
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 46 fascicule 6 novembre-décembre 2013

Carlos MATHEUS & Carlos G. MOREIRA & Enrique R. PUJALS

Axiom A versus Newhouse phenomena
for Benedicks-Carleson toy models



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 46, 2013, p. 857 à 878

AXIOM A VERSUS NEWHOUSE PHENOMENA
FOR BENEDICKS-CARLESON TOY MODELS

 C MATHEUS, C G. MOREIRA
 E R. PUJALS

A. – We consider a family of planar systems introduced in 1991 by Benedicks and
Carleson as a toy model for the dynamics of the so-called Hénon maps. We show that Smale’s
Axiom A property is C1-dense among the systems in this family, despite the existence of C2-open
subsets (closely related to the so-called Newhouse phenomena) where Smale’s Axiom A is violated.
In particular, this provides some evidence towards Smale’s conjecture that Axiom A is a C1-dense
property among surface diffeomorphisms.

The basic tools in the proof of this result are: (1) a recent theorem of Moreira saying that stable
intersections of dynamical Cantor sets (one of the main obstructions to Axiom A property for surface
diffeomorphisms) can be destroyed by C1-perturbations; (2) the good geometry of the dynamical
critical set (in the sense of Rodriguez-Hertz and Pujals) thanks to the particular form of Benedicks-
Carleson toy models.

R. – Nous considérons une famille de systèmes introduite en 1991 par Benedicks et Carleson
comme un modèle jouet pour la dynamique des applications d’Hénon. Nous montrons que l’axiome A
de Smale est une propriété C1-dense parmi les systèmes dans cette famille, même si nous trouvons aussi
des ensembles C2-ouverts (liés au phénomène de Newhouse) où l’axiome A de Smale n’est pas satisfait.
En particulier, notre résultat soutient la conjecture de Smale selon laquelle l’axiome A est une propriété
C1-dense parmi les difféomorphismes de surfaces.

Les outils utilisés dans la preuve de notre résultat sont : (1) un théorème récent de Moreira qui
dit que les intersections stables des ensembles de Cantor dynamiques (une des obstructions majeures
à l’axiome A pour les difféomorphismes de surfaces) peuvent être enlevées par des perturbations
C1-petites ; (2) la bonne géométrie de l’ensemble de points critiques dynamiques (au sens de Rodriguez-
Hertz et Pujals) due à la forme particulière des modèles jouets de Benedicks-Carleson.

1. Introduction

Uniform hyperbolicity (Smale’s Axiom A property) has been a long standing paradigm
of complete dynamical description: any dynamical system such that the tangent bundle over
its limit set (i.e., the set of accumulation points of all orbits) splits into two complementary
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858 C. MATHEUS, C. G. MOREIRA AND E. R. PUJALS

subbundles which are uniformly forward (respectively backward) contracted by the tangent
map can be completely described from a geometrical and topological point of view.

Nevertheless, uniform hyperbolicity is a property less universal than it was initially
thought: there are non-empty open sets in the space of dynamics containing only non-hyperbolic
systems. Actually, Newhouse showed that for smooth surface diffeomorphisms, the unfold-
ing of a homoclinic tangency (a non transversal intersection of stable and unstable manifolds
of a periodic point) generates non-empty open sets of diffeomorphisms whose limit sets are
non-hyperbolic (see [9], [11], [12]).

It is important to say that a homoclinic tangency is (locally) easily destroyed by small
perturbation of the invariant manifolds. To get open sets of diffeomorphisms with persistent
homoclinic tangencies, Newhouse considers certain systems where the homoclinic tangency
is associated to an invariant hyperbolic set with large fractal dimension. In particular, he
studied the intersection of the local stable and unstable manifolds of a hyperbolic set (for
instance, a classical horseshoe), which, roughly speaking, can be visualized as a product
of two Cantor sets whose thicknesses are large. Newhouse’s construction depends on how
this fractal invariant varies with perturbations of the dynamics, and actually this is the
main reason that his construction works in the C2-topology. In fact, Newhouse argument
is based on the continuous dependence of the thickness with respect to C2-perturbations. A
similar construction in the C1-topology leading to same phenomena is unknown (indeed,
some results in the opposite direction can be found in [18] and [8]). In this setting, denoting
by Diffr(Mn) the set of Cr-diffeomorphisms of a compact n-dimensional manifold Mn

(without boundary), it was implicitly conjectured by Smale (cf. [17], Problems (6.10), item
(a), at page 779) that

Axiom A surface diffeomorphisms are C1 open and dense in Diff1(M2).

This question is explicitly called Smale’s conjecture in [1].
In the present paper, we consider a special set of maps acting on a two dimensional

rectangle, firstly introduced by Benedicks and Carleson as a toy model for the so-called Hénon
maps. For this special type of systems, we show that, if one deals with C2-topology, there are
non-empty open sets of diffeomorphisms which are not hyperbolic, while in theC1-topology,
the Axiom A property is open and dense.

Before proceeding further, let us briefly recall some features of Hénon maps and
Benedicks-Carleson toy models.

A typical family where the Newhouse’s phenomena hold is the so called Hénon maps.
In fact, it was proved in [19] that, for certain parameter of this family, the unfolding of a
tangency leads to a non-empty open set of non-hyperbolic diffeomorphisms.

On the other hand, numerical simulations indicate that the attractor of the Hénon map
(i.e., the closure of the unstable manifold of its fixed saddle point) has the structure of the
product of a line segment and a Cantor set with small dimension (when a certain parameter b
is close to zero). Although it is a great oversimplification (and many of the later difficulties
on the analysis of Hénon attractors arise because of the roughness of such approximation),
this idea gives a very good understanding of the geometry of the Hénon map. As a guide to
what follows, it is worth to point out that Benedicks and Carleson [3, Section 3, p. 89] have
constructed a model where the point moves on a pure product space (−1, 1)× K where K is
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the Cantor set obtained by repeated iteration of the division proportions (b, 1 − 2b, b) (i.e.,
K =

⋂
n≥0

A−n([0, b] ∪ [1 − b, 1]) where A|[0,b](x) = x/b and A|[1−b,1](x) = (1 − x)/b), and

the dynamics on (−1, 1) is given by a family of quadratic maps: in fact, the dynamical system
on (−1, 1) acts as a movement on a fan of lines, where each line has its own x-evolution, while
it is contracted in the y-direction (see Figure 1).

More precisely, consider a one parameterCr-family {f(x, y)}y∈[0,1] (here x is the variable
and y is the parameter) such that, for each fixed parameter y ∈ [0, 1],

f(., y) : [−1, 1]→ [−1, 1]

is a Cr-unimodal map (with respect to the variable x) verifying that 0 is a critical point
and f(0, y) is the maximum value of f(., y) for all y ∈ [0, 1]. We denote by Ur the set of
Cr-families of Cr-unimodal maps satisfying the conditions stated above.

