting $q(G) = p^{h(G)}$. If r is the above relation, then q = q(G) is the highest power of p such that $r \in F^{q}(F, F)$.

1.4. The Classification Theorem. — Recall (cf. [12], p. I-5) that if F is the free pro-*p*-group generated by the elements x_i , $i \in I$, then $x_i \to \tau$ in the sense of the filter formed by the complements of the finite subsets of I. If $(g_i)_{i \in I}$ is a family of elements in a pro-*p*-group Gwith $g_i \to \tau$, we call (g_i) a generating system of G if the continuous homomorphism $f : F \to G$ sending x_i into g_i is surjective. The homomorphism f is surjective if and only if $H^{\perp}(f) : H^{\perp}(G) \to H^{\perp}(F)$ is injective (cf. [12], p. I-35). Hence (g_i) is a minimal generating system if and only if $H^{\perp}(f)$ is bijective. If G is a free pro-*p*-group and (g_i) is a minimal generating system of G, then f is bijective, i. e. (g_i) is a basis of G (cf. [12], p. I-36).

The main results of this paper are contained in the following two theorems :

THEOREM 3. — Let $r \in F^{p}(F, F)$, where F is a free pro-p-group of rank \mathfrak{R}_{0} . Suppose that G = F/(r) is a Demuškin group, and let q = q(G), h = h(G), t = t(G). Then :

(i) If $q \neq 2$, there is a basis $(x_i)_{i \in \mathbb{N}}$ of F such that r is equal to

(1)
$$x_1''(x_1, x_2) \prod_{i \ge 2} x_{2i-1}^s (x_{2i-1}, x_{2i}),$$

with $s = p^e$, $e \in \overline{\mathbf{N}}$, $e \ge h$.

(ii) If q = 2, t = 1, there is a basis $(x_i)_{i \in \mathbb{N}}$ of F such that, either r is equal to

(2)
$$x_1^{2+2}(x_1, x_2)(x_3, x_4) \prod_{i \ge 3} x_{2i-1}^s (x_{2i-1}, x_{2i}),$$

with $s = 2^e$, $e \in \overline{\mathbf{N}}$, $f \in \mathbf{N}$, $e > f \ge 2$, or r is equal to

(3)
$$x_1^2(x_1, x_2) x_2^{2^{\ell}}(x_3, x_4) \prod_{l \ge 3} x_{2l-1}^s (x_{2l-1}, x_{2l}),$$

with $s = 2^e$, $e, f \in \overline{\mathbb{N}}, e \ge f \ge 2$.

(iii) If q = 2, t = -1, there is a basis $(x_i)_{i \in \mathbb{N}}$ of F such that r is equal to

(4)
$$x_1^2 x_2^{3^{f}}(x_2, x_3) \prod_{l \ge 2} x_{2l}^s(x_{2l}, x_{2l+1}),$$

with $s = 2^{\circ}$, $e, f \in \overline{\mathbf{N}}, e \ge f \ge 2$.

(iv) If q = 2, t = 0, there is a basis $(x_i)_{i \in \mathbb{N}}$ of F such that r is equa to

(5)
$$\prod_{i \ge 1} x_{2i-1}^2 (x_{2i-1}, x_{2i}) \prod_{i < j} (x_i, x_j)^{b_{ij}},$$

with $b_{ij} \in 2\mathbb{Z}_2$. (The product $\prod_{i < j}$ is taken with respect to an arbitrarily given linear order of $\mathbb{N} \times \mathbb{N}$.)

THEOREM 4. — Let F be a free pro-p-group with basis $(x_i)_{i \in \mathbb{N}}$, and let G = F/(r). Then :

(i) If r is a relation of the form (1) with $q = p^{h}$, $s = p^{r}$, e, $h \in \overline{\mathbf{N}}$, $e \ge h$, then G is a Demuškin group with q(G) = q, s(G) = s, $\chi(x_2) = (1-q)^{-1}$, $\chi(x_i) = 1$ for $i \ne 2$. (χ is the character associated to the dualizing module of G.)

(ii) If p = 2 and r is a relation of the form

(6)
$$x_1^{2+2^{f}}(x_1, x_2) x_3^{s}(x_3, x_4) \prod_{i \ge 3} x_{2i-1}^{s}(x_{2i-1}, x_{2i}),$$

with $s = 2^{c}$, $e, f, g \in \overline{\mathbb{N}}$, $e \ge f \ge 2$, $e \ge g \ge 2$, then G is a Demuškin group with q(G) = 2, t(G) = 1, s(G) = s, $\chi(x_2) = -(1 + 2^{f})^{-1}$, $\chi(x_4) = (1 - 2^{g})^{-1}$, $\chi(x_i) = 1$ for $i \ne 2$, 4.

(iii) If p = 2 and r is a relation of the form (4) with $s = 2^r$, $e, f \in \overline{\mathbb{N}}$, $e \ge f \ge 2$, then G is a Demuškin group with q(G) = 2, t(G) = -1, s(G) = s, $\chi(x_1) = -1$, $\chi(x_3) = (1 - 2^f)^{-1}$, $\chi(x_i) = 1$ for $i \ne 1, 3$.

(iv) If p = 2 and r is a relation of the form (5) with $b_{ij} \in 2\mathbb{Z}_2$, then G is a Demuškin group with q(G) = 2, t(G) = 0, s(G) = 2.

COROLLARY 1. — Let G, G' be Demuškin groups of rank \mathfrak{R}_0 with $q(G) \neq 2$. Then $G \cong G'$ if and only if q(G) = q(G'), s(G) = s(G').

COROLLARY 2. — Let G, G' be Demuškin groups of rank \aleph_0 with $t(G) \neq 0$. Then $G \cong G'$ if and only if t(G) = t(G'), s(G) = s(G'), $\operatorname{Im}(\chi) = \operatorname{Im}(\chi')$.

COROLLARY 3. — Let r, $r' \in F''(F, F)$, where F is a free pro-p-group of rank \aleph_0 . Suppose that G = F/(r), G' = F/(r') are Demuškin groups with $t(G) \neq 0$. Then $G \cong G'$ if and only if there is an automorphism σ of F with $\sigma(r) = r'$.

COROLLARY 4. — For each $e \in \mathbb{N}$ there is a Demuškin group G with $s(G) = p^e$. If G is such a group and M is a torsion G-module, then $p^e \alpha = 0$ for any $\alpha \in H^2(G, M)$.

Remark. — The invariant q(G) can be determined from the invariants s(G), $\operatorname{Im}(\chi)$. In fact, if $s(G) = p^{c}$ and $E = \mathbb{Z}_{p}/p^{c}\mathbb{Z}_{p}$, then h(G) is the largest $h \in \overline{\mathbb{N}}$ with $h \leq e$ and $\operatorname{Im}(\chi) \subset I + p^{h}E$.

1.5. Application to Galois Theory. — If Γ is a profinite group, i. e. a projective limit of finite groups, then a Sylow *p*-subgroup of Γ is a closed subgroup *G* which is a pro-*p*-group with (Γ : *U*) prime to *p* for any open sub-group U containing G. Every profinite group has Sylow *p*-subgroups and any two are conjugate (cf. [12], p. I-4).

Now let K be a finite extension of \mathbf{Q}_{ρ} and let Γ be the Galois group of the extension \overline{K}/K , where \overline{K} is an algebraic closure of K. Given the Krull topology, the group Γ is a profinite group. If G is a Sylow *p*-sub-group of Γ , we have the following result :

THEOREM 5. — The group G is a Demuškin group of rank \aleph_0 and its dualizing module is $\mu_{p^{\infty}} = \bigcup_{n \ge 1} \mu_{p^n}$, where μ_{p^n} is the group of p^n -th roots

of unity. If ζ_p is a primitive p-th root of unity and $K' = K(\zeta_p)$, then $t(G) = (-1)^a$, where $a = [K' : \mathbf{Q}_p]$.

COROLLARY 1. — If $K' = K(\zeta_p)$, then q = q(G) is the highest power of p such that K' contains a primitive q-th root of unity.

Indeed, if $\sigma \in G$, then $\chi(\sigma)$ is the unique *p*-adic unit such that $\sigma(\zeta) = \zeta^{\chi(\sigma)}$ for any $\zeta \in \mu_{p^{\infty}}$. If ζ_q is a primitive *q*-th root of unity, it follows that ζ_q is left fixed by σ if and only if $\chi(\sigma) \in I + q\mathbf{Z}_p$. If *L* is the fixed field of *G*, it follows that $\zeta_q \in L$ if and only if $\operatorname{Im}(\chi) \subset I + q\mathbf{Z}_p$. But $\zeta_q \in L$ if and only if $\zeta_q \in K'$ since *L* and $K'(\zeta_q)$ are linearly disjoint over K'.

COROLLARY 2. — If $K = \mathbf{Q}_p$ with $p \neq 2$, there exists a generating system $(\sigma_i)_{i \in \mathbb{N}}$ of G having the single relation

$$\sigma_1^p(\sigma_1, \sigma_2) \prod_{i \ge 2} (\sigma_{2i-1}, \sigma_{2i}) = \mathrm{I}.$$

In fact, $q(G) = p \neq 2$ (cf. [10], p. 85).

COROLLARY 3. — If $K = \mathbf{Q}_2$, there exists a generating system $(\sigma_i)_{i \in \mathbf{N}}$ of G having the single relation

$$\sigma_1^2 \sigma_2^4 (\sigma_2, \sigma_3) \prod_{i \geq 2} (\sigma_{2i}, \sigma_{2i+1}) = \mathbf{I}.$$

Indeed, t(G) = -1 and $\operatorname{Im}(\chi) = \mathbf{U}_2$.

2. Preliminaries.

2.1. The Descending Central Series. — The descending central series of a pro-p-group F is defined inductively as follows : $F_1 = F$, $F_{n+1} = (F_n, F)$. The sequence of closed subgroups F_n of F have the following properties :

(i) $F_1 = F;$ (ii) $F_{n+1} \subset F_n;$ (iii) $(F_n, F_m) \subset F_{n+m}.$

J. P. LABUTE.

The first two properties are obvious, and the third is proved by induction. Such a sequence of subgroups is called a *filtration* of F. Let gr(F) be the direct sum of the \mathbf{Z}_{p} -modules $gr_{n}(F) = F_{n}/F_{n+1}$. Then gr(F) is, in a natural way, a Lie algebra over \mathbf{Z}_{p} (cf. [13], page LA 2.3) the bracket operation for homogeneous elements being defined as follows : If $i_{n} : F_{n} \rightarrow gr_{n}(F)$ is the canonical homomorphism and $u \in F_{n}$, $v \in F_{m}$, then

$$[i_n(u), i_m(v)] = i_{n+m}((u, v)).$$

Suppose now that F is the *free* pro-*p*-group of rank *n* generated by the elements x_1, \ldots, x_n . If ξ_i is the image of x_i in $gr_1(F)$, we have the following proposition :

PROPOSITION 1. — The Lie algebra gr(F) is a free Lie algebra (over \mathbf{Z}_{p}) with basis ξ_1, \ldots, ξ_n .

Proof. — Let L be the free Lie algebra (over \mathbb{Z}_{ρ}) on the letters ξ_1, \ldots, ξ_n , and let $\varphi : L \to \operatorname{gr}(F)$ be the Lie algebra homomorphism sending ξ_i into ξ_i . Using the fact that the x_i form a generating system of F, one shows by induction that the elements $\xi_i \in \operatorname{gr}_1(F)$ generate the Lie algebra $\operatorname{gr}(F)$. Hence φ is surjective.

