J.P. LABUTE

Demuškin groups of rank \aleph_{0}

Bulletin de la S. M. F., tome 94 (1966), p. 211-244
http://www.numdam.org/item?id=BSMF_1966__94__211_0

© Bulletin de la S. M. F., 1966, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

DEMUŠKIN GROUPS OF RANK s_{0}

BY

John P. LABUTE (*).

In this paper, we extend the notion of a Demuškin group to pro-p-groups of denumerable rank, cf. Definition 1. The classification of Demuškin groups of finite rank is complete (cf. [1], [2], [3], [7], [8], [11]), and the purpose of this paper is to extend this classification to Demuskin groups of rank \boldsymbol{X}_{0} (cf. [9]). This is accomplished in Theorems 3 and 4, leaving aside an exceptional case when $p=2$. We then apply our results ($c f$. Theorem 5) and determine for all p, the structure of the p-Sylow subgroup of the Galois group of the extension \bar{K} / K, where K is a finite extension of the field \mathbf{Q}_{n} of p-adic rationals and \bar{K} is its algebraic closure. This answers a question posed to the author by J.-P. Serre.

1. Definitions and Results.

1.1. Demuškin Groups. - Let p be a prime number, and let G be a pro- p-group (i. e., a projective limit of finite p-groups, $c f$. [4], [12]). Throughout this paper $H^{\prime \prime}(G)$ will denote the cohomology group $H^{\prime \prime}(G, \mathbf{Z} / p \mathbf{Z})$, the action of G on the discrete group $\mathbf{Z} / p \mathbf{Z}$ being the trivial one. (\mathbf{Z} is the ring of rational integers.) The dimension of $H^{\prime}(G)$ over the field $\mathbf{Z} / p \mathbf{Z}$ is called the rank of G and is denoted by $n(G)$.

[^0]Definition 1. - A pro-p-group G of rank $\leqslant \mathbf{N}_{0}$ is said to be a Demus̈kin group if the following two conditions are satisfied :
(i) $H^{2}(G)$ is one-dimensional over the field $\mathbf{Z} / p \mathbf{Z}$;
(ii) The cup product : $H^{\prime}(G) \times H^{\prime}(G) \rightarrow H^{2}(G)$ is a non-degenerate bilinear form, i. e., $a \cup b=0$ for all b in $H^{\prime}(G)$ implies $a=0$.

Remark. - The definition of non-degeneracy given above is equivalent to the one we gave in [9], thanks to results obtained by Kaplansky in [6], cf. §2.4.

Our first result relates Demuškin groups of rank \boldsymbol{S}_{0} to Demuškin groups of finite rank.

Theorem 1. - If G is a Demuškin group of rank \mathbf{N}_{0}, there is a decreasing sequence $\left(H_{i}\right)$ of closed normal subgroups of G with $\bigcap_{i}=\mathrm{I}$ and with each quotient G / H_{i} a Demuskin group of finite rank.

Conversely, if G is a pro-p-group of rank \mathbf{X}_{0} having such a family of closed normal subgroups, then G is either a free pro-p-group or a Demuškin group.

If G is a pro- p-group, we let $c d(G)$ denote the cohomological dimension of G in the sense of Tate; recall (cf. [4], p. 189-207, or [12], p. I-ı7) that $c d(G)$ is the supremum, finite or infinite, of the integers n such that there exists a discrete torsion G-module A with $H^{n}(G, A) \neq 0$. Since G is a pro- p-group, $c d(G)$ is also equal to the supremum of the integers n with $H^{n}(G) \neq \mathrm{o}$ (cf. [12], p. I-32). We then have the following result :

Corollary. - If G is a Demuškin group of rank \boldsymbol{N}_{u}, then $\operatorname{cd}(G)=2$.
Indeed, by Theorem 1, G is the projective limit of Demuskin groups G_{i} of finite rank. Moreover, since G is of rank \boldsymbol{k}_{0}, we may assume that $n\left(G_{i}\right) \neq \mathrm{I}$ for all i, and hence that $c d\left(G_{i}\right)=2$ for all i (cf. [11], p. 252-6o9). Since $H^{\prime \prime}(G)=\underline{\longrightarrow} \lim ^{\prime \prime}\left(G_{i}\right)$ (cf. [12], p. I-9), it follows that $c d(G) \leq 2$. But $H^{2}(G) \neq \mathrm{o}$ by the definition of a Demuskin group. Hence $c d(G)=2$.

Our next result gives the structure of the closed subgroups of a Demuskin group.

Theorem 2. - If G is a Demus̀skin group of rank $\neq \mathrm{I}$, then
(i) every open subgroup is a Demuškin group;
(ii) every closed subgroup of infinite index is a free pro-p-group.

The proof of these two theorems can be found in paragraph 3.
1.2. Demuškin Relations. - As in the case of Demuškin groups of finite rank, we work with relations. Let G be a Demuškin group, and let F be a free pro- p-group of rank $n(G)$. Then there is a continuous homomorphism f of F onto G such that the homomorphism $H^{\prime}(f)$: $H^{\prime}(G) \rightarrow H^{\prime}(F)$ is an isomorphism ($c f .[12], \mathrm{p} . \mathrm{I}-36$). If $R=\operatorname{Ker}(f)$, we identify G with F / R by means of f. Making use of the exact sequence

$$
\mathrm{o} \rightarrow H^{1}(G) \xrightarrow{\text { Inf }} H^{1}(F) \xrightarrow{\text { Res }} H^{1}(R)^{G} \xrightarrow{\text { 置 }} H^{2}(G) \xrightarrow{\text { Inf }} H^{2}(F)
$$

(cf. [12], p. I-ı5), we see that the transgression homomorphism tg is injective since the first inflation homomorphism is bijective. Since $H^{2}(F)=0\left(c f .[12], \mathrm{p}\right.$. I-25) it follows that $H^{\prime}(R)^{;} \cong H^{2}(G) \cong \mathbf{Z} / p \mathbf{Z}$. Hence R is the closed normal subgroup of F generated by a single element r (cf. [12], p. I-4o). Moreover, since $\chi(r)=0$ for every $\chi \in H^{\prime}(F)$, we have $r \in F^{p}(F, F)$. [If H, K are closed subgroups of a pro- p-group F, we let (H, K) denote the closed subgroup of F generated by the commutators $(h, k)=h^{-1} k^{-1} h k$ with $h \in H, k \in K$.] The purpose of this paper is to find a canonical form for the Demuškin relation r.
1.3. The invariants. - In order to state our classification theorem we have to define certain invariants of a Demuškin group.
1.3.r. The invariants $s(G), \operatorname{Im}(\%)$. - Let G be a Demusiskin group of rank $\neq \mathrm{r}$. Since $H^{2}(G, \mathbf{Z} / p \mathbf{Z})$ is finite, it follows, by «dévissage », that $H^{2}(G, M)$ is finite for any finite p-primary G-module M (cf. [12], p. I-32). Since $\operatorname{cd}(G)=2$, it follows that G has a dualizing module I, that is, the functor $T(M)=\operatorname{Hom}\left(H^{2}(G, M), \mathbf{Q} / \mathbf{Z}\right)$, defined on the category of p-primary G-modules M, is representable (cf. [12], p. I-27). If $n(G)<\boldsymbol{N}_{0}$, then I is isomorphic, as an abelian group, to $\mathbf{Q}_{p} / \mathbf{Z}_{p}$ (cf. [12], p. I-48). If $n(G)=\boldsymbol{\delta}_{0}$, then I is isomorphic, as an abelian group, to either $\mathbf{Q}_{p} / \mathbf{Z}_{p}$ or $\mathbf{Z} / p^{e} \mathbf{Z}$. Indeed, it suffices to show that the group $I_{p}=\operatorname{Hom}(\mathbf{Z} / p \mathbf{Z}, I)$ is cyclic of order p. But I_{p}, is the inductive limit of the groups Hom $\left(H^{2}(U), \mathbf{Q} / \mathbf{Z}\right)$, where U runs over the open subgroups of G, the maps being induced by the corestriction homomorphisms ($c f$. [12], p. I-3o). Moreover, if U is an open subgroup of G, we have $H^{2}(U) \cong \mathbf{Z} / p \mathbf{Z}$ by Theorem 2. Hence I_{p} is cyclic of order $\leq p$. Since $I_{p} \neq \mathrm{o}$, the result follows. The s-invariant of G is defined by setting $s(G)=0$ if I is infinite, and letting $s(G)$ be the order of I if I is a finite group.

The ring \mathbf{E} of endomorphisms of I is canonically isomorphic to \mathbf{Z}_{ρ} if $s(G)=0$, and to $\mathbf{Z} / p^{e} \mathbf{Z}$ if $s(G)=p^{e}$. Hence, if \mathbf{U} is the compact group of units of \mathbf{E}, we have a canonical homomorphism $\chi: G \rightarrow \mathbf{U}$. Since χ is continuous, it follows that the invariant $\operatorname{Im}(\chi)$ is a closed subgroup of the pro- p-group $\mathbf{U}^{(1)}=\mathrm{I}+p \mathbf{E}$.

We shall need a list of the closed subgroups of $\mathbf{U}^{\prime \prime}$. Consider first the case where $s(G)=o$. Then we have

$$
\mathbf{U}^{\prime \prime}=\mathbf{U}_{\mu \prime}^{\prime \prime}=\mathrm{I}+p \mathbf{Z}_{\mu,} .
$$

If $p \neq 2$, then $\mathbf{U}_{\mu}^{\prime \prime}$ is a free pro- p-group of rank i generated by any element u with $v_{\rho}(u-1)=1$, and the closed subgroups of $\mathbf{U}_{\| \prime \prime}^{\prime \prime}$ are the subgroups

$$
\mathbf{U}_{j,}^{(f)}=\mathrm{r}+p^{f} \mathbf{Z}_{/,} \quad \text { with } \quad f \in \overline{\mathbf{N}}=\mathbf{N} \cup \infty
$$

(We let \mathbf{N} denote the set of integers $\sum 1$; by convention $x \geq a$ for any $a \in \overline{\mathbf{N}}$ and $a^{*}=0$ for any $a \in \mathbf{N}$.) If $p=2$, we have $\mathbf{U}_{2}^{\prime \prime}=!\pm 1$ any element u with $v_{2}(u-1)=2$. The closed subgroups of \mathbf{U}_{2} are therefore of three distinct types :
(i) the groups $\mathbf{U}^{(f)}$ with $f \in \overline{\mathbf{N}}, f \geq 2$;
(ii) the groups $: \pm \mathbf{I} \times \mathbf{U}_{2}$ with $f \in \overline{\mathbf{N}}, f \geq 2$;
(iii) the groups \mathbf{U}_{f}, where for $f \in \mathbf{N}, f \geqslant 2, \mathbf{U}_{2}$ is the closed subgroup of $\mathbf{U}_{2}^{\prime \prime}$ generated by $-u$, where u is a generator of $\mathbf{U}_{2}^{(f)}$.

If $s(G)=p^{\prime} \neq \mathrm{o}$, then $\mathbf{U}^{\prime \prime}=\mathbf{U}_{p, 1} / \mathbf{U}_{p, p}^{(e)}$, and the closed subgroups of $\mathbf{U}^{(1)}$ are in one-to-one correspondence with the closed subgroups of $\mathbf{U}_{\mu}^{(1)}$ which contain $\mathbf{U}_{j / \prime}^{(c)}$.
1.3.2. The invariant $t(G)$. - Suppose that the Demuskin group G is of rank \boldsymbol{R}_{0}, and let $0: H^{\prime}(G) \times H^{\prime}(G) \rightarrow H^{2}(G)$ be the cup product. Then is a non-degenerate skew-symmetric bilinear form on the vector space $V=H^{\prime}(G)$. Let β be the linear form on V defined by $\xi(v)=v \cup v$, and let $A=\operatorname{Ker}(\xi)$. If $A=V$, i. e., if $\%$ is alternate, we set $t(G)=\mathrm{r}$. If $A \neq V$, which can happen only if $p=2$, the vector space V / A is one-dimensional, and hence A^{\prime}, the orthogonal complement of A in V, is at most one-dimensional. In this case, we define $t(G)$ as follows : set $t(G)=1$ if $\operatorname{dim}\left(A^{\prime}\right)=\mathrm{I}$ and $A^{\prime} \subset A$; set $t(G)=-\mathrm{I}$ if $\operatorname{dim}\left(A^{\prime}\right)=\mathrm{I}$ and $A^{\prime} \Phi A$; set $t(G)=0$ if $A^{\prime}=0$.

Remark. - We shall see ($c f . \S 2.4$) that the definition of $t(G)$ given above is equivalent to the one we gave in [9].
1.3.3. The invariants $h(G), q(G)$. - Let G be a Demuskin group and let $G_{a}=G /(G, G)$. Representing G as a quotient $F /(r)$, where F is a free pro-p-group and $r \in F^{f}(F, F)$, we see that either $\mid G_{n}$ is torsionfree or the torsion subgroup of $G_{\text {u }}$ is cyclic of order p^{h}. The h-invariant of G is defined by setting $h(G)=\infty$ in the first case and $h(G)=h$ in the second. The q-invariant is defined by setting $q(G)=p^{h(G)}$. If r is the above relation, then $q=q(G)$ is the highest power of p such that $r \in F^{\prime}(F, F)$.
1.4. The Classification Theorem. - Recall (cf. [12], p. I-5) that if F is the free pro-p-group generated by the elements x_{i}, $i \in I$, then $x_{i} \rightarrow \mathrm{I}$ in the sense of the filter formed by the complements of the finite subsets of I. If $\left(g_{i}\right)_{i \in I}$ is a family of elements in a pro-p-group G with $g_{i \rightarrow \mathrm{I}}$, we call $\left(g_{i}\right)$ a generating system of G if the continuous homomorphism $f: F \rightarrow G$ sending x_{i} into g_{i} is surjective. The homomorphism f is surjective if and only if $H^{\prime}(f): H^{\prime}(G) \rightarrow H^{\prime}(F)$ is injective (cf. [12], p. I-35). Hence (g_{i}) is a minimal generating system if and only if $H^{\prime}(f)$ is bijective. If G is a free pro- p-group and $\left(g_{i}\right)$ is a minimal generating system of G, then f is bijective, i. e. $\left(g_{i}\right)$ is a basis of G (cf. [12], p. I-36).

The main results of this paper are contained in the following two theorems :

Theorem 3. - Let $r \in F^{\prime}(F, F)$, where F is a free pro-p-group of rank $\boldsymbol{\aleph}_{0}$. Suppose that $G=F /(r)$ is a Demus̈kin group, and let $q=q(G)$, $h=h(G), t=t(G)$. Then :
(i) If $q \neq 2$, there is a basis $\left(x_{i}\right)_{i \in \mathbf{N}}$ of F such that r is equal to

$$
\begin{equation*}
x_{l}^{\prime \prime}\left(x_{1}, x_{2}\right) \prod_{i \geq 2} x_{2 i-1}^{s}\left(x_{2 i-1}, x_{z i}\right), \tag{I}
\end{equation*}
$$

with $s=p^{e}, e \in \overline{\mathbf{N}}, e \geq h$.
(ii) If $q=2, t=1$, there is a basis $\left(x_{i}\right)_{i \in \mathbb{N}}$ of F such that, either r is equal to

$$
\begin{equation*}
x_{1}^{2}+{ }^{2} f\left(x_{1}, x_{2}\right)\left(x_{i}, x_{i}\right) \prod_{i \geq ;} x_{2 i-1}^{s}\left(x_{2 i-1}, x_{2 i}\right), \tag{2}
\end{equation*}
$$

with $s=2^{e}, e \in \overline{\mathbf{N}}, f \in \mathbf{N}, e>f \geqslant 2$, or r is equal to

$$
\begin{equation*}
x_{i}^{j}\left(x_{1}, x_{i}\right) x_{i}^{j}\left(x_{i}, x_{i}\right) \prod_{i \equiv j} x_{2 i-1}^{s}\left(x_{2 i-1}, x_{2 i}\right), \tag{3}
\end{equation*}
$$

with $s=2^{e}, e, f \in \overline{\mathbf{N}}, e \geq f \geqslant 2$.
(iii) If $q=2, t=-_{1}$, there is a basis $\left(x_{i}\right)_{i \in \mathbf{N}}$ of F such that r is equal to

$$
\begin{equation*}
x_{i}^{2} x_{i}^{s}\left(x_{2}^{\prime}, x_{i}\right) \prod_{i \supseteq z} x_{2 i}^{s}\left(x_{2 i}, x_{2 i+1}\right) \tag{4}
\end{equation*}
$$

with $s=2, \quad e, f \in \overline{\mathbf{N}}, e \geq f \geqslant 2$.
(iv) If $q=2, t=0$, there is a basis $\left(x_{i}\right)_{i \in \mathbb{N}}$ of F such that r is equa to

$$
\begin{equation*}
\prod_{i \geq 1} x_{i, i-1}^{2}\left(x_{2 i-1}, x_{\geq i}\right) \prod_{i<j}\left(x_{i}, x_{j}\right)^{s_{i j}} \tag{5}
\end{equation*}
$$

with $b_{i j} \in{ }_{2} \mathbf{Z}_{2} . \quad\left(T h e ~ p r o d u c t \prod_{i<j}\right.$ is taken with respect to an arbitrarily given linear order of $\mathbf{N} \times \mathbf{N}$.)