Let k : [0, a]∪ [b, 1]→ [0, 1] be a Cr function such that k(0) = 0 = k(1), k(a) = 1 = k(b)

and |k′| > γ > 1. Put

K(x, y) =

{
K+(y) if x > 0,

K−(y) if x < 0,

where K+ = (k/[0,a])
−1,K− = (k/[b,1])

−1.

The bulk of this article is the study of the dynamics of Benedicks-Carleson toy models
F : ([−1, 1] \ {0})× [0, 1]→ [−1, 1]× [0, 1] given by

(1) F (x, y) = (f(x, y),K(x, y)) = (f(x, y),Ksgn(x)(y)).

10!1 !"!

F 1. Dynamics of F (x, y) = (1− a(y)x2, Ksgn(x)(y)) with a : [0, 1]→ (0, 2].

We denote by Dr the set of such maps F (with f(., y) ∈ Ur and k ∈ Cr) endowed with
the Cr-topology. Since the line {x = 0} is a discontinuity line of any F ∈ Dr, the maps F
are Cr-diffeomorphisms only on ([−1, 1]−{0})× [0, 1], and we will explain in Section 2 the
exact definition of the Cr-topology. Although this is not specially hard to do, we prefer to
postpone it (where we also revise the notion of hyperbolic sets of F ) to avoid the appearance
of unnecessary technicalities in this introductory section.

At this point, we are ready to state our main results:
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T A. – For r ≥ 2, there exists a non-empty open set N ⊂ Dr such that no F ∈ N
is Axiom A. Moreover, there exists a residual set R ⊂ N such that any F ∈ R has infinitely
many periodic sinks.

On the other hand, in the C1-topology, the opposite statement holds:

T B. – There exists an open and dense set V ⊂ D1 such that every F ∈ V is
Axiom A.

Concerning the proof of these results, a fundamental role will be played by certain points
in the line {x = 0}:

D 1. – Given F ∈ Dr, consider k : [0, a]∪ [b, 1]→ [0, 1] the Cantor map related
to F and denote by K 0 the Cantor set induced by k. For any y ∈ K 0, we call

c±y = (0±, y)

a critical point of F .

From the technical point of view, it is important to introduce the points c±y = (0±, y)

because we can extend F to them (via the formula F (0±, y) = (f(0, y),K±(y))), so that F
becomes defined on a compact set. Of course, we have to pay the price that this extension
of F is no longer continuous. In particular, let us make a few comments about the orbits
and the meaning of the non-wandering set Ω(F ) of this extension of F . While the orbits do
not intersect the line {x = 0}, we have nothing to say. On the other hand, when the iterate
(0, y) = F (z, w) of a point (z, w) ∈ ([−1, 1] − {0}) × [0, 1] hits the line {x = 0}, we will
consider that both points (0±, y) make part of the orbit of (z, w). Finally, we say that a point
(z, w) is non-wandering when any neighborhood U of (z, w) has some iterate Fn(U) such
thatFn(U)∩U 6= ∅. Here, a small neighborhood of a point (z, w) ∈ ([−1, 1]−{0})×[0, 1] is
a small standard (Euclidean) neighborhood, while a small neighborhood of the point (0+, y),
resp. (0−, y), is a “half-neighborhood” obtained from the intersection of [0, 1]× [0, 1], resp.
[−1, 0]× [0, 1], with a small standard (Euclidean) neighborhood of (0, y).

The relevance of the concept of critical point becomes clear from the following simple (but
conceptually important) remark:

R 1.1. – It follows from the definition that, if c±y ∈ Ω(F ) and c±y is not a periodic
sink, then Ω(F ) is not hyperbolic in the sense of Definition 3 below. This fact should be compared
to the notion of dynamical critical points of [15] and its role as the obstruction to the presence
of hyperbolicity/domination in dissipative compact invariant sets of surface diffeomorphisms.

Closing this introduction, we give the organization of the paper:

– In Section 3, we follow the same ideas of Newhouse to construct a C2-open set N
where the critical points cannot be removed from the limit set, so that the proof of
Theorem A can be derived from the combination of this fact and Remark 1.1.
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– In Section 4, the proof of Theorem B is presented. Morally speaking, our basic idea
is inspired by a proof of Jakobson’s theorem [4] (of C1-density of hyperbolicity among
unimodal maps of the interval) along the lines sketched in the book of de Melo and van
Strien [7]: namely, in the one-dimensional setting, one combines Mañé’s theorem [5]
(giving the hyperbolicity of compact invariant sets far away from critical points of
a C2 Kupka-Smale interval map) with an appropriate C1-perturbation to force the
critical point to fall into the basin of a periodic sink. In our two-dimensional setting,
we start by showing that the points of the limit set staying away from the critical
line {x = 0} belong to a hyperbolic set; this is done by proving that any compact
set disjoint from the critical line exhibits a dominated splitting and then by using
Theorem B in [16] (which is the two-dimensional generalization of Mañé’s theorem [5])
to conclude hyperbolicity. Next, we exploit a recent theorem of Moreira [8] about the
non-existence of C1-stable intersections of Cantor sets plus the geometry of the maps
F ∈ D1 to prove a dichotomy for the critical points of a genericF : either critical points
fall into the basins of a finite number of periodic sinks or they return to some small
neighborhood of the critical line. Finally, we prove that the critical points returning
close enough to the critical line can be absorbed by the basins of a finite number of
periodic sinks after a C1-perturbation; thus, we conclude that the limit set of a generic
F ∈ D1 is the union of a hyperbolic set with a finite number of periodic sinks, i.e., a
generic F ∈ D1 is Axiom A.
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2. Preliminaries

In this (very) short section, we quickly review a few technical notions appearing in the
statements of Theorems A and B.

D 2. – Given s ≥ r ≥ 1 integers and F, ‹F ∈ Ds, consider {f(., y)}y∈[0,1] and
k : [0, a] ∪ [b, 1] → [0, 1], respectively {f̃(., y)}y∈[0,1] and k̃ : [0, ã] ∪ [̃b, 1] → [0, 1] (the
functions associated to F , respectively ‹F).

We say that F and ‹F are Cr-close if the one parameter families {f(., y)}y∈[0,1] and
{f̃(., y)}y∈[0,1] areCr-close in the usual manner, a is close to ã, b is close to b̃, and k isCr-close
to k̃ in the sense that they admit Cs-extensions to [0,max{a, ã}] ∪ [min{b, b̃}, 1] which are
Cr-close.
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D 3. – A set Λ is called hyperbolic for F ∈ Dr if it is compact, F -invariant and
there exist a decomposition R2 = Es ⊕ Eu invariant under DF and some constants C > 0,
0 < λ < 1 such that

|DFn/Es(x)| ≤ Cλ
n and |DF−n/Eu(x)| ≤ Cλ

n ∀x ∈ Λ, n ∈ N.

Here, it is worth to point out that we do not require the dimensions ofEs andEu to be constant
on Λ (contrary to some places in the literature). In particular, a hyperbolic set in our context
is always the union of a saddle-type set (i.e., a hyperbolic set where dim(Es) = dim(Eu) = 1)
disjoint from the set of critical points and finitely many periodic sinks.