To show that φ is injective, let A be the ring of associative but noncommutative formal power series on the letters t_1, \ldots, t_n , with coefficients in \mathbb{Z}_{p} . Let \mathfrak{m}^i be the ideal of A consisting of those formal power series whose homogeneous components are of degree $\geq i$. The ring A/\mathfrak{m}^i is a compact topological ring if we give it the p-adic topology, and, as a ring, A is the projective limit of the rings A/\mathfrak{m}^i . We give A the unique topology which makes it the projective limit of the compact topological rings A/\mathfrak{m}^i . Let U^i be the multiplicative group of formal power series with constant term equal to I. Then, with the induced topology, U^i is a pro-p-group containing the elements $I + t_i$. Since (x_i) is a basis of the free pro-p-group F, there is a continuous homomorphism ε of F into U^i sending x_i into $I + t_i$. If

$$\varepsilon(x) = 1 + u, \quad \varepsilon(y) = 1 + v, \quad \text{with } u \in \mathfrak{m}^{\prime}, \quad v \in \mathfrak{m}^{\prime},$$

then using the fact that $\varepsilon(xy) = \varepsilon(yx) \varepsilon((x, y))$, an easy calculation with formal power series shows that

(7)
$$\varepsilon((x, y)) = 1 + (uv - vu) + \text{higher terms.}$$

If $\theta_0: F \to \mathfrak{m}^1$ is defined by $\theta_0(x) = \varepsilon(x) - \iota$, then, applying (7) inductively, we see that $\theta_0(F_i) \subset \mathfrak{m}^i$. If $x \in F_i$, $y \in F_{i+1}$, then $\theta_0(xy) \equiv \theta_0(x)$ (mod \mathfrak{m}^{i+1}), and if $x, y \in F_i$, we have

$$\theta_0(xy) \equiv \theta_0(x) + \theta_0(y) \qquad (\mathrm{mod}\,\mathfrak{m}^{i+1}).$$

Hence \emptyset_i induces an additive homomorphism \emptyset of $\operatorname{gr}(F)$ into $\operatorname{gr}(A)$, where $\operatorname{gr}(A)$ is the graded algebra defined by the m-adic filtration of A. Moreover, (7) shows that \emptyset is a Lie algebra homomorphism. If τ_i is the image of t_i in $\operatorname{gr}_1(A)$, then $\operatorname{gr}(A)$ is a free associative algebra with basis (τ_i). By the theorem of Birkhoff-Witt (*cf.* [13], page LA 4.4) the Lie algebra homomorphism $\psi: L \to \operatorname{gr}(A)$ sending ξ_i into τ_i is injective. Since $\psi = \theta \circ \varphi$, we see that φ is injective, and hence bijective, Q. E. D.

If F is a free pro-p-group of infinite rank, then F is the projective limit of free pro-p-groups F(i) of finite rank, and $gr_u(F)$ is the projective limit of the groups $gr_u(F(i))$. In particular, this gives the following result :

PROPOSITION 2. — If (F_n) is the descending central series of a free prop-group F, then $gr_n(F) = F_n/F_{n+1}$ is a torsion-free \mathbf{Z}_p -module.

We shall need the following result on free Lie algebras, the proof of which was communicated to me by J.-P. SERRE :

PROPOSITION 3. — Let L be the free Lie algebra (over k) on the letters ξ_1, \ldots, ξ_n . Then [L, L] is generated, as a k-module, by the elements ad $(\xi_{i_l}) \ldots$ ad $(\xi_{i_k}) \xi_{i_{k+1}}$ with $i_{k+1} \ge i_1, \ldots, i_k$.

Proof. — For $1 \leq m \leq n$, let L_m be the subalgebra generated by ξ_1, \ldots, ξ_m , and let A_m be the ideal of L_m generated by ξ_m . Then, as a k-module, A_m is generated by ξ_m and the elements $\operatorname{ad}(\xi_{l_l}) \ldots \operatorname{ad}(\xi_{l_l}) \xi_m$ with $i_1, \ldots, i_k \leq m$. Indeed, the ideal A_m contains these elements, and the submodule they generate is invariant under the $\operatorname{ad}(\xi_l)$ for $i \leq m$. We now show that L is the direct sum of the submodules A_m , from which the proposition immediately follows. It suffices to show that $L_m = L_{m-1} \bigoplus A_m$ for $2 \leq m \leq n$. To do this let $\varphi_m : L_m \to L_{m-1}$ be the Lie algebra homomorphism such that $\varphi_m(\xi_m) = 0$, $\varphi_m(\xi_l) = \xi_l$ if i < m. Since L_m/A_m is the free Lie algebra generated by the images of ξ_1, \ldots, ξ_{m-1} and $\operatorname{Ker}(\varphi_m) \supset A_m$, it follows that φ_m . Since φ_m is the identity on L_{m-1} , the result follows.

Now let F be a free pro-p-group of rank \aleph_0 with basis $(x_i)_{i \in \mathbb{N}}$. Let (F_n) be the descending central series of F, and let ξ_i be the image of x_i in $\operatorname{gr}_1(F)$. If N_i is the closed normal subgroup of F generated by the x_j with $j \ge i$, let $F_{ni} = F_n \cap N_i$, and let B_{ni} be the image of F_{ni} in $\operatorname{gr}_n(F)$. We then have the following result :

PROPOSITION 4. — If T_n is the closed subgroup of $\operatorname{gr}_{n+1}(F)$ generated by the subgroups $\operatorname{ad}(\xi_i) B_{ni}$, then $T_n = \operatorname{gr}_{n+1}(F)$ for $n \ge 1$.

J. P. LABUTE.

Proof. — The pro-*p*-group $\operatorname{gr}_{n+1}(F)$ is generated by the elements of the form $\operatorname{ad}(\xi_{i_n}) \ldots \operatorname{ad}(\xi_{i_n}) \xi_{i_{n+1}}$. However, by Proposition 3, each such element is a linear combination of elements of the same form but with $i_{n+1} \ge i_1$. Since each of these latter elements belongs to T_n , it follows that T_n contains a generating system of $\operatorname{gr}_{n+1}(F)$. Since T_n is closed, the result follows.

COROLLARY. — Every element of $\operatorname{gr}_{n+1}(F)$ can be written in the form $\sum_{i \ge 1} [\xi_i, \tau_i] \text{ with } \tau_i \in \operatorname{gr}_n(F), \ \tau_i \to o.$

2.2. The Descending q-Central Series. — We shall need the following group-theoretical result :

PROPOSITION 5. — Let (F_n) be a filtration of a group F. If $x \in F_i$, $y \in F_j$, $a \in \mathbb{N}$, $b = \binom{a}{2}$, then : (i) $(xy)^a \equiv x^a y^a(y, x)^b \pmod{F_{i+j+1}}$; (ii) $(x^a, y) \equiv (x, y)^a((x, y), x)^b \pmod{F_{i+j+2}}$; (iii) $(x, y^a) \equiv (x, y)^a((x, y), y)^b \pmod{F_{i+j+2}}$.

Proof. — Assertion (iii) follows easily form (ii). We now prove (i) and (ii) by induction on a using the following formulae (cf. [13], page LA 2.1):

(8)
$$\begin{cases} (xy, z) = (x, z) ((x, z), y) (y, z), \\ (x, yz) = (x, z) (x, y) ((x, y), z). \end{cases}$$

For a = 1, the proposition is obvious.

(i) Working modulo F_{i+j+1} , we have

$$(xy)^{a+1} = xy(xy)^a \equiv xyx^a y^a(y, x)^b = x^{a+1}y(y, x^a)y^a(y, x)^b,$$

which in turn is congruent to $x^{a+1}y^{a+1}(y, x)^{a+b}$, and $a+b=\binom{a+1}{2}$.

(ii) Modulo F_{i+j+2} , we have

$$(x^{a+1}, y) = (xx^{\gamma}, y) \equiv (x, y) ((x, y), x^{a}) (x^{\gamma}, y)$$

 $\equiv (x, y) ((x, y), x)^{a} (x, y)^{a} ((x, y), x)^{b} \equiv (x, y)^{a+1} ((x, y), x)^{a+b}.$

Now let *F* be a pro-*p*-group, and let $q = p^h$ with $h \in \mathbb{N}$. The descending *q*-central series of *F* is defined inductively by $F_1 = F$, $F_{n+1} = F_n^{\prime\prime}(F, F_n)$. The groups F_n define a filtration of *F*. If gr(F) is the associated Lie algebra, then gr(F) is a Lie algebra over $\mathbb{Z}/q\mathbb{Z}$. If $P: F \to F$ is the mapping $x \mapsto x^{\prime\prime}$, we have $P(F_n) \subset F_{n+1}$ for $n \ge 1$. Using Proposition 5,

we see that P induces a map $\pi : \operatorname{gr}_n(F) \to \operatorname{gr}_{n+1}(F)$ for $n \ge 1$. The following result is an immediate consequence of Proposition 5:

PROPOSITION 6. — Let (F_n) be the descending q-central series of a prop-group F. If $\xi \in \operatorname{gr}_i(F)$, $\eta \in \operatorname{gr}_i(F)$, then :

(i) $\pi(\xi + \eta) = \pi\xi + \pi\eta$ if $i = j \neq 1$; (ii) $\pi(\xi + \eta) = \pi\xi + \pi\eta + \binom{q}{2}[\xi, \eta]$ if i = j = 1; (iii) $[\pi\xi, \eta] = \pi[\xi, \eta]$ if $i \neq 1$; (iv) $[\pi\xi, \eta] = \pi[\xi, \eta] + \binom{q}{2}[[\xi, \eta], \xi]$ if i = 1.

Remarks. — Using the fact that $\binom{q}{2} \equiv 0 \pmod{q}$ if $p \neq 2$, we see that $\operatorname{gr}(F)$ is a Lie algebra over $\mathbb{Z}/q\mathbb{Z}[\pi]$ for $p \neq 2$. If $q = 2^{h}$, then $\binom{q}{2} \equiv 2^{h-1} \pmod{q}$. Hence in this case $\operatorname{gr}(F)$ is not a Lie algebra over $\mathbb{Z}/q\mathbb{Z}[\pi]$. However, if $\operatorname{gr}'(F) = \sum_{n \geq 2} \operatorname{gr}_n(F)$, then $\operatorname{gr}'(F)$ is a Lie algebra over $\mathbb{Z}/q\mathbb{Z}[\pi]$. Also, $\operatorname{gr}(F) \otimes \mathbb{Z}/p\mathbb{Z}$ is a Lie algebra over $\mathbb{Z}/q\mathbb{Z}[\pi] \otimes \mathbb{Z}/p\mathbb{Z}$ if $q \neq 2$.

Now let F be a free pro-*p*-group of rank \mathfrak{R}_n with basis $(x_i)_{i \in \mathbb{N}}$, and let (F_n) be the descending *q*-central series of F. Let ξ_i be the image of x_i in $\operatorname{gr}_1(F)$. Let N_i be the closed normal subgroup of F generated by the x_j with $j \ge i$, let $F_{ni} = F_n \cap N_i$, and let B_{ni} be the image of F_{ni} in $\operatorname{gr}_n(F)$. We then have the following result :

PROPOSITION 7. — Let T_n be the closed subgroup of $\operatorname{gr}_{n+1}(F)$ generated by the subgroups $\operatorname{ad}(\xi_i) B_{ni}$, and let D be the closed subgroup of $\operatorname{gr}_2(F)$ generated by the elements $\pi\xi_i$. Then the group $\operatorname{gr}_{n+1}(F)$ is generated by T_n and $\pi^{n-1}D$.

Proof. — Using Proposition 6, we see that $gr_{n+1}(F)$ is generated by elements of the form

(9)
$$\pi^n \xi_i, \quad \pi^{n-k} \operatorname{ad} (\xi_{i_k}) \dots \operatorname{ad} (\xi_{i_k}) \xi_{i_{k+1}}$$

It follows, by Proposition 3, that $gr_{n+1}(F)$ is generated by elements of the form (9) with $i_{k+1} \ge i_1$. Since

 $\pi^{n-k}[\xi_i, \eta] = [\xi_i, \pi^{n-k}\eta] \quad \text{if } \eta \in \operatorname{gr}_m(F), \quad \text{with} \quad m \ge 2,$

and

$$\pi^{n-1}[\xi_i,\xi_j] = [\xi_i,\pi^{n-1}\xi_j] + \left[\xi_j,\binom{q}{2}\pi^{n-2}[\xi_i,\xi_j]\right] \quad \text{for} \quad n \ge 2,$$

it follows that each of the elements in (9) is in the closed subgroup $T_n + \pi^{n-1}D$.

Q. E. D.

COROLLARY. — Every element of $gr_{n+1}(F)$ can be written in the form

$$\sum_{i \ge 1} a_i \pi^n \xi_i + \sum_{i \ge 1} [\xi_i, \tau_i],$$

where $a_i \in \mathbb{Z}/q\mathbb{Z}$, $\tau_i \in \operatorname{gr}_n(F)$, $\tau_i \to o$.

2.3. Cohomology and Filtrations. — Let F be a free pro-p-group, and let $q = p^h$ with $h \in \mathbb{N}$. Let $r \in F'(F, F)$ with $r \neq I$, and let R be the closed normal subgroup of F generated by r. If G = F/R and $\mathbf{k} = \mathbf{Z}/q\mathbf{Z}$, we have the exact sequence

$$0 \to H^{\scriptscriptstyle 1}(G, \, \mathbf{k}) \stackrel{\mathrm{Inf}}{\to} H^{\scriptscriptstyle 1}(F, \, \mathbf{k}) \stackrel{\mathrm{Res}}{\to} H^{\scriptscriptstyle 1}(R, \, \mathbf{k}) \stackrel{\mathrm{res}}{\to} H^{\scriptscriptstyle 2}(G, \, \mathbf{k}) \stackrel{\mathrm{Inf}}{\to} H^{\scriptscriptstyle 2}(F, \, \mathbf{k}).$$

Since $R \subset F^q(F, F)$, the first inflation homomorphism is bijective, and we use this homomorphism to identify $H^1(G, \mathbf{k})$ with $H^1(F, \mathbf{k})$. Hence tg is injective. But tg is also surjective since $H^2(F, \mathbf{k}) = 0$. Now let $g \in G$, $\varphi \in H^1(R, \mathbf{k})$. If $x \in R$, then $(g \varphi)(x) = \varphi(g^{-1}xg)$. Hence $g \varphi = \varphi$ if and only if $\varphi((x, g)) = 0$ for all $x \in R$. Thus $\varphi \in H^1(R, \mathbf{k})^{r_i}$ if and only if φ vanishes on $R^q(R, F)$. We may therefore identify $H^1(R, \mathbf{k})^{r_i}$ with the dual of the pro-*p*-group $R/R^q(R, F)$. We now show that $R/R^q(R, F)$ is cyclic of order *q*. This follows immediately form the following lemma :

LEMMA. — The
$$\mathbf{Z}_{p}$$
-module $N = R/(R, F)$ is free of rank 1.