Theorem 4. - Let F be a free pro-p-group with basis $\left(x_{i}\right)_{i \in \mathbf{N}}$, and let $G=F /(r)$. Then :
(i) If r is a relation of the form (1) with $q=p^{\prime \prime}, s=p^{\prime}, e, h \in \overline{\mathbf{N}}$, $e \geqslant h$, then G is a Demuškin group with $q(G)=q, \quad s(G)=s$, $\chi\left(x_{2}\right)=(\mathrm{I}-q)^{-1}, \quad \chi\left(x_{i}\right)=\mathrm{I}$ for $i \neq 2 . \quad(\chi$ is the character associated to the dualizing module of G.)
(ii) If $p=2$ and r is a relation of the form

$$
\begin{equation*}
x_{1}^{2+2_{2} f}\left(x_{1}, x_{2}\right) x_{\vdots}^{2}\left(x_{3}, x_{i}\right) \prod_{i \geq:} x_{2 i-1}^{s}\left(x_{2 i-1}, x_{2 i}\right), \tag{6}
\end{equation*}
$$

with $s=2^{c}, \quad e, f, g \in \overline{\mathbf{N}}, e \geq f \geq 2, e \geqslant g \geq 2$, then G is a Demus̈kin group with $q(G)=2, \quad t(G)=1, \quad s(G)=s, \quad \%\left(x_{2}\right)=-\left(\mathrm{I}+2^{\prime}\right)^{-1}$, $\chi\left(x_{i}\right)=\left(\mathrm{I}-2^{2}\right)^{-1}, \%\left(x_{i}\right)=1$ for $i \neq 2,4$.
(iii) If $p=2$ and r is a relation of the form (4) with $s=2^{\prime \prime}, e, f \in \overline{\mathbf{N}}$, $e \geq f \geq 2$, then G is a Demus̈kin group with $q(G)=2, t(G)=-\mathrm{I}$, $s(G)=s, \quad \chi\left(x_{1}\right)=-\mathrm{1}, \quad \chi\left(x_{3}\right)=\left(1-2^{\prime}\right)^{-1}, \quad \chi\left(x_{i}\right)=1 \quad$ for $\quad i \neq 1,3$.
(iv) If $p=2$ and r is a relation of the form (5) with $b_{i j} \in{ }_{2} \mathbf{Z}_{2}$, then G is a Demuškin group with $q(G)=2, t(G)=0, s(G)=2$.

Corollary 1. - Let G, G^{\prime} be Demuškin groups of rank \mathbf{K}_{0} with $q(G) \neq 2$. Then $G \cong G^{\prime}$ if and only if $q(G)=q\left(G^{\prime}\right), s(G)=s\left(G^{\prime}\right)$.

Corollary 2. - Let G, G^{\prime} be Demuškin groups of rank \mathbf{K}_{0} with $t(G) \neq 0$. Then $G \cong G^{\prime}$ if and only if $t(G)=t\left(G^{\prime}\right), s(G)=s\left(G^{\prime}\right), \operatorname{Im}(\chi)=\operatorname{Im}\left(\gamma^{\prime}\right)$.

Corollary 3. - Let $r, r^{\prime} \in F^{\prime}(F, F)$, where F is a free pro-p-group of rank \mathbf{N}_{0}. Suppose that $G=F /(r), G^{\prime}=F /\left(r^{\prime}\right)$ are Demuškin groups with $t(G) \neq \mathrm{o}$. Then $G \cong G^{\prime}$ if and only if there is an automorphism σ of F with $\sigma(r)=r^{\prime}$.

Corollary 4. - For each $e \in \mathbf{N}$ there is a Demuškin group G with $s(G)=p^{e}$. If G is such a group and M is a torsion G-module, then $p^{e} \alpha=\mathrm{o}$ for any $\alpha \in H^{2}(G, M)$.

Remark. - The invariant $q(G)$ can be determined from the invariants $s(G), \operatorname{Im}(\gamma)$. In fact, if $s(G)=p^{\prime \prime}$ and $E=\mathbf{Z}_{\mu /} / p^{\prime \prime} \mathbf{Z}_{/ p}$, then $h(G)$ is the largest $h \in \overline{\mathbf{N}}$ with $h \leqslant e$ and $\operatorname{Im}(\%) \subset 1+p^{h} E$.
1.5. Application to Galois Theory. - If Γ is a profinite group, i. e. a projective limit of finite groups, then a Sylow p-subgroup of Γ is a closed subgroup G which is a pro- p-group with ($\Gamma: U$) prime to p
for any open sub-group U containing G. Every profinite group has Sylow p-subgroups and any two are conjugate (cf. [12], p. I-4).

Now let K be a finite extension of \mathbf{Q}_{p} and let $\boldsymbol{\Gamma}$ be the Galois group of the extension \bar{K} / K, where \bar{K} is an algebraic closure of K. Given the Krull topology, the group Γ is a profinite group. If G is a Sylow p-sub-group of Γ, we have the following result :

Theorem 5. - The group G is a Demuškin group of rank \mathbf{k}_{0} and its dualizing module is $\mu_{p \infty}=\bigcup_{n \geq 1} \mu_{p^{n}}$, where $\mu_{p^{n}}$ is the group of p^{n}-th roots of unity. If ζ_{p} is a primitive p-th root of unity and $K^{\prime}=K\left(\zeta_{p}\right)$, then $t(G)=(-\mathbf{1})^{a}$, where $a=\left[K^{\prime}: \mathbf{Q}_{,}\right]$.

Corollary 1. - If $K^{\prime}=K\left(\zeta_{p}\right)$, then $q=q(G)$ is the highest power of p such that K^{\prime} contains a primitive q-th root of unity.

Indeed, if $\sigma \in G$, then $\chi(\sigma)$ is the unique p-adic unit such that $\sigma(\zeta)=\zeta \chi(\sigma)$ for any $\zeta \in \mu_{p \infty}$. If ζ_{τ} is a primitive q-th root of unity, it follows that ζ_{τ} is left fixed by σ if and only if $\chi(\sigma) \in I_{1}+q \mathbf{Z}_{\prime,}$. If L is the fixed field of G, it follows that $\zeta_{q} \in L$ if and only if $\operatorname{Im}(\chi) \subset 1+q \mathbf{Z}_{p}$. But $\zeta_{/} \in L$ if and only if $\zeta_{/} \in K^{\prime}$ since L and $K^{\prime}\left(\zeta_{\nearrow}\right)$ are linearly disjoint over K^{\prime}.

Corollary 2. - If $K=\mathbf{Q}_{p}$ with $p \neq 2$, there exists a generating system $\left(\sigma_{i}\right)_{i \in \mathbb{N}}$ of G having the single relation

$$
\sigma_{1}^{\mu}\left(\sigma_{1}, \sigma_{2}\right) \prod_{i \geqslant 2}\left(\sigma_{2 i-1}, \sigma_{2 i}\right)=\mathbf{1}
$$

In fact, $q(G)=p \neq 2(c f .[10]$, p. 85).
Corollary 3. - If $K=\mathbf{Q}_{i 2}$, there exists a generating system $\left(\sigma_{i}\right)_{i \in \mathbf{N}}$ of G having the single relation

$$
\sigma_{1}^{2} \sigma_{2}^{4}\left(\sigma_{2}, \sigma_{3}\right) \prod_{i \geq 2}\left(\sigma_{2 i}, \sigma_{2 i+1}\right)=\mathrm{I}
$$

Indeed, $t(G)=-\mathbf{1}$ and $\operatorname{Im}(\chi)=\mathbf{U}_{2}$.

2. Preliminaries.

2.1. The Descending Central Series. - The descending central series of a pro-p-group F is defined inductively as follows : $F_{1}=F$, $F_{n+1}=\left(F_{n}, F\right)$. The sequence of closed subgroups $F_{„}$ of F have the following properties :
(i) $F_{1}=F$;
(ii) $F_{n+1} \subset F_{n}$;
(iii) $\left(F_{n}, F_{m}\right) \subset F_{n+m}$.

The first two properties are obvious, and the third is proved by induction. Such a sequence of subgroups is called a filtration of F. Let $\operatorname{gr}(F)$ be the direct sum of the $\mathbf{Z}_{l /-}$-modules $\operatorname{gr}_{n}(F)=F_{n} \mid F_{n+1}$. Then $\operatorname{gr}(F)$ is, in a natural way, a Lie algebra over \mathbf{Z}_{μ} (cf. [13], page LA 2.3) the bracket operation for homogeneous elements being defined as follows : If $i_{n}: F_{n} \rightarrow \mathrm{gr}_{n}(F)$ is the canonical homomorphism and $u \in F_{n}, v \in F_{m}$, then

$$
\left[i_{n}(u), i_{m}(v)\right]=i_{n+m}((u, v))
$$

Suppose now that F is the free pro-p-group of rank n generated by the elements $x_{1}, \ldots, x_{l \prime}$. If ξ_{i} is the image of x_{i} in $\operatorname{gr}_{1}(F)$, we have the following proposition :

Proposition 1. - The Lie algebra $\operatorname{gr}(F)$ is a free Lie algebra (over \mathbf{Z}_{l}) with basis ξ_{1}, \ldots, ξ_{n}.

Proof. - Let L be the free Lie algebra (over \mathbf{Z}_{p}) on the letters ξ_{1}, \ldots, \ldots, and let $\varphi: L \rightarrow \operatorname{gr}(F)$ be the Lie algebra homomorphism sending into $\%$. Using the fact that the x_{i} form a generating system of F, one shows by induction that the elements $\xi_{i} \in \operatorname{gr}_{1}(F)$ generate the Lie algebra $\operatorname{gr}(F)$. Hence o is surjective.

To show that φ is injective, let A be the ring of associative but noncommutative formal power series on the letters t_{1}, \ldots, t_{n}, with coefficients in $\mathbf{Z}_{/ \prime}$. Let m^{i} be the ideal of A consisting of those formal power series whose homogeneous components are of degree $\geq i$. The ring A / m^{i} is a compact topological ring if we give it the p-adic topology, and, as a ring, A is the projective limit of the rings A / m^{i}. We give A the unique topology which makes it the projective limit of the compact topological rings A / m^{i}. Let U^{\prime} be the multiplicative group of formal power series with constant term equal to I . Then, with the induced topology, U^{\prime} is a pro-p-group containing the elements $1+t_{i}$. Since (x_{i}) is a basis of the free pro-p-group F, there is a continuous homomorphism a of F into U^{1} sending x_{i} into $1+t_{i}$. If

$$
\varepsilon(x)=\mathrm{I}+u, \quad \varepsilon(y)=\mathrm{I}+v, \quad \text { with } u \in \mathfrak{m}^{i}, \quad v \in \mathfrak{m}^{\prime},
$$

then using the fact that $\varepsilon(x y)=\varepsilon(y x) \varepsilon((x, y))$, an easy calculation with formal power series shows that

$$
\begin{equation*}
\varepsilon((x, y))=\mathrm{r}+(u v-v u)+\text { higher terms. } \tag{7}
\end{equation*}
$$

If $0_{0}: F \rightarrow \mathfrak{m}^{1}$ is defined by $0_{n}(x)=\varepsilon(x)-\mathrm{I}$, then, applying (7) inductively, we see that $\theta_{11}\left(F_{i}\right) \subset \mathfrak{m}^{i}$. If $x \in F_{i}, y \in F_{i+1}$, then $\theta_{0}(x y) \equiv \theta_{10}(x)$ $\left(\bmod \mathrm{m}^{i+1}\right)$, and if $x, y \in F_{i}$, we have

$$
\theta_{0}(x y) \equiv \theta_{0}(x)+\theta_{0}(y) \quad\left(\bmod \mathfrak{m}^{i+1}\right)
$$

Hence 0_{0} induces an additive homomorphism 0 of $\operatorname{gr}(F)$ into $\operatorname{gr}(A)$, where $\operatorname{gr}(A)$ is the graded algebra defined by the m-adic filtration of A. Moreover, (7) shows that 9 is a Lie algebra homomorphism. If τ_{i} is the image of t_{i} in $\mathrm{gr}_{1}(A)$, then $\operatorname{gr}(A)$ is a free associative algebra with basis ($:_{i}$). By the theorem of Birkhoff-Witt (cf. [13], page LA 4.4) the Lie algebra homomorphism $\psi: L \rightarrow \operatorname{gr}(A)$ sending $\underset{i}{\circ}$ into \overbrace{i}^{-}is injective. Since $\psi=0 \circ \circ$, we see that ρ is injective, and hence bijective,
Q. E. D.

If F is a free pro- p-group of infinite rank, then F is the projective limit of free pro- p-groups $F(i)$ of finite rank, and $\operatorname{gr}_{n}(F)$ is the projective limit of the groups $\mathrm{gr}_{\text {/ }}(F(i))$. In particular, this gives the following result :

Proposition 2. - If $\left(F_{n}\right)$ is the descending central series of a free pro-p-group F, then $\mathrm{gr}_{n}(F)=F_{n /} / F_{n+1}$ is a torsion-free $\mathbf{Z}_{l /- \text {-module. }}$

We shall need the following result on free Lie algebras, the proof of which was communicated to me by J.-P. Serre :

Proposition 3. - Let L be the free Lie algebra (over k) on the letters ξ_{1}, \ldots, \ldots...... Then $[L, L]$ is generated, as a k-module, by the elements $\operatorname{ad}\left(\xi_{i}\right) \ldots \operatorname{ad}\left(幺_{i i_{k}}\right) \xi_{i_{k+1}}$ with $i_{k+1} \triangleq i_{1}, \ldots, i_{k}$.

Proof. - For $\mathrm{I} \leq m \leq n$, let L_{m} be the subalgebra generated by
 a k-module, A_{\ldots} is generated by ${ }_{\underline{\prime \prime}, \ldots}$ and the elements $\operatorname{ad}\left(\xi_{i,}\right) \ldots$ ad $\left(\xi_{i,}\right)$ with $i_{1}, \ldots, i_{k} \leq m$. Indeed, the ideal A_{m} contains these elements, and the submodule they generate is invariant under the ad (i) for $i \leq m$. We now show that L is the direct sum of the submodules $A_{\ldots,}$, from which the proposition immediately follows. It suffices to show that $L_{m}=L_{m-1} \oplus A_{m}$ for $2 \leq m \leq n$. To do this let $\varphi_{m}: L_{m \rightarrow} \rightarrow L_{m-1}$ be the Lie algebra homomorphism such that $\varphi_{m}\left(\xi_{m}\right)=0$, $\varphi_{m}\left(\xi_{i}\right)=$ if $i<m$. Since L_{m} / A_{m} is the free Lie algebra generated by the images of $\xi_{1}^{\prime}, \ldots,,_{\vdots m-1}^{\prime}$ and $\operatorname{Ker}\left(\varphi_{m}\right) \supset A_{m}$, it follows that φ_{m} induces an isomorphism of $L_{m} \mid A_{m}$ onto L_{m-1}. Hence $\operatorname{Ker}\left(\rho_{m}\right)=A_{m}$. Since φ_{m} is the identity on L_{m-1}, the result follows.