We say that F ∈ Dr is Axiom A if the non-wandering set is hyperbolic and it is the closure
of the periodic points. In the sequel, Ω(F ) denotes the non-wandering set (as defined in the
paragraph right after Definition 1 above).

3. Proof of Theorem A

The strategy is similar to the arguments of [9] (see also [13]).
Given 0 < t < 1 and m ≥ m0 = m0(t) (where m0(t) is a large integer to be chosen

later), we define δm := 1/(2m − 1), εm := sin(πδm/2) and we select a parameter ρm such
that 1− cos(πδm) < tρm/2 < 1− cos(π(1− δm)/2m−1) (e.g., ρm := 2(1− cos(3πδm/2))/t

works for m0(t) sufficiently large). Next, we take µm : [0, 1] → [0, 1] a C2-map such that
µm(y) = µm(1− y) and µm(y) = 1−

√
1− ρmy/2 for every y ∈ [0, t2 ] and we define

(2) F t(x, y) = (fεm(x, y),Kt(x, y)),

with

Kt(x, y) :=

 (kt
/[0, t2 ]

)−1(y) if x > 0,

(kt
/[1− t2 ,1]

)−1(y) if x < 0,

where kt is the map

kt(y) =

{
2y/t if 0 ≤ y ≤ t/2,
2(1− y)/t if 1− t

2 ≤ y ≤ 1,

and fεm(x, y) is a C2 family of unimodal maps such that

fεm(x, y) =

{
1− 2x2 if |x| ≥ εm,
1− µm(y) at x = 0.

Also, let K 0 = K t
0 := ∩n∈N(kt)−n([0, t2 ] ∪ [1− t

2 , 1]) be the Cantor set induced by k = kt.
See Figure 2.

To simplify the exposition, firstly we consider the proof of Theorem A only for maps
F = F t of the form (2). Then, at the end of this section, we explain how the general case
follows from the previous one.

We begin by recalling some classical facts about dynamically defined Cantor sets and their
thicknesses. For a more detailed explanation, see [13].

D 4. – We say that a Cantor set K ⊂ R is dynamically defined if it is the
maximal invariant set of a C1+α expanding map with respect to a given Markov partition.
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10

y 7→ t
2y, x > 0; y 7→ 1− t

2y, x < 0

F 2. Dynamics of Kt.

D 5. – A gap (resp. bounded gap) of a Cantor set K is a connected component
(resp., bounded connected component) of R− K . GivenU a bounded gap of K and u ∈ ∂U , we
call the bridgeC of K at u to the maximal interval such that u ∈ ∂C andC contains no point of
a gapU ′ with |U ′| ≥ |U |. The thickness of K at u is τ( K , u) = |C|/|U | and the thickness τ( K )

of K is the infimum over τ( K , u) for all boundary points u of bounded gaps.

R 3.1. – For the Cantor sets K t
0 induced by the maps kt above, it is not hard to see

that 0 < τ( K t
0) = t/2(1− t) <∞.

R 3.2. – The quadratic map f2(x) := 1 − 2x2 has arbitrarily thick dynamically
defined Cantor sets. In fact, using the fact that 1− 2x2 is conjugated to the complete tent map

T2(x) :=

{
2x if 0 ≤ x ≤ 1/2,

2− 2x if 1/2 ≤ x ≤ 1,

via the explicit conjugation h(x) = − cos(πx), we can exhibit thick Cantor sets as follows.
Denote by Ĩ(m)

2 := [h(2δm), h((1 − δm)/2m−2)] and put Ĩ(m)
i := f2(Ĩ

(m)
i−1 ) for i = 3, . . . ,m.

As it is explained in Section 2 of Chapter 6 of Palis-Takens book [13], from the explicit nature
of the conjugation h and the fact that the intervals h−1(Ĩ

(m)
2 ), . . . , h−1(Ĩ

(m)
m ) form a Markov

partition of a dynamically defined Cantor set Km of thickness τ( Km) = 2m−1 − 3 associated
to the tent map T2(x), it is possible to check that ‹Km := h( Km) are dynamically defined
Cantor sets associated to f2 (and Markov partition Ĩ(m)

2 , . . . , Ĩ
(m)
m ) such that τ(‹Km) → ∞

(as m→∞).

R 3.3. – Let K (ψ) be the dynamically defined Cantor set associated to a C1+α

expanding map ψ. If φ is C1+α-close to ψ, then the thickness of K (φ) is close to the thickness
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of K (ψ). In other words, the thickness of dynamically defined Cantor sets K depend continu-
ously on K (with respect to the C1+α-topology). See [13].

Now we state Newhouse’s gap lemma ensuring that two linked Cantor sets with large
thicknesses should intersect somewhere:

L 3.1 (Gap Lemma [9]). – Given two Cantor sets K 1 and K 2 of R such that

τ( K 1)τ( K 2) > 1,

then one of the following possibilities occurs:

– K 1 is contained in a gap of K 2;
– K 2 is contained in a gap of K 1;
– K 1 ∩ K 2 6= ∅.

For later reference, we recall the following definition:

D 6. – We say that K 1 and K 2 are linked if their convex hulls I1 and I2 are linked
in the sense that the interior of I2 contains exactly one boundary point of I1 and vice-versa.

Observe that the “linked” property is robust by perturbations. After these preliminaries,
we can complete the discussion of this section as follows.

End of the proof of Theorem A. – We observe that, since F = F t is the product map
F t(x, y) = (1 − 2x2,Kt

sgn(x)(y)) at the region ([−1, εm] ∪ [εm, 1]) × [0, 1], it follows that

Λεm := ‹Km × K t
0 is a hyperbolic set of F t. Moreover, the stable lamination W s(Λεm) is

composed by vertical lines passing through ‹Km×{0} and the unstable laminationWu(Λεm)

is composed by horizontal lines passing through {0}× K t
0. We divide the construction of N

into three steps.

Step 1: From Remarks 3.1 and 3.2, given 0 < t < 1, we can choose m0(t) ∈ N large such
that, for every m ≥ m0(t), it holds

τ(‹Km)τ( K t
0) > 2.

Step 2: Consider the following line segment:

L+ := F 2({0+} × [0, t/2]) = {(1− 2(1− µm(y))2,
t2

4
y)}y∈[0,t/2] = {(−1 + ρmy,

t2

4
y)}y∈[0,t/2].

In the sequel, L+ plays the role of a line of tangencies: more precisely, we introduce

K̃ s = (f−1
2 (Ĩ

(m)
2 ∩ ‹Km)× [0, 1]) ∩ L+, K̃u = F 2({0+} × ( K t

0 ∩ [0, t/2])) = Wu
loc(Λεm) ∩ L+.

Here, we used the fact that the critical point 0 of fεm belongs to the interval Ĩ(m)
m of the

Markov partition of the dynamical Cantor set ‹Km (and, thus, the preimages of 0 accumulate‹Km) to get that the critical points c±y belong to Wu(Λεm).