Proof. — Let (F_n) be the descending central series of F. Since the F_n intersect in the identity and $r \neq i$, there is an $n \in \mathbb{N}$ with $r \in F_n$, $r \notin F_{n+1}$. Hence $R \subset F_n$ and $(R, F) \subset F_{n+1}$. Passing to quotients, we obtain a homomorphism f of N into $gr_n(F)$ sending the generator $\gamma = r(R, F)$ of N into a non-zero element τ of $gr_n(F)$. Since $gr_n(F)$ is a torsion-free \mathbb{Z}_{p} -module (cf. Proposition 2), it follows that f(N) is free of rank i generated by τ , and hence that N is free of rank i generated by γ .

Using the above results, we see that the homomorphism $\rho: H^2(G, \mathbf{k}) \to \mathbf{k}$, defined by $\rho(\alpha) = -tg^{-1}(\alpha)(r)$, is an isomorphism. Given the relation r, we always use this isomorphism to identify $H^2(G, \mathbf{k})$ with \mathbf{k} .

Now let (F_n) be the descending q-central series of F. If $(x_i)_{i \in \mathbb{N}}$ is a basis of F, then

$$\boldsymbol{r} \equiv \prod_{i \ge 1} x_i^{q_{a_i}} \prod_{i < j} (x_i, x_j)^{a_{i_j}} \pmod{F_3}$$

with $a_i, a_{ij} \in \mathbf{k}$. If (χ_i) is the basis of $H^1(G, \mathbf{k})$ defined by $\chi_i(x_j) = \delta_{ij}$, we have the following proposition :

PROPOSITION 8.

(a) If $\chi_i \cup \chi_j \in H^2(G, \mathbf{k}) = \mathbf{k}$ is the cup product of χ_i, χ_j , then $\chi_i \cup \chi_j = a_{ij}$ if i < j, and $\chi_i \cup \chi_i = \begin{pmatrix} q \\ 2 \end{pmatrix} a_i$.

(b) If $\beta: H^1(G, \mathbf{k}) \to H^2(G, \mathbf{k}) = \mathbf{k}$ is the homomorphism defined by the exact sequence

$$o \rightarrow \mathbf{Z}/q\mathbf{Z} \rightarrow \mathbf{Z}/q^2\mathbf{Z} \rightarrow \mathbf{Z}/q\mathbf{Z} \rightarrow o$$
,

then : (i) $\beta(\chi) = a_i$, and (ii) $\chi \cup \chi = \begin{pmatrix} q \\ 2 \end{pmatrix} \beta(\chi)$ for any $\chi \in H^1(G, \mathbf{k})$.

Proof. — The proof of (a) when F is of finite rank can be found in [8] (p. 15). The proof given there applies immediately to the case Fis of infinite rank. We now prove (b).

(i) Let $\chi = \chi_i$ and let $s : \mathbf{Z}/q\mathbf{Z} \to \mathbf{Z}/q^2\mathbf{Z}$ be defined by

$$s(n+q\mathbf{Z})=n+q^{_{2}}\mathbf{Z}$$
 for $o \leq n \leq q-1$.

Let $\chi' = s \circ \chi$, and let $c'(g, h) = \chi'(g) + \chi'(h) - \chi'(gh)$ for $g, h \in G$. Then c'(g, h) = qc(g, h) for a unique element $c(g, h) \in \mathbb{Z}/q\mathbb{Z}$. The 2-cochain c is a cocycle whose cohomology class α is $\beta(\chi)$. Let $\varphi = tg^{-1}(\alpha)$. Then by the definition of the transgression, the homomorphism φ is the restriction of a continuous function $f: F \to \mathbb{Z}/q\mathbb{Z}$ such that (in $\mathbb{Z}/q^2\mathbb{Z}$)

$$q(f(x) + f(y) - f(xy)) = \chi'(x) + \chi'(y) - \chi'(xy)$$

for any $x, y \in F$. Moreover, after subtracting from f a suitable homomorphism, we can suppose that $f(x_i) = 0$ for all j. An easy calculation then shows that $f(x_i') = -\delta_{ij}$ and $f((x_i, x_k)) = 0$ for all $h, j, k \in \mathbb{N}$. It follows that $\varphi(r) = -a_i$, and hence that $\beta(\gamma_i) = a_i$.

(ii) Using (a) and (i) above, we see that

$$\chi_i \cup \chi_i = \begin{pmatrix} q \\ 2 \end{pmatrix} \beta(\chi_i).$$

If $\chi = \sum u_i \chi_i$, then

$$\chi \cup \chi = \sum u_i^2 \chi_i \cup \chi_i = \sum u_i^2 \begin{pmatrix} q \\ 2 \end{pmatrix} \beta(\chi_i) = \sum u_i \begin{pmatrix} q \\ 2 \end{pmatrix} \beta(\chi_i) = \begin{pmatrix} q \\ 2 \end{pmatrix} \beta(\chi_i) = \begin{pmatrix} q \\ 2 \end{pmatrix} \beta(\chi_i)$$
since $u_i^2 \begin{pmatrix} q \\ 2 \end{pmatrix} = u_i \begin{pmatrix} q \\ 2 \end{pmatrix}$ in $\mathbf{Z}/q\mathbf{Z}$.
Q. E. D.

2.4. Bilinear Forms on $(\mathbb{Z}/q\mathbb{Z})^{(\mathbb{N})}$. — We begin with a proposition which is due to KAPLANSKY [6].

PROPOSITION 9. — Let V be a vector space of dimension \mathbf{R}_0 , and let φ be a non-degenerate alternate bilinear form on V. Then V has a symplectic basis, i. e. a basis $(v_i)_{i \in \mathbf{N}}$ with $\varphi(v_{2i-1}, v_{2i}) = -\varphi(v_{2i}, v_{2i-1}) = 1$ for $i \ge 1$, and $\varphi(v_i, v_j) = 0$ for all other i, j.

Proof. — Let $(u_i)_{i \in \mathbb{N}}$ be an arbitrary basis of V, and suppose that we have already chosen v_1, \ldots, v_{2n} . If X is the subspace generated by v_1, \ldots, v_{2n} , let u_m be the first of the u_i such that $u_i \notin X$. Since φ is non-degenerate on X, the space V is the direct sum of X and its orthogonal complement X'. Let w be the X'-component of u_m , and choose $w \in X'$ with $\varphi(w, z) = i$. We may then choose $v_{2n+1} = w$, $v_{n+2} = z$. Proceeding in this way, we eventually pick up all the u_i .

Q. E. D.

The following proposition generalizes a result of KAPLANSKY [6]:

PROPOSITION 10. — Let V be a free $\mathbb{Z}/q\mathbb{Z}$ -module of rank \mathfrak{K}_{0} , where q = p'', with $h \in \mathbb{N}$, and let φ be a skew-symmetric bilinear form on V whose reduction modulo p is non-degenerate. Let β be a linear form on V, and suppose that either φ is alternate, or $q \neq 2$ and $\varphi(v, v) = \begin{pmatrix} q \\ 2 \end{pmatrix} \beta(v)$ for any $v \in V$. Then there exist integers c, d with $0 \leq c \leq d \leq h$ and a basis $(v_i)_{i \in \mathbb{N}}$ of V such that

(a) $\beta(v_1) = p^r$, $\beta(v_2) = 0$, and $\beta(v_{2i-1}) = p^r$, $\beta(v_{2i}) = 0$ for $i \ge 2$;

(b) $\varphi(v_{2i-1}, v_{2i}) = 1$ for $i \ge 1$, and $\varphi(v_i, v_j) = 0$ for all other v_i, v_j with i < j.

Proof. — Since the reduction of φ modulo p is non-degenerate and alternate, there exists by Proposition 9 a symplectic basis (v'_i) of V/pV. If (v_i) is a family of elements of V lifting the v'_i , then it is easy to see that the v_i form a basis of V. Moreover, suitably choosing the basis (v'_i) , we can choose v_1 to be a given element $v \notin pV$. In particular, we can choose v_1 so that $\beta(v_1) = p^r$, where c is the unique integer with $o \leq c \leq h$ such that p^c generates Im(β).

Now (b) holds modulo p, and, replacing v_{2i} by $\varphi(v_{2i-1}, v_{2i})^{-1}v_{2i}$, we may assume that $\varphi(v_{2i-1}, v_{2i}) = \mathbf{1}$ for all $i \geq \mathbf{1}$. Then, replacing v_i by

$$v_i + \sum_{j < i/2} (\varphi(v_i, v_{2j-1}) v_{2j} + \varphi(v_{2j}, v_i) v_{2j-1}),$$

we obtain a basis (v_i) such that condition (b) is satisfied and such that $\beta(v_i) = p^c$. Let d be the smallest integer with $c \leq d \leq h$ such that

there is an infinite subset S_d of **N** with the property that for $i \in S_d$ we have $\beta(v_i) = p^d u_i$ with $u_i \neq 0 \pmod{p}$, and let N be the smallest even integer ≥ 2 such that $\beta(v_i) \equiv 0 \pmod{p'}$ for all i > N. Then it is possible to choose a strictly increasing sequence $(n_i)_{i \in \mathbb{N}}$ of even integers with $n_1 = N$ so that, for $i \neq 1$, we have $j \in S_d$ for at least one j with $n_{i-1} < j \leq n_i$. Let W_1 be the submodule generated by v_1, \ldots, v_N , and for i > 1 let W_i be the submodule generated by the v_j with $n_{i-1} < j \leq n_i$. The following lemma applied to W_1 shows that we may assume N = 2, and another application to the W_i yields the result.

LEMMA. — Let W be a free $\mathbb{Z}/q\mathbb{Z}$ -module of rank $2n, n \ge 1$, and let φ, β be forms on W as in Proposition 10. If u_1, \ldots, u_{2n} generate Im(β), there exists a basis (w_i) of W such that : (a) $\beta(w_i) = u_i$; (b) $\varphi(w_{2i-1}, w_{2i}) = 1$ for $1 \le i \le n$, and $\varphi(w_i, w_j) = 0$ for all other i, j with i < j.

Proof. — We first prove the lemma for the case $u_1 = u$ is a generator of $\operatorname{Im}(\beta)$ and $u_i = 0$ otherwise. Let (w_i) be a basis of W such that $\beta(w_1) = u$ and $\beta(w_i) = 0$ for $i \neq 1$. Since the reduction of φ modulo pis non-degenerate and alternate, there is an $i \geq 2$ and a unit t in $\mathbb{Z}/q\mathbb{Z}$ such that $\varphi(w_1, w_i) = t$. After a permutation, we may assume that i = 2, and, after multiplying w_2 by t^{-1} , we may even assume that $\varphi(w_1, w_2) = 1$. If $\varphi(w_1, w_i) = a_i \neq 0$ for some i > 2, replace w_i by $w_i - a_i w_2$. In this way we may also assume that $\varphi(w_1, w_i) = 0$ for i > 2.

If N is the submodule generated by w_3, \ldots, w_{2n} , then, on N, the form φ is alternate and its reduction modulo p is non-degenerate. Hence we may choose $w_3, \ldots, w_{2n} \in N$ so that (b) is satisfied for i, j > 2. Condition (a) still holds, and (b) is true for all i, j except possibly we may have $\varphi(w_2, w_i) \neq 0$ for some i > 2. If this is so, replace w_2 by $w_2 + a_3 w_3 + \ldots + a_{2n} w_{2n}$, where $a_{2i} = \varphi(w_2, w_{2i-1})$ and $a_{2i-1} = \varphi(w_{2i}, w_2)$. Then the resulting basis is the one required.

For the general case, let v_1, \ldots, v_{2n} be an arbitrary basis of W. Let β' be the linear form on W such that $\beta'(v_i) = u_i$, and let φ' be the bilinear form on W defined by

$$arphi'(v_i, v_i) = inom{q}{2}eta'(v_i), \qquad arphi'(v_{2i-1}, v_{2i}) = - arphi'(v_{2i}, v_{2i-1}) = \mathbf{I},$$

and

 $\varphi'(v_i, v_j) = 0$ for all other i, j.