Now let F be a free pro- p-group of rank \boldsymbol{X}_{n} with basis $\left(x_{i}\right)_{i \in \mathbb{N}}$. Let $\left(F_{/ \prime}\right)$ be the descending central series of F, and let ξ_{i} be the image of x_{t} in $\mathrm{gr}_{1}(F)$. If N_{i} is the closed normal subgroup of F generated by the x_{i} with $j \supseteq i$, let $F_{n i}=F_{n} \cap N_{i}$, and let $B_{n i}$ be the image of $F_{n i}$ in $\operatorname{gr}_{n}(F)$. We then have the following result :

Proposition 4. - If T_{n} is the closed subgroup of $\mathrm{gr}_{\mu+1}(F)$ generated by the subgroups ad (

Proof. - The pro-p-group $\mathrm{gr}_{n+1}(F)$ is generated by the elements of the form ad $\left(\xi_{i_{1}}\right) \ldots a d\left(\xi_{i_{n}}\right) \xi_{i_{n+1}}$. However, by Proposition 3, each such element is a linear combination of elements of the same form but with $i_{n+1} \geq i_{1}$. Since each of these latter elements belongs to T_{n}, it follows that T_{n} contains a generating system of $\operatorname{gr}_{n+1}(F)$. Since T_{n} is closed, the result follows.

Corollary. - Every element of $\mathrm{gr}_{n+1}(F)$ can be written in the form $\sum_{i \geqslant 1}\left[\xi_{i}, \tau_{i}\right]$ with $\tau_{i} \in \operatorname{gr}_{n}(F), \tau_{i} \rightarrow 0$.
2.2. The Descending q-Central Series. - We shall need the following group-theoretical result :

Proposition 5. - Let $\left(F_{n}\right)$ be a filtration of a group F. If $x \in F_{i}$, $y \in F_{j}, a \in \mathbf{N}, b=\binom{a}{2}$, then :
(i) $\quad(x y)^{a} \equiv x^{a} y^{a}(y, x)^{\prime \prime} \quad\left(\bmod F_{i+j+1}\right) ;$
(ii) $\quad\left(x^{a}, y\right) \equiv(x, y)^{a}((x, y), x)^{\prime \prime} \quad\left(\bmod F_{i+j+2}\right)$;
(iii) $\left(x, y^{\prime \prime}\right) \equiv(x, y)^{a}((x, y), y)^{\prime \prime} \quad\left(\bmod F_{i+i+2}\right)$.

Proof. - Assertion (iii) follows easily form (ii). We now prove (i) and (ii) by induction on a using the following formulae ($c f .[13]$, page LA 2.1) :

$$
\left\{\begin{array}{l}
(x y, z)=(x, z)((x, z), y)(y, z) \\
(x, y z)=(x, z)(x, y)((x, y), z) \tag{8}
\end{array}\right.
$$

For $a=\mathrm{I}$, the proposition is obvious.
(i) Working modulo F_{i+j+1}, we have

$$
(x y)^{a+1}=x y(x y)^{a} \equiv x y x^{a} y^{a}(y, x)^{b}=x^{a+1} y\left(y, x^{a}\right) y^{a}(y, x)^{\prime},
$$

which in turn is congruent to $x^{a+1} y^{a+1}(y, x)^{a+b}$, and $a+b=\binom{a+\mathbf{1}}{2}$.
(ii) Modulo F_{i+j+2}, we have

$$
\begin{aligned}
\left(x^{a+1}, y\right)= & \left(x x^{\prime}, y\right) \equiv(x, y)\left((x, y), x^{z}\right)\left(x^{a}, y\right) \\
& \equiv(x, y)((x, y), x)^{a}(x, y)^{a}((x, y), x)^{b} \equiv(x, y)^{a+1}((x, y), x)^{a+b} .
\end{aligned}
$$

Now let F be a pro- p-group, and let $q=p^{h}$ with $h \in \mathbf{N}$. The descending q-central series of F is defined inductively by $F_{1}=F, F_{n+1}=F_{n}^{\prime \prime}\left(F, F_{n}\right)$. The groups F_{n} define a filtration of F. If $\operatorname{gr}(F)$ is the associated Lie algebra, then $\operatorname{gr}(F)$ is a Lie algebra over $\mathbf{Z} / q \mathbf{Z}$. If $P: F \rightarrow F$ is the mapping $x \mapsto x^{7}$, we have $P\left(F_{n}\right) \subset F_{n+1}$ for $n \geq \mathrm{I}$. Using Proposition 5,
we see that P induces a map $\pi: \operatorname{gr}_{n}(F) \rightarrow \operatorname{gr}_{n+1}(F)$ for $n \geq \mathrm{I}$. The following result is an immediate consequence of Proposition 5 :

Proposition 6. - Let $\left(F_{n}\right)$ be the descending q-central series of a pro-p-group F. If $\xi \in \operatorname{gr}_{i}(F), n \in \operatorname{gr}_{j}(F)$, then :
(i) $\pi(\xi+n)=\pi \xi+\pi n$ if $i=j \neq 1$;
(ii) $\pi\left(\xi+r_{1}\right)=\pi \xi+\pi n+\binom{q}{2}[\xi, n]$ if $i=j=1$;
(iii) $[\pi \xi, n]=\pi[\xi, n]$ if $i \neq \mathrm{I}$;
(iv) $[\pi \xi, n]=\pi[\xi, n]+\binom{q}{2}[[\xi, n], \xi]$ if $i=\mathrm{I}$.

Remarks. - Using the fact that $\binom{q}{2} \equiv 0(\bmod q)$ if $p \neq 2$, we see that $\operatorname{gr}(F)$ is a Lie algebra over $\mathbf{Z} / q \mathbf{Z}[\pi]$ for $p \neq 2$. If $q=2^{\prime \prime}$, then $\binom{q}{2} \equiv 2^{h-1}(\bmod q)$. Hence in this case $\operatorname{gr}(F)$ is not a Lie algebra over $\mathbf{Z} / q \mathbf{Z}[\pi]$. However, if $\operatorname{gr}^{\prime}(F)=\sum \operatorname{gr}_{n}(F)$, then $\operatorname{gr}^{\prime}(F)$ is a Lie algebra over $\mathbf{Z} / q \mathbf{Z}[\pi]$. Also, $\operatorname{gr}(F) \otimes \mathbf{Z} / p \mathbf{Z}$ is a Lie algebra over $\mathbf{Z} / q \mathbf{Z}[\pi] \otimes \mathbf{Z} / p \mathbf{Z}$ if $q \neq 2$.

Now let F be a free pro-p-group of rank \boldsymbol{X}_{0} with basis $\left(x_{i}\right)_{i \in \mathbb{N}}$, and let $\left(F_{n}\right)$ be the descending q-central series of F. Let ξ_{i} be the image of x_{i} in $\mathrm{gr}_{1}(F)$. Let N_{i} be the closed normal subgroup of F generated by the x_{i} with $j \supseteq i$, let $F_{n i}=F_{n} \cap N_{i}$, and let $B_{n i}$ be the image of $F_{n i}$ in $\mathrm{gr}_{n}(F)$. We then have the following result :

Proposition 7. - Let T_{n} be the closed subgroup of $\operatorname{gr}_{n+1}(F)$ generated by the subgroups ad $\left.\xi_{i}\right) B_{n i}$, and let D be the closed subgroup of $\operatorname{gr}_{2}(F)$
 by T_{n} and $\pi^{n-1} D$.

Proof. - Using Proposition 6, we see that $\operatorname{gr}_{n+1}(F)$ is generated by elements of the form
(9)

$$
\pi^{n} \xi_{i}, \quad \pi^{n-k} \operatorname{ad}\left(\xi_{i,}\right) \ldots \operatorname{ad}\left(\xi_{i_{k}}\right) \xi_{i_{k+1}} .
$$

It follows, by Proposition 3, that $\operatorname{gr}_{n+1}(F)$ is generated by elements of the form (9) with $i_{k+1} \geq i_{1}$. Since

$$
\pi^{n-k}\left[\xi_{i}, n\right]=\left[\xi, \pi^{n-k} n\right] \quad \text { if } n \in \operatorname{gr}_{m}(F), \quad \text { with } \quad m \geq 2
$$

and

$$
\pi^{n-1}\left[\xi_{i}, \xi_{j}\right]=\left[\xi_{i}, \pi^{n-1} \xi_{j}\right]+\left[\xi_{j},\binom{q}{2} \pi^{n-2}\left[\xi_{i}, \xi_{j}\right]\right] \quad \text { for } \quad n \geq 2,
$$

it follows that each of the elements in (9) is in the closed subgroup $T_{n}+\pi^{n-1} D$.
Q. E. D.

Corollary. - Every element of $\mathrm{gr}_{\mu+1}(F)$ can be written in the form

$$
\sum_{i \supseteq 1} a_{i} \pi^{n} \xi_{i}+\sum_{i \leqq 1}\left[\xi_{i}, \tau_{i}\right],
$$

where $a_{i} \in \mathbf{Z} / q \mathbf{Z}, \tau_{i} \in \operatorname{gr}_{n}(F), \tau_{i} \rightarrow 0$.
2.3. Cohomology and Filtrations. - Let F be a free pro- p-group, and let $q=p^{h}$ with $h \in \mathbf{N}$. Let $r \in F^{\prime \prime}(F, F)$ with $r \neq \mathrm{I}$, and let R be the closed normal subgroup of F generated by r. If $G=F / R$ and $\mathbf{k}=\mathbf{Z} / q \mathbf{Z}$, we have the exact sequence

$$
\mathrm{o} \rightarrow H^{\prime}(G, \mathbf{k}) \xrightarrow{\text { Inf }} H^{\prime}(F, \mathbf{k}) \xrightarrow{\text { Ines }} H^{\prime}(R, \mathbf{k})^{\prime \prime} \xrightarrow{\text { lv }} H^{2}(G, \mathbf{k}) \xrightarrow{\text { Inf }} H^{2}(F, \mathbf{k}) .
$$

Since $R \subset F^{\prime}(F, F)$, the first inflation homomorphism is bijective, and we use this homomorphism to identify $H^{\prime}(G, \mathbf{k})$ with $H^{\prime}(F, \mathbf{k})$. Hence tg is injective. But tg is also surjective since $H^{2}(F, \mathbf{k})=0$. Now let $g \in G, \varphi \in H^{\prime}(R, \mathbf{k})$. If $x \in R$, then $(g \circ)(x)=\vartheta\left(g^{-1} x g\right)$. Hence $g_{\varphi}=0$ if and only if $\varphi((x, g))=0$ for all $x \in R$. Thus $\rho \in H^{\prime}(R, \mathbf{k})^{\text {; }}$ if and only if φ vanishes on $R^{q}(R, F)$. We may therefore identify $H^{\prime}(R, \mathbf{k})^{c^{\prime}}$ with the dual of the pro-p-group $R / R^{\prime \prime}(R, F)$. We now show that $R / R^{q}(R, F)$ is cyclic of order q. This follows immediately form the following lemma :

Lemma. - The \mathbf{Z}_{ρ}-module $N=R /(R, F)$ is free of rank I .
Proof. - Let $\left(F_{n}\right)$ be the descending central series of F. Since the F_{n} intersect in the identity and $r \neq \mathbf{1}$, there is an $n \in \mathbf{N}$ with $r \in F_{/ \prime}, r \notin F_{n+1}$. Hence $R \subset F_{n}$ and $(R, F) \subset F_{n+1}$. Passing to quotients, we obtain a homomorphism f of N into $\mathrm{gr}_{\text {„ }}(F)$ sending the generator $\rho=r(R, F)$ of N into a non-zero element $₹$ of $\mathrm{gr}_{n}(F)$. Since $\mathrm{gr}^{\prime}(F)$ is a torsionfree \mathbf{Z}_{l},-module ($c f$. Proposition 2), it follows that $f(N)$ is free of rank i generated by τ, and hence that N is free of rank a generated by p.

Using the above results, we see that the homomorphism $\rho: H^{2}(G, \mathbf{k}) \rightarrow \mathbf{k}$, defined by $\rho(\alpha)=-\operatorname{tg}^{-1}(\alpha)(r)$, is an isomorphism. Given the relation r, we always use this isomorphism to identify $H^{2}(G, \mathbf{k})$ with \mathbf{k}.

Now let $\left(F_{\prime \prime}\right)$ be the descending q-central series of F. If $\left(x_{i}\right)_{i \in \mathrm{~N}}$ is a basis of F, then

$$
r \equiv \prod_{i \geqslant 1} x_{i}^{q_{i}} \prod_{i<j}\left(x_{i}, x_{j}\right)^{\pi_{i j}} \quad\left(\bmod F_{: i}\right)
$$

with $a_{i}, a_{i j} \in \mathbf{k}$. If $\left(y_{i}\right)$ is the basis of $H^{\prime}(G, \mathbf{k})$ defined by $\gamma_{i}\left(x_{i}\right)=\delta_{i j}$, we have the following proposition :

Proposition 8.
(a) If $\gamma_{i} \cup \gamma_{j} \in H^{*}(G, \mathbf{k})=\mathbf{k}$ is the cup product of γ_{i}, χ_{j}, then $\%_{i} \cup \%_{j}=a_{i j}$ if $i<j$, and $\%_{i} \cup \%_{i}=\binom{q}{2} a_{i}$.
(b) If $\beta: H^{\prime}(G, \mathbf{k}) \rightarrow H^{2}(G, \mathbf{k})=\mathbf{k}$ is the homomorphism defined by the exact sequence

$$
\mathrm{o} \rightarrow \mathbf{Z} / q \mathbf{Z} \rightarrow \mathbf{Z} / q^{2} \mathbf{Z} \rightarrow \mathbf{Z} / q \mathbf{Z} \rightarrow \mathrm{o},
$$

then : (i) $\beta\left(\gamma_{i}\right)=a_{i}$, and (ii) $\% \cup \%=\binom{q}{2} \beta(\%)$ for any $\% \in H^{\prime}(G, \mathbf{k})$.
Proof. - The proof of (a) when F is of finite rank can be found in [8] (р. ı5). The proof given there applies immediately to the case F is of infinite rank. We now prove (b).
(i) Let $\%=\%_{i}$ and let $s: \mathbf{Z} / q \mathbf{Z} \rightarrow \mathbf{Z} / q^{\mathbf{2}} \mathbf{Z}$ be defined by

$$
s(n+q \mathbf{Z})=n+q^{2} \mathbf{Z} \quad \text { for } \quad o \leq n \leq q-\mathrm{I}
$$

Let $\chi^{\prime}=s \circ \%$, and let $c^{\prime}(g, h)=\gamma^{\prime}(g)+\gamma^{\prime}(h)-\gamma^{\prime}(g h)$ for $g, h \in G$. Then $c^{\prime}(g, h)=q c(g, h)$ for a unique element $c(g, h) \in \mathbf{Z} / q \mathbf{Z}$. The ${ }_{2}$-cochain c is a cocycle whose cohomology class α is $\beta(\%)$. Let $\varphi=\operatorname{tg}^{-1}(\alpha)$. Then by the definition of the transgression, the homomorphism o is the restriction of a continuous function $f: F \rightarrow \mathbf{Z} / q \mathbf{Z}$ such that (in $\mathbf{Z} / q^{2} \mathbf{Z}$)

$$
q(f(x)+f(y)-f(x y))=\%^{\prime}(x)+\gamma^{\prime}(y)-\%^{\prime}(x y)
$$

for any $x, y \in F$. Moreover, after subtracting from f a suitable homomorphism, we can suppose that $f\left(x_{i}\right)=o$ for all j. An easy calculation then shows that $f\left(x_{j}^{\prime \prime}\right)=-\delta_{i j}$ and $f\left(\left(x_{l /}, x_{i}\right)\right)=0$ for all $h, j, k \in \mathbf{N}$. It follows that $\varphi(r)=-a_{i}$, and hence that $\beta\left(\gamma_{i}\right)=a_{i}$.
(ii) Using (a) and (i) above, we see that

$$
\gamma_{i} \cup \gamma_{i}=\binom{q}{2} \beta\left(\gamma_{i}\right) .
$$

If $\%=\sum u_{i} \%_{i}$, then

$$
\% \cup \%=\sum u_{i}^{2} \%_{i} \cup \%_{i}=\sum u_{i}^{2}\binom{q}{2} \beta\left(\gamma_{i}\right)=\sum u_{i}\binom{q}{2} \beta\left(\gamma_{i}\right)=\binom{q}{2} \beta(\%)
$$

since $u_{i}^{2}\binom{q}{2}=u_{i}\binom{q}{2}$ in $\mathbf{Z} / q \mathbf{Z}$.
2.4. Bilinear Forms on $(\mathbf{Z} / q \mathbf{Z})^{(\mathbb{N})}$. - We begin with a proposition which is due to Kaplansky [6].

