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TWO CARTESIAN PRODUCTS WHICH ARE EUCLIDEAN SPACES

BY

James GLIMM

(Princeton) (!).

WhITEHEAD has given an example of a three-dimensional manifold W which
is not (homeomorphic to) £*, Euclidean 3-space [3]. We prove the follow-
ing theorem about W, the first statement of which is due to A. SHaPIRO.

Tueoren. — If W is the manifold described below then W < E' is
homeomorphic to E*. Also W< W is homeomorphic to E* < W (which
ts homeomorphic to E*).

~That W is not homeomorphic to E* was proved in [1], [2]. In[1] it is
shown that no cube in W contains W, (defined below), which implies W is
not £°. The homeomorphism W x E'a E* can be used to show the exist-
ence of a two element (and so compact) group of homeomorphisms of £*
onto itself whose fixed point setis . The problem of showing that W< W
is homeomorphic to £* was suggested to the author by L. Zippin.

Let Wy, Wy, R,, R, be solid tori with W, simply self-linked in the inte-
rior of W, (see fig. 1) and R, trivially imbedded in the interior of R;,. Let
I, and I, be closed bounded intervals of £! with 7, contained in the interior
of I,. Let w (resp. r) be a 3-cell in the interior of W, (resp. R,), let e
(resp. f, &) be a homeomorphism of E* (resp. E*, E') onto itself with
e(Wo) = W, [resp. f(R)) = R, g(I,)=1,] and e¢| w (resp. f|r) the identity.
Let

W= e"(W,), Bn:f” (Ro), 1, = g"(1,).

©

Let W= U W,, we suppose that

n=1
E— O R, E'= U I,
n=1 n=1

(') Fellow of the National Science Foundation (U. S. A.)..
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Let S={h|A:ACE? hisahomeomorphism of £? onto itself which is the
identity outside a compact set }; we further suppose e€S, f|R;€S and
N(R,) = W, for some %' in S.

0=0

W,

Fig. 1.

Proor. — We prove both statements simultaneously. Let ¥, denote I,
(resp. W3), V denote E* (resp. W). For each positive integer n, we construct
a homeomorphism %, : W, < V,— R, < V, with the properties

(1) hn( W<V, 1) =Ry X V,ey;
(2) hnl WX Vo= hp4 | Wo—a <X Vs (n>2).

Suppose we have constructed all the 2’ s. Then we define

O: WxVsEXV

as follows. If (z, y)e W <V, then for some n, (z, y)e W,xV,. Let
D(z, y) = b1 (z, y). By (2) we see that @ is well-defined, by (1) we see
that ® is onto. Since A, is a homeomorphism, @ is also.

Suppose the following lemma is true. Using the lemma, we will construct
the 4,.

Lemya. — If we are given a homeomorphism 3' : w < V,— Ry < V, (into),
and if B' has the form \'| w < I where ) is a homeomorphism in S of W,
onto Ry, then there is a homeomorphic extension 3 of 8/,

B: WixViRxV, B(WyxV,)=R,xV,
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and 5 |Bdry(W,xV,) =12 x I for ) some homeomorphism in S of W,
onto R,.

Let 2’ be a homeomorphism in .S mapping W, onto R,. Let hy=0, the
extension of 3'— (X' | w) > I given by the lemma. We suppose inductively
that for n a positive integer greater or equal to 2, A,_, has been constructed,
and /&, | Bdry (W,—y < V,—) =y % I, for v some homeomorphism in S of
Wa-y onto R,_,. We note that A, has this property. Observe that
(vt 1) hy_y is a homeomorphism of W,_, X V,_, onto itself leaving the
boundary pointwise fixed. Let % be the extension of this map to W, <V,
which is the identity on W, < V,-Interior (W,_4 < V,_,). Letr' bea 3-cell
with Interior R, D>r'DR, . Let w'=—=vy~'(r'). Letk : W,— W, be a
homeomorphism in S, k| (W -Interior W,_,) — identity, k(w')Cw. Let 3
be the extension of YA=' < I|w < V,_, to a homeomorphism of W, xV,
onto R,<V, as given by the lemma. Let 4,—=p(kx<I)h. We check
that 4, satisfies (1) and (2),

hn(Wn——l x Vn——i) = @(Wn—l x Vn—1) — Rn——-1 x Vn—-i-
fzeW, o<V, ,, then (k< I)h(z)ew x V,, and

u(5) = Bk < 1) B (2)
= (Y]('_lx 1) (I( > 1) (Y_IX ]) hn—q(z\) ‘——thll—i(z)

as asserted. Also

By | Bdey (W, < V) = B (k > I) k| Bdry (W, < V,,)
=k x< T|Bdvy(W, < V),

where the last equality arises from the form of 3 on Bdry (W, < ¥V,) and the
fact that (k < I) (Bdry(W, < V,)) =Bdry(W,xV,). Thus A, satisfies the
induction hypothesis and all the %, can be defined, if we prove the lemma.

Proor or LemMa. — Given 3'==4"| w x I : w X Vy— Ry < V,, we can extend
4" | w to a homeomorphism in S 2 of W, onto R;. In factlet j be a homeo-
morphism in § of R, onto itself which maps R, onto R, and A'(w) into r.

Let
A= fJN e .