Then the pair (φ', β') satisfies the hypotheses of the lemma, and, by what we have shown above, there is an automorphism σ of W (as a module) such that

$$\varphi(x, y) = \varphi'(\sigma(x), \sigma(y)), \qquad \beta(x) = \beta'(\sigma(x))$$

J. P. LABUTE.

for all $x, y \in W$. If $w_i = \sigma^{-1}(v_i)$, then (w_i) is a basis of W, and

 $\varphi(w_i, w_j) = \varphi'(v_i, v_j), \qquad \beta(w_i) = \beta'(v_i).$

Hence (w_i) is the required basis.

Q. E. D.

Remark. — The integer d in Proposition 10 can be invariantly described as follows : For $o \leq e \leq h$, let $V_e = V/p^e V$, and let φ_e , β_e be the forms obtained from φ , β on reducing modulo p^e . Let ψ_e be the homomorphism of V_e into its dual defined by the bilinear form ψ_e , and let $\psi = \psi_h$. Then $\beta \in \operatorname{Im}(\psi)$ if and only if d = h. If $\beta \notin \operatorname{Im}(\psi)$, then dis the smallest integer $\geq o$ such that $\beta_{d+1} \notin \operatorname{Im}(\psi_{d+1})$.

The last proposition of this section, and which again is due to KAPLANSKY [6], classifies non-alternate symmetric bilinear forms on vector spaces of dimension \mathfrak{R}_0 over a perfect field k of characteristic 2. Recently (cf. Notices of the A. M. S., 66 T-4, January 1966), H. GROSS and R. D. ENGLE have classified such forms replacing the condition $[k : k^2] = 1$ by the condition $[k : k^2] < \infty$. In this paper, we are interested in the case $k = \mathbf{Z}/2\mathbf{Z}$.

PROPOSITION 11. — Let k be a perfect field of characteristic 2, and let V be a vector space over k of dimension \mathbf{R}_0 . If φ is a non-degenerate nonalternate symmetric bilinear form on V, then precisely one of following three possibilities holds :

(i) V is the orthogonal direct sum of subspaces W, Z with W onedimensional and φ alternate on Z;

(ii) V is the orthogonal direct sum of subspaces W, Z with W twodimensional, φ non-alternate on W, and φ alternate on Z;

(iii) V has an orthonormal basis.

Proof. — Let A be the subspace formed by the elements v with $\varphi(v, v) = o$. Then V/A is one-dimensional, and A', the orthogonal complement of A, is at most one-dimensional.

Case I. — A' is one-dimensional and is not in A. Then $V = A \oplus A'$, and φ is of type (i). Conversely, any form of type (i) falls in this category.

Case II. — A' is one-dimensional an is contained in A. Let z be any element not in A, and let Z be the subspace of A annihilated by z. Then dim (A/Z) = I, and A' is not contained in Z. Thus $A = Z \bigoplus A'$, and $V = Z \bigoplus W$, where W is the subspace spanned by A' and z. Hence φ is of type (ii). Moreover, any form of type (ii) falls in Case II.

Case III. — A' = 0. In this case, we shall show that V has an orthonormal basis $(v_i)_{i \in \mathbb{N}}$. Let $(u_i)_{i \in \mathbb{N}}$ be any basis of V with $\varphi(u_1, u_1) = 1$,

and suppose that v_1, \ldots, v_n have already been chosen. If X is the subspace they span, let u_m be the first of the u_i with $u_i \notin X$, and let z be the X'-component of u_m . If $\varphi(z, z) = a^2 \neq o$, we choose $v_{n+1} = az$. If $\varphi(z, z) = o$, find $w \in X'$ with $\varphi(z, w) = 1$. If $\varphi(w, w) = b^2 \neq o$, choose $v_{n+1} = b^{-1}w$, $v_{n+2} = bz + b^{-1}w$. If $\varphi(w, w) = o$, choose $v_{n+1} = v + w$, $v_{n+2} = v_n + z + w$, and replace v_n by $v_n + z$. Proceeding in this way, we eventually pick up all the u_i . Conversely, it is easy to see that a form with an orthonormal basis falls under Case III.

COROLLARY. — Let φ be of type (i) or (ii), and let V be the union of an increasing family (V_i) of finite-dimensional subspaces on which φ is non-degenerate. If φ is of type (i) [resp. (ii)], then dim (V_i) is odd (resp. even) for i sufficiently large.

Proof. — If W is the subspace found in the **Proposition**, then V is the direct sum of W and its orthogonal complement W', and φ is alternate on W'. Now let X be a finite-dimensional subspace of V on which φ is non-degenerate. If $W \subset X$, then X is the orthogonal direct sum of W and another subspace $Y \subset W'$. Since φ is non-degenerate and alternate on Y, it follows that dim(Y) is even, and hence that dim(X) has the same parity as dim(W). The corollary now follows from the fact that W is contained in V_i for *i* sufficiently large.

3. Proof of Theorems 1 and 2.

3.1. **Proof of Theorem 1.** — If G is a Demuškin group of rank \aleph_0 , then, by Propositions 9 and 11, the vector space $H^1(G)$ is the union of an increasing family (V_i) of finite-dimensional non-zero subspaces such that the cup product

$$\varphi: H^1(G) \times H^1(G) \rightarrow H^2(G)$$

is non-degenerate on each V_i . Choose a basis (χ_i) of $H^{\vee}(G)$ such that $\chi_1, \ldots, \chi_{n_i}$ is a basis of V_i . This choice of basis gives an isomorphism $\emptyset : H^{\vee}(G) \to (Z/pZ)^{(\mathbf{N})}$. Let F be a free pro-p-group of rank \mathbf{R}_0 , and let f be a continuous homomorphism of F onto G such that $\theta = H^{\vee}(f)$ (cf. [12], p. I-36). If $R = \operatorname{Ker}(f)$, then R = (r) with $r \in F^{\mu}(F, F)$. We identify G with F/R by means of f. Using the duality between the compact group $F/F^{\mu}(F, F) = G/G^{\mu}(G, G)$ and the discrete group $H^{\vee}(G)$, we obtain a generating system (ξ_i) of $F/F^{\mu}(F, F)$ such that $\chi_i(\xi_j) = \delta_{ij}$. Now let $\sigma : F/F^{\mu}(F, F) \to F$ be a continuous section, sending σ into r (cf. [12], p. I-2, prop. 1). If $x_i = \sigma(\xi_i)$, then (x_i) is a basis of F. Now let $f_n : F \to F$ be the continuous homomorphism defined by $f_n(x_i) = x_i$ if $1 \leq i \leq n$, $f_n(x_i) = r$ if i > n. If $n_i = \dim(V_i)$, let $F_i = \operatorname{Im}(f_{n_i})$, $r_i = f_{n_i}(r)$, $G_i = F_i/(r_i)$, and let $\psi_i : G \to G_i$ be the homomorphism

induced by $f_{n,\cdot}$. We shall show that the closed normal subgroups $H_i = \text{Ker}(\psi_i)$ are the ones required. If g_i is the image of x_i in G, then Ker (ψ_i) is the closed normal subgroup of G generated by the g_j with $j > n_i$. Hence $H_{i+1} \subset H_i$. Since $g_i \to I$ as $i \to \infty$, it also follows that the H_i intersect in the identity. It remains to show that $G_i = G/H_i$ is a Demuskin group of finite rank. To do this, we use the commutative diagram

$$H^{1}(G) imes H^{1}(G) \longrightarrow H^{2}(G)$$
 $\uparrow \qquad \uparrow \qquad \uparrow$
 $H^{1}(G_{i}) imes H^{1}(G_{i}) \longrightarrow H^{2}(G_{i})$

where the vertical arrows are the inflation homomorphisms. The homomorphism Inf : $H^{1}(G_{i}) \rightarrow H^{1}(G)$ maps $H^{1}(G_{i})$ isomorphically onto V_{i} . Since the cup product φ is non-degenerate on V_{i} , the above diagram shows that Inf : $H^{2}(G_{i}) \rightarrow H^{2}(G)$ is not the zero homomorphism. Since dim $H^{2}(G_{i}) \leq 1$ and dim $H^{2}(G) = 1$, it follows that this homomorphism must be bijective. This implies that $H^{2}(G_{i})$ is one-dimensional and that the cup product :

$$H^1(G_i) \times H^1(G_i) \rightarrow H^2(G_i)$$

is non-degenerate. Hence G_i is a Demuškin group of rank n_i .

Conversely, assume that we are given such a family of quotients $G_i = G/H_i$ of the pro-*p*-group *G*, the group *G* being of rank \aleph_0 . Then $cd(G) \leq 2$. If cd(G) < 2, then *G* is a free pro-*p*-group (*cf.* [12], p. I-37). So assume that cd(G) = 2. Since $H^2(G)$ is the direct limit of the onedimensional subspaces $H^2(G_i)$, it follows that Inf : $H^2(G_i) \rightarrow H^2(G)$ is an isomorphism for *i* sufficiently large. We assume that we have chosen the H_i so that this is true for all *i*. If V_i is the image of $H^1(G_i)$ in $H^1(G)$ under the inflation map, the commutative diagram then shows that the cup product $\varphi : H^1(G) \times H^1(G) \rightarrow H^2(G)$ is non-degenerate on V_i . Since $H^1(G)$ is the union of the V_i , it follows that φ is nondegenerate. Hence *G* is a Demuškin group.

3.2. **Proof of Theorem** 2. — To prove (i), it suffices to consider the case G is of rank \aleph_0 (cf. [11], p. 252-309). Let U be an open subgroup of the Demuškin group G and let (H_i) be a decreasing family of closed normal subgroups of G with $\bigcap_i H_i = I$ and each quotient G/H_i a Demuškin group of finite rank $\neq I$. If $U_i = U \cap H_i$, then $U/U_i = UH_i/H_i$ is an open subgroup of the Demuškin group G/H_i . Since G/H_i is of finite rank $\neq I$, it follows that U/U_i is a Demuškin group of finite rank.

Since $\bigcap_{i} U_{i} = I$, it follows, by Theorem 1, that U is either a free pro-

p-group or a Demuškin group. But, since U is open in G and cd(G) = 2, we have cd(U) = 2 (cf. [12], p. I-20, Prop. 14). Hence U is a Demuškin group.

For the proof of (ii), let K be a closed subgroup of the Demuškin group G with $(G:K) = \infty$. This implies, in particular, that $n(G) \neq 1$. If U, V are open subgroups of G with $U \subset V$, the corestriction homomorphism

$$\operatorname{Cor}: H^2(U) \to H^2(V)$$

is surjective since cd(V) = 2 (cf. [12], p. I-20, lemme 4) and hence is bijective since $H^2(U) \cong H^2(V) \cong \mathbb{Z}/p\mathbb{Z}$. But, if $U \neq V$ and

$$\operatorname{Res}: H^2(V) \rightarrow H^2(U)$$

is the restriction homomorphism, we have

$$\operatorname{Cor} \circ \operatorname{Res} = \circ$$
 since $\operatorname{Cor} \circ \operatorname{Res} = (V : U) = p^n$.

It follows that Res is the zero homomorphism if $U \neq V$. Since K is the intersection of the open subgroups containing it, $H^2(K)$ is the direct limit of the groups $H^2(U)$, where U runs over the open subgroups of G containing K, the homomorphisms being the restriction homomorphisms. Since $(G:K) = \infty$, it follows that $H^2(K) = 0$. Hence K is a free pro-p-group.

4. Proof of Theorem 3.

In this section, F is a free pro-p-group of rank \aleph_0 ; $r \in F''(F, F)$; G = F/(r) is a Demuškin group; q = q(G); h = h(G) : t = t(G). We divide the proof of theorem 3 into cases.

4.1. The Case q = 0. — If $x = (x_i)_{i \in \mathbb{N}}$ is a basis of F, let

$$r_{0}(x) = \prod_{i \ge 1} (x_{2i-1}, x_{2i}).$$

Let (F_n) be the descending central series of F. We first show that we can choose the basis (x_i) so that $r \equiv r_0(x)$ modulo F_3 .