We claim that K̃ s ∩ K̃u 6= ∅. In fact, since the straight line segment L+ is transversal to
both horizontal and vertical foliations, andL+ is naturally identified with the interval [0, t/2]

of R via L+ 3 (−1+ρmy,
t2

4 y) 7→ y ∈ R, we obtain that τ( K̃ s) ≥ τ(‹Km)/2 (as f−1
2 distorts

the interval Ĩ(m)
2 by a factor between 1 and 2) and τ( K̃u) = τ( K t

0), so that τ( K̃ s)τ( K̃u) > 1

(by Step 1). Hence, by Newhouse gap Lemma 3.1, it suffices to show that K̃ s and K̃u are

4 e SÉRIE – TOME 46 – 2013 – No 6



DYNAMICS OF BENEDICKS-CARLESON TOY MODELS 865

linked. However, it is not hard to see that this follows from our choice of ρm. Indeed, from
the definitions of K̃ s and K̃u, we get that K̃ s and K̃u are linked if and only if the vertical
projection K

s
:= f−1

2 (Ĩ
(m)
2 ∩ ‹Km) of K̃ s is linked to the vertical projection K

u
of K̃u. On

the other hand, the convex hulls of K
s

and K
u

are linked: more precisely, the convex hull Is

of K
s

is f−1
2 (Ĩ

(m)
2 ) = [− cos(πδm),− cos(π(1 − δm)/2m−1)] and the convex hull Iu of K

u

is [0,−1 + tρm/2], so that our choice of ρm verifying

1− cos(πδm) < tρm/2 < 1− cos(π(1− δm)/2m−1)

implies that Is and Iu are linked.

Next, we notice that K̃ s∩ K̃u 6= ∅ means thatF 2(c+y ) ∈W s
loc(Λεm) for some critical point

c+y ∈ Wu
loc(Λεm), y ∈ K t

0. Since the hyperbolic set Λεm is transitive (i.e., it contains dense
orbits), it follows that c+y is a non-periodic critical point belonging to the non-wandering set
Ω(F ). Therefore, by Remark 1.1, the set Ω(F ) is not hyperbolic.

Step 3: Finally, we claim that any sufficiently smallC2 neighborhood N ⊂ D2 of the map
F = F t constructed above fits the conclusion of the first part of Theorem A. Indeed, this is
a consequence of the following known facts for G C2-close to F :

1. The hyperbolic set Λεm has a continuation to a hyperbolic set Λεm(G) of G;
2. The Cantor sets K̃s and K̃u have unique continuations to Cantor sets K̃s(G) and
K̃u(G) obtained by intersecting the local stable and unstable laminations of Λεm(G)

with the line of tangencies L+(G) = G2({0+} × [0, 1/2]). Moreover, these Cantor sets
are C1+α−close to K̃s and K̃u respectively in the sense that their vertical projections
K
s
(G) and K

u
(G) to R × {0} are C1+α-close to the vertical projections K

s
and K

u

of K̃s and K̃u;
3. Thus, the Cantor sets K

s
(G) and K

u
(G) have thicknesses close to the thicknesses

of K
s

and K
u

respectively; by continuity of the thickness (see Remark 3.3), it follows
that τ(K

u
(G))τ(K

u
(G)) > 1;

4. From Newhouse gap Lemma 3.1 and the fact that K
s
(G) and K

u
(G) remain linked,

it follows that K
s
(G) ∩Ku

(G) 6= ∅ and, a fortiori, K̃s(G) ∩ K̃u(G) 6= ∅;
5. Hence, there are (non-periodic) critical points contained in the non-wandering set ofG,

and so, by Remark 1.1, it is not hyperbolic.

At this point, it remains only to prove the second part of Theorem A, namely, the existence
of a residual set R ⊂ N such that any F ∈ R has infinitely many sinks.

Let N n ⊂ N be the (open) subset of maps F ∈ N with n attracting periodic orbits (at
least) disjoint from the critical line {x = 0} and R =

⋂
n∈N

N n. In this notation, our task is

reduced to show the next proposition.

P 3.1. – N n is dense for every n ∈ N.

We start our argument with the following notion.

D 7. – We say that F ∈ Dr exhibits a “homoclinic tangency” if there is a
hyperbolic periodic point p of saddle-type of F such that

1. there exists c+ = (0+, yp) ∈Wu(p);
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2. there exists k > 0 such that F k(c+) ∈W s
loc(p) and F j(c+) does not intersect the critical

line for 0 < j ≤ k;

The relevance of homoclinic tangencies becomes apparent in the next lemma.

L 3.2. – Let F ∈ Dr with a homoclinic tangency. Then, there exists G ∈ Dr

arbitrarily Cr close to F having an attracting periodic orbit disjoint from the critical line
{x = 0} near the homoclinic tangency.

Proof. – From the fact that c+ ∈ Wu(p), it follows that there exists c+n = (0+, yn) such
that F−kn(c+n ) → F k(c+) (for some appropriate sequence kn) and c+n → c+ = (0+, y∞).
Indeed, since the unstable manifold of p consists of horizontal segments (as one can check
from the form of the maps F ∈ Dr), we can apply Palis’ inclination lemma to the vertical
segments {0+}× (y∞− 1/n, y∞+ 1/n) containing c+ to deduce that, for each n ∈ N, there
are kn ∈ N such that F−kn({0+} × (y∞ − 1/n, y∞ + 1/n)) intersect a (1/n)-neighborhood
of F k(c+). Thus, for each n ∈ N, we can select c+n = (0+, yn) ∈ {0+}×(y∞−1/n, y∞+1/n)

such thatF−kn(c+n ) belongs to a (1/n)-neighborhood ofF k(c+). In particular, c+n → c+ and
F−kn(c+n )→ F k(c+), as desired.

Hence, we can take aCr small perturbationH = Hn of F such thatHk(c+n ) = F−kn(c+n )

and H = F along the orbit F−j(c+n ) for j = 1, . . . , kn (provided that n is large enough). In
fact, since F k(c+) and the orbit of p do not meet the critical line, we can fix α > 0 such
that, for all n ∈ N, one has F j(c+n ) ∈ ([−1,−α] ∪ [α, 1]) × [0, 1] for j = 1, . . . , k and
F−m(c+n ) ∈ ([−1,−α] ∪ [α, 1]) × [0, 1] for m = 1, . . . , kn + k − 1. In particular, if we take
a smooth bump function να : [−1, 1] → R with να(x) = 0 if |x| ≥ α and να(x) = 1

for |x| ≤ α/2, and if we set

H(x, y) =
(
(1 + (Xn − 1)να(x)) f(x, y), (1 + (Yn − 1)να(x))Ksgn(x)(y)

)
∈ Dr,

whereXn :=
π1(F−kn−k+1(c+n ))

π1(F (c+n ))
, Yn :=

π2(F−kn−k+1(c+n ))