Then 4 is a homeomorphism in S of W, onto Ryaud 4| w=j=1fjA'|w=2"| w
so A is the desired extension of '|w. It is now sufficient to construct a
homeomorphism %~ of W<V, onto itself which leaves w =<V, pointwise
fixed with A |Bdry(W;xV,) =< I for some p in S which maps W,
onto Wy, and with A(Wy < V) =A~1(R,) xV,. Infact (AxI)h=fisa
homeomorphism of W, < ¥ onto ;< Vy, 3 extends ', and

ﬁ(WoX Vo) = AA—? (Ro) x Vo___. RoX Vo,
BIBdry (W< Vy) = Ap. < I|Bdry(W, < V).
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The homeomorphism /4 will be given as the product of four homeomor-
phism A, 2, Aand P of W, <V, onto itself. A, X and A will each leave
Bdry (W< Vi)u(w xV,) pointwise fixed. A will lift the dark portion
of Wy, 2 will slide this lifted part away from the link, and A will drop the
image under 2A of the dark part of W, back into its original plane. We
suppose W, is D < C where D is the square { (u, v) : 0 Zu, v =20} and C
is the circle {0 : 0 Z0 << 2m]. 'We suppose that

Wec{(u,v):9=u,vL10} xC, wcDx<{0:6ZL0<2m},

the link in WocD < {0:.520<1}. Leta, 3,7y, 0 be functions on C,
let a, b, ¢ be functions on [0, 20], defined as follows. Let

a([o, 2]) =1, o ([4, 2m]) = o, (o) =o,
3([.5, 4]) =1, B([6, 2m]) =o,
v ([o, 1]) =o, v([2, 2m]) =1, d([o, 1]) =o,
3([r.5, 3]) =1, 3([5, 2m]) = o,

and let a, 3, v, 0 be linear on intervals for which they are not defined above.
Let

a(0)=o, a([g, 10]) =1, a(20) = o,
b([o, 10]) = o, b([11, 12]) =1, b(20) =o,
c(o)=o, ¢([9, 12]) =1, c(20)=—=o,

and let a, b, c be linear on intervals for which they are not defined above.
Let € be a continuous map of W, into [0, 1] such that e («, ¢, 0) = a(0) for
(u, v, 0) in the dark part of W,, e == o0 on the rest of ¥, and on Bdry W,.
If (u, v), (2, y)eD, 0, bel, let

Aluy, o0, 0, 2, y, V) =(1, v, 0, 2, y +22(1, v, 0) a(x) a(y), ),
S(u, v, 0, 2, y, V)= (u, v, 0+ 5(0) a(x)

X[(1—=v(0))o(y) +71(0)c(M)]a(u)a(e), =, y),
A(u, 0, 0, 2, y, V)= (u, 9, 0, 2, y —20(0) c(y) a(z) a(u)a(v), ).

If Vi=1;, we identify [, with {10} < [g, 10] < {o}]c W, and I, with
{10} < [0, 20] <X {o}c W,. Then A, X, and A map W,x I, onto itself
and A= AZA| Wy I, (resp. //=AZA) is a homeomorphism of W, <V,
onto itself which leaves (Bdry (W, < V,))u (w x V,) pointwise fixed. For
(z, 5, VYe Vo, AZA (W< (2, y, ) is trivially imbedded in W, X< (z, y, ¥)
and the projection W on W, of AZSA(W,x (z, y, ¥)) is independent of
x, y, b in V,. To see this it is sufficient to compute AZA (u, ¢, 0, x, y, )
for (u, v, 8) in W,, x, y in [9, 10] and 0 a point of non-linearity of «, 3, v
or 0. Suppose we have a homeomorphism p’ of W, onto W, which leaves
Bdry W, U w pointwise fixed, and with p' (W) =2~ (R,). Define P—=p' < I:
WixVi—W,xV,, define h =P7A'. Then % has the necessary properties.
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Since 2~!(R,) is trivially imbedded in W, it is in a 3-cell in the interior
of W;. There is a homeomorphism g’ of £* onto itself leaving £* — W,
pointwise fixed and such that g’ (W) and 2—*(R,) both lie in a 3-cell « in
the interior of W,. It is evident that there is a homeomorphism in §
mapping W, onto W and so there is a homeomorphism g” in .S of E* onto
itself mapping g'(W',) onto A~ (R,). We can find a 3-cell U outside of
which g” is the identity and a homeomorphism ¢ mapping U onto u which
is the identity on 2—!(R,) Ug'(W,). Define g—identity outside u, g—=9g"¢o~!
on . Then 2 =gg' is a homeomorphism leaving boundary W, fixed and
mapping Wy onto A~ (R,). Since w C Interior W, i (w)CInterior A—1(R,)
and since w C Interior 2—'(R,) there is a homeomorphism ¢ of E* onto itself
leaving £*—2—'(R,) fixed and mapping 4 (w) into w. Let U, u, be 3-cells,
with Uy > W, =" (R,) D s, Interior u, > w and let ¢, be a homeomorphism
of U, onto u, leaving «w pointwise fixed. Let j= ¢, (th)~* ¢5"' on u,, j —=iden-
tity on W, — w,. Then p'—=jih is a homeomorphism of W, onto W,

P (W) =ik (Ro) = 27" (Ry),

o' | Bdry W, —=identity and p'|w =0, ({h)~t ¢y' th|w =0, | w —identity.
This completes the proof.
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