Let $H^{i}(G, \mathbf{Z}_{p}) = \lim_{\stackrel{\longrightarrow}{m}} H^{i}(G, \mathbf{Z}/p^{m}\mathbf{Z})$. Then $V = H^{i}(G, \mathbf{Z}_{p})$ can be

identified with the set of continuous homomophisms of G into \mathbf{Z}_{ρ} , where \mathbf{Z}_{ρ} is given the *p*-adic topology. If $(\chi_i)_{i \in \mathbb{N}}$ is a family of elements of V such that the $\chi_i \pmod{p}$ form a basis of $V/pV = H^{1}(G)$, then every

BULL. SOC. MATH. - T. 94, FASC. 3. 15

element of V can be uniquely written in the form $\sum_{i>1} a_i \chi_i$ with $a_i \in \mathbf{Z}_p$

and $a_i \rightarrow 0$. We call such a family of elements a *basis* of V. Using the cup product :

$$H^1(G, \mathbf{Z}/p^m\mathbf{Z}) \times H^1(G, \mathbf{Z}/p^m\mathbf{Z}) \rightarrow H^2(G, \mathbf{Z}/p^m\mathbf{Z})$$

and passing to the limit we obtain a cup product :

$$H^{\scriptscriptstyle +}(G, \mathbf{Z}_{\rho}) \times H^{\scriptscriptstyle +}(G, \mathbf{Z}_{\rho}) \rightarrow H^{\scriptscriptstyle 2}(G, \mathbf{Z}_{\rho})$$

which is \mathbb{Z}_{p} -bilinear (and continuous). Moreover, under the identification of $H^{2}(G, \mathbb{Z}/p^{m}\mathbb{Z})$ with $\mathbb{Z}/p^{m}\mathbb{Z}$ the map $H^{2}(G, \mathbb{Z}/p^{m+1}\mathbb{Z}) \to H^{2}(G, \mathbb{Z}/p^{m}\mathbb{Z})$ is the canonical homomorphism of $\mathbb{Z}/p^{m+1}\mathbb{Z}$ onto $\mathbb{Z}/p^{m}\mathbb{Z}$. Hence, passing to the limit, we may identify $H^{2}(G, \mathbb{Z}_{p})$ with \mathbb{Z}_{p} .

If (x_i) is a basis of F, then

$$r \equiv \prod_{i < j} (x_i, x_j)^{\gamma_i} \qquad (\operatorname{mod} F_z),$$

where $a_{ij} \in \mathbb{Z}_p$. Let $\chi_i: F \to \mathbb{Z}_p$ be the continuous homomorphism defined by $\chi_i(x_j) = \delta_{ij}$. Then (χ_i) is a basis of $H^{\scriptscriptstyle 1}(G, \mathbb{Z}_p)$. Since each such homomorphism χ_i vanishes on (F, F) and since $r \in (F, F)$, we may view the χ_i as elements of $H^{\scriptscriptstyle 1}(G, \mathbb{Z}_p)$. We then have the following lemma :

LEMMA 1. — The cup product $H^{1}(G, \mathbf{Z}_{p}) \times H^{1}(G, \mathbf{Z}_{p}) \rightarrow H^{2}(G, \mathbf{Z}_{p}) = \mathbf{Z}_{p}$ is alternating and $\chi_{i} \cup \chi_{j} = a_{ij}$ if i < j.

Proof. — If ε_m is the canonical homomorphism of \mathbf{Z}_{ρ} onto $\mathbf{Z}_{\rho}/p^m \mathbf{Z}_{\rho} = \mathbf{Z}/p^m \mathbf{Z}$, let $\chi_i^{(m)} = \varepsilon_m \circ \chi_i$, $a_{ij}^{(m)} = \varepsilon_m(a_{ij})$. Then, by Proposition 8, $\chi_i^{(m)} \cup \chi_i^{(m)} = o$ and $\chi_i^{(m)} \cup \chi_j^{(m)} = a_{ij}^{(m)}$ if i < j. It follows that $\chi_i \cup \chi_i = o$ and $\chi_i \cup \chi_j = a_{ij}$ for i < j.

Q. E. D.

The basis (χ_i) of $H^1(G, \mathbf{Z}_{\rho})$ is said to be a symplectic basis if $\chi_{2i-1} \cup \chi_{2i} = -\chi_{2i} \cup \chi_{2i-1} = 1$ and $\chi_i \cup \chi_j = 0$ for all other *i*, *j*. The existence of a symplectic basis of $V = H^1(G, \mathbf{Z}_{\rho})$ follows from the following lemma together with the existence of a symplectic basis on $V/pV = H^1(G)$ (cf. Proposition 9).

LEMMA 2. — Let M be a free $\mathbb{Z}/p^m\mathbb{Z}$ -module of rank \mathfrak{H}_0 with an alternating form φ . If $(\overline{\chi}_i)$ is a symplectic basis of $M/p^{m-1}M$, there exists a symplectic basis of F lifting $(\overline{\chi}_i)$.

Proof. Let (χ'_i) be a basis of M lifting the symplectic basis (χ_i) . Then $\varphi(\chi'_{2i-1}, \chi'_{2i}) = \mathbf{I} + p^{m-1}u_i$ for $i \ge \mathbf{I}$ and $\varphi(\chi'_i, \chi'_j) = p^{m-1}u_{ij}$

for all other *i*, *j* with $i \leq j$. Replacing χ'_{2i-1} by $(\mathbf{1} + p^{m-1}u_i)^{-1}\chi'_{2i-1}$, we may assume that $\varphi(\chi'_{2i-1}, \chi'_{2i}) = \mathbf{1}$ for all $i \geq \mathbf{1}$. Then the basis (χ_i) , where

$$\chi_{i} = \chi'_{i} + \sum_{j < i/2} (\varphi(\chi'_{i}, \chi'_{2j-1}) \chi'_{2j} + \varphi(\chi'_{2j}, \chi'_{i}) \chi'_{2j-1})$$

is the required symplectic basis of M.

Q. E. D.

The existence of a basis $x = (x_i)$ of F such that $r = r_0(x) \pmod{F_3}$ now follows from lemmas 1 and 2 and the following lemma :

LEMMA 3. — If $(\chi_i)_{i \in \mathbb{N}}$ is a basis of $H^{\perp}(G, \mathbb{Z}_p)$, there exists a basis (x_i) of F such that $\chi_i(x_j) = \delta_{ij}$.

Proof. — If ε_m is the canonical homomorphism of \mathbf{Z}_{ρ} onto $\mathbf{Z}/p^m \mathbf{Z}$, let $\chi_i^{(m)} = \varepsilon_m \circ \chi_i$. Using the duality between the compact groups $F/F^{\rho m}(F, F)$ and the discrete group $H^{+}(F, \mathbf{Z}/p^m \mathbf{Z})$, we obtain a generating system $(\xi_i^{(m)})$ of $F/F^{\rho m}(F, F)$ such that $\chi_i^{(m)}(\xi_j^{(m)}) = \delta_{ij}$. Since $F/(F, F) = \lim_{m} F/F^{\rho m}(F, F)$ and the image of $\xi_i^{(m+1)}$ in $F/F^{\rho m}(F, F)$ is $\xi_i^{(m)}$, there exists $\xi_i \in F/(F, F)$ such that, for all $m, \xi_i^{(m)}$ is the image of $\xi_i^{(m)}$. If $\sigma : F/(F, F) \to F$ is a continuous section such that $\sigma(o) = i$ and if $x_i = \sigma(\xi_i)$, then (x_i) is the required basis of F.

Q. E. D.

Suppose now that we have found a basis (x_i) of F such that $r \equiv r_0(x)$ modulo F_{n+1} for some $n \geq 2$. If $(l_i)_{i \in \mathbb{N}}$ is a family of elements of F_n with $t_i \rightarrow 1$, and if $y_i = x_i t_i^{-1}$, then $y = (y_i)$ is a basis of F and $r_0(x) = r_0(y) d_n$ with $d_n \in F_{n+1}$. If τ_i (resp. ζ_i) is the image of t_i (resp. x_i) in $\operatorname{gr}_n(F)$ [resp. $\operatorname{gr}_1(F)$], then, using (8), we see that the image of d_n in $\operatorname{gr}_{n+1}(F)$ is

$$\delta_{n}(\tau) = \sum_{i \ge 1} ([\xi_{2i-1}, \tau_{2i}] + [\tau_{2i-1}, \xi_{2i}]),$$

where $\tau = (\tau_i)$. If W_n is the submodule of $V_n = \operatorname{gr}_n(F)^{\mathbb{N}}$ consisting of those families $\tau = (\tau_i)$ with $\tau_i \to 0$, we obtain a homomorphism $\partial_n : W_n \to \operatorname{gr}_{n+1}(F)$. If $\Delta_n : V_n \to \operatorname{gr}_n(F)$ is defined by

$$\Delta_n(au) = \sum_{i \ge 1} [\xi_i, \tau_i],$$

then $\Delta_n(W_n) = \text{Im}(\delta_n)$, and, by the corollary to Proposition 4, we have $\Delta_n(W_n) = \text{gr}_{n+1}(F)$. Consequently δ_n is surjective. Hence if

 $r = r_0(x) e_{n+1}$ with $e_{n+1} \in F_{n+1}$, we may choose $\tau = (\tau_i) \in W_n$ so that $-z_{n+1} = \delta_n(\tau)$, where z_{n+1} is the image of e_{n+1} in $\operatorname{gr}_{n+1}(F)$. If $\sigma : \operatorname{gr}_n(F) \to F_n$ is a continuous section with $\sigma(o) = \mathbf{I}$, let $t_i = \sigma(\tau_i)$. If $y_i = x_i t_i^{-1}$, then $y = (y_i)$ is a basis of F and $r \equiv r_0(y) \pmod{F_{n+2}}$.

Proceeding in this way, we obtain for each $n \ge 2$ a basis $x^{(n)} = (x_i^{(n)})$ of F such that $r \equiv r_0(x^{(n)}) \pmod{F_{n+1}}$ and such that $x_i^{(n+1)} \equiv x_i^{(n)} \pmod{F_n}$. If $x_i = \lim x_i^{(n)}$, $n \to \infty$, then (x_i) is a basis of F and $r = r_0(x)$.

Q. E. D.

4.2. The Case $q \neq 0, 2$. — If $V = H^{1}(G, \mathbb{Z}/q\mathbb{Z})$, then V is free $\mathbb{Z}/q\mathbb{Z}$ -module of rank \mathfrak{R}_{0} , and the cup product

$$H^{\scriptscriptstyle 1}(G,\,\mathbf{Z}/q\mathbf{Z}) imes H^{\scriptscriptstyle 1}(G,\,\mathbf{Z}/q\mathbf{Z}) o H^{\scriptscriptstyle 2}(G,\,\mathbf{Z}/q\mathbf{Z})=\mathbf{Z}/q\mathbf{Z}$$

is a bilinear form on V whose reduction modulo p is non-degenerate. If β is the linear form on V defined in Proposition 8, then $\chi \cup \chi = \begin{pmatrix} q \\ 2 \end{pmatrix} \beta(\chi)$ for any $\chi \in V$. Moreover, $\beta(V) = \mathbf{Z}/q\mathbf{Z}$ since $r \notin F^{p^{h+1}}(F, F)$. Since $q \neq 2$, we may apply Proposition 10 to obtain a basis (χ_i) of V and an integer d with $0 \leq d \leq h$ such that

(a) $\beta(\chi_1) = \mathbf{I}$, $\beta(\chi_2) = \mathbf{0}$, and $\beta(\chi_{2i-1}) = p^{i}$, $\beta(\chi_{2i}) = \mathbf{0}$ for $i \geq 2$. (b) $\chi_{2i-1} \cup \chi_{2i} = \mathbf{I}$ for $i \geq \mathbf{I}$, and $\chi_i \cup \chi_j = \mathbf{0}$ for all other i, j with i < j.

Let (x_i) be a basis of F such that $\gamma_i(x_j) = \delta_{ij}$ and let (F_n) be the descending q-central series of F. Then by Proposition 8 we have

$$r\equiv x_1^{\prime\prime}~(x_1,~x_2)\prod_{i\geq 2}x_{2i-1}^{\prime\prime}(x_{2i-1},~x_{2i})~~(\mathrm{mod}\,F_3).$$

Now suppose that for some $n \ge 2$, we have found a basis (x_i) of F and integers a_i with $q \mid a_{2i-1}, q^2 \mid a_{2i}$ such that

$$r=x_{1}^{\eta}\left(x_{1},\,x_{2}
ight)\prod_{i\,\leq\,2}x_{2i-1}^{\eta_{2i-1}}x_{2i}^{\eta_{2i}}\left(x_{2i-1},\,x_{2i}
ight)e_{n+1},$$

where $e_{n+1} \in F_{n+1}$, and where either all a_i are equal to zero, or there exists an infinite number of i with $v_{i'}(a_i) < nh$. If $(t_i)_{i \in \mathbb{N}}$ is a family of elements $t_i \in F_n$ with $t_i \rightarrow I$, then (y_i) , where $y_i = x_i t_i^{-1}$, is a basis of F and

(10)
$$r = y_1^q(y_1, y_2) \prod_{i \ge 2} x_{2i-1}^{a_{3i-1}} x_{2i}^{a_{3i}}(x_{2i-1}, x_{2i}) d_n e_{n-1},$$

where $d_n \in F_{n+1}$. If τ_i (resp. ξ_i) is the image of t_i (resp. x_i) in $gr_n(F)$ [resp. $gr_1(F)$], then, using (8) together with Proposition 6, we see that the image of d_n in $gr_{n+1}(F)$ is

$$egin{aligned} &\hat{o}_n(au) = \pi au_1 + \left(rac{q}{2}
ight) [au_1, au_1] + [au_1, au_2] + [au_1, au_2] \ &+ \sum_{i \ge 2} (p^{\prime l} \pi au_{2l-1} + p^{\prime l} \left(rac{q}{2}
ight) [au_{2l-1}, au_{2l-1}]) \ &+ \sum_{i \ge 2} ([au_{2l-1}, au_{2l}] + [au_{2l-1}, au_{2l}]). \end{aligned}$$

If W_n is the subgroup of $V_n = \operatorname{gr}_n(F)^{\mathbb{N}}$ consisting of those families (τ_i) with $\tau_i \to o$, we obtain a homomorphism $\delta_n : W_n \to \operatorname{gr}_{n+1}(F)$.

