BULLETIN DE LA S. M. F.

F. RICHMAN C.P. WALKER On a certain purification problem for primary abelian groups

Bulletin de la S. M. F., tome 94 (1966), p. 207-210 <http://www.numdam.org/item?id=BSMF_1966_94_207_0>

© Bulletin de la S. M. F., 1966, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 94, 1966, p. 207 à 210.

ON A CERTAIN PURIFICATION PROBLEM FOR PRIMARY ABELIAN GROUPS

ΒY

FRED RICHMAN AND CAROL P. WALKER.

1. Introduction. — MITCHELL has shown in [4] that if G is an abelian p-group and K is a neat subgroup of $G' = \bigcap n G$ then there exists a pure subgroup P of G such that $P \cap G' = K$. He then raises the question whether the converse holds, i. e. if P is pure in G is $P \cap G'$ neat in G'? This question is one of the important family of questions dealing with purification. The general purification problem is to ascertain precisely which subgroups of a subgroup A of an abelian p-group G are the intersections of A with a pure subgroup of G. It is the purpose of this note to solve the purification problem for A = G'.

Terminology and notation will not deviate sharply from [1]. All groups are abelian p-groups. Cardinal numbers are identified with the least ordinal number of that cardinality.

2. Quasi-neatness, high subgroups and the main theorem. — A subgroup K of a group G is *neat* if $pG \cap K = pK$. In any event $pG \cap K \supseteq pK$. If K is not neat in G the quotient $(pG \cap K)/pK$ gives some measure as to how neat K is in G. If α is a cardinal number, we shall say that K is α -quasi-neat in G if $|(pG \cap K)/pK| \leq \alpha$.

Recall that a high subgroup of G is a subgroup which is maximal with respect to disjointness from G'[2]. Since two high subgroups of G are pure with the same socle in G/G' they have the same final rank. We can now state the main theorem of this note.

THEOREM. — Let G be an abelian p-group, K a subgroup of G' and α the final rank of a high subgroup of G. There exists a pure subgroup P of G such that $P \cap G' = K \iff K$ is α -quasi-neat in G'.

In the sequel K will be a subgroup of G', H will be a high subgroup of G, and α will be the final rank of H. The phrase "can purify K" will signify that there exists a pure subgroup P of G such that $P \cap G' = K$. 3. The dirty work. — We make the first simplification.

LEMMA 1. — Can purify $K \Leftrightarrow .There$ exists a $P \subseteq G$ such that $P' = P \cap G' = K$.

Proof. \Rightarrow Clear.

 \Leftarrow Choose a maximal such *P*. We shall show that *P* is pure. Suppose $p^n g = x \in P$ for some $g \in G$ and some positive integer *n*. By induction on *n*, we show that $x \in p^{nP}$. If $g \notin P$, then $p'g + y = g_1 \in G^1 - K$ for some $y \in P$ and non-negative integer t < n by the maximality of *P* Therefore y = p'z for some $z \in P$ by induction. Multiplying by p^{n-t} we get $x + p^n z \in G^1$ and so $x + p^n z \in P^1$ by hypothesis. Thus $x \in p^{nP}$ as claimed.

Bounded summands often make no difference. This is the case in our endeavors.

LEMMA 2. — Let $G = A \oplus B$ where B is bounded. Can purify K in $G \Leftrightarrow$ can purify K in A.

Proof. \leftarrow Trivial.

 \Rightarrow Let P purify K in G. Then $(P \cap A)^{\perp} = K = (P \cap A) \cap G^{\perp}$ and we are done by Lemma 1.

Half of the theorem is now relatively painless.

LEMMA 3. — Can purify $K \Rightarrow |(pG' \cap K)/pK| \leq \alpha = final rank of H.$

Proof. — Using Lemma 2 to chop off a bounded piece of G, we may assume that the final rank of H is the rank of H. Suppose that $|(pG' \cap K)/pK| = \delta > x$ and P purifies K. Let $|x_i|$ be a set of elements of $pG' \cap K$ independent mod pK and indexed by a set I of cardinal δ . There exist $y_i \in P$ such that $py_i = x_i$. Now $x_i = pg_i$ for some $g_i \in G'$. Thus

$$y_i - g_i \in G[p] = G^{i}[p] \oplus H[p].$$

By adjusting g_i , we may assume that $y_i - g_i \in H[p]$. Therefore there exist indices $i \neq j$ such that $y_i - g_i = y_j - g_j$ since rank $H < \delta$. Hence

$$p(y_i - y_j) = x_i - x_j \notin pK$$

and so $y_i - y_j \notin K$. But $y_i - y_j = g_i - g_j \in G'$ and $y_i - y_j \in P$ and so $y_i - y_j$ is in K, a contradiction.

For the other half of the theorem, it is convenient to reduce the problem to direct sums of cyclic groups.

LEMMA 4. — Let B be a basic subgroup of K. Then

$$(pG' \cap K)/pK \cong (pG' \cap B)/pB$$

and K can be purified if B can.

208

Proof.—The isomorphism is clear. Let P purify B. Then $G/P = D \oplus T$ where D, the image of K, is divisible. The inverse image of D purifies K.

To prove the next lemma, we use the high subgroup to escort elements out of G^{1} .

LEMMA 5. — Let K a direct sum of cyclic groups contained in G^i such that $|K| \leq \alpha = \text{final rank of } H$. Then there exists a subgroup P of G such that $|P| \leq \alpha$ and $P^i = P \cap G^i = K$.