π2(F (c+n ))
, π1(x, y) = x and π2(x, y) = y, then

we obtain a small Cr-perturbation of F (x, y) = (f(x, y),Ksgn(x)(y)) because F−kn(c+n ) is
close to F k(c+) and c+n is close to c+, so that F−kn−k+1(c+n ) and F (c+n ) are close to F (c+)

and thus Xn and Yn are close to 1. Moreover, by definition, H(c+n ) = F−kn−k+1(c+n )

and H = F on {|x| ≥ α} × [0, 1]. Since F j(c+n ) belongs to {|x| ≥ α} × [0, 1] for
j = −kn − k + 1, . . . , k, we obtain that Hk(c+n ) = F−kn(c+n ) and H = F along the
orbit F−j(c+n ) for j = 1, . . . , kn, and, thus, c+n = Hk+kn(c+n ) is a periodic point of H of
period k + kn. Furthermore, using that c+n is a critical point of H, the reader can check
that the periodic point c+n is attracting. Of course, this does not complete the argument
because the attracting periodic point c+n ofH = Hn belongs to the critical line, but this little
inconvenience is easily overcome by slightly perturbing H = Hn as follows.

Let us write H = Hn ∈ Dr as H(x, y) = (h(x, y), Lsgn(x)(y)). Recall that the
H-orbit of c+n does not intersect the critical line except for c+n = (0+, yn) itself: indeed,
using the notation of the previous paragraph, Hi(c+n ) ∈ {|x| ≥ α} × [0, 1] for all
i = 1, . . . , k+ kn− 1. Thus, if we denote by θl = α/2l, we see that, for all l sufficiently large,
we can slightly perturb the unimodal maps h(x, yn) near x = 0 and h(x, π2(Hk+kn−1(c+n )))

near x = π1(Hk+kn−1(c+n )) such that the resulting map G = Gl satisfy G(θl, yn) = H(c+n ),
G(Hk+kn−1(y)) = (θl, yn) and G = H nearby the points Hi(cnn), i = 1, . . . , k + kn − 2. In
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particular, the resulting map G = Gl ∈ Dr has an attracting periodic point of period k+ kn
at (θl, yn) whose G-orbit does not meet the critical line. This ends the proof.

On the other hand, homoclinic tangencies are frequent inside N .

L 3.3. – Let F ∈ N . Then, there exists G Cr close to F exhibiting a homooclinic
tangency.

Proof. – This is an immediate consequence of the construction of N : given F ∈ N , we
can find x1, x2 ∈ Λεm and a critical point c+ ∈ Wu

loc(x1) such that F k(c+) ∈ W s
loc(x2).

Since the hyperbolic set Λεm is transitive, we can find a periodic p in Λεm close to x1 so that
some pieces of its local unstable and stable manifolds are close to the corresponding invariant
manifolds of x1 and x2 (resp.). In this situation, after a proper small perturbation (similar to
the ones performed during the proof of Lemma 3.2 above), we can findGCr-close to F such
that G ∈ Dr has a homoclinic tangency involving p.

Finally, the proof of the desired proposition follows from a direct combination of the two
previous lemmas.

Proof of Proposition 3.1. – It is proved by induction. Given Gn ∈ N n, we can use
Lemma 3.3 to find Gn+1 C

r-close to Gn keeping the same number n of attracting periodic
points of Gn and such that Gn+1 has a homoclinic tangency. By Lemma 3.2, we can unfold
this tangency to create a new sink, i.e., we can find H ∈ N n+1 C

r-close to Gn+1. The result
follows by Baire’s theorem.

This completes the proof of Theorem A.

4. Proof of Theorem B

Before giving the proof of Theorem B, we briefly outline the strategy. Given ε > 0, let us
take Uε = ([−1,−ε] ∪ [ε, 1])× [0, 1] and

Λε = Ω(F ) ∩
⋂
n∈Z

Fn(Uε).

Strategy of the proof

1. For any ε > 0, we show that, C1-generically, the set Λε is composed by a locally maxi-
mal hyperbolic set and a finite number of periodic attracting points. This is performed
in Subsection 4.1 (see Theorem 4.1 and Corollary 4.1).

2. We show that, C1-generically, any critical point either is contained in the basin of
attraction of the sinks (of Step 1 above) or returns to [−ε, ε]× [0, 1]. This is performed
in Subsection 4.2.

3. Later, we produce a series of C1-perturbations (of size proportional to ε) in the way to
create a finite number of periodic sinks such that their basins contain the critical points
that return. This is performed in Subsection 4.3.

4. From items 1, 2 and 3, it follows that Ω(F ) ⊂ Λε ∪ {p1, . . . , pk}, where each pi is
a periodic attracting point (i = 1, . . . , k), and therefore it is concluded that Ω(F ) is
hyperbolic (and F is Axiom A).
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C. – As it will become clear later, although our Theorem B concerns D1 with
theC1-topology, sometimes we will need some extra (C2) regularity of the maps (for instance,
this is the case when one tries to apply a fundamental “hyperbolicity criterion for surface
maps” of Pujals and Sambarino). Therefore, during this entire (last) Section 4, we consider
D2 equipped with theC1-topology. In particular, each time we refer to “aC1-generic/typical
F ∈ D2”, we mean an F ∈ D2 belonging to an appropriate C1-open and C1-dense subset
of D2.

4.1. Hyperbolicity of Λε

T 4.1. – Let ε > 0 be a positive constant. Then, there exists a C1-open and
dense subset V ε ⊂ D1 such that, for any F ∈ V ε, the set Λε contains a finite number of
periodic attracting points and the complement of the basin of attraction of them Λ̂ε exhibits
a hyperbolic splitting T Λ̂ε = Es ⊕ Eu such that Es is contracting, Eu is expanding (and, in
fact, Eu = R · (1, 0)).

The proof of this result uses the notion of dominated splitting and Theorem B in [16].
Firstly, we revisit the definition of dominated splittings:

D 8. – An f -invariant set Λ has a dominated splitting if we can decompose its
tangent bundle into two invariant subbundles TΛM = E ⊕ F such that:

‖Dfn/E(x)‖ · ‖Df
−n
/F (fn(x))‖ ≤ Cλ

n, for all x ∈ Λ, n ≥ 0.(3)

with C > 0 and 0 < λ < 1.

Secondly, we recall that Pujals and Sambarino [16] proved that any compact invariant set
exhibiting dominated splitting of a generic C2 surface diffeomorphism is hyperbolic:

T 4.2 ([16]). – Let f ∈ Diff2(M2) be a C2-diffeomorphism of a compact sur-
faceM2 and Λ ⊂ Ω(f) a compact invariant set exhibiting a dominated splitting. Assume that all
periodic points in Λ are hyperbolic of saddle type. Then, Λ can be decomposed into a hyperbolic
set and a finite number of normally hyperbolic periodic closed curves whose dynamical behaviors
are C2-conjugated to irrational rotations.

Let us begin the proof of Theorem 4.1 with some useful notation. Given (x0, y0), we
set (xi, yi) := F i(x0, y0); also, we write the derivative of a map F (x, y) = (f(x, y),K(x, y))

of the form (1) as

DF =

(
fx fy

0 Ky

)
.

In particular, it follows that

DFn(x0, y0) =

(
An Bn

0 Dn

)
,

where
An := Πn−1

i=0 fx(xi, yi) , Dn := Πn−1
i=0 Ky(xi, yi),

Bn =
n−1∑
j=0

fy(xj , yj) Πj−1
i=0Ky(xi, yi) Πn−1

i=j+1fx(xi, yi).
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In the sequel, we fix two positive constants λ0, λ1 such that λ0 < λ1 < 1 and

|Ky| < λ0.

Concerning the proof of Theorem 4.1, we observe that (1, 0) is an invariant direction byDF
and, moreover, it is the natural candidate to be the expanding one. Therefore, the existence
of a dominated splitting follows once we build up a proper invariant cone field around (1, 0).
To perform this task, first we need the next lemma.

L 4.1. – Given ε > 0, let Zε ⊂ D1 be the C1-open and dense subset consisting
of F ∈ D1 such that, for each y ∈ [0, 1], the unimodal map f(., y) has no critical points
in |x| ≥ ε. Then, for any F ∈ Zε, there exist a finite number of attracting periodic points
with trajectory in Λε and a positive integer n0 = n0(ε) such that, for any (x0, y0) ∈ Λε outside
the basins of attraction of those periodic points, it holds

|An| = Πn−1
i=0 |fx(xi, yi)| > λn1 ,

whenever n > n0.

In order not to interrupt the flow of ideas, we postpone the proof of the lemma. Assuming
momentarily this lemma, we are able to prove Theorem 4.1.

Proof of Theorem 4.1. – Let b be a positive constant such that

|fy| < b.

Given F ∈ Zε, we can take n0 the integer provided by Lemma 4.1 and let R0 be a positive
constant(1) such that, for any m < n0 and any point (x0, y0) ∈ Λε, it holds

Πm
i=0|fx(xi, yi)| > R−1

0 .

Now, for all (x0, y0) ∈ Λε outside the basins of the attracting periodic points of Lemma 4.1,
let us bound Bn for n > n0:

|Bn| ≤
n−1∑
j=0

|fy(xj , yj)|Πj−1
i=0 |Ky(xi, yi)|Πn−1

i=j+1|fx(xi, yi)|(4)

=
n−1∑
j=0

|fy(xj , yj)| · |Dj | ·
|An|
|Aj+1|

< R0b|An|
1

1− λ0
+ b|An|

n−1∑
j=n0

λj0
λj1

< R0b|An|
1

1− λ0
+ b|An|

1

λ1 − λ0
.

Using this estimate, we claim that the cone field C(γ0) := C(R · (1, 0), γ0) := {(ẋ, ẏ) ∈ R2 :

|ẏ| ≤ γ0|ẋ|} is a forward invariant cone field for sufficiently small γ0 > 0. In fact, take γ0 > 0

small and let us consider

vn = DFn(1, γ) = (An + γBn, γDn),

(1) Such a constant R0 always exists since f(x, y) ∈ U1 is a family of unimodal maps without critical points
in |x| ≥ ε for F ∈ Zε and (xi, yi) ∈ Uε implies |xi| ≥ ε.
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where |γ| < γ0. The slope of vn with respect to (1, 0) is

|slope(vn, (1, 0))| = |γDn|
|An + γBn|

.

Note that the estimate (4) implies

|An + γBn| > |An| − γ0|Bn| > |An|
(
1− γ0b(R0 + 1) · (λ1 − λ0)−1

)
.

Hence, if γ0 is small so that

1− γ0b(R0 + 1)(λ1 − λ0)−1 >
1

2
,

using Lemma 4.1, we conclude that

slope(vn, (1, 0)) < γ0
2|Dn|
|An|

< 2

Å
λ0

λ1

ãn
· γ0.

Thus, assuming n0 large so that (λ0/λ1)n0 < 1/4 and taking γ1 = 2(λ0/λ1)n0γ0, we see
that, for any n > n0,

DFn(C(γ0)) ⊂ C(γ1) ⊂ C(γ0/2).

In other words, C(γ0) is a forward invariant cone field and the existence of a dominated
splitting Es ⊕ R · (1, 0) is guaranteed (over the set Λ̂ε of points outside the basins of the
attracting points of Lemma 4.1).

Next, we show that Es is uniformly contracted: for every (x0, y0) ∈ Λε, we fix e(s)
0 =

(us0, v
s
0) ∈ Es(x0,y0) with ‖e(s)

0 ‖ = 1 and we put DFn(x0, y0) · e(s)
0 := ±λsn · e

(s)
n ∈ Es(xn,yn)

where e(s)
n := (u

(s)
n , v

(s)
n ) ∈ Es(xn,yn) is a unitary vector. Then, we compute the determinant

of DFn:

|An ·Dn| = |detDFn| = |DF
n · (1, 0) ∧DFn · e(s)

0 |
|(1, 0) ∧ e(s)

0 |
=
|An| · |λ(s)

n | · |v(s)
n |

|v(s)
0 |

,

where |u ∧ v| denotes the area of the rectangle determined by the vectors u and v. Because
the direction Es does not belong to the cone field C(γ0) and |v(s)

0 | ≤ ‖e
(s)
0 ‖ = 1, we get

|λ(s)
n | = |Dn|

|v(s)
0 |
|v(s)
n |
≤ 1

γ0
|Dn|.

Since |Dn| ≤ λn0 for all n ∈ N, this proves that for all F ∈ Z ⊂ D1 of the form (1) such
that |Ky| < λ0 and for any λ0 < λ1 < 1, the set Λε is the union of a finite number of sinks
and a set Λ̂ε exhibiting a dominated decomposition Es ⊕ F where Es is contracting (after
n0 iterates) and F = (1, 0) · R satisfies DFn(1, 0) = (An, 0) where |An| > λn1 (for n > n0).

At this stage, the proof of Theorem 4.1 is reduced to show that there exists a C1-dense
subset ofF ∈ D2∩ Zε such that all periodic points in Λ̂ε are hyperbolic of saddle type. Indeed,
this is true because it is immediate that there are no periodic closed curves inside Λε whose
dynamical behavior are conjugated to irrational rotations(2), so that, by Pujals-Sambarino
Theorem 4.2, a dominated splitting over Λ̂ε is a hyperbolic splitting whenever all periodic
points in Λ̂ε are hyperbolic of saddle type.

(2) Because in this case F = R · (1, 0) should be a tangent line of such closed curve C at some point. Combining
this fact with the minimality of the dynamics onC and the continuity of dominated splitting (besides the invariance
of R · (1, 0)), we obtain that the whole curve C is tangent to the line field F , a contradiction.
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However, the C1-denseness in D1 of F ∈ D2 ∩ Zε such that all periodic points in Λ̂ε are
hyperbolic of saddle type is a consequence of a simple argument (compare with [16, p. 966]):
recall that, by the “usual” transversality arguments, all periodic points of an F ∈ D2∩ Zε in
a C2-generic (Gδ dense) subset are hyperbolic(3); it follows that for such an F ∈ D2∩ Zε, the
compact invariant subset Λ

(0)
ε := Λε−{p ∈ Λε : p is a periodic sink} ⊂ Ω(F ) only contains

hyperbolic periodic points of saddle type. Furthermore, Λ
(0)
ε admits a dominated splitting

(since Λ
(0)
ε ⊂ Λ̂ε). Thus, we obtain from Theorem 4.2 that Λ

(0)
ε is a hyperbolic set. We claim

that Pε(F ) := Λε − Λ
(0)
ε is finite (so that Λ

(0)
ε = Λ̂ε and, a fortiori, all periodic points of Λ̂ε

are hyperbolic of saddle-type). Indeed, if #Pε(F ) =∞, we have ∅ 6= Pε(F )−Pε(F ) ⊂ Λ
(0)
ε .

However, since Λ
(0)
ε is hyperbolic, we can select a compact neighborhood U of Λε such that

the maximal invariant ofU is hyperbolic. Thus, we get that, up to removing a finite number of
periodic sinks, Pε(F ) ⊂ U , a contradiction with the hyperbolicity of the maximal invariant
subset of U . This completes the proof of Theorem 4.1.

Closing the proof of the hyperbolicity of Λε, we prove the statement of Lemma 4.1.

Proof of Lemma 4.1. – It is enough to apply the following lemma due to Pliss (see [14],
[6]).

L 4.2 (Pliss). – Given 0 < γ0 < γ1 < 1 and a > 0, there exist n0 = n0(γ0, γ1, a)

and l = l(γ0, γ1, a) > 0 such that, for any sequences of numbers {ai}0≤i≤n with n0 < n,
a−1 < ai < a and Πn

i=0ai < γn0 , there are 1 ≤ n1 < n2 < · · · < nr ≤ n with r > ln and such
that

Πk
i=njai < γ

k−nj
1 for all nj ≤ k ≤ n.

In fact, let us consider the set of points (z, w) ∈ Λε such that

lim inf
n→∞

1

n
log |An(z, w)| < log

√
λ1.(5)

Since F ∈ Zε and for any (zi, wi) = F i(z, w) ∈ Λε, it holds |zi| ≥ ε, we have that
the numbers ai = fx(zi, wi) are uniformly bounded away from zero and infinity (i.e., 0 <

a(ε)−1 < ai < a(ε) <∞), and, thus, we can use Lemma 4.2 twice to obtain that there exists
a subsequence of forward iterates of (z, w) accumulating on some point (x0, y0) which has a
subsequence of forward iterates

{(xnj , ynj )}j>0 = {Fnj (x0, y0)}

such that any (xnj , ynj ) satisfies

|An(xnj , ynj )| <
√
λn1 , ∀ n > 0.

Using the same type of calculation of estimative (4), we get, for any j > 0,

Πn
i=0||DF (xi+nj , yi+nj )|| < (1 + b(

√
λ1 − λ0)−1)

√
λn1 , ∀ n > 0 large.

(3) In our context of F of the form (1), the derivative DF is an upper triangular matrix whose diagonal entries are
the x-derivative of f(x, y) and the y-derivative of K±(y). In particular, given any non-hyperbolic periodic point
of F , we can slightly perturb K± to slightly change both the trace and the determinant of DF to get a hyperbolic
periodic point. Therefore, the set of F ∈ D2 whose periodic points of period ≤ n are hyperbolic, C2-open and
dense, and, hence, the set of F ∈ D1 whose periodic points are all hyperbolic form a C2 Gδ-dense.
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By standard arguments it follows that, for any
√
λ1 < λ2 < 1, there exists γ = γ(λ1, λ2)

such that
Fn(Bγ(xnj , ynj )) ⊂ Bλn2 γ(Fn(xnj , ynj ))

for all j, n > 0 large. Taking q0 an accumulation point of {(xnj , ynj )}, it is not hard to see
that

F j(Bγ(q0)) ⊂ Bλj2γ(F j(q0))

for any j > 0 large and there exists a positive integer m = m(q0) such that

Fm(Bγ(q0)) ⊂ Bλm2 γ(q0).

Therefore, it follows that:

1. there is a unique attracting periodic point(4) p0 inside Bγ(q0),
2. the neighborhood Bγ(q0) is contained in the basin of attraction of p0,
3. the point (x0, y0) and the initial point (z, w) verifying (5) belong to the basin of

attraction p0;

Since the number of attracting periodic points with local basin of attraction with radius
larger than γ is finite, we conclude that there are a finite number of periodic attracting points
whose basins contain the points of Λε verifying (5). In other words, Λε is the union of finitely
many periodic sinks and the subset Λ̂ε of Λε consisting of the points violating (5). Note
that Λ̂ε is compact because it lies in the complement of the basins of attraction of finitely
many sinks. At this point, the proof of the lemma will be complete if we show that there
exists n0 = n0(ε) ∈ N such that |An(z, w)| > λn1 for all n > n0 and (z, w) ∈ Λ̂ε.
However, the existence of such an integer n0 follows from Pliss lemma and the arguments
of the previous paragraphs. Indeed, the non-existence of n0 would imply that there exists a
sequence (zi, wi) ∈ Λ̂ε and ni ∈ N, ni → ∞, such that |Ani(zi, wi)| ≤ λni1 . Using Pliss’
lemma (as in the previous paragraphs), we would be able to extract a subsequence of (zi, wi)

accumulating in some point (z∞, w∞) verifying (5). Of course, this is a contradiction because
Λ̂ε is compact (and thus (z∞, w∞) ∈ Λ̂ε and this concludes the proof of the lemma.

For later use, we observe that the hyperbolic sets Λε can be assumed to be locally maximal.
This follows from the next claim (compare with [2]).

C 1. – There exists a locally maximal hyperbolic set Λε ⊂ Λ̃ε ⊂ Uε/2. In other words,
there exists an open set V ⊂ Uε/2 containing Λε such that Λ̃ε := ∩n∈ZF

n(V ) is a compact
invariant hyperbolic set.