LEMMA. — If E is the closed subgroup of $gr_2(F)$ generated by the elements $\pi \xi_j$ with $j \neq 1, 2$, then

(11)
$$\operatorname{gr}_{n+1}(F) = \operatorname{Im}(\delta_n) + \pi^{n-1}E.$$

Moreover, if $p^{d} = q$, then $\pi^{n} \xi_{j} \in \text{Im}(\delta_{n})$ for all j.

Proof. — If $\Delta_n : V_n \to \operatorname{gr}_{n-1}(F)$ is the homomorphism defined by

$$\Delta_n(\tau) = \sum_{i \ge 1} [\xi_i, \tau_i],$$

we have $\operatorname{Im}(\partial_n) = \Delta_n(W_n) + \pi \operatorname{gr}_n(F)$. By the Corollary to Proposition 7 we have

$$\operatorname{gr}_{n+1}(F) = \Delta_n(W_n) + \pi \operatorname{gr}_n(F).$$

Hence, $\operatorname{gr}_{n+1}(F) = \operatorname{Im}(\delta_n) + \pi \operatorname{gr}_n(F)$. Since $\pi \operatorname{Im}(\delta_{m-1})$ is contained in $\operatorname{Im}(\delta_m)$ for $m \geq 3$, it follows that

$$\operatorname{gr}_{n+1}(F) = \operatorname{Im}(\partial_n) + \pi^{n-1} \operatorname{gr}_2(F),$$

But, using Proposition 6 and the fact that $q \neq 2$, we see that

$$\pi\operatorname{gr}_2(F) = \pi D + \Delta_2(W_2) + p\operatorname{gr}_3(F),$$

where D is the closed subgroup of $\operatorname{gr}_2(F)$ generated by the elements $\pi \xi_i$. Hence,

$$\operatorname{gr}_{n+1}(F) = \operatorname{Im}(\delta_n) + \pi^{n-1}D + p\operatorname{gr}_{n+1}(F).$$

Since $\pi^n \xi_2 = \delta_n(\tau)$, where $\tau_1 = \pi^{n-1} \xi_2$, $\tau_2 = \begin{pmatrix} q \\ 2 \end{pmatrix} \tau_1$, $\tau_i = 0$ otherwise, and $\pi^n \xi_1 = \delta_n(\tau)$, where

$$\begin{aligned} \tau_{1} &= \pi^{n-1} \xi_{1} + \binom{q}{2} \pi^{n-2} [\xi_{1}, \xi_{2}], \\ \tau_{2} &= \binom{q}{2} \tau_{1} + \binom{q}{2} \pi^{n-2} [\xi_{1}, \xi_{2}] - \pi^{n-1} \xi_{2} + \binom{q}{2} \pi^{n-1} \xi_{2}, \\ \tau_{i} &= 0 \quad \text{for} \quad i \neq 1, 2, \end{aligned}$$

we see that (11) is true modulo p. Since $\text{Im}(\delta_n) + \pi^{n-1}E$ is a subgroup of $\text{gr}_{n+1}(F)$, it follows that (10) is true modulo p^i for any $i \in \mathbb{N}$. Since $p^h \text{gr}_{n+1}(F) = 0$, the result follows.

Now suppose that p'' = q. If $\Delta'_n : V_n \to \operatorname{gr}_{n+1}(F)$ is defined by

$$\Delta_n'(au)=\pi au_2+\sum_{i\geq 1}[\,\zeta_i,\, au_i],$$

then Im $(\delta_n) = \Delta'_n(W_n)$. If $j \ge 3$, then $\pi^n \xi_j = \Delta'_n(\tau)$, where

$$\begin{aligned} \tau_{2} &= \pi^{n-1} \xi_{j} + \binom{q}{2} \pi^{n-2} [\xi_{j}, \xi_{2}], \\ \tau_{j} &= \binom{q}{2} \pi^{n-2} [\xi_{j}, \xi_{2}] + \binom{q}{2} \pi^{n-1} \xi_{2} + \pi^{n-1} \xi_{2}, \\ \tau_{i} &= 0 \quad \text{for} \quad i \neq 2, j. \end{aligned}$$

This completes the proof of the lemma.

Returning to (10), the above lemma allows us to choose the t_i so that

$$d_n e_{n+1} \equiv \prod_{i \geq 3} y_i^{q^n a_i^{\boldsymbol{\ell}}} \qquad (\operatorname{mod} F_{n+2}).$$

Moreover, if all the a_i in (10) are equal to zero, in which case $q = p^h$, then, by the second part of the lemma, we can choose the t_i so that either all $a'_i = 0$, or $a'_i \notin q\mathbf{Z}$ for an infinite number of *i*. Then, since $y_i^{q^n}$ is in the center of *F*, modulo F_{n+2} , we see that

$$r \equiv y_1^q(y_1, y_2) \prod_{i \ge 2} y_{2i-1}^{b_{2i-1}} y_{2i}^{b_{2i}}(y_{2i-1}, y_{2i}) \pmod{F_{n+2}},$$

where $b_i = a_i + q^n a'_i$, and where either all b_i are equal to zero, or there exists an infinity of *i* with $v_p(b_i) < (n + 1) h$.

Proceeding inductively and passing to the limit, we see the we can find a basis (x_i) of F such that

$$r=x_{_{1}}^{q}(x_{_{1}},\,x_{_{2}})\prod_{_{i}\,\geq\,2}x_{_{2\,i-1}}^{a_{2\,i-1}}x_{_{2\,i}}^{a_{2\,i}}$$
 ($x_{_{2\,i-1}},\,x_{_{2\,i}}$),

where $a_i \in \mathbf{Z}_{p}$ and where either all a_i are equal to zero, or there exists an infinite number of i with $v_p(a_i) = e$, where e is the infimum of the $v_p(a_i)$ and $q \leq e < \infty$. In the latter case, there exists a strictly increasing sequence $(n_i)_{i\geq 1}$ of even integers with $n_1 = 2$ such that, for each $i \geq 1$, there is a j with $n_i < j \leq n_{i+1}$ and $v_p(a_j) = e$. If for $i \geq i$ we set

$$\mathbf{r}_{i} = \prod_{\substack{u_{i} \leq j \leq v_{i}}} \mathbf{x}_{2j-1}^{a_{2j-1}} \mathbf{x}_{2j}^{a_{2j}} (\mathbf{x}_{2j-1}, \mathbf{x}_{2j}),$$

where $u_i = (n_i + 2)/2$, $v_i = n_{i+1}/2$, then r_i is a Demuškin relation in the variables x_j , $n_i < j \leq n_{i+1}$. The corresponding Demuškin group G_i is of finite rank with $q(G_i) = p^* \neq 2$. If $s = q(G_i)$, then by the theory of Demuškin groups of finite rank (cf. [1] or [11]) we can choose the x_j so that

$$m{r}_i = \prod_{u_i \leq j \leq v_i} x_{2j-1}^s (x_{2j-1}, x_{2j})$$

Since $r = x_1^{\prime\prime}(x_1, x_2) \prod_{i \ge 1} r_i$, this completes the proof of case 2.

4.3. The Case q = 2, t = 1. — Let (F_n) be the descending 2-central series of F. By the definition of the invariant t = t(G) together with Propositions 8, 9 and 11, there exists a basis (χ_i) of $H^1(G)$ such that $\chi_1 \cup \chi_1 = 1$, $\chi_{2i-1} \cup \chi_{2i} = 1$ for $i \ge 1$, and $\chi_i \cup \chi_j = 0$ for all other i, j with $i \le j$. If $x = (x_i)$ is a basis of F with $\chi_i(x_j) = \delta_{ij}$, then, by Proposition 8, we have

$$r \equiv x_1^2(x_1, x_2) r_0(x) \pmod{F_3},$$

where $r_0(x) = \prod_{i \ge 2} (x_{2i-1}, x_{2i}).$

Now assume that for some $n \ge 2$ we have found a basis $x = (x_i)$ of F and integers $a_i \in 4\mathbb{Z}$ such that

$$r = x_1^{2+a_1}(x_1, x_2) r_0(x) \prod_{i \ge 3} x_i^{a_i} e_{n+1}$$

where $e_{n+1} \in F_{n+1}$. If (t_i) is a family of elements $t_i \in F_n$ with $t_i \to I$, then $y = (y_i) = (x_i t_i^{-1})$ is a basis of F and

(12)
$$r = y_1^{2+a_1}(y_1, y_2) r_0(y) \prod_{i \ge 3} y_i^{a_i} d_n e_{n+1}$$

with d_n in F_{n+1} . If τ_i (resp. ξ_i) is the image of t_i (resp. x_i) in $gr_n(F)$ [resp. $gr_1(F)$], then the image of d_n in $gr_{n+1}(F)$ is

$$\delta_n(\tau) = \pi \tau_1 + [\tau_1, \xi_1] + \sum_{i \ge 1} ([\tau_{2i-1}, \xi_{2i}] + [\xi_{2i-1}, \tau_{2i}]).$$

If W_n is the subspace of $V_n = \operatorname{gr}_n(F)^{\mathbf{N}}$ consisting of those families $\tau = (\tau_i)$ with $\tau_i \to 0$, then ∂_n is a homomorphism of W_n into $\operatorname{gr}_{n+1}(F)$, and we have the following lemma :

LEMMA. — If E is the closed subgroup of $\operatorname{gr}_2(F)$ generated by the elements $\pi \xi_j$ with $j \neq 2$, then $\operatorname{gr}_{n+1}(F)$ is generated by $\operatorname{Im}(\delta_n)$ and $\pi^{n-1}E$.

Proof. — Using the Corollary to Proposition 7, we see that

$$\operatorname{gr}_{n+1}(F) = \operatorname{Im}(\delta_n) + \pi \operatorname{gr}_n(F).$$

Since $\pi \operatorname{Im}(\hat{\partial}_{m-1}) \subset \operatorname{Im}(\hat{\partial}_m)$ for $m \geq 3$, it follows that $\operatorname{gr}_{n+1}(F)$ is generated by $\operatorname{Im}(\hat{\partial}_n)$ and $\pi^{n-1}\operatorname{gr}_2(F)$. Hence, to prove the lemma, it suffices to show that $\pi^2 \xi_2 \in \operatorname{Im}(\hat{\partial}_2)$ and

$$\sum_{i < j} a_{ij} \pi[\xi_i, \xi_j] \in \operatorname{Im}(\delta_2) + \pi \operatorname{E}$$

for arbitrary $a_{ij} \in \mathbb{Z}/_2\mathbb{Z}$.

If $\tau = (\tau_i)$, where $\tau_1 = \pi \xi_2$, $\tau_2 = \tau_1$, $\tau_i = 0$ for $i \ge 3$, then $\tau \in W_2$ and $\partial_2(\tau) = \pi^2 \xi_2$. Hence $\pi^2 \xi_2 \in \text{Im}(\partial_2)$. Now let $\Delta : W_2 \to \text{gr}_3(F)$ be defined by

$$\Delta(\tau) = \pi au_2 + \sum_{i \ge 1} [\xi_i, \ au_i].$$

Then clearly $\operatorname{Im}(\hat{\sigma}_2) = \operatorname{Im}(\Delta)$. Let $\tau = (\tau_i)$, where

$$\tau_{1} = a_{12}[\xi_{1}, \xi_{2}] + \sum_{j \ge 3} a_{1j} \pi \xi_{j},$$

$$\tau_{2} = a_{12} \pi \xi_{1} + \sum_{j \ge 3} a_{2j} \pi \xi_{j},$$

$$\tau_{i} = \sum_{j > i} a_{ij} \pi \xi_{j} + \sum_{j < i} a_{ji}[\xi_{j}, \xi_{i}] \quad \text{for} \quad i \ge 3.$$

Then $\tau \in W_2$, and a straightforward calculation using Proposition 6 shows that

$$\Delta(\tau) = a_{12}\pi^2\xi_1 + \sum_{j\geq 0}a_{2j}\pi^2\xi_j + \sum_{i< j}a_{ij}\pi[\xi_i, \xi_j].$$

Hence $\sum_{i < j} a_{ij} \pi [\xi_i, \xi_j] \in \operatorname{Im}(\Delta) + \pi \operatorname{E}.$

Q. E. D.

Returning to (12), the above lemma allows us to choose the $t_i \in F_n$ so that

$$r \equiv y_1^{2+b_1}(y_1, y_2) r_0(y) \prod_{i \ge 3} y_b^{b_i} \pmod{F_{n+2}},$$

with $b_i \in \mathbb{Z}$, $b_i \equiv a_i \pmod{2^n}$.