Proof. — Well order the cyclic generators of K by $\{k_{\beta}\}_{\beta < \alpha}$. Let $p^{n}k_{\beta}^{n} = k_{\beta}$, n a positive integer. Claim : There exist $h_{\beta}^{n} \in H$, $\beta < \alpha$ n a positive integer such that :

(i) order of $(k_{\beta}^{n} + h_{\beta}^{n} + G^{\dagger}) = p^{n}$;

(ii) $\{k_{\beta}^{"}+h_{\beta}^{"}+G^{"}\}\$ are independent, $\beta < \alpha$, *n* a positive integer.

To see this, well order the pairs (β, n) by α , and use transfinite induction There is clearly no trouble at limit ordinals. To advance one step, we note that there are α possible h_{β}^{n} at our disposal which will satisfy (i) and which yield distinct $p^{n-1}(k_{\beta}^{n}+h_{\beta}^{n}+G^{1})$ since the final rank of H is α and $H \cap G^{1} = 0$. But there are less than α things for $p^{n-1}(k_{\beta}^{n}+h_{\beta}^{n}+G^{1})$ to avoid to insure (ii). Letting P be generated by $\{k_{\beta}^{n}+h_{\beta}^{n}\}_{(\beta,n)<\alpha}$ brings us home.

We have reduced the problem to K a direct sum of cyclics. A further reduction allows us to assume that K[p] = G'[p]. This follows upon writing $G'[p] = K[p] \oplus L$ and replacing G by a subgroup S containing $H \oplus K$ and maximal with respect to disjointness from L. The subgroup S is pure in G ([3], Theorem 5) and so $K \subseteq S'$. Clearly S'[p] = K[p] and H is high in S. Since purifying K in S will purify K in G, we have achieved the desired reduction.

We now take care of the elements that need no escort and so finish off the other half of the theorem.

LEMMA 6. — Let K be a direct sum of cyclic groups contained in G^{i} such that $K[p] = G^{i}[p]$ and $|(pG^{i} \cap K)/pK| \leq \alpha = final rank of H$. Then there exists a P in G such that $P^{i} = P \cap G^{i} = K$.

Proof. — Let $|K| = \gamma$. If $\gamma \leq \alpha$, we are done by Lemma 5. Let A be generated by those cyclic summands of K (relative to a given decomposition) for which some element of $pG' \cap K$ has a height-o coordinate. From the hypothesis, it is easily seen that $|A| \leq \alpha$. Let B be generated by the remaining cyclic summands of K. By Lemma 5, wa can find a subgroup Q of G such that $Q' = Q \cap G' = A$.

Claim: There exists a subgroup C of G' such that $A \subseteq C$, $|C| \leq \alpha$ and C + B = G'. It will suffice to show that |(G'|B)[p]| = |A[p]| for then $|G'|B| \leq \alpha$, and we let C be generated by A and representatives

of G'/B. But if p(x + B) = 0, $x \in G'$, then $px \in B$ and so px = pb for some $b \in B$ by the construction of B. Thus

$$x - b \in G'[p] = A[p] \oplus B[p]$$

and hence x + B = a + B for some $a \in A[p]$.

Now let the cyclic generators of B be $\{b_{\beta}\}_{\beta < \gamma}$. Claim : There exist $b_{\beta}^{n} \in G$, $\beta < \gamma$, n a positive integer such that :

(1) $p^{n}b_{\beta}^{n} = b_{\beta}$; (2) $\left(Q + \sum \left\{b_{\beta}^{n}\right\}\right) \cap C \subseteq K.$

We prove this by induction on (β, n) well ordered by γ . Again, there is no trouble at limit ordinals. To advance one step, we note that there exist γ elements which satisfy (1) with pairwise intersection $|b_{\beta}|$, e. g. alter an element z such that $p^n z = b_{\beta}$ by elements g such that $p^{n-1}g \in G^1[p]$. That the g yield the required elements is assured by the fact that $p^{n-1}z \notin G^1$ and that $|G^1[p]| = \gamma$. To show that (2) is preserved upon adjoining one of these elements z we need only worry about $p^j z$ where j < n, since $Q \cap G^1 = A$. But we can insure that for some such z, $p^j z \notin Q + C$ for all j < n since we have γ such z with all $p^j z$ distinct, for j < n, and $|Q + C| \leq \alpha$.

Finally, let $P = \left(Q + \sum \left\{b_{\beta}^{n}\right\}\right)$ and all is well.

REFERENCES.

- [1] FUCHS (L.). Abelian Groups. Budapest, Hungarian Academy of Sciences, 1958.
- [2] IRWIN (J. M.). High subgroups of Abelian torsion groups, Pacific J. of Math., t. 11, 1961, p. 1375-1384.
- [3] IRWIN (J. M.) and WALKER (E. A.). On N-high subgroups of Abelian groups, Pacific J. of Math., t. 11, 1961, p. 1363-1374.
- [4] MITCHELL (R.). An extension of Ulm's theorem, Ph. D. Dissertation, New Mexico State University, May 1964.

(Manuscrit reçu le 9 juillet 1965.)

Fred RICHMAN and Carol P. WALKER, Dept. of Mathematical Sciences, College of Arts and Sciences, New Mexico State University, University Park, N. M. 88 070 (États-Unis).

210