Proof. – Indeed, fix γ = γ(ε) > 0 a positive small constant such that the local stable
manifold W s

γ (p) of any point p ∈ Λε/2 is the graph of a real function of the y-coordinate
defined over an interval of length δ = δ(ε) > 0. Next, we take k = k(ε) > 0 a large
integer so that the lengths of the 2k intervals I(k)

1 , . . . , I
(k)

2k
of the kth stage of the construction

of the Cantor set K 0 are < δ/2. Note that we can suppose that W s
γ (p) ⊂ Uε/2 for any

p ∈ Λε/2 ∩ U3ε/4. Now, for each j = 1, . . . , 2k, we consider the stable lamination F sj,± =

{W s
γ (p)∩ [−1, 1]× I(k)

j }p∈Λ̂ε/2∩U3ε/4
. Given ` ∈ F sj,−, resp. ` ∈ F sj,+, we denote byR(k)

j,−(`),

resp. R(k)
j,+(`), the rectangle delimited by the four lines {−1} × [0, 1], [−1, 1] × ∂I(k)

j and `,

(4) Actually, using that (xnj , ynj ) = Fnj (x0, y0)→ q0, it can be concluded that q0 is the periodic point.
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resp. {+1} × [0, 1], [−1, 1]× ∂I(k)
j and `. Given `, ˜̀∈ F sj,±, we say that ` ≺ ˜̀if and only if

R
(k)
j,±(`) ⊂ R(k)

j,±(˜̀). Observe that≺ is a total order(5) of F sj,±. Thus, for each j = 1, . . . , 2k, we

can define `j,± ∈ F sj,± the outermost stable leaf of Λ̂ε/2∩U3ε/4∩ [−1, 1]× I(k)
j as the unique

leaf of F sj,± such that ` ≺ `j,± for all ` ∈ F sj,±. Consider the family of rectanglesR(k)
j,±(ε) :=

R
(k)
j,±(`j,±). Finally, let Λ̃ε be the maximal invariant set associated to this family of rectangles.

It follows that Λ̃ε has local product structure (because W s
loc(p) ∩ Wu

loc(q) ∈ R
(k)
j,±(ε) when

p, q ∈ Λ̃ε ∩R(k)
j,±(ε)) and Λε ⊂ Λ̃ε ⊂ Uε/2 (because Λε ∩ [−1, 1]× I(k)

j ⊂ R(k)
j,± ⊂ Uε/2). This

proves our claim.

C 2. – The set Λ̃ε found in Claim 1 is the maximal invariant set of Uε ∪ R̃ε, where
R̃ε = {R(k)

j,±(`j,±)} is the family of rectangles introduced in the previous claim.

Proof. – Indeed, given z a point whose orbit O(z) stays in Uε∪ R̃ε, we note that z ∈ Λε/2

(since Uε ∪ R̃ε ⊂ Uε/2). On the other hand, we have two possibilities:

– O(z) ⊂ R̃ε: this means that z ∈ Λ̃ε;
– there exists y ∈ O(z)−R̃ε: this means that y ∈ (Uε∩Λε/2)−R̃ε, a contradiction (since,

by definition, Uε ∩ Λε/2 ⊂ U3ε/4 ∩ Λε/2 ⊂ R̃ε).

In particular, it follows that the positive orbit O+
(p) of every point p /∈W s(Λ̃ε) escapes any

sufficiently small neighborhood ofUε∪R̃ε. In fact, if the positive orbit of a given point p stays
forever inside a small neighborhoodW of Uε ∪ R̃ε, its accumulation points always belong to
the maximal invariant set Λ(W ) ofW . However, since the maximal invariant Λ̃ε of Uε∪R̃ε is
locally maximal (by Claim 1), Λ(W ) = Λ̃ε for any small neighborhoodW of Uε∪R̃ε. Hence,
p ∈W s(Λ̃ε), a contradiction.

Before proceeding further, we use a fundamental result of C. G. Moreira to improve the
geometry of the isolating neighborhood of Λ̃ε.

T 4.3 ([8]). – Let K be a C2-dynamically defined Cantor set and let ‹K be a
C1-dynamically defined Cantor set. Then, there are C1-dynamically defined Cantor sets “K
arbitrarily C1-close to ‹K such that K ∩ “K = ∅. In particular, generically in the C1-topology,
a pair of C1-dynamically defined Cantor sets are disjoint and the arithmetic difference of a C1

generic pair ofC1-dynamically defined Cantor sets has empty interior (so that it is also a Cantor
set).

More precisely, combining our Theorem 4.1 with this theorem, we have the following
consequence:

C 4.1. – Fix ε > 0. Then, for F in a C1-open and dense subset of D1, the
maximal invariant set Λε of Uε is a locally maximal hyperbolic set such that int(Uε) is an
isolating neighborhood of Λε.

(5) Because any two distinct stable leaves are disjoint and ∂` ⊂ [−1, 1]× ∂I(k)j for any ` ∈ F sj,±.
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Proof. – Let F ∈ V ε/2 ∩ Zε ∩ D2 where V ε/2 is the C1-open and dense subset of D1

verifying Theorem 4.1. We consider a finite Markov partition {Pi}Mi=1 of fiΛε/2 with small

diameter. We take pi ∈ Pi ∩ fiΛε/2 and we define Ei := Es(pi). Since the stable foliation
W s
i (x) = W s

loc(x) ∩ Pi of F restricted to x ∈ Pi is C1-close to the foliation of Pi by
straight lines with direction Ei when the diameter of the Markov partition is small, we
can assume, up to performing a C1-perturbation of the unimodal family f(x, y), that the
stable foliation of F restricted to Pi is the foliation by straight lines parallel to Ei. Indeed,
if we consider the horizontal segments γui forming the bottom unstable boundary of Pi
and we set {Πi(x, y)} = ((x, y) + REi) ∩ γui , we can define g(x, y) as the x-coordinate
of the point {(g(x, y),Ksgn(x)(y))} = (F (Πi(x, y)) + REj) ∩ (R × {Ksgn(x)(y)}) when
F (Πi(x, y)) ∈ Pj and a map G(x, y) = (g(x, y),Ksgn(x)(y)). Geometrically, G sends the
point {(x, y)} = (Πi(x, y) + REi)∩ (R×{y}) to (F (Πi(x, y)) + REj)∩ (R×{Ksgn(x)(y)})
and F sends {(x, y)} = W s

i (Πi(x, y))∩ (R×{y}) toW s
i (F (Πi(x, y)))∩ (R×{Ksgn(x)(y)}).

Since the stable foliation W s
i is C1 to the linear foliation ((x, y) + REi) ∩ Pi, the map G is

C1-close to F and thus G ∈ D1 (i.e., g(x, y) is unimodal in the x-variable) as F ∈ Zε. So,
from now on, let us suppose that the stable foliation of F restricted to Pi is the foliation by
straight lines parallel to Ei.

Recall that the angle between the stable directions Ei and the unstable (horizontal) direc-
tions is uniformly bounded away from zero. In particular, we also have a system of coordi-
nates on each Pi (given by the horizontal foliation and the foliation by lines parallel to Ei)
where we can writeF |Pi(x, y) = (fi(x),Ksgn(x)(y)) and fiΛε/2∩Pi is a product of two dynam-

ically defined Cantor sets, i.e., fiΛε/2 ∩Pi = K s
i · (1, 0) + Ku

i · (µi, 1) with K s
i , Ku

i dynamical
Cantor sets of the real line and (µi, 1) ∈ Ei.

In this context, the fact that the verticals {±ε} × [0, 1] do not intersect fiΛε