Proceeding inductively and passing to the limit, we see that there exists a basis (x_i) of F and 2-adic integers a_i with $v_2(a_i) \ge 2$ such that

$$r = x_1^{2+a_1}(x_1, x_2) \ r_0(x) \prod_{i \ge 3} x_i^{a_i}.$$

The relation $r_1 = r_0(x) \prod_{i \ge 3} x_i^{a_i}$ is a Demuškin relation in the variables x_i ,

 $i \ge 3$, and the q-invariant of the corresponding Demuškin group is $\ne 2$. Hence, by what we have shown in sections 4.1 and 4.2, we may choose the x_i , $i \ge 3$, so that

$$r_1 = x_3^{z^J}(x_3, x_i) \prod_{l \ge 3} x_{2l-1}^s(x_{2l-1}, x_{2l}),$$

where $s = 2^e$, $e, f \in \overline{\mathbf{N}}$, $2 \leq f \leq e$. If

$$r_2 = x_1^{2+a_1}(x_1,x_2) x_3^{2^{j}}(x_3, x_5),$$

then r_2 is a Demuškin relation in the variables x_1, \ldots, x_k and the *q*-invariant of the corresponding Demuškin group is 2. We now appeal to the theory of such relations (*cf.* [3] or [8]). If $f \leq v_2(a_1)$, we can choose x_1, \ldots, x_k so that

$$r_1 = x_1^2(x_1, x_2) x_3^{2^J}(x_3, x_4).$$

If $f > v_2(a_1) = g$, then we can choose x_1, \ldots, x_k so that

$$r_1 = x_1^{2-2^{4}}(x_1, x_2) (x_3, x_4).$$

Since $r = r_1 \prod_{i \ge 3} x_{2i+1}^s(x_{2i+1}, x_{2i})$, the proof of Theorem 3 for the case q = 2, t = 1 is complete.

4.4. The Case q = 2, t = -1. — Let (F_u) be the descending 2-central series of F. Since t = -1, then by the definition of t, together with Propositions 9 and 11, there exists a basis (χ_i) of $H^1(G)$ such that $\chi_1 \cup \chi_1 = 1, \chi_{2i} \cup \chi_{2i+1} = 1$ for $i \ge 1$, and $\chi_i \cup \chi_j = 0$ for all other i, j with $i \le j$. If (x_i) is a basis of F with $\chi_i(x_j) = \delta_{ij}$, then, by Proposition 8, we have $r \equiv r_0(x)$ modulo F_u , where

$$r_{\scriptscriptstyle 0}(x) = x_{\scriptscriptstyle 1}^2 \prod_{i \ge 1} (x_{\scriptscriptstyle 2i}, \; x_{\scriptscriptstyle 2i+1}).$$

Now assume that, for some $n \ge 2$, we have found a basis $x = (x_i)$ of F and integers a_i with $a_i \in 4\mathbf{Z}$ such that

$$r \equiv r_0(x) \prod_{i \ge 2} x_i^{a_i} \pmod{F_{u+1}}.$$

Then, proceeding exactly as in the previous section, we obtain a homomorphism $\delta_n : W_n \to \operatorname{gr}_{n+1}(F)$, where

$$\delta_n(\tau) = \pi \tau_1 + [\tau_1, \xi_1] + \sum_{i \ge 1} ([\tau_{2i}, \xi_{2i+1}] + [\xi_{2i}, \tau_{2i+1}]).$$

LEMMA. — If E is the closed subgroup of $\operatorname{gr}_2(F)$ generated by the elements $\pi \xi_j$ with $j \neq \mathfrak{l}$, then $\operatorname{gr}_{n+1}(F)$ is generated by $\operatorname{Im}(\delta_n)$ and $\pi^{n-1}E$.

Proof. — The proof is exactly the same as the proof of the corresponding lemma in the previous section except for the following changes : $\pi^2 \xi_1 = \delta_2(\tau)$, where $\tau_1 = \pi \xi_1$ and $\tau_i = 0$ for $i \ge 2$; the homomorphism Δ is defined by

$$\Delta(\tau) = \pi \tau_1 + \sum_{i \ge 1} [\xi_i, \tau_i],$$

and we have

$$\Delta(\tau) = \sum_{j \ge 2} a_{1j} \pi^2 \xi_j + \sum_{i < j} a_{ij} \pi[\xi_i, \xi_j]$$

if we let

$$\tau_1 = \sum_{j \ge 2} a_{1j} \pi \xi_j,$$

$$\tau_i = \sum_{j > i} a_{ij} \pi \xi_j + \sum_{j < i} a_{ji} [\xi_i, \xi_j] \quad \text{for} \quad i \ge 2.$$

This completes the proof of the lemma.

Hence, using the above lemma, we see that there is a basis $y = (y_i)$ of F such that

$$r \equiv r_0(y) \prod_{i \geq 2} y_i^{b_i} \pmod{F_{n+2}},$$

where $y_i \equiv x_i \pmod{F_n}$, and $b_i \equiv a_i \pmod{2^n}$. Proceeding inductively and passing to the limit, we see that there exists a basis (x_i) of F and 2-adic integers $a_i \in 4\mathbb{Z}_2$ such that $r = x_1^2 r_1$, where

$$r_1 = \prod_{i \ge 1} (x_{2i}, x_{2i+1}) \prod_{i \ge 2} x_i^{a_i}.$$

The relation r_1 is a Demuškin relation in the variables x_i , $i \ge 2$, and the *q*-invariant of the corresponding Demuškin group is $\neq 2$. Hence we can choose the x_i so that

$$r_1 = x_2^{2^f}(x_2, x_3) \prod_{i \ge 2} x_{2i}^s(x_{2i}, x_{2i+1}),$$

where $s = p^e$, $e, f \in \overline{\mathbf{N}}$, $e \ge f \ge 2$. Since $r = x_1^2 r_1$, we have found the required basis of F.

4.5. The Case q = 2, t = 0. — Let (F_n) be the descending 2-central series of F. Since t(G) = 0, the definition of the invariant t(G) together with Proposition 11 shows that there is an orthonormal basis (γ_i) of $H^{\perp}(G)$. Replacing γ_{2i} by $\gamma_{2i} + \gamma_{2i-1}$, we obtain a basis (γ_i) of $H^{\perp}(G)$ such that

$$\chi_{2i-1} \cup \chi_{2i-1} = \chi_{2i-1} \cup \chi_{2i} = \mathbf{I}$$
 and $\chi_i \cup \chi_j = \mathbf{o}$

for all other *i*, *j* with $i \leq j$. If $x = (x_i)$ is a basis of *F* with $\chi_i(x_j) = \delta_{ij}$, then, by Proposition 8, we have $r \equiv r_0(x)$ modulo F_3 , where

$$r_{\scriptscriptstyle 0}(x) = \prod_{i \ge 1} x_{\scriptscriptstyle 2\,i\,-\,1}^2(x_{\scriptscriptstyle 2\,i\,-\,1},\,x_{\scriptscriptstyle 2\,i}).$$

Now assume that, for some $n \ge 2$, we have found a basis $x = (x_i)$ of F and integers $a_{ij} \in 2\mathbb{Z}$ such that

$$m{r}\equivm{r}_{\scriptscriptstyle 0}(m{x})\prod_{i< j}(m{x}_i,\,m{x}_j)^{a_{ij}} ~(\mathrm{mod}~F_{n+1}).$$

Then, proceeding as in the previous sections, we obtain a homomorphism $\delta_n : W_n \to \operatorname{gr}_{n+1}(F)$, where $\delta_n(\tau)$ is given by

$$\sum_{i \ge 1} (\pi \xi_{2i-1} + [\tau_{2i-1}, \xi_{2i-1}] + [\tau_{2i-1}, \xi_{2i}] + [\xi_{2i-1}, \tau_{2i}]).$$

LEMMA. — If E is the closed subgroup of $gr_2(F)$ generated by the elements $[\xi_i, \xi_j]$, then $gr_{n+1}(F)$ is generated by $Im(\delta_n)$ and $\pi^{n-1}E$.

Proof. — Since $\operatorname{gr}_{n+1}(F) = \operatorname{Im}(\delta_n) + \pi \operatorname{gr}_n(F)$ by the Corollary to Proposition 7, it follows that $\operatorname{gr}_{n+1}(F)$ is generated by $\operatorname{Im}(\delta_n)$ and $\pi^{n-1}\operatorname{gr}_2(F)$. Hence, it suffices to show that any element of the form $\sum_{i\geq 1} a_i\pi^2 \xi_i$ belongs to $\operatorname{Im}(\delta_2) + \pi E$. If $\Delta: W_2 \to \operatorname{gr}_3(F)$ is defined by

$$\Delta(au) = \sum_{i \ge 1} \pi au_{2i-1} + \sum_{i \ge 1} [\xi_i, au_i],$$

then $\operatorname{Im}(\Delta) = \operatorname{Im}(\delta_2)$. Now let $\tau = (\tau_i)$, where

$$\tau_{2i-1} = a_{2i-1}\pi\xi_{2i-1} + a_{2i}\pi\xi_{2i}, \qquad \tau_{2i} = a_{2i}[\xi_{2i-1}, \xi_{2i}].$$

Then $\tau \in W_2$, and a simple calculation using Proposition 6 shows that

$$\Delta(\tau) = \sum_{i \ge 1} a_i \pi^2 \xi_i + \sum_{i \ge 1} a_{2i} \pi[\xi_{2i-1}, \xi_{2i}].$$

Hence $\sum_{i \ge 1} a_i \pi^2 \xi_i \in \operatorname{Im}(\delta_2) + \pi E.$

Using the above lemma, we find a basis $y = (y_i)$ of F such that

Q. E. D.

$$r\equiv r_{\scriptscriptstyle 0}(y)\prod_{i< j}(y_i,\,y_j)^{\imath_{ij}} \,\,\,\,\,\,\,\,(\mathrm{mod}\;F_{n+2}),$$

where $y_i \equiv x_i \pmod{F_n}$, and $b_{ij} \equiv a_{ij} \pmod{2^{n-1}}$. Proceeding inductively and passing to the limit, we see that there exists a basis (x_i) of F and 2-adic integers $b_{ij} \in 2\mathbb{Z}_2$ such that r is of the form (5).

This completes the proof of Theorem 3.

5. Proof of Theorem 4.

5.1. The Properties P_n , Q_n . — If χ is a continuous homomorphism of a pro-*p*-group *G* into the group of units of the compact ring $\mathbf{Z}_{\rho}/p^n \mathbf{Z}_{\rho}$, let $J = J(\chi)$ be the compact *G*-module obtained from $\mathbf{Z}_{\rho}/p^n \mathbf{Z}_{\rho}$ by letting *G* act on this group by means of χ . If $n < \infty$, then *G* is said to have the property P_n with respect to χ if the canonical homomorphism

(13)
$$\varphi: H^{\scriptscriptstyle 1}(G, J) \to H^{\scriptscriptstyle 1}(G, J/pJ) = H^{\scriptscriptstyle 1}(G)$$

is surjective. If $n = \infty$, then G is said to have the property P_n with respect to χ if the canonical homomorphism

(14)
$$\varphi: H^{\scriptscriptstyle +}(G, J/p^m J) \to H^{\scriptscriptstyle +}(G, J/pJ) = H^{\scriptscriptstyle +}(G)$$

is surjective for $m \ge 1$. The pro-*p*-group G is said to have the property Q_n if there exists a unique continuous homomorphism $\chi : G \to (\mathbf{Z}_p/p^n \mathbf{Z}_p)^*$ such that G has the property P_n with respect to χ .

Remark. — If G is a free pro-*p*-group, then G has the property P_n with respect to any continuous homomorphism $\chi: G \to (\mathbf{Z}_p/p^n \mathbf{Z}_p)^*$ since $cd(G) \leq 1$.

PROPOSITION 12. — Let G be a pro-p-group of rank \aleph_n , and let $\chi : G \to (\mathbf{Z}_{\rho}/p^n \mathbf{Z}_{\rho})^*$ be a continuous homomorphism. Then 'the following statements are equivalent :

(a) The group G has the property P_n with respect to χ .