Proposition 9. - Let V be a vector space of dimension $\boldsymbol{\chi}_{0}$, and let φ be a non-degenerate alternate bilinear form on V. Then V has a symplectic basis, i. e. a basis $\left(v_{i}\right)_{i \in \mathbb{N}}$ with $\varphi\left(v_{2 i-1}, v_{2 i}\right)=-\varphi\left(v_{2 i}, v_{2 i-1}\right)=1$ for $i \geq \mathrm{I}$, and $\varphi\left(v_{i}, v_{j}\right)=o$ for all other i, j.

Proof. - Let $\left(u_{i}\right)_{i \in \mathbf{N}}$ be an arbitrary basis of V, and suppose that we have already chosen $v_{1}, \ldots, v_{2 n}$. If X is the subspace generated by $v_{1}, \ldots, v_{2 n}$, let u_{m} be the first of the u_{i} such that $u_{i} \notin X$. Since φ is non-degenerate on X, the space V is the direct sum of X and its orthogonal complement X^{\prime}. Let w be the X^{\prime}-component of u_{m}, and choose $w \in X^{\prime}$ with $\varphi(w, z)=1$. We may then choose $v_{2 n+1}=w, v_{n+2}=z$. Proceeding in this way, we eventually pick up all the u_{i}.

> Q. E. D.

The following proposition generalizes a result of Kaplansky [6] :
Proposition 10. - Let V be a free $\mathbf{Z} / q \mathbf{Z}$-module of rank \mathbf{X}_{n}, where $q=p^{\prime \prime}$, with $h \in \mathbf{N}$, and let φ be a skew-symmetric bilinear form on V whose reduction modulo p is non-degenerate. Let β be a linear form on V, and suppose that either φ is alternate, or $q \neq 2$ and $\varphi(v, v)=\binom{q}{2} \beta(v)$ for any $v \in V$. Then there exist integers c, d with $o \leq c \leq d \leq h$ and a basis $\left(v_{i}\right)_{i \in \mathbf{N}}$ of V such that
(a) $\beta\left(v_{1}\right)=p, \quad \beta\left(v_{2}\right)=0$, and $\beta\left(v_{2 i-1}\right)=p^{\prime}, \quad \beta\left(v_{2 i}\right)=0$ for $i \geq 2$;
(b) $\varphi\left(v_{2 i-1}, v_{2 i}\right)=1$ for $i \geqslant 1$, and $\varphi\left(v_{i}, v_{j}\right)=0$ for all other v_{i}, v_{j} with $i<j$.

Proof. - Since the reduction of φ modulo p is non-degenerate and alternate, there exists by Proposition 9 a symplectic basis (v_{i}^{\prime}) of $V / p V$. If $\left(v_{i}\right)$ is a family of elements of V lifting the v_{i}^{\prime}, then it is easy to see that the v_{i} form a basis of V. Moreover, suitably choosing the basis (v_{i}^{\prime}), we can choose v_{1} to be a given element $v \notin p V$. In particular, we can choose v_{1} so that $\beta\left(v_{1}\right)=p^{c}$, where c is the unique integer with $0 \leq c \leq h$ such that p^{*} generates $\operatorname{Im}(\beta)$.

Now (b) holds modulo p, and, replacing $v_{2 i}$ by $\varphi\left(v_{2 i-1}, v_{2 i}\right)^{-1} v_{2 i}$, we may assume that $\varphi\left(v_{2 i-1}, v_{2 i}\right)=1$ for all $i \geqslant \mathrm{I}$. Then, replacing v_{i} by

$$
v_{i}+\sum_{j<i / 2}\left(\varphi\left(v_{i}, v_{2 j-1}\right) v_{2 j}+\varphi\left(v_{2 j}, v_{i}\right) v_{2 j-1}\right),
$$

we obtain a basis (v_{i}) such that condition (b) is satisfied and such that $\beta\left(v_{1}\right)=p$. Let d be the smallest integer with $c \leq d \leq h$ such that
there is an infinite subset S_{d} of \mathbf{N} with the property that for $i \in S_{d}$ we have $\beta\left(v_{i}\right)=p^{d} u_{i}$ with $u_{i} \neq \mathrm{o}(\bmod p)$, and let N be the smallest even integer ≥ 2 such that $\beta\left(v_{i}\right) \equiv 0\left(\bmod p^{\prime}\right)$ for all $i>N$. Then it is possible to choose a strictly increasing sequence $\left(n_{i}\right)_{i \in \mathbf{N}}$ of even integers with $n_{1}=N$ so that, for $i \neq \mathrm{I}$, we have $j \in S_{d}$ for at least one j with $n_{i-1}<j \leq n_{i}$. Let W_{1} be the submodule generated by $v_{1}, \ldots, v_{\mathrm{s}}$, and for $i>\mathrm{I}_{\mathrm{I}}$ let W_{i} be the submodule generated by the v_{j} with $n_{i-1}<j \leq n_{i}$. The following lemma applied to W_{1} shows that we may assume $N=2$, and another application to the W_{i} yields the result.

Lemma. - Let W be a free $\mathbf{Z} / q \mathbf{Z}$-module of rank $2 n, n \geq \mathrm{I}$, and let φ, β be forms on W as in Proposition 10. If $u_{1}, \ldots, u_{2 n}$ generate $\operatorname{Im}(\beta)$, there exists a basis (w_{i}) of W such that : (a) $\beta\left(w_{i}\right)=u_{i} ;(b) \varphi\left(w_{2 i-1}, w_{2 i}\right)=\mathrm{I}$ for $\mathrm{I} \leq i \leq n$, and $\varphi\left(w_{i}, w_{j}\right)=o$ for all other i, j with $i<j$.

Proof. - We first prove the lemma for the case $u_{1}=u$ is a generator of $\operatorname{Im}(\beta)$ and $u_{i}=o$ otherwise. Let $\left(w_{i}\right)$ be a basis of W such that $\beta\left(w_{1}\right)=u$ and $\beta\left(w_{i}\right)=\mathrm{o}$ for $i \neq \mathrm{I}$. Since the reduction of φ modulo p is non-degenerate and alternate, there is an $i \geq 2$ and a unit t in $\mathbf{Z} / q \mathbf{Z}$ such that $\varphi\left(w_{1}, w_{i}\right)=t$. After a permutation, we may assume that $i=2$, and, after multiplying w_{2} by t^{-1}, we may even assume that $\varphi\left(w_{1}, w_{2}\right)=\mathrm{r}$. If $\varphi\left(w_{1}, w_{i}\right)=a_{i} \neq \mathrm{o}$ for some $i>2$, replace w_{i} by $w_{i}-a_{i} w_{2}$. In this way we may also assume that $\varphi\left(w_{1}, w_{i}\right)=0$ for $i>2$.

If N is the submodule generated by $w_{3}, \ldots, w_{2 n}$, then, on N, the form φ is alternate and its reduction modulo p is non-degenerate. Hence we may choose $w_{i}, \ldots, w_{2 n} \in N$ so that (b) is satisfied for $i, j>2$. Condition (a) still holds, and (b) is true for all i, j except possibly we may have $\varphi\left(w_{2}, w_{i}\right) \neq \mathrm{o}$ for some $i>2$. If this is so, replace w_{2} by $w_{2}+a_{3} w_{3}+\ldots+a_{2 n} w_{2 n}$, where $a_{2 i}=\varphi\left(w_{2}, w_{2 i-1}\right)$ and $a_{2 i-1}=\varphi\left(w_{2 i}, w_{2}\right)$. Then the resulting basis is the one required.

For the general case, let $v_{1}, \ldots, v_{2 n}$ be an arbitrary basis of W. Let β^{\prime} be the linear form on W such that $\beta^{\prime}\left(v_{i}\right)=u_{i}$, and let φ^{\prime} be the bilinear form on W defined by

$$
\varphi^{\prime}\left(v_{i}, v_{i}\right)=\binom{q}{2} \beta^{\prime}\left(v_{i}\right), \quad \varphi^{\prime}\left(v_{2 i-1}, v_{2 i}\right)=-\varphi^{\prime}\left(v_{2 i}, v_{2 i-1}\right)=\mathbf{1}
$$

and

$$
\varphi^{\prime}\left(v_{i}, v_{j}\right)=0 \quad \text { for all other } i, j
$$

Then the pair ($\varphi^{\prime}, \beta^{\prime}$) satisfies the hypotheses of the lemma, and, by what we have shown above, there is an automorphism σ of W (as a module) such that

$$
\varphi(x, y)=\varphi^{\prime}(\sigma(x), \sigma(y)), \quad \beta(x)=\beta^{\prime}(\sigma(x))
$$

for all $x, y \in W$. If $w_{i}=\sigma^{-1}\left(v_{i}\right)$, then $\left(w_{i}\right)$ is a basis of W, and

$$
\varphi\left(w_{i}, w_{j}\right)=\varphi^{\prime}\left(v_{i}, v_{j}\right), \quad \beta\left(w_{i}\right)=\xi^{\prime}\left(v_{i}\right) .
$$

Hence (w_{i}) is the required basis.

> Q. E. D.

Remark. - The integer d in Proposition 10 can be invariantly described as follows : For $o \leq e \leq h$, let $V_{e}=V / p^{c} V$, and let φ_{e}, β_{e} be the forms obtained from $0, \beta$ on reducing modulo p^{\prime}. Let ψ_{e} be the homomorphism of V_{e} into its dual defined by the bilinear form ψ_{ρ}, and let $\psi=\psi_{l}$. Then $\beta \in \operatorname{Im}(\psi)$ if and only if $d=h . \quad$ If $\beta \notin \operatorname{Im}(\psi)$, then d is the smallest integer $\geqslant 0$ such that $\beta_{l+1} \notin \operatorname{Im}\left(\psi_{l l+1}\right)$.

The last proposition of this section, and which again is due to Kaplansky [6], classifies non-alternate symmetric bilinear forms on vector spaces of dimension \boldsymbol{K}_{0} over a perfect field k of characteristic 2. Recently (cf. Notices of the A. M. S., 66 T-4, January ig66), H. Gross and R. D. Engle have classified such forms replacing the condition [$\left.k: k^{2}\right]=$ I by the condition $\left[k: k^{2}\right]<\infty$. In this paper, we are interested in the case $k=\mathbf{Z} / 2 \mathbf{Z}$.

Proposition 11. - Let k be a perfect field of characteristic 2, and let V be a vector space over k of dimension \boldsymbol{N}_{0}. If 0 is a non-degenerate nonalternate symmetric bilinear form on V, then precisely one of following three possibilities holds :
(i) V is the orthogonal direct sum of subspaces W, Z with W onedimensional and p alternate on Z;
(ii) V is the orthogonal direct sum of subspaces W, Z with W twodimensional, φ non-alternate on W, and φ alternate on Z;
(iii) V has an orthonormal basis.

Proof. - Let A be the subspace formed by the elements v with $\varphi(v, v)=o$. Then V / A is one-dimensional, and A^{\prime}, the orthogonal complement of A, is at most one-dimensional.

Case I. - A^{\prime} is one-dimensional and is not in $\quad A$. Then $V=A \oplus A^{\prime}$, and φ is of type (i). Conversely, any form of type (i) falls in this category.

Case II. - A^{\prime} is one-dimensional an is contained in A. Let z be any element not in A, and let Z be the subspace of A annihilated by z. Then $\operatorname{dim}(A / Z)=\mathrm{I}$, and A^{\prime} is not contained in Z. Thus $A=Z \oplus A^{\prime}$, and $V=Z \oplus W$, where W is the subspace spanned by A^{\prime} and z. Hence is of type (ii). Moreover, any form of type (ii) falls in Case II.

Case III. - $A^{\prime}=$ o. In this case, we shall show that V has an orthonormal basis $\left(v_{i}\right)_{i \in \mathbf{N}}$. Let $\left(u_{i}\right)_{i \in \mathbf{N}}$ be any basis of V with $\varphi\left(u_{1}, u_{1}\right)=\mathrm{I}$,
and suppose that v_{1}, \ldots, v_{n} have already been chosen. If X is the subspace they span, let u_{m} be the first of the u_{i} with $u_{i} \notin X$, and let z be the X^{\prime}-component of u_{m}. If $\varphi(z, z)=a^{2} \neq 0$, we choose $v_{n+1}=a z$. If $\varphi(z, z)=0$, find $w \in X^{\prime}$ with $\cup(z, w)=$ I. If $\varphi(w, w)=b^{2} \neq \mathrm{o}$, choose $v_{n+1}=b^{-1} w, \quad v_{n+2}=b z+b^{-1} w$. If $\varphi(w, w)=0$, choose $v_{n+1}=v+w, v_{n+2}=v_{n}+z+w$, and replace v_{n} by $v_{n}+z$. Proceeding in this way, we eventually pick up all the u_{i}. Conversely, it is easy to see that a form with an orthonormal basis falls under Case III.

Corollary. - Let o be of type (i) or (ii), and let V be the union of an increasing family $\left(V_{i}\right)$ of finite-dimensional subspaces on which o is nondegenerate. If 0 is of type (i) [resp. (ii)], then $\operatorname{dim}\left(V_{i}\right)$ is odd (resp. even) for i sufficiently large.

Proof. - If W is the subspace found in the Proposition, then V is the direct sum of W and its orthogonal complement W^{\prime}, and φ is alternate on W^{\prime}. Now let X be a finite-dimensional subspace of V on which is non-degenerate. If $W \subset X$, then X is the orthogonal direct sum of W and another subspace $Y \subset W^{\prime}$. Since ψ is non-degenerate and alternate on Y, it follows that $\operatorname{dim}(Y)$ is even, and hence that $\operatorname{dim}(X)$ has the same parity as $\operatorname{dim}(W)$. The corollary now follows from the fact that W is contained in V_{i} for i sufficiently large.

3. Proof of Theorems 1 and 2.

3.1. Proof of Theorem 1. - If G is a Demuškin group of rank $\boldsymbol{\lambda}_{0}$, then, by Propositions 9 and 11, the vector space $H^{1}(G)$ is the union of an increasing family $\left(V_{i}\right)$ of finite-dimensional non-zero subspaces such that the cup product

$$
0: \quad H^{\prime}(G) \times H^{\prime}(G) \rightarrow H^{2}(G)
$$

is non-degenerate on each V_{i}. Choose a basis $\left(\chi_{i}\right)$ of $H^{\prime}(G)$ such that $\chi_{1}, \ldots, \chi_{n_{i}}$ is a basis of V_{i}. This choice of basis gives an isomorphism $\theta: H^{\prime}(G) \rightarrow(Z / p Z)^{(\mathbf{N})}$. Let F be a free pro-p-group of rank \boldsymbol{K}_{0}, and let f be a continuous homomorphism of F onto G such that $\theta=H^{\prime}(f)$ (cf. [12], p. I-36). If $R=\operatorname{Ker}(f)$, then $R=(r)$ with $r \in F^{\prime \prime}(F, F)$. We identify G with F / R by means of f. Using the duality between the compact group $F / F^{\prime}(F, F)=G / G^{\prime \prime}(G, G)$ and the discrete group $H^{\prime}(G)$, we obtain a generating system ($\binom{i}{i}$ of $F / F^{p}(F, F)$ such that $\chi_{i}\left(\xi_{j}\right)=\delta_{i j}$. Now let $\sigma: F / F^{\prime \prime}(F, F) \rightarrow F$ be a continuous section, sending o into i (cf. [12], p. I-2, prop. 1). If $x_{i}=\sigma(i)$, then $\left(x_{i}\right)$ is a basis of F. Now let $f_{n}: F \rightarrow F$ be the continuous homomorphism defined by $f_{n}\left(x_{i}\right)=x_{i}$ if $\mathrm{I} \leq i \leq n, \quad f_{n}\left(x_{i}\right)=\mathrm{I}$ if $i>n$. If $n_{i}=\operatorname{dim}\left(V_{i}\right)$, let $F_{i}=\operatorname{Im}\left(f_{n_{i}}\right)$, $r_{i}=f_{n_{i}}(r), \quad G_{i}=F_{i} /\left(r_{i}\right)$, and let $\Psi_{i}: G \rightarrow G_{i}$ be the homomorphism
induced by $f_{n_{i}}$. We shall show that the closed normal subgroups $H_{i}=\operatorname{Ker}\left(\psi_{i}\right)$ are the ones required. If g_{i} is the image of x_{i} in G, then $\operatorname{Ker}\left(\psi_{i}\right)$ is the closed normal subgroup of G generated by the g_{j} with $j>n_{i}$. Hence $H_{i+1} \subset H_{i}$. Since $g_{i \rightarrow \mathrm{I}}$ as $i \rightarrow \infty$, it also follows that the H_{i} intersect in the identity. It remains to show that $G_{i}=G / H_{i}$ is a Demuskin group of finite rank. To do this, we use the commutative diagram

where the vertical arrows are the inflation homomorphisms. The homomorphism Inf : $H^{\prime}\left(G_{i}\right) \rightarrow H^{\prime}(G)$ maps $H^{\prime}\left(G_{i}\right)$ isomorphically onto V_{i}. Since the cup product φ is non-degenerate on V_{i}, the above diagram shows that Inf: $H^{2}\left(G_{i}\right) \rightarrow H^{2}(G)$ is not the zero homomorphism. Since $\operatorname{dim} H^{2}\left(G_{i}\right) \leq 1$ and $\operatorname{dim} H^{2}(G)=1$, it follows that this homomorphism must be bijective. This implies that $H^{2}\left(G_{i}\right)$ is one-dimensional and that the cup product :

$$
H^{1}\left(G_{i}\right) \times H^{1}\left(G_{i}\right) \rightarrow H^{2}\left(G_{i}\right)
$$

is non-degenerate. Hence G_{i} is a Demuškin group of rank n_{i}.
Conversely, assume that we are given such a family of quotients $G_{i}=G / H_{i}$ of the pro- p-group G, the group G being of rank \boldsymbol{K}_{0}. Then $c d(G) \leq 2$. If $c d(G)<2$, then G is a free pro-p-group ($c f$. [12], p. I-37). So assume that $c d(G)=2$. Since $H^{2}(G)$ is the direct limit of the onedimensional subspaces $H^{2}\left(G_{i}\right)$, it follows that $\operatorname{Inf}: H^{2}\left(G_{i}\right) \rightarrow H^{2}(G)$ is an isomorphism for i sufficiently large. We assume that we have chosen the H_{i} so that this is true for all i. If V_{i} is the image of $H^{\prime}\left(G_{i}\right)$ in $H^{\prime}(G)$ under the inflation map, the commutative diagram then shows that the cup product $\varphi: H^{\prime}(G) \times H^{\prime}(G) \rightarrow H^{2}(G)$ is non-degenerate on V_{i}. Since $H^{\prime}(G)$ is the union of the V_{i}, it follows that φ is nondegenerate. Hence G is a Demuškin group.
3.2. Proof of Theorem 2. - To prove (i), it suffices to consider the case G is of rank $\boldsymbol{K}_{0}\left(c f .[11]\right.$, p. $\left.{ }_{2} 52-3 \mathrm{og}\right)$. Let U be an open subgroup of the Demuškin group G and let $\left(H_{i}\right)$ be a decreasing family of closed normal subgroups of G with $\bigcap_{i} H_{i}=\mathbf{I}$ and each quotient G / H_{i} a Demus̀kin group of finite rank $\neq \mathrm{I}$. If $U_{i}=U \cap H_{i}$, then $U / U_{i}=U H_{i} / H_{i}$ is an open subgroup of the Demuškin group G / H_{i}. Since G / H_{i} is of finite $\operatorname{rank} \neq \mathrm{I}$, it follows that U / U_{i} is a Demuškin group of finite rank.

Since $\bigcap_{i} U_{i}=\mathrm{I}$, it follows, by Theorem 1 , that U is either a free pro-p-group or a Demusikin group. But, since U is open in G and $c d(G)=2$, we have $c d(U)=2$ (cf. [12], p. I-2o, Prop. 14). Hence U is a Demuskin group.

For the proof of (ii), let K be a closed subgroup of the Demuškin group G with $(G: K)=\infty$. This implies, in particular, that $n(G) \neq \mathrm{I}$. If U, V are open subgroups of G with $U \subset V$, the corestriction homomorphism

$$
\text { Cor : } \quad H^{2}(U) \rightarrow H^{2}(V)
$$

is surjective since $c d(V)=2$ (cf. [12], p. I-2o, lemme 4) and hence is bijective since $H^{2}(U) \cong H^{2}(V) \cong \mathbf{Z} / p \mathbf{Z}$. But, if $U \neq V$ and

$$
\text { Res : } \quad H^{2}(V) \rightarrow H^{2}(U)
$$

is the restriction homomorphism, we have

$$
\text { Cor } \circ \text { Res }=0 \quad \text { since } \quad \text { Cor } \circ \operatorname{Res}=(V: U)=p^{\prime \prime}
$$

It follows that Res is the zero homomorphism if $U \neq V$. Since K is the intersection of the open subgroups containing it, $H^{2}(K)$ is the direct limit of the groups $H^{2}(U)$, where U runs over the open subgroups of G containing K, the homomorphisms being the restriction homomorphisms. Since $(G: K)=\infty$, it follows that $H^{2}(K)=o$. Hence K is a free pro- p-group.

4. Proof of Theorem 3.

In this section, F is a free pro- p-group of $\operatorname{rank} \boldsymbol{x}_{0} ; r \in F^{\prime \prime}(F, F)$; $G=F /(r)$ is a Demuškin group; $q=q(G) ; h=h(G): t=t(G)$. We divide the proof of theorem 3 into cases.
4.1. The Case $q=o$. - If $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ is a basis of F, let

$$
r_{0}(x)=\prod_{i \geqslant 1}\left(x_{2 i-1}, x_{2 i}\right)
$$

Let $\left(F_{n \prime}\right)$ be the descending central series of F. We first show that we can choose the basis (x_{i}) so that $r \equiv r_{0}(x)$ modulo F_{3}.

Let $H^{i}\left(G, \mathbf{Z}_{l \prime}\right)=\lim _{\leftarrow / m} H^{i}\left(G, \mathbf{Z} / p^{m} \mathbf{Z}\right)$. Then $\quad V=H^{\prime}\left(G, \mathbf{Z}_{l \prime}\right)$ can be identified with the set of continuous homomophisms of G into \mathbf{Z}_{ρ}, where \mathbf{Z}_{μ} is given the p-adic topology. If $\left(\gamma_{i}\right)_{i \in \mathbb{N}}$ is a family of elements of V such that the $\gamma_{i}(\bmod p)$ form a basis of $V / p V=H^{\prime}(G)$, then every
element of V can be uniquely written in the form $\sum_{i \geqslant 1} a_{i} \chi_{i}$ with $a_{i} \in \mathbf{Z}_{p}$ and $a_{i} \rightarrow 0$. We call such a family of elements a basis of V. Using the cup product :

$$
H^{\prime}\left(G, \mathbf{Z} / p^{m} \mathbf{Z}\right) \times H^{\prime}\left(G, \mathbf{Z} / p^{m} \mathbf{Z}\right) \rightarrow H^{2}\left(G, \mathbf{Z} / p^{m} \mathbf{Z}\right)
$$

and passing to the limit we obtain a cup product :

$$
H^{\prime}\left(G, \mathbf{Z}_{\rho}\right) \times H^{1}\left(G, \mathbf{Z}_{l /}\right) \rightarrow H^{2}\left(G, \mathbf{Z}_{\rho}\right)
$$

which is \mathbf{Z}_{p}-bilinear (and continuous). Moreover, under the identification of $H^{2}\left(G, \mathbf{Z} / p^{m} \mathbf{Z}\right)$ with $\mathbf{Z} / p^{m} \mathbf{Z}$ the map $H^{2}\left(G, \mathbf{Z} / p^{m+1} \mathbf{Z}\right) \rightarrow H^{2}\left(G, \mathbf{Z} / p^{m} \mathbf{Z}\right)$ is the canonical homomorphism of $\mathbf{Z} / p^{m+1} \mathbf{Z}$ onto $\mathbf{Z} / p^{m} \mathbf{Z}$. Hence, passing to the limit, we may identify $H^{2}\left(G, \mathbf{Z}_{l /}\right)$ with \mathbf{Z}_{p}.

If $\left(x_{i}\right)$ is a basis of F, then

$$
r \equiv \prod_{i<i}\left(x_{i}, x_{j}\right)^{\tau_{i}} \quad\left(\bmod F_{\mathrm{z}}\right),
$$

where $a_{i j} \in \mathbf{Z}_{p}$. Let $\chi_{i}: F \rightarrow \mathbf{Z}_{p}$ be the continuous homomorphism defined by $\chi_{i}\left(x_{j}\right)=\delta_{i j}$. Then $\left(\chi_{i}\right)$ is a basis of $H^{\prime}\left(G, \mathbf{Z}_{l \prime}\right)$. Since each such homomorphism χ_{i} vanishes on (F, F) and since $r \in(F, F)$, we may view the χ_{i} as elements of $H^{\prime}\left(G, \mathbf{Z}_{l /}\right)$. We then have the following lemma :

Lemma 1. - The cup product $H^{\prime}\left(G, \mathbf{Z}_{\mu}\right) \times H^{\prime}\left(G, \mathbf{Z}_{l}\right) \rightarrow H^{2}\left(G, \mathbf{Z}_{\mu}\right)=\mathbf{Z}_{\rho}$ is alternating and $\chi_{i} \cup \chi_{j}=a_{i j}$ if $i<j$.

Proof. - If ε_{m} is the canonical homomorphism of $\mathbf{Z}_{\beta,}$ onto $\mathbf{Z}_{\mu} / p^{m} \mathbf{Z}_{\rho}=\mathbf{Z} / p^{m} \mathbf{Z}$, let $\chi_{i}^{(m)}=\varepsilon_{m} \circ \chi_{i}, a_{i j}^{(m)}=\varepsilon_{m}\left(a_{i j}\right)$. Then, by Proposition 8, $\chi_{i}^{(m)} \cup \chi_{i}^{(m)}=0$ and $\chi_{i}^{(m)} \cup \chi_{j}^{(m)}=a_{i j}^{(m)}$ if $i<j$. It follows that $\chi_{i} \cup \chi_{i}=0$ and $\chi_{i} \cup \chi_{j}=a_{i j}$ for $i<j$.
Q. E. D.

The basis $\left(\%_{i}\right)$ of $H^{1}\left(G, \mathbf{Z}_{\mu}\right)$ is said to be a symplectic basis if $\chi_{2 i-1} \cup \chi_{2 i}=-\psi_{2 i} \cup \chi_{2 i-1}=1$ and $\chi_{i} \cup \chi_{j}=0$ for all other i, j. The existence of a symplectic basis of $V=H^{\prime}\left(G, \mathbf{Z}_{p}\right)$ follows from the following lemma together with the existence of a symplectic basis on $V / p V=H^{\prime}(G)$ (cf. Proposition 9).

Lemma 2. - Let M be a free $\mathbf{Z} / p^{\prime \prime} \mathbf{Z}$-module of rank \mathbf{K}_{0} with an alternating form φ. If $\left(\bar{\gamma}_{i}\right)$ is a symplectic basis of $M / p^{m-1} M$, there exists a symplectic basis of F lifting ($\overline{\mathrm{z}})^{2}$).

Proof. - Let (χ_{i}^{\prime}) be a basis of M lifting the symplectic basis $\left(\chi_{i}\right)$. Then $\varphi\left(\chi_{i=1-1}^{\prime}, \gamma_{i z}^{\prime}\right)=\mathrm{I}+p^{m-1} u_{i}$ for $i \geq \mathrm{I} \quad$ and $\varphi\left(\chi_{i}^{\prime}, \gamma_{j}^{\prime}\right)=p^{m-1} u_{i j}$
for all other i, j with $i \leq j$. Replacing $\chi_{\div i-1}^{\prime}$ by $\left(1+p^{m-1} u_{i}\right)^{-1} \chi_{\equiv i-1}^{\prime}$, we may assume that $\varphi\left(\chi_{2 i-1}^{\prime}, \chi_{2 i}^{\prime}\right)=1$ for all $i \triangleq \mathrm{I}$. Then the basis $\left(\varkappa_{i}\right)$, where

$$
\chi_{i}=\chi_{i}^{\prime}+\sum_{j<i / 2}\left(\varphi\left(\chi_{i}^{\prime}, \chi_{i j-1}^{\prime}\right) \chi_{2 j}^{\prime}+\varphi\left(\chi_{2 j}^{\prime}, \chi_{i}^{\prime}\right) \chi_{\chi_{2}^{\prime} j-1}^{\prime}\right)
$$

is the required symplectic basis of M.

> Q. E. D.

The existence of a basis $x=\left(x_{i}\right)$ of F such that $r=r_{0}(x)\left(\bmod F_{3}\right)$ now follows from lemmas 1 and 2 and the following lemma :

Lemma 3. - If $\left(\chi_{i}\right) \in \mathbb{N}$ is a basis of $H^{\prime}\left(G, \mathbf{Z}_{p}\right)$, there exists a basis $\left(x_{i}\right)$ of F such that $\chi_{i}\left(x_{j}\right)=\grave{o}_{i j}$.

Proof. - If ε_{m} is the canonical homomorphism of \mathbf{Z}_{p} onto $\mathbf{Z} / p^{m} \mathbf{Z}$, let $\chi_{i}^{(m)}=\varepsilon_{m} \circ \%_{i}$. Using the duality between the compact groups $F / F^{p^{\prime \prime \prime}}(F, F)$ and the discrete group $H^{\prime}\left(F, \mathbf{Z} / p^{\prime \prime \prime} \mathbf{Z}\right)$, we obtain a generating system ($\xi_{i}^{(m)}$) of $F / F^{\nu^{m}}(F, F)$ such that $\chi_{i}^{(m)}\left(\xi_{j}^{(m)}\right)=\delta_{i j}$. Since $F /(F, F)=\lim _{\underset{m}{m}} F / F^{r^{m}}(F, F)$ and the image of $\xi_{i}^{(m+1)}$ in $F / F^{\prime, m}(F, F)$ is $\xi_{i}^{(m)}$, there exists $\xi_{i} \in F /(F, F)$ such that, for all $m, \xi_{i}^{(m)}$ is the image of ξ_{i} in $F / F^{p^{m}}(F, F)$. Moreover, it is easy to see that (ξ_{i}) is a basis of $F /(F, F)$. If $\sigma: F /(F, F) \rightarrow F$ is a continuous section such that $\sigma(\mathrm{o})=\mathrm{I}$ and if $x_{i}=\sigma\left(\xi_{i}\right)$, then $\left(x_{i}\right)$ is the required basis of F.
Q. E. D.

Suppose now that we have found a basis $\left(x_{i}\right)$ of F such that $r \equiv r_{0}(x)$ modulo F_{n+1} for some $n \geqslant 2$. If $\left(t_{i}\right)_{i \in \mathbf{N}}$ is a family of elements of F_{n} with $t_{i} \rightarrow \mathrm{I}$, and if $y_{i}=x_{i} t_{i}^{-1}$, then $y=\left(y_{i}\right)$ is a basis of F and $r_{v}(x)=r_{v}(y) d_{n}$ with $d_{n} \in F_{n+1}$. If τ_{i} (resp. ξ_{i}) is the image of t_{i} (resp. x_{i}) in $\operatorname{gr}_{n}(F)$ [resp. $\operatorname{gr}_{1}(F)$], then, using (8), we see that the image of d_{n} in $\operatorname{gr}_{n+1}(F)$ is

$$
\delta_{n}(\tau)=\sum_{i \cong 1}\left(\left[\xi_{2 i-1}, \tau_{2 i}\right]+\left[\tau_{2 i-1}, \xi_{2 i}\right]\right),
$$

where $\tau=\left(\tau_{i}\right)$. If W_{n} is the submodule of $V_{n}=\operatorname{gr}_{n}(F)^{\mathbf{N}}$ consisting of those families $\tau=\left(\tau_{i}\right)$ with $\tau_{i} \rightarrow 0$, we obtain a homomorphism $\partial_{n}: W_{n} \rightarrow \operatorname{gr}_{n+1}(F)$. If $\Delta_{n}: V_{n} \rightarrow \operatorname{gr}_{n}(F)$ is defined by

$$
\Delta_{n}(\tau)=\sum_{i \supseteq 1}\left[\xi_{i}, \tau_{i}\right]
$$

then $\Delta_{n}\left(W_{n}\right)=\operatorname{Im}\left(\partial_{n}\right)$, and, by the corollary to Proposition 4, we have $\Delta_{n}\left(W_{n}\right)=\operatorname{gr}_{n+1}(F)$. Consequently δ_{n} is surjective. Hence if
$r=r_{0}(x) e_{n+1}$ with $e_{n+1} \in F_{n+1}$, we may choose $\tau=\left(\tau_{i}\right) \in W_{n}$ so that - $\varepsilon_{n+1}=\delta_{n}(\tau)$, where ε_{n+1} is the image of e_{n+1} in $\mathrm{gr}_{n+1}(F)$. If $\sigma: \operatorname{gr}_{n}(F) \rightarrow F_{n}$ is a continuous section with $\sigma(\mathrm{o})=\mathrm{I}$, let $t_{i}=\sigma\left(\mathrm{\sigma}_{i}\right)$. If $y_{i}=x_{i} t_{i}^{-1}$, then $y=\left(y_{i}\right)$ is a basis of F and $r \equiv r_{0}(y)\left(\bmod F_{n+2}\right)$.

Proceeding in this way, we obtain for each $n \geq 2$ a basis $x^{(n)}=\left(x_{i}{ }^{h}\right)$ of F such that $r \equiv r_{0}\left(x^{(n)}\right)\left(\bmod F_{n+1}\right)$ and such that $x_{i}^{\prime n+1)} \equiv x_{i}^{\prime \prime \prime}\left(\bmod F_{n}\right)$. If $x_{i}=\lim x_{i}^{(n)}, n \rightarrow \propto$, then $\left(x_{i}\right)$ is a basis of F and $r=r_{v}(x)$.
Q. E. D.
4.2. The Case $q \neq 0$, 2. - If $V=H^{\prime}(G, \mathbf{Z} / q \mathbf{Z})$, then V is free $\mathbf{Z} / q \mathbf{Z}$-module of rank \mathbf{K}_{0}, and the cup product

$$
H^{\prime}(G, \mathbf{Z} / q \mathbf{Z}) \times H^{\prime}(G, \mathbf{Z} / q \mathbf{Z}) \rightarrow H^{*}(G, \mathbf{Z} / q \mathbf{Z})=\mathbf{Z} / q \mathbf{Z}
$$

is a bilinear form on V whose reduction modulo p is non-degenerate. If β is the linear form on V defined in Proposition 8 , then $\% \cup \%=\binom{q}{2} \beta(\gamma)$ for any $\chi \in V$. Moreover, $\beta(V)=\mathbf{Z} / q \mathbf{Z}$ since $r \notin F^{p^{h+1}}(F, F)$. Since $q \neq 2$, we may apply Proposition 10 to obtain a basis $\left(\gamma_{i}\right)$ of V and an integer d with $o \leq d \leq h$ such that
(a) $\beta\left(\chi_{1}\right)=1, \quad \beta\left(\gamma_{2}\right)=0, \quad$ and $\beta\left(\gamma_{2 i-1}\right)=p^{\prime \prime}, \quad \beta\left(\chi_{2 i}\right)=0$ for $i \geqslant 2$.
(b) $\%_{2 i-1} \cup \%_{j_{2}}=\mathrm{I}$ for $i \geq \mathrm{I}$, and $\%_{i} \cup \%_{j}=\mathrm{o}$ for all other i, j with $i<j$.

Let $\left(x_{i}\right)$ be a basis of F such that $\gamma_{i}\left(x_{j}\right)=\hat{\partial}_{i j}$ and let $\left(F_{n}\right)$ be the descending q-central series of F. Then by Proposition 8 we have

$$
r \equiv x_{1}^{\prime \prime}\left(x_{1}, x_{2}\right) \prod_{i \geq 2} x_{2 i-1}^{q / I_{i}^{\prime \prime}}\left(x_{2 i-1}, x_{2 i}\right) \quad\left(\bmod F_{: 3}\right)
$$

Now suppose that for some $n \geq 2$, we have found a basis $\left(x_{i}\right)$ of F and integers a_{i} with $q\left|a_{2 i-1}, q^{2}\right| a_{2 i}$ such that

$$
r=x_{1}^{\prime}\left(x_{1}, x_{2}\right) \prod_{i \supseteq 2} x_{-i-1}^{1 t_{i-1}} x_{2 i}^{\prime 4_{2 i}}\left(x_{2 i-1}, x_{2 i}\right) e_{n+1},
$$

where $e_{n+1} \in F_{n+1}$, and where either all a_{i} are equal to zero, or there exists an infinite number of i with $v_{l}\left(a_{i}\right)<n h$. If $\left(t_{i}\right)_{i \in \mathbf{N}}$ is a family of elements $t_{i} \in F_{n}$ with $t_{i} \rightarrow \mathrm{I}$, then $\left(y_{i}\right)$, where $y_{i}=x_{i} t_{i}{ }^{-1}$, is a basis of F and

$$
\begin{equation*}
r=y_{i}^{\prime}\left(y_{1}, y_{2}\right) \coprod_{i \geq 2} x_{2 i-1}^{n_{i j-1}} x_{2, i}^{n_{2 i}}\left(x_{2 i-1}, x_{2 i}\right) d_{n} e_{n+1}, \tag{io}
\end{equation*}
$$

where $d_{n} \in F_{n+1}$. If $\tau_{i}\left(\right.$ resp. $\left.\xi_{i}\right)$ is the image of $t_{i}\left(\right.$ resp. $\left.x_{i}\right)$ in $\operatorname{gr}_{n}(F)$ [resp. $\mathrm{gr}_{1}(F)$], then, using (8) together with Proposition 6, we see that the image of d_{n} in $\mathrm{gr}_{n+1}(F)$ is

$$
\begin{aligned}
\delta_{n}(\tau)= & \pi \tau_{1}+\binom{q}{2}\left[\tau_{1}, \xi_{1}\right]+\left[\tau_{1}, \xi_{2}\right]+\left[\xi_{1}, \tau_{2}\right] \\
& +\sum_{i \geq 2}\left(p^{\prime} \pi \tau_{2 i-1}+p^{\prime \prime}\binom{q}{2}\left[\tau_{2 i-1}, \xi_{2 i-1}\right]\right) \\
& +\sum_{i \geq 2}\left(\left[\tau_{2 i-1}, \xi_{2 i}\right]+\left[\xi_{2 i-1}, \tau_{2 i}\right]\right) .
\end{aligned}
$$

If W_{n} is the subgroup of $V_{n}=\operatorname{gr}_{n}(F)^{\mathbf{N}}$ consisting of those families (τ_{i}) with $\tau_{i} \rightarrow 0$, we obtain a homomorphism $\delta_{n}: W_{n} \rightarrow \mathrm{gr}_{n+1}(F)$.
Lemma. - If E is the closed subgroup of $\operatorname{gr}_{2}(F)$ generated by the elements π_{ξ}^{\prime} with $j \neq \mathbf{1}, 2$, then

$$
\begin{equation*}
\operatorname{gr}_{n+1}(F)=\operatorname{Im}\left(\hat{\delta}_{n}\right)+\pi^{n-1} E \tag{II}
\end{equation*}
$$

Moreover, if $p^{\prime}=q$, then $\pi^{n} \xi_{j} \in \operatorname{Im}\left(\delta_{n}\right)$ for all j.
Proof. - If $\Delta_{n}: V_{n} \rightarrow \operatorname{gr}_{n-1}(F)$ is the homomorphism defined by

$$
\Delta_{n}(\tau)=\sum_{i \leqq 1}\left[\xi_{i}, \tau_{i}\right]
$$

we have $\operatorname{Im}\left(\partial_{n}\right)=\Delta_{n}\left(W_{n}\right)+\pi \mathrm{gr}_{n}(F)$. By the Corollary to Proposition 7 we have

$$
\operatorname{gr}_{n+1}(F)=\Delta_{n}\left(W_{n}\right)+\pi \operatorname{gr}_{n}(F)
$$

Hence, $\operatorname{gr}_{n+1}(F)=\operatorname{Im}\left(\partial_{n}\right)+\pi \mathrm{gr}_{n}(F)$. Since $\pi \operatorname{Im}\left(\partial_{m-1}\right)$ is contained in $\operatorname{Im}\left(\grave{o}_{, \ldots}\right)$ for $m \geq 3$, it follows that

$$
\operatorname{gr}_{\mu+1}(F)=\operatorname{Im}\left(\grave{\delta}_{n}\right)+\pi^{n-1} \operatorname{gr}_{2}(F)
$$

But, using Proposition 6 and the fact that $q \neq 2$, we see that

$$
\pi \operatorname{gr}_{2}(F)=\pi D+د_{2}\left(W_{2}\right)+p \operatorname{gr}_{3}(F)
$$

where D is the closed subgroup of $\operatorname{gr}_{2}(F)$ generated by the elements $\pi \pi_{i}^{\circ}$. Hence,

$$
\operatorname{gr}_{n-1}(F)=\operatorname{Im}\left(\partial_{n}\right)+\pi^{n-1} D+p \mathrm{gr}_{n-1}(F) .
$$

Since $\pi^{n} \xi_{2}=\partial_{n}(\tau)$, where $\tau_{1}=\pi^{n-1} \xi_{2}, \quad \tau_{2}=\binom{q}{2} \tau_{1}, \quad \tau_{i}=0 \quad$ otherwise, and $\pi^{\prime \prime} \xi_{1}=\delta_{n}(\tau)$, where

$$
\begin{aligned}
& \tau_{1}=\pi^{n-1}+\binom{q}{2} \pi^{n-2}\left[\xi_{1}, ~\right. \\
& \tau_{2}=\binom{q}{2} \tau_{1}+\binom{q}{2} \pi^{n-2}\left[\begin{array}{c}
z_{1}
\end{array}\right]-\pi^{n-1}, 2+\binom{q}{2} \pi^{n-1} \varepsilon_{2}, \\
& \tau_{i}=0 \quad \text { for } \quad i \neq 1,2,
\end{aligned}
$$

we see that (ir) is true modulo p. Since $\operatorname{Im}\left(\delta_{n}\right)+\pi^{n-1} E$ is a subgroup of $\operatorname{gr}_{n+1}(F)$, it follows that (I) is true modulo p^{i} for any $i \in \mathbf{N}$. Since $p^{\prime} \mathrm{gr}_{n+1}(F)=\mathrm{o}$, the result follows.

Now suppose that $p^{\prime}=q$. If $\Delta_{n}^{\prime}: V_{n} \rightarrow \mathrm{gr}_{n+1}(F)$ is defined by

$$
\Delta_{n}^{\prime}(\tau)=\pi \tau_{2}+\sum_{i \supseteq 1}\left[\xi_{i}, \tau_{i}\right]
$$

then $\operatorname{Im}\left(\delta_{n}\right)=\Delta_{n}^{\prime}\left(W_{n}\right) . \quad$ If $j \geq 3$, then $\pi^{n} \xi_{j}=\Delta_{n \prime}^{\prime}(\tau)$, where

$$
\begin{aligned}
& \tau_{2}=\pi^{n-1} \xi_{i}+\binom{q}{2} \pi^{n-2}\left[\xi_{j}, \xi_{2}\right], \\
& \tau_{j}=\binom{q}{2} \pi^{n-2}\left[\xi_{j}, \xi_{2}\right]+\binom{q}{2} \pi^{n-1} \xi_{2}+\pi^{n-1} \xi_{2}, \\
& \tau_{i}=0 \quad \text { for } \quad i \neq 2, j .
\end{aligned}
$$

This completes the proof of the lemma.
Returning to (1o), the above lemma allows us to choose the \boldsymbol{t}_{i} so that

$$
d_{n} e_{n+1} \equiv \prod_{i \geq:} y_{i}^{g^{n} a_{i}^{\prime}} \quad\left(\bmod F_{n+2}\right)
$$

Moreover, if all the a_{i} in (г) are equal to zero, in which case $q=p^{h}$, then, by the second part of the lemma, we can choose the t_{i} so that either all $a_{i}^{\prime}=\mathrm{o}$, or $a_{i}^{\prime} \notin q \mathbf{Z}$ for an infinite number of i. Then, since $y_{i}^{q^{n}}$ is in the center of F, modulo F_{n+2}, we see that

$$
r \equiv y_{1}^{\prime}\left(y_{1}, y_{2}\right) \prod_{i \leqq 2} y_{2 i-1}^{b_{i-1}} y_{2 i}^{s_{i} i}\left(y_{2 i-1}, y_{2 i}\right) \quad\left(\bmod F_{n+2}\right),
$$

where $b_{i}=a_{i}+q^{n} a_{i}^{\prime}$, and where either all b_{i} are equal to zero, or there exists an infinity of i with $v_{p}\left(b_{i}\right)<(n+1) h$.

Proceeding inductively and passing to the limit, we see the we can find a basis $\left(x_{i}\right)$ of F such that

$$
r=x_{1}^{q}\left(x_{1}, x_{2}\right) \prod_{i \geq 2} x_{2 i-1}^{\tau_{2} i-1} x_{2 i}^{\pi_{2 i} i}\left(x_{2 i-1}, x_{2 i}\right),
$$

where $a_{i} \in \mathbf{Z}_{p}$ and where either all a_{i} are equal to zero, or there exists an infinite number of i with $v_{p}\left(a_{i}\right)=e$, where e is the infimum of the $v_{l \prime}\left(a_{i}\right)$ and $q \leq e<\infty$. In the latter case, there exists a strictly increasing sequence $\left(n_{i}\right)_{i \geq 1}$ of even integers with $n_{1}=2$ such that, for each $i \geqslant \mathrm{I}$, there is a j with $n_{i}<j \leq n_{i+1}$ and $v_{l /}\left(a_{j}\right)=e$. If for $i \geqslant \mathrm{I}$ we set

$$
r_{i}=\prod_{u_{i} \leq j \leq v_{i}} x_{2-1}^{a_{2 j-1}} x_{2 j}^{a_{2 j}}\left(x_{2 j-1}, x_{2 j}\right)
$$

where $u_{i}=\left(n_{i}+2\right) / 2, v_{i}=n_{i+1} / 2$, then r_{i} is a Demuskin relation in the variables $x_{i}, n_{i}<j \leq n_{i+1}$. The corresponding Demuškin group G_{i} is of finite rank with $q\left(G_{i}\right)=p^{\prime \prime} \neq 2$. If $s=q\left(G_{i}\right)$, then by the theory of Demuškin groups of finite rank (cf. [1] or [11]) we can choose the x_{j} so that

$$
r_{i}=\prod_{u_{i} \leq j \leq v_{i}} x_{i j-1}^{s}\left(x_{2 j-1}, x_{-j}\right)
$$

Since $r=x_{i}^{\prime}\left(x_{1}, x_{2}\right) \prod_{i \geqslant 1} r_{i}$, this completes the proof of case 2.
4.3. The Gase $q=2, t=\mathrm{I}$. - Let $\left(F_{n}\right)$ be the descending 2 -central series of F. By the definition of the invariant $t=t(G)$ together with Propositions 8, 9 and 11, there exists a basis $\left(\gamma_{i}\right)$ of $H^{\prime}(G)$ such that $\chi_{1} \cup \gamma_{1}=1, \quad \chi_{2 i-1} \cup \chi_{2 i}=\mathrm{I}$ for $i \geqslant \mathrm{I}$, and $\gamma_{i} \cup \chi_{j}=\mathrm{o}$ for all other i, j with $i \leq j$. If $x=\left(x_{i}\right)$ is a basis of F with $\gamma_{i}\left(x_{j}\right)=\grave{o}_{i j}$, then, by Proposition 8, we have

$$
r \equiv x_{1}^{2}\left(x_{1}, x_{2}\right) r_{0}(x) \quad\left(\bmod F_{3}\right)
$$

where $r_{0}(x)=\prod_{i \supseteq 2}\left(x_{2 i-1}, x_{2 i}\right)$.
Now assume that for some $n \geq 2$ we have found a basis $x=\left(x_{i}\right)$ of F and integers $a_{i} \in 4 \mathbf{Z}$ such that

$$
r=x_{1}^{2+a_{1}}\left(x_{1}, x_{2}\right) r_{0}(x) \prod_{i \geq ;} x_{i}^{a_{i}} e_{n+1}
$$

where $e_{n+1} \in F_{n+1}$. If (t_{i}) is a family of elements $t_{i} \in F_{n}$ with $t_{i} \rightarrow \mathbf{I}$, then $y=\left(y_{i}\right)=\left(x_{i} t_{i}^{-1}\right)$ is a basis of F and

$$
\begin{equation*}
r=y_{1}^{3}+\mu_{1}\left(y_{1}, y_{2}\right) r_{0}(y) \prod_{i \geq ;} y_{i}^{a_{i}} d_{n} e_{n+1} \tag{12}
\end{equation*}
$$

with d_{n} in F_{n+1}. If τ_{i} (resp. ξ_{i}) is the image of t_{i} (resp. x_{i}) in $\operatorname{gr}_{n}(F)$ [resp. $\mathrm{gr}_{1}(F)$], then the image of d_{n} in $\mathrm{gr}_{n+1}(F)$ is

$$
\delta_{n}(\tau)=\pi \tau_{1}+\left[\tau_{1}, \xi_{1}\right]+\sum_{i \geqslant 1}\left(\left[\tau_{2 i-1}, \xi_{2 i}\right]+\left[\xi_{2 i-1}, \tau_{2 i}\right]\right)
$$

If W_{n} is the subspace of $V_{n}=\operatorname{gr}_{n}(F)^{\mathbf{N}}$ consisting of those families $\tau=\left(\tau_{i}\right)$ with $\tau_{i} \rightarrow 0$, then δ_{n} is a homomorphism of W_{n} into $\mathrm{gr}_{n+1}(F)$, and we have the following lemma :

Lemma. - If E is the closed subgroup of $\operatorname{gr}_{2}(F)$ generated by the elements $\pi \xi_{j}^{\xi}$ with $j \neq 2$, then $\operatorname{gr}_{\mu+1}(F)$ is generated by $\operatorname{Im}\left(\grave{o}_{n}\right)$ and $\pi^{n-1} E$.

Proof. - Using the Corollary to Proposition 7, we see that

$$
\operatorname{gr}_{n+1}(F)=\operatorname{Im}\left(\grave{o}_{n}\right)+\pi \operatorname{gr}_{n}(F)
$$

Since $\pi \operatorname{Im}\left(\dot{\partial}_{m-1}\right) \subset \operatorname{Im}\left(\grave{\delta}_{m}\right)$ for $m \geq 3$, it follows that $\operatorname{gr}_{n+1}(F)$ is generated by $\operatorname{Im}\left(\partial_{n}\right)$ and $\pi^{n-1} \operatorname{gr}_{2}(F)$. Hence, to prove the lemma, it suffices to show that $\pi^{2} \stackrel{\epsilon}{2}_{2} \in \operatorname{Im}\left(\partial_{2}\right)$ and

$$
\sum_{i<j} a_{i j} \pi\left[\xi_{i}, \xi_{j}\right] \in \operatorname{Im}\left(\delta_{2}\right)+\pi \mathrm{E}
$$

for arbitrary $a_{i j} \in \mathbf{Z} / 2 \mathbf{Z}$.
If $\tau=\left(\tau_{i}\right)$, where $\tau_{1}=\pi_{\varepsilon_{2}}^{2}, \tau_{2}=\tau_{1}, \tau_{i}=0$ for $i \geq 3$, then $\tau \in W_{2}$ and $\hat{\delta}_{2}(\tau)=\pi^{2} \tilde{\xi}_{2}^{2}$. Hence $\pi^{2} \epsilon_{2}^{2} \in \operatorname{Im}\left(\hat{o}_{2}\right)$. Now let $د: W_{2} \rightarrow \operatorname{gr}_{3}(F)$ be defined by

$$
\Delta(\tau)=\pi \tau_{2}+\sum_{i \geq 1}\left[\xi_{i}, \tau_{i}\right] .
$$

Then clearly $\operatorname{Im}\left(\grave{\delta}_{2}\right)=\operatorname{Im}(\lambda)$. Let $\tau=\left(\tau_{i}\right)$, where

$$
\begin{aligned}
\tau_{1} & =a_{12}\left[\xi_{1}, \xi_{2}\right]+\sum_{j \geq 3} a_{1 j} \pi \xi_{j}, \\
\tau_{2} & =a_{12} \pi_{\xi}^{\prime}+\sum_{j \geq 3} a_{2 j} \pi_{\xi j}, \\
\tau_{i} & =\sum_{i>i} a_{i j} \pi_{\xi j}+\sum_{j<i} a_{j i}\left[\xi_{j}, \xi_{i}\right] \quad \text { for } \quad i \geq 3 .
\end{aligned}
$$

Then $\tau \in W_{2}$, and a straightforward calculation using Proposition 6 shows that

$$
\Delta(\tau)=a_{12} \pi^{2} \xi_{1}+\sum_{j \geq 3} a_{2 j} \pi^{2} \xi_{j}+\sum_{i<j} a_{i j} \pi\left[\xi_{i}, \xi_{j}\right] .
$$

Hence $\sum_{i<j} a_{i j} \pi\left[\xi_{i}, \xi_{j}\right] \in \operatorname{Im}(\Delta)+\pi \mathrm{E}$.
Q. E. D.

Returning to (12), the above lemma allows us to choose the $t_{i} \in F_{n}$ so that

$$
r \equiv y_{1}^{3}+\nu_{1}\left(y_{1}, y_{2}\right) r_{0}(y) \prod_{i \cong ;} y_{i_{i}^{\prime}}^{\prime_{i}}\left(\bmod F_{n+2}\right),
$$

with $b_{i} \in \mathbf{Z}, b_{i} \equiv a_{i}\left(\bmod 2^{\prime \prime}\right)$.

Proceeding inductively and passing to the limit, we see that there exists a basis $\left(x_{i}\right)$ of F and 2 -adic integers a_{i} with $v_{2}\left(a_{i}\right) \geq 2$ such that

$$
r=x_{\mathrm{⿺}}^{2+a_{1}}\left(x_{1}, x_{2}\right) r_{0}(x) \prod_{i \geq:} x_{i}^{a_{i}} .
$$

The relation $r_{1}=r_{v}(x) \prod_{i \geq:} x_{i}^{r_{i}}$ is a Demuskin relation in the variables x_{i}, $i \geq 3$, and the q-invariant of the corresponding Demuškin group is $\neq 2$. Hence, by what we have shown in sections 4.1 and 4.2 , we may choose the $x_{i}, i \geq 3$, so that

$$
r_{1}=x_{i ;}^{z_{i}}\left(x_{i}, x_{i}\right) \prod_{i \geq:} x_{i-1}^{s}\left(x_{2 i-1}, x_{2 i}\right),
$$

where $s=2^{\mathrm{e}}, e, f \in \overline{\mathbf{N}}, 2 \leq f \leq e$. If

$$
r_{2}=x_{1}^{2+a_{1}}\left(x_{1}, x_{2}\right) x_{3}^{2} f\left(x_{3}, x_{i}\right)
$$

then r_{2} is a Demuškin relation in the variables $x_{1}, \ldots, x_{\mathrm{r}}$ and the q-invariant of the corresponding Demuškin group is 2. We now appeal to the theory of such relations (cf. [3] or [8]). If $f \leq v_{2}\left(a_{1}\right)$, we can choose $x_{1}, \ldots, x_{\text {r }}$ so that

$$
r_{1}=x_{i}^{2}\left(x_{1}, x_{2}\right) x_{i}^{2}{ }_{3}^{f}\left(x_{i}, x_{i}\right)
$$

If $f>v_{2}\left(a_{1}\right)=g$, then we can choose x_{1}, \ldots, x_{i} so that

$$
r_{1}=x_{1}^{3}-\underline{2}^{n^{*}}\left(x_{1}, x_{2}\right)\left(x_{i}, x_{i}\right) .
$$

Since $r=r_{1} \prod_{i \geq 3} x_{2 i-1}^{s}\left(x_{2 i-1}, x_{2 i}\right)$, the proof of Theorem 3 for the case $q=2, t=1$ is complete.
4.4. The Case $q={ }_{2}, t=-\mathrm{I}$. - Let $\left(F_{r}\right)$ be the descending 2 -central series of F. Since $t=-1$, then by the definition of t, together with Propositions 9 and 11, there exists a basis $\left(\chi_{i}\right)$ of $H^{\prime}(G)$ such that $\chi_{1} \cup \%_{1}=1, \chi_{2 i} \cup \chi_{2 i+1}=1$ for $i \geqslant 1$, and $\chi_{i} \cup \%_{j}=0$ for all other i, j with $i \leqslant j$. If $\left(x_{i}\right)$ is a basis of F with $\chi_{i}\left(x_{j}\right)=\delta_{i j}$, then, by Proposition 8, we have $r \equiv r_{0}(x)$ modulo F_{3}, where

$$
r_{n}(x)=x_{i \geqslant 1}^{2} \prod_{i \neq 1}\left(x_{2 i}, x_{2 i+1}\right)
$$

Now assume that, for some $n \triangleq 2$, we have found a basis $x=\left(x_{i}\right)$ of F and integers a_{i} with $a_{i} \in 4 \mathbf{Z}$ such that

$$
r \equiv r_{0}(x) \prod_{i \geq 2} x_{i}^{\sigma_{i}} \quad\left(\bmod F_{n+1}\right)
$$

Then, proceeding exactly as in the previous section, we obtain a homomorphism $\delta_{n}: W_{n} \rightarrow \mathrm{gr}_{n+1}(F)$, where

$$
\delta_{n}(\tau)=\pi \tau_{1}+\left[\tau_{1}, \xi_{1}\right]+\sum_{i \leqq 1}\left(\left[\tau_{2 i}, \xi_{2 i+1}\right]+\left[\xi_{2}, \tau_{2 i+1}\right]\right)
$$

Lemma. - If E is the closed subgroup of $\operatorname{gr}_{2}(F)$ generated by the elements $\pi=;$ with $j \neq \mathrm{I}$, then $\mathrm{gr}_{n+1}(F)$ is generated by $\operatorname{Im}\left(\grave{o}_{n}\right)$ and $\pi^{n-1} E$.

Proof. - The proof is exactly the same as the proof of the corresponding lemma in the previous section except for the following changes : $\pi^{2} \sigma_{1}=\delta_{2}(\tau)$, where $\tau_{1}=\pi_{\xi_{1}}$ and $\tau_{i}=o$ for $i \geq 2$; the homomorphism Δ is defined by

$$
\Delta(\tau)=\pi \tau_{1}+\sum_{i \supseteq 1} \cdot\left[\xi_{i}, \tau_{i}\right]
$$

and we have

$$
\Delta(\tau)=\sum_{j \geqslant 2} a_{1 j} \pi^{2} \xi_{j}+\sum_{i<i} a_{i j} \pi\left[\xi_{i}, \xi_{j}\right]
$$

if we let

$$
\begin{aligned}
& \tau_{1}=\sum_{j \geq 2} a_{1 j} \pi \xi_{j}^{\xi} \\
& \tau_{i}=\sum_{i>i} a_{i j} \pi \xi_{j}+\sum_{i<i} a_{j i}\left[\xi_{i}, \xi_{j}\right] \quad \text { for } \quad i \supseteq 2
\end{aligned}
$$

This completes the proof of the lemma.
Hence, using the above lemma, we see that there is a basis $y=\left(y_{i}\right)$ of F such that

$$
r \equiv r_{0}(y) \prod_{i \geqslant 2} y_{i}^{l_{i}} \quad\left(\bmod F_{n+2}\right)
$$

where $y_{i} \equiv x_{i}\left(\bmod F_{n}\right)$, and $b_{i} \equiv a_{i}\left(\bmod 2^{\prime \prime}\right) . \quad$ Proceeding inductively and passing to the limit, we see that there exists a basis $\left(x_{i}\right)$ of F and ${ }_{2}$-adic integers $a_{i} \in 4 \mathbf{Z}_{2}$ such that $r=x_{1}^{2} r_{1}$, where

$$
r_{1}=\prod_{i \geqslant 1}\left(x_{2 i}, x_{2 i+1}\right) \prod_{i \supseteq 2} x_{i}^{a_{i}}
$$

The relation r_{1} is a Demuškin relation in the variables $x_{i}, i \geqslant 2$, and the q-invariant of the corresponding Demuškin group is $\neq 2$. Hence we can choose the x_{i} so that

$$
r_{1}=x_{2}^{2_{2}^{f}}\left(x_{2}, x_{3}\right) \prod_{i \geq 2} x_{2 i}^{\lessgtr}\left(x_{2 i}, x_{2 i+1}\right),
$$

where $s=p^{c}, e, f \in \overline{\mathbf{N}}, e \geq f \geqslant 2$. Since $r=x_{1}^{2} r_{1}$, we have found the required basis of F.
4.5. The Case $q=2, t=0$. - Let $\left(F_{n}\right)$ be the descending 2 -central series of F. Since $t(G)=0$, the definition of the invariant $t(G)$ together with Proposition 11 shows that there is an orthonormal basis $\left(\gamma_{i}\right)$ of $H^{\prime}(G)$. Replacing $\gamma_{2 i}$ by $\gamma_{2 i}+\gamma_{2 i-1}$, we obtain a basis $\left(\gamma_{i}\right)$ of $H^{\prime}(G)$ such that

$$
\chi_{2 i-1} \cup \chi_{2 i-1}=\chi_{2 i-1} \cup \chi_{2 i}=\mathbf{1} \quad \text { and } \quad \chi_{i} \cup \chi_{j}=0
$$

for all other i, j with $i \leq j$. If $x=\left(x_{i}\right)$ is a basis of F with $\chi_{i}\left(x_{j}\right)=\grave{o}_{i j}$, then, by Proposition 8, we have $r \equiv r_{0}(x)$ modulo F_{3}, where

$$
r_{0}(x)=\prod_{i \geq 1} x_{2 i-1}^{2}\left(x_{2 i-1}, x_{\Sigma i}\right)
$$

Now assume that, for some $n \geq 2$, we have found a basis $x=\left(x_{i}\right)$ of F and integers $a_{i j} \in 2 \mathbf{Z}$ such that

$$
r \equiv r_{v}(x) \prod_{i<i}\left(x_{i}, x_{i}\right)^{a_{i j}} \quad\left(\bmod F_{n+1}\right)
$$

Then, proceeding as in the previous sections, we obtain a homomorphism $\delta_{n}: W_{n} \rightarrow \mathbf{g r}_{n+1}(F)$, where $\delta_{n}(\tau)$ is given by

$$
\sum_{i \supseteq 1}\left(\pi \xi_{2 i-1}+\left[\tau_{2 i-1}, \xi_{2 i-1}\right]+\left[\tau_{2 i-1}, \xi_{2 i}\right]+\left[\xi_{2 i-1}, \tau_{2 i}\right]\right)
$$

Lemma. - If E is the closed subgroup of $\operatorname{gr}_{2}(F)$ generated by the elements $\left[\xi_{i}, \xi_{j}\right]$, then $\operatorname{gr}_{n+1}(F)$ is generated by $\operatorname{Im}\left(\delta_{n}\right)$ and $\pi^{n-1} E$.

Proof. - Since $\operatorname{gr}_{n+1}(F)=\operatorname{Im}\left(\partial_{n}\right)+\pi \operatorname{gr}_{n}(F)$ by the Corollary to Proposition 7, it follows that $\mathrm{gr}_{n+1}(F)$ is generated by $\operatorname{Im}\left(\delta_{n}\right)$ and $\pi^{n-1} \operatorname{gr}_{2}(F)$. Hence, it suffices to show that any element of the form $\sum_{i \geq 1} a_{i} \pi^{2} \stackrel{\zeta}{G}_{i}$ belongs to $\operatorname{Im}\left(\grave{j}_{2}\right)+\pi E$. If $\Delta: W_{2} \rightarrow \operatorname{gr}_{3}(F)$ is defined by

$$
\Delta(\tau)=\sum_{i \supseteq 1} \pi \tau_{2 i-1}+\sum_{i \supseteq 1}\left[\xi_{i}, \tau_{i}\right]
$$

then $\operatorname{Im}(\Delta)=\operatorname{Im}\left(\delta_{2}\right)$. Now let $\tau=\left(\tau_{i}\right)$, where

$$
\tau_{2 i-1}=a_{2 i-1} \pi \xi_{2 i-1}+a_{2 i} \pi \xi_{2 i}, \quad \tau_{2 i}=a_{2 i}\left[\xi_{2 i-1}, \xi_{2 i}\right] .
$$

Then $\tau \in W_{2}$, and a simple calculation using Proposition 6 shows that

$$
\Delta(\tau)=\sum_{i \supseteq 1} a_{i} \pi^{2} \xi_{i}+\sum_{i \leqq 1} a_{2 i} \pi\left[\xi_{2 i-1}, \xi_{2 i}\right]
$$

Hence $\sum_{i \supseteq 1} a_{i} \pi^{2} \xi_{i} \in \operatorname{Im}\left(\delta_{2}\right)+\pi E$.

> Q. E. D.

Using the above lemma, we find a basis $y=\left(y_{i}\right)$ of F such that

$$
r \equiv r_{0}(y) \prod_{i<i}\left(y_{i}, y_{i}\right)^{h_{i j}} \quad\left(\bmod F_{n+2}\right)
$$

where $y_{i} \equiv x_{i}\left(\bmod F_{n}\right)$, and $b_{i j} \equiv a_{i j}\left(\bmod 2^{n-1}\right)$. Proceeding inductively and passing to the limit, we see that there exists a basis (x_{i}) of F and ${ }_{2}$-adic integers $b_{i j} \in{ }_{2} \mathbf{Z}_{2}$ such that r is of the form (5).

This completes the proof of Theorem 3.

3. Proof of Theorem '4.

5.1. The Properties P_{n}, Q_{n}. - If χ is a continuous homomorphism of a pro- p-group G into the group of units of the compact ring $\mathbf{Z}_{p} / p^{\prime \prime} \mathbf{Z}_{/ /}$, let $J=J(\not)$ be the compact G-module obtained from $\mathbf{Z}_{\rho} / p^{n} \mathbf{Z}_{\rho}$ by letting G act on this group by means of $\%$. If $n<\infty$, then G is said to have the property P_{n} with respect to $\%$ if the canonical homomorphism

$$
\begin{equation*}
\varphi: \quad H^{\prime}(G, J) \rightarrow H^{\prime}(G, J / p J)=H^{\prime}(G) \tag{ㄴ3}
\end{equation*}
$$

is surjective. If $n=\infty$, then G is said to have the property P_{n} with respect to $\%$ if the canonical homomorphism

$$
\begin{equation*}
\vartheta: \quad H^{\prime}\left(G, J / p^{m} J\right) \rightarrow H^{\prime}(G, J / p J)=H^{\prime}(G) \tag{14}
\end{equation*}
$$

is surjective for $m \geqslant \mathrm{I}$. The pro- p-group G is said to have the property Q_{n} if there exists a unique continuous homomorphism \%: $G \rightarrow\left(\mathbf{Z}_{/ /} / p^{n} \mathbf{Z}_{/ \prime}\right)^{\star}$ such that G has the property P_{n} with respect to $\%$

Remark. - If G is a free pro- p-group, then G has the property P_{n} with respect to any continuous homomorphism $\%: G \rightarrow\left(\mathbf{Z}_{/ /} / p^{n} \mathbf{Z}_{/ /}\right)^{\star}$ since $c d(G) \leq \mathrm{r}$.

Proposition 12. - Let G be a pro-p-group of rank $\boldsymbol{K}_{\text {", }}$, and let $\chi: G \rightarrow\left(\mathbf{Z}_{\rho} / p^{n} \mathbf{Z}_{p}\right)^{\star}$ be a continuous homomorphism. Then 'the following statements are equivalent :
(a) The group G has the property P_{n} with respect to $\%$.
(b) If $\left(g_{i}\right)$ is a minimal generating system of G and $\left(a_{i}\right)$ is a family of elements of $J=J(\%)$ with $a_{i} \rightarrow 0$, there exists a continuous crossed homomorphism D of G into J such that $D\left(g_{i}\right)=a_{i}$.

Proof. - Clearly (b) implies (a). Now assume that (a) is true and let g_{i}, a_{i} be given as in (b).

If $n<x$, the surjectivity of (i3) shows that there is a continuous crossed homomorphism D_{1} of G into J such that $D_{1}\left(g_{i}\right) \equiv a_{i}(\bmod p)$. Suppose that we have found a continuous crossed homomorphism $D_{j}(\mathrm{I} \leq j<n)$ of G into J such that $D_{j}\left(g_{i}\right)=a_{i}+p^{i} b_{i}$. Then, as above, there is a continuous crossed homomorphism D^{\prime} of G into J, such that $D^{\prime}\left(g_{i}\right) \equiv b_{i}(\bmod p)$. If $D_{j+1}=D_{j}-p^{i} D^{\prime}$, then D_{j+1} is a continuous crossed homomorphism of G into J such that $D_{j+1}\left(g_{i}\right) \equiv a_{i}\left(\bmod p^{i+1}\right)$. Proceeding inductively, we see that D_{n} is the required crossed homomorphism.

If $n=\infty$, let $\gamma_{m} \equiv z_{m} \circ \gamma$, where ε_{m} is the canonical homomorphism of \mathbf{Z}_{p} onto $\mathbf{Z}_{p} / p^{m} \mathbf{Z}_{p}$. Then G has the property P_{m} with respect to γ_{m}, and $J / p^{m} J=J\left(\gamma_{m}\right)$ where $J=J(\%)$. If $a_{i}^{(m)}=\varepsilon_{m}\left(a_{i}\right)$, then by what we have shown above, there exists a continuous crossed homomorphism $D^{(m)}$ of G into $J / p^{m} J$ such that $D^{(m)}\left(g_{i}\right)=a_{i}^{(m)}$. Passing to the limit, we obtain the required crossed homomorphism D.

Proposition 13. - Let G be a Demuškin group of rank \mathbf{K}_{0} with $s(G)=p^{\prime}$, and let $\%: G \rightarrow\left(\mathbf{Z}_{\mu} / p^{\mathrm{e}} \mathbf{Z}_{\mu}\right)^{\star}$ be the character associated to the dualizing module of G. Then G has the property P_{c} with respect to $\%$.

Proof. - If $J=J(\gamma)$, then $I=\operatorname{Hom}\left(J, Q_{\| / \prime} / \mathbf{Z}_{l}\right)$ is the dualizing module of G. It follows that $H^{2}\left(G, J / p^{n} J\right)$ is cyclic of order p^{n} if $\mathrm{I} \leqslant n<e$, or if $n=e<\infty$. This, together with the fact that $c d(G)=2$, shows that the sequence

$$
\begin{equation*}
\mathrm{o} \rightarrow H^{2}\left(G, J / p^{n-1} J\right) \xrightarrow{\alpha} H^{2}\left(G, J / p^{n} J\right) \rightarrow H^{2}(G, J / p J) \rightarrow 0 \tag{15}
\end{equation*}
$$

is exact for any integer n with $\mathrm{I} \leq n \leqslant e$. But

$$
\operatorname{Ker}(\alpha)=\operatorname{Coker}\left(H^{\prime}\left(G, J / p^{n} J\right) \rightarrow H^{1}(G, J / p J)\right),
$$

which proves the proposition.
5.2. Proof of Theorem 4. - Let F be a free pro- p-group of rank \boldsymbol{K}_{0} with basis $\left(x_{i}\right)_{i \in \mathbb{N}}$, and let r be a relation satisfying the hypotheses of the theorem. The fact that $G=F /(r)$ is a Demuskin group follows from Proposition 8, as does the assertion concerning the invariant $t(G)$. The rest of the proof deals with the computation of $s(G)$ and $\%$, where $\%$ is the character associated to the dualizing module of G. We do this for a relation of the form (r), the same method applying, with obvious modifications, to relations of the form (2), ..., (5).

If g_{i} is the image of x_{i} in G, then $\left(g_{i}\right)$ is a minimal generating system of G and we have

$$
\begin{equation*}
g_{1}^{7}\left(g_{1}, g_{2}\right) \prod_{i \geqslant 2} g_{s}^{2 i-1}\left(g_{2 i-1}, g_{2 i}\right)=1 \tag{i6}
\end{equation*}
$$

where $q=p^{\prime}, s=p^{\prime}, e, f \in \overline{\mathbf{N}}$. Suppose that G has the property P_{n} with respect to some homomorphism 0. Then, by Proposition 12, there exists a continuous crossed homomorphism D_{i} of G into $J(\theta)$ such that $D_{i}\left(g_{j}\right)=\delta_{i j}$. Applying D_{2} to both sides of (I6), we obtain

$$
\theta\left(g_{1}\right)^{q-1} \theta\left(g_{2}\right)^{-1}\left(\theta\left(g_{1}\right)-1\right)=0,
$$

which implies that $\theta\left(g_{1}\right)=1$. Similarly, $\theta^{\theta}\left(g_{2 i-1}\right)=1$ for $i \geqslant 2$. Applying D_{1} to both sides of (16), we obtain $q+9\left(g_{2}\right)^{-1}-1=0$, which implies that

$$
\theta\left(g_{2}\right)=(\mathrm{I}-q)^{-1} .
$$

Similarly, $\theta\left(g_{2 i}\right)=(1-s)^{-1}$ for $i \geqslant 2$. But, since θ is continuous and $g_{i} \rightarrow \mathrm{I}$, we have $\theta\left(g_{i}\right) \rightarrow 0$. In view of what we have shown above, this is possible if and only if $n \leq e$. If $s(G)=p^{\prime}$, it follows that $e^{\prime} \leq e$ since G has the property $P_{e^{\prime}}$ with respect to $\%$. It also follows that G has the property $Q_{e^{\prime}}$, and that

$$
\chi\left(x_{2}\right)=(1-q)^{-1}, \quad \chi\left(x_{i}\right)=1 \quad \text { for } i \neq 2 .
$$

All that remains to be shown is that $e^{\prime}=e$. To do this, let $\theta_{0}: F \rightarrow\left(\mathbf{Z}_{p} / p^{e} \mathbf{Z}_{p}\right)^{\star}$ be the continuous homomorphism defined by

$$
\theta_{0}\left(x_{2}\right)=(\mathrm{I}-q)^{-1}, \quad \theta_{0}\left(x_{i}\right)=\mathrm{I} \quad \text { otherwise }
$$

Then $\theta_{0}(r)=1$, and θ_{0} induces a homomorphism θ of G into $\left(\mathbf{Z}_{l /} / p^{c} \mathbf{Z}_{l /}\right)^{*}$. A simple calculation shows that $D(r)=0$ for any continuous crossed homomorphism D of F into $J(\theta)$. In view of Proposition 12, it follows that G has the property P_{e} with respect to θ. If n is an integer with $\mathrm{I} \leqslant n \leqslant e$, then an inductive argument using the sequence (15) with $J=J(\theta)$ shows that $H^{2}\left(G, J / p^{n} J\right)$ is cyclic of order p^{n}. It follows immediately that $e^{\prime}=e$, which completes the proof of Theorem 4.

6. Proof of Theorem 3̈.

Let K, Γ, G be as in the statement of the theorem. Let $\left(U_{i}\right)_{i \in N}$ be a decreasing sequence of open subgroups of $\boldsymbol{\Gamma}$ containing G such that $\bigcap_{i} U_{i}=G$. Let $G_{i}=U_{i} / V_{i}$ be the largest quotient of U_{i} which is a pro-p-group; if K_{i} is the fixed field of U_{i}, then G_{i} is the Galois group of $K_{i}(p) / K_{i}$, where $K_{i}(p)$ is the maximal p-extension of K_{i}. Composing
the inclusion $G \rightarrow U_{i}$ with the canonical homomorphism of U_{i} onto G_{i}, we obtain a homomorphism $\psi_{i}: G \rightarrow G_{i}$. It is 'easy to see that ψ_{i} is surjective and that the subgroups $H_{i}=\operatorname{Ker}\left(\psi_{i}\right)$ form a decreasing sequence of closed normal subgroups of G which intersect in the identity.

If K does not contain a primitive p-th root of unity ζ_{μ}, let $K^{\prime}=K\left(\zeta_{1}\right)$, and let Γ^{\prime} be the Galois group of \bar{K} / K^{\prime}. Then G is a Sylow p-subgroup of Γ^{\prime} since $\left(\Gamma: \Gamma^{\prime}\right)=\left[K^{\prime}: K\right]$ is prime to p. Hence, we are reduced to proving the theorem for the case K contains a primitive p-th root of unity. In this case G_{i} is a Demuškin group of rank $\left[K_{i}: \mathbf{Q}_{\mu}\right]+2$, and its dualizing module is $\mu_{\mu \infty}(c f$. [12], p. II-3o). Since $H^{\prime}(G)$ is the union of the $H^{\prime}\left(G_{i}\right)$, it follows that G is of rank \boldsymbol{K}_{0}. By Theorem 1, we see that G is either a Demuskin group, or a free pro-p-group. But, by a theorem of J. Tate, we have $c d(G)=2$ ($c f$. [12], p. II-ı6). Hence, G is a Demuškin group. To show that μ, \ldots, ∞ is the dualizing module, it suffices to show that the canonical homomorphism

$$
\varphi: \quad H^{\prime}\left(G, \mu_{p^{n}}\right) \rightarrow H^{\prime}\left(G, \mu_{\mu}\right)=H^{\prime}(G)
$$

is surjective for $n \geq_{1}(c f . \S 5.1)$. But since $\mu_{p * *}$ is the dualizing module of G_{i}, we have a commutative diagram

in which φ_{i} is surjective for $n \geqslant \mathrm{I}$. Passing to the limit, we obtain the surjectivity of φ.

To prove the assertion concerning $t(G)$, it suffices to consider the case $q(G)=2$, for otherwise $t(G)=1$ and $\left[K\left(\zeta_{\mu}\right): \mathbf{Q}_{\mu}\right]$ is even. Let $V=H^{\prime}(G)$, and let V_{i} be the image of $H^{\prime}\left(G_{i}\right)$ in V under the homomorphism $H^{\prime}\left(\psi_{i}\right)$. Since $\operatorname{dim}\left(V_{i}\right)=\left[K_{i}: \mathbf{Q}_{2}\right]+2$ and $\left[K_{i}: K\right]$ is odd, we have

$$
(-1)^{\operatorname{dim}\left(\mathbf{V}_{i}\right)}=(-1)^{[K: Q] .}
$$

Moreover, as we have seen in the proof of Proposition 1, the cup-product : $H^{\prime}(G) \times H^{\prime}(G) \rightarrow H^{2}(G)$ is non-degenerate on V_{i} for i sufficiently large. [Actually, the cup-product is non-degenerate on each V_{i} since $H^{2}\left(\psi_{i}\right): H^{2}\left(G_{i}\right) \rightarrow H^{2}(G)$ is bijective.] Also, the cup-product is nonalternate since $q(G)=2$, and $t(G)=\mathrm{r}$ or - 1 since $s(G)=0$. Hence, since V is the union of the V_{i}, it follows from the definition of $t(G)$ together with the proof of Proposition 11 and its Corollary that

$$
t(G)=(-1)^{\mathrm{dim}\left(V_{i}\right)}
$$

for i sufficiently large.

BIBLIOGRAPHY.

[1] Demuškin (S. P.). - On the maximal p-extensions of a local field [in Russian], Izv. Akad. Nauk S. S. S. R., Math. Series, t. 25, 196ı, p. 329-346.
[2] Demuškin (S. P.). - On 2-extensions of a local field [in Russian], Mat. Sibirsk. Ž., t. 4, 1963, p. 951-955.
[3] Demuškin (S. P.). -- Topological 2-groups with an even number of generators and one defining relation [in Russian], Izv. Akad. Nauk S. S. S. R., t. 29, 1965, p. 3-ıо.
[4] Douady (A.). - Cohomologie des groupes compacts totalement discontinus, Séminaire Bourbaki, t. 12, i959-1960, nº 189, i2 pages.
[5] Hochschild (G.) and Serre (J.-P.). - Cohomology of group extensions, Trans. Amer. math. Soc., t. 74, 1953, p. iro-ı34.
[6] Kaplansky (I.). - Forms in infinite-dimensional spaces, Ann. Acad. Bras. Cienc., t. 22, 1950 , p. i-17.
[7] Labute (J.). - Classification des groupes de Demuškin, C. R. Acad. Sc., t. 260, 1965, p. 10ұ3-1о46.
[8] Labute (J.). - Classification of Demuškin groups, Thesis, Harvard Univ., 1965; Canadian J. Math. (to appear).
[9] Labute (J.). - Les groupes de Demuškin de rang dénombrable, C. R. Acad. Sc., t. 262, 1966, p. 4-7.
[10] Serre (J.-P.). - Corps locaux. - Paris, Hermann, 1962 (Act. scient. et ind., 1296; Publ. Inst. Math. Univ. Nancago, 7).
[11] Serre (J.-P.). - Structures de certains pro-p-groupes, Séminaire Bourbaki, t. 15, 1962-1963, no 252, ir pages.
[12] Serre (J.-P.). - Cohomologie galoisienne. - Berlin, Springer-Verlag, 1964 (Lecture Notes in Mathematics, 5).
[13] Serre (J.-P.). - Lie algebras and Lie groups. 1964 Lectures given at Harvard University. - New York, W. A. Benjamin, 1965.
(Manuscrit reçu le 13 juin ${ }^{\text {g }} 666$.)
John P. Labute,
9 bis, parc de Montretout, 92, Saint-Cloud (Hauts-de-Seine).

[^0]: (*) The author is the recipient of a post-doctorate overseas fellowship given by the National Research Council of Canada.

