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TWO CARTESIAN PRODUCTS WHICH ARE EUCLIDEAN SPACES

JAMES GLIMM
(Princeton) ( 1 ) .

WHITEHEAD has given an example of a three-dimensional manifold W which
is not (homeomorphic to) E'\ Euclidean 3-space [3]. We prove the follow-
ing theorem about W', the first statement of which is due to A. SHAPIRO.

THEOREM. — If W is the manifold described below then W X E1 is
homeomorphic to E'\ Also W x W is homeomorphic to E3 x W (which
is homeomorphic to E6).

That W is not homeomorphic to E3 was proved in [I], [2]. In [1] it is
shown that no cube in W contains Wo (defined below), which implies W is
not E3. The homeomorphism W x E1 w E1' can be used to show the exist-
ence of a two element (and so compact) group of homeomorphisms of 7T4

onto itself whose fixed point set is W. The problem of showing that Wx W
is homeomorphic to E^ was suggested to the author by L. ZIPPIN.

Let Wo^ TFi, /?o, BI be solid tori with Wo simply self-linked in the inte-
rior of TFi {see fig. i ) and 7?o trivially imbedded in the interior of 7?i. Let
/o and /i be closed bounded intervals of E1 with /o contained in the interior
of /i. Let w (resp. r) be a 3-cell in the interior of Wo (resp. /?o)i let e
(resp. /, g) be a homeomorphism of E'-^ (resp. 2^3, E1) onto itself with
e(Wo) = W, [resp. /(7?o) = B,, ̂ (/o)=A] and e \ w (resp. /| r) the identity.
Let

Wn=e-(Wo), Bn^f-W, 7,=^(/o).

Let W== ̂  j Wni we suppose that
n=l

E^=\J /?,„ E^=\J In.

n=l n=l

( 1 ) Fellow of the National Science Foundation (U. S. A.)..
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Let ^ — { h I A: A c ̂ 3, A is a homeomorphism of ^3 onto itself which is the
identity outside a compact set (; we further suppose e(=.S, f\R,^.S and
VW-=W,forsomeVmS,

PROOF. — We prove both statements simultaneously. Let Vn denote In
(resp. Wn), V denoted (resp. W). For each positive integer n, we construct
a homeomorpbism ̂  : W\x V^B^x Vn with the properties

( 1 ) h^W^X Vn-i)-^jRn-iX Vn-l,

(2) h, [ Wn^ x F,-,r= hn^ | W^ X V^ (n ̂  2).

Suppose we have constructed all the /^ s. Then we define

< ^ : WxV-^E^xV

as follows. If (^, y ) ^ W x V , then for some ^ (^, j) e ̂  X F,. Let
^(•^, y\ = ̂ +i(^, J). By (2) we see that ^ is well-defined, by (i) we see
that 0 is onto. Since hn is a homeomorphism, €> is also.

Suppose the following lemma is true. Using the lemma, we will construct
the hn.

LEMMA. — // we are given a homeomorphism (3' .• w x VQ-> 7?o X Fo (into),
and if ̂  has the form V j w x I where V is a homeomorphism in S of W,
onto 7?o, then there is a homeomorphic extension (3 o/(3',

P : W,xV^R,xV,, p(FToX Fo)=/?oXFo,
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and (5 | Bdry ( FFi x F\) ==: )i x / for ?. some homeomorphism in S of Wi
onto 7?i.

Let V be a homeomorphism in S mapping WQ onto 7?o- Let hi== (3, the
extension of ^ —-. ( A 7 1 w) x I given by the Jemma. We suppose inductively
that for n a positive integer greater or equal to 2, hn-i has been constructed,
and hn-i | Bdrv(TF^__i x Vn-i) ==• y X /, for Y some homeomorphism in S of
Wn-\ onto 7?^_i. We note that hi has this property. Observe that
(y-1 x /) hn-i is a homeomorphism of Wn-± X F^-i onto itself leaving the
boundary pointwise fixed. Let h be the extension of this map to WnX Vn
which is the identity on Wn X ^-Interior ( Wn-i x Vn-i). Let r ' be a 3-cell
with Interior Rn-i ̂ r'^JRn-^ Let w'^^-^r'). Let k : Wn-> Wn be a
homeomorphism in S, k \ (T^-Interior Wn-i) == identity, k ( w ' ) C w. Let (3
be the extension of y/r-1 x /| w x F^-i to a homeomorphism of WnX Vn
onto RnXVn as given by the lemma. Let hn= ̂ (k x 7) h. We check
that hn satisfies (i) and (2) ,

hn(Wn-i X V^-i) == ^(Wn-l X Vn-i) === Rn^ X V n-^

If ^ € ^-2 X F^-2, then (A- x /) A(^ ) € w x Vn-i and

/< , , (^ )==S(A-x / )A(^)
== (y^-1 x /) (k x 1) (Y-1 x /) hn-i ( z ) -~ hn_, ( z )

as asserted. Also

hn \ Bdry(TF, x Vn) == (5 (k x I ) h \ Bdry(F^ x Vn)
--\kxI\^j{WnXVn),

where the last equality arises from the form of (3 on Bdry(^x Vn) and the
fact that (k x I) (Bdry (Wn X Vn)) •==. Bdry (Wn X Vn). Thus hn satisfies the
induction hypothesis and all the hn can be defined, if we prove the lemma.

PROOF OF LEMMA. — Given ^'=-z V | w x I : w x Vo-> /?o X Fo, we can extend
/ / 1 w to a homeomorphism in S ^ of Wi onto /?i. In fact let j be a homeo-
morphism in S of 7?i onto itself which maps 7?o onto /?o and V ( w ) into r.
Let

^^J^/J^e-1.

Then A is a homeomorphism in S of Wi onto /?i aud / | w ̂ .j-^fj'^' \ w === V | w
so ^ is the desired extension of ' k ' \ w. It is now sufficient to construct a
homeomorphism h of Wi x Fi onto itself which leaves w x Vo pointwise
fixed with h \ Bdry(Wi x Vi) == ^ x I for some ^ in S which maps W^
onto PTi, and with h(Wo x Vo) == ̂ (JRo) X Fo. In fact (^ x /) h = P is a
homeomorphism of Wi x Vi onto /?iX Fi, ? extends (3', and

P(^oxFo)==^- l(^o)xFo=^oxFo,
(3 ] Bdry(^ x V,) ==^xl\ Bdry(^ x V,).
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The homeomorphism h will be given as the product of four homeomor-
phism A, 1-, A and P of TFj x Fi onto itself. A, 1- and A will each leave
Bdry (WiXVi)\J(w xVo) pointwise fixed. A will lift the dark portion
of Wo, Z will slide this lifted part away from the link, and A will drop the
image under 1A of the dark part of WQ back into its original plane. We
suppose W^ is D x C where D is the square { ( u , P) : o^?z, ^^20 } and C
is the circle { 9 : o ̂  9 < 27:}. We suppose that

WoC{{u, P) : 9^^, ̂ ioj x C, wcD x | 9 : 6^9< 27:},

the link in WoCD x { 9 : .5^9^ i }. Let a, p, y, ^ be functions on C,
let a, b, c be functions on [o, 20], defined as follows. Let

a( [o ,2 ] )= : i , a([4, 27:])==o, ( 3 ( o ) = = o ,
3 ( [ . 5 ,4 ] )= i , p([6, 27:]) =o,

Y ( [ 0 , I ] ) = = 0 , y([2, 27:])=I, ^ ( [ O , l ] ) = : 0 ,

6'([ i .5,3])=i, ^([5, 27:])=o,

and let a, [3, y, ^ be linear on intervals for which they are not defined above.
Let

a ( o ) = = o , ^([9, 10]) r=i , a ( 2 o ) = = o ,
b([o, io])=:o, b([n, 12])=:!, ^ ( 2 o ) = = o ,

C ( 0 ) ^ 0 , C([9, I 2 ] ) r - = I , C ( 2 0 ) = = 0 ,

and let a, ^, c be linear on intervals for which they are not defined above.
Let £ be a continuous map of Wi into [o, i] such that e(?z, v, 9) = = a ( 9 ) for
(u, p, 9) in the dark part of Wo, £ == o on the rest of Wo and on Bdry W^
lf(u, ^), (^,j)eA 9, ^€C, let

A(u, P, 9, x, j, ^)=(^, F, 9, ̂ j+ 2c(^ , ^, 9) a(^)a(j), ^),
i(^, ^, 9, ^, j, ^)=(^, P, 94- i3(9)a(^)

x [ ( i -y (9) )^( j )+y(9)c( j ) ]a(^)a(P) , ^, j),
A(^, p, 9, x, j, ^) = (^, v, 9, ^, y — 2^ (9 ) c ( y ) a(^) a(u)a(v), ̂ ).

If Vi=Ii, we identify /o with { 1 0 } x [9, 10] x { o } C Wi and /i with
{ 10 } x [o, 20] x { o { C W^. Then A, 1, and A map W\ x /i onto itself
and h'= AiA W^ x /j (resp. A^^r A2A) is a homeomorphism of Wi X Fi
onto itself which leaves (Bdry(lVi x Fi)) U (w X Fo) pointwise fixed. For
(^, j, ^)e Fo, AIA(^ToX 0, j, ^) is trivially imbedded in FFi x (^,J, ^)
and the projection W\ on FFi of AI-A(TFoX (^, j, ^p)) is independent of
x, j, ^ in FO- To see this it is sufficient to compute A1<A(^, P, 9, ^, j, ^)
for (^, ^, 9) in Wo, x^ y in [9, 10] and 9 a point of non-linearity of a, (3, y
or ^. Suppose we have a homeomorphism ^ of Wi onto FFi which leaves
Bdry Wi \j w pointwise fixed, and with p' (W'o) = ?-1 (7?o). Define P ==p' x /:
Wi X Vi->Wi x Fi, define A =Ph1'. Then /< has the necessary properties.
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Since ^—1 (fio) is trivially imbedded in F^i, it is in a 3-cell in the interior
of Wi. There is a homeomorphism g ' of E'9 onto itself leaving jE73—Wi
pointwise fixed and such that^(^o) and ^(TPo) both lie in a 3-cell u in
the interior of W^. It is evident that there is a homeomorphism in S
mapping WQ onto W\ and so there is a homeomorphism g " in S of E3 onto
itself mapping g ' { W ^ ) onto ^(TPo). We can find a 3-cell U outside of
which g " is the identity and a homeomorphism cp mapping U onto u which
is the identity on ^(/Po) U^^T^o). Define g^==. identity outside u^g=^g"^~^
on u. Then h=gg' is a homeomorphism leaving boundary Wi fixed and
mapping W'o onto ^(Bo). Since we Interior W\^ h ( w ) C Interior ^(/Po)
and since we Interior ^-1 (7?o) there is a homeomorphism ^ of E3 onto itself
leaving 2^—^—1 (7?o) fixed and mapping h(w) into w. Let UQ^ Uo be 3-cells,
with UQ~^ W^ ^-1 (/?o) 3^o, Interior ^o3w and let (po ^e a homeomorphism
of ^/o onto UQ leaving w pointwise fixed. Lety ' == cpo(^^)—l cp^1 on M(), y == iden-
tity on Wi— i / o . Then ^=jih is a homeomorphism of FFi onto FFi,

^(^o)^^^-^^)^^-^^),

?/ Bdry W^ =^ identity and p / 1 w =z^o(ih)~1 cp'y1 (A w ==cpo j w ==: identity.
This completes the proof.
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