(b) If (g_i) is a minimal generating system of G and (a_i) is a family of elements of $J = J(\gamma)$ with $a_i \rightarrow 0$, there exists a continuous crossed homomorphism D of G into J such that $D(g_i) = a_i$.

Proof. — Clearly (b) implies (a). Now assume that (a) is true and let g_i , a_i be given as in (b).

If $n < \infty$, the surjectivity of (13) shows that there is a continuous crossed homomorphism D_1 of G into J such that $D_1(g_i) \equiv a_i \pmod{p}$. Suppose that we have found a continuous crossed homomorphism D_j $(1 \leq j < n)$ of G into J such that $D_j(g_i) = a_i + p^j b_i$. Then, as above, there is a continuous crossed homomorphism D' of G into J, such that $D'(g_i) \equiv b_i \pmod{p}$. If $D_{j+1} = D_j - p^j D'$, then D_{j+1} is a continuous crossed homomorphism of G into J such that $D_{j+1}(g_i) \equiv a_i \pmod{p^{j+1}}$. Proceeding inductively, we see that D_n is the required crossed homomorphism.

If $n = \infty$, let $\gamma_m \equiv z_m \circ \gamma$, where z_m is the canonical homomorphism of \mathbf{Z}_p onto $\mathbf{Z}_p/p^m \mathbf{Z}_p$. Then G has the property P_m with respect to γ_m , and $J/p^m J = J(\gamma_m)$ where $J = J(\gamma)$. If $a_i^{(m)} = z_m(a_i)$, then by what we have shown above, there exists a continuous crossed homomorphism $D^{(m)}$ of G into $J/p^m J$ such that $D^{(m)}(g_i) = a_i^{(m)}$. Passing to the limit, we obtain the required crossed homomorphism D.

PROPOSITION 13. — Let G be a Demuškin group of rank \aleph_0 with $s(G) = p^r$, and let $\chi : G \to (\mathbf{Z}_p | p^{\mathbf{e}} \mathbf{Z}_p)^*$ be the character associated to the dualizing module of G. Then G has the property P_c with respect to χ .

Proof. — If $J = J(\gamma)$, then $I = \text{Hom}(J, Q_{\mu}|\mathbf{Z}_{\mu})$ is the dualizing module of G. It follows that $H^2(G, J/p^n J)$ is cyclic of order p^n if $1 \leq n < e$, or if $n = e < \infty$. This, together with the fact that cd(G) = 2, shows that the sequence

(15) $0 \rightarrow H^2(G, J/p^{n-1}J) \stackrel{\alpha}{\rightarrow} H^2(G, J/p^n J) \rightarrow H^2(G, J/pJ) \rightarrow 0$

is exact for any integer n with $1 \leq n \leq e$. But

$$\operatorname{Ker}(\alpha) = \operatorname{Coker} \left(H^{\scriptscriptstyle 1}(G, J/p^n J) \to H^{\scriptscriptstyle 1}(G, J/pJ) \right),$$

which proves the proposition.

5.2. **Proof of Theorem** 4. — Let F be a free pro-p-group of rank \mathbf{R}_0 with basis $(x_i)_{i \in \mathbf{N}}$, and let r be a relation satisfying the hypotheses of the theorem. The fact that G = F/(r) is a Demuskin group follows from Proposition 8, as does the assertion concerning the invariant t(G). The rest of the proof deals with the computation of s(G) and γ , where γ is the character associated to the dualizing module of G. We do this for a relation of the form (1), the same method applying, with obvious modifications, to relations of the form $(2), \ldots, (5)$.

If g_i is the image of x_i in G, then (g_i) is a minimal generating system of G and we have

(16)
$$g'_1(g_1, g_2) \prod_{i \ge 2} g^{2i-1}_s(g_{2i-1}, g_{2i}) = 1,$$

where $q = p^r$, $s = p^r$, $e, f \in \overline{\mathbb{N}}$. Suppose that G has the property P_n with respect to some homomorphism θ . Then, by Proposition 12, there exists a continuous crossed homomorphism D_i of G into $J(\theta)$ such that $D_i(g_i) = \delta_{ij}$. Applying D_2 to both sides of (16), we obtain

$$\theta(g_1)^{q-1}\theta(g_2)^{-1}(\theta(g_1)-1) = 0,$$

which implies that $\theta(g_1) = \mathbf{I}$. Similarly, $\theta(g_{2i-1}) = \mathbf{I}$ for $i \geq 2$. Applying D_1 to both sides of (16), we obtain $q + \theta(g_2)^{-1} - \mathbf{I} = 0$, which implies that

$$\theta(g_2) = (\mathbf{I} - q)^{-1}.$$

Similarly, $\theta(g_{2i}) = (\mathbf{1} - s)^{-1}$ for $i \geq 2$. But, since θ is continuous and $g_i \rightarrow \mathbf{1}$, we have $\theta(g_i) \rightarrow \mathbf{0}$. In view of what we have shown above, this is possible if and only if $n \leq e$. If $s(G) = p^{-r}$, it follows that $e' \leq e$ since G has the property $P_{e'}$ with respect to χ . It also follows that G has the property $Q_{e'}$, and that

$$\chi(x_2) = (1-q)^{-1}, \quad \chi(x_i) = 1 \quad \text{for } i \neq 2.$$

All that remains to be shown is that e' = e. To do this, let $\theta_0: F \to (\mathbf{Z}_p/p^e \mathbf{Z}_p)^*$ be the continuous homomorphism defined by

$$\theta_0(x_2) = (\mathbf{I} - q)^{-1}, \quad \theta_0(x_i) = \mathbf{I} \quad \text{otherwise.}$$

Then $\theta_0(r) = \mathbf{I}$, and θ_0 induces a homomorphism θ of G into $(\mathbf{Z}_p/p^e \mathbf{Z}_p)^*$. A simple calculation shows that $D(r) = \mathbf{0}$ for any continuous crossed homomorphism D of F into $J(\theta)$. In view of Proposition 12, it follows that G has the property P_e with respect to θ . If n is an integer with $\mathbf{I} \leq n \leq e$, then an inductive argument using the sequence (15) with $J = J(\theta)$ shows that $H^2(G, J/p^n J)$ is cyclic of order p^n . It follows immediately that e' = e, which completes the proof of Theorem 4.

6. Proof of Theorem 5.

Let K, Γ , G be as in the statement of the theorem. Let $(U_i)_{i \in \mathbb{N}}$ be a decreasing sequence of open subgroups of Γ containing G such that $\bigcap_i U_i = G$. Let $G_i = U_i/V_i$ be the largest quotient of U_i which is a pro-*p*-group; if K_i is the fixed field of U_i , then G_i is the Galois group of $K_i(p)/K_i$, where $K_i(p)$ is the maximal *p*-extension of K_i . Composing

the inclusion $G \to U_i$ with the canonical homomorphism of U_i onto G_i , we obtain a homomorphism $\psi_i : G \to G_i$. It is easy to see that ψ_i is surjective and that the subgroups $H_i = \text{Ker}(\psi_i)$ form a decreasing sequence of closed normal subgroups of G which intersect in the identity.

If K does not contain a primitive p-th root of unity ζ_{μ} , let $K' = K(\zeta_{\mu})$, and let Γ' be the Galois group of \overline{K}/K' . Then G is a Sylow p-subgroup of Γ' since $(\Gamma : \Gamma') = [K' : K]$ is prime to p. Hence, we are reduced to proving the theorem for the case K contains a primitive p-th root of unity. In this case G_i is a Demuškin group of rank $[K_i : \mathbf{Q}_{\mu}] + 2$, and its dualizing module is $\mu_{\mu^{\infty}}(cf. [12], p. II-30)$. Since $H^1(G)$ is the union of the $H^1(G_i)$, it follows that G is of rank \mathbf{R}_0 . By Theorem 1, we see that G is either a Demuškin group, or a free prop-group. But, by a theorem of J. TATE, we have cd(G) = 2 (cf. [12], p. II-16). Hence, G is a Demuškin group. To show that $\mu_{\mu^{\infty}}$ is the dualizing module, it suffices to show that the canonical homomorphism

$$\varphi: H^{\scriptscriptstyle 1}(G, \mu_{\rho^n}) \rightarrow H^{\scriptscriptstyle 1}(G, \mu_{\rho}) = H^{\scriptscriptstyle 1}(G)$$

is surjective for $n \ge 1$ (cf. § 5.1). But since $\mu_{\rho z}$ is the dualizing module of G_{i} , we have a commutative diagram

$$\begin{array}{c} H^{1}(G, \mu_{p^{n}}) \xrightarrow{\tilde{\gamma}} H^{1}(G) \\ \uparrow & \uparrow \\ H^{1}(G_{i}, \mu_{p^{n}}) \xrightarrow{\tilde{\gamma}_{i}} H^{1}(G_{i}) \end{array}$$

in which φ_i is surjective for $n \ge 1$. Passing to the limit, we obtain the surjectivity of φ .

To prove the assertion concerning t(G), it suffices to consider the case q(G) = 2, for otherwise t(G) = 1 and $[K(\zeta_{\mu}) : \mathbf{Q}_{\mu}]$ is even. Let $V = H^{\perp}(G)$, and let V_i be the image of $H^{\perp}(G_i)$ in V under the homomorphism $H^{\perp}(\psi_i)$. Since $\dim(V_i) = [K_i : \mathbf{Q}_2] + 2$ and $[K_i : K]$ is odd, we have

$$(-1)^{\dim (\mathbf{V}_i)} = (-1)^{[K:\mathbf{Q}_i]}.$$

Moreover, as we have seen in the proof of Proposition 1, the cup-product : $H^{1}(G) \times H^{1}(G) \rightarrow H^{2}(G)$ is non-degenerate on V_{i} for *i* sufficiently large. [Actually, the cup-product is non-degenerate on each V_{i} since $H^{2}(\psi_{i}): H^{2}(G_{i}) \rightarrow H^{2}(G)$ is bijective.] Also, the cup-product is nonalternate since q(G) = 2, and t(G) = 1 or -1 since s(G) = 0. Hence, since V is the union of the V_{i} , it follows from the definition of t(G)together with the proof of Proposition 11 and its Corollary that

$$t(G) = (-\mathbf{I})^{\dim(\mathbf{V}_i)}$$

for *i* sufficiently large.

Q. E. D.

J. P. LABUTE.

BIBLIOGRAPHY.

- DEMUŠKIN (S. P.). On the maximal p-extensions of a local field [in Russian], Izv. Akad. Nauk S. S. S. R., Math. Series, t. 25, 1961, p. 329-346.
- [2] DEMUŠKIN (S. P.). On 2-extensions of a local field [in Russian], Mat. Sibirsk.
 Ž., t. 4, 1963, р. 951-955.
- [3] DEMUŠKIN (S. P.). Topological 2-groups with an even number of generators and one defining relation [in Russian], *Izv. Akad. Nauk S. S. S. R.*, t. 29, 1965, p. 3-10.
- [4] DOUADY (A.). Cohomologie des groupes compacts totalement discontinus, Séminaire Bourbaki, t. 12, 1959-1960, nº 189, 12 pages.
- [5] HOCHSCHILD (G.) and SERRE (J.-P.). Cohomology of group extensions, Trans. Amer. math. Soc., t. 74, 1953, p. 110-134.
- [6] KAPLANSKY (I.). Forms in infinite-dimensional spaces, Ann. Acad. Bras. Cienc., t. 22, 1950, p. 1-17.
- [7] LABUTE (J.). Classification des groupes de Demuškin, C. R. Acad. Sc., t. 260, 1965, p. 1043-1046.
- [8] LABUTE (J.). Classification of Demuškin groups, Thesis, Harvard Univ., 1965; Canadian J. Math. (to appear).
- [9] LABUTE (J.). Les groupes de Demuškin de rang dénombrable, C. R. Acad. Sc., t. 262, 1966, p. 4-7.
- [10] SERRE (J.-P.). Corps locaux. Paris, Hermann, 1962 (Act. scient. et ind., 1296; Publ. Inst. Math. Univ. Nancago, 7).
- [11] SERRE (J.-P.). Structures de certains pro-p-groupes, Séminaire Bourbaki, t. 15, 1962-1963, nº 252, 11 pages.
- [12] SERRE (J.-P.). Cohomologie galoisienne. Berlin, Springer-Verlag, 1964 (Lecture Notes in Mathematics, 5).
- [13] SERRE (J.-P.). Lie algebras and Lie groups. 1964 Lectures given at Harvard University. — New York, W. A. Benjamin, 1965.

(Manuscrit reçu le 13 juin 1966.)

John P. LABUTE,

9 bis, parc de Montretout,

92, Saint-Cloud (Hauts-de-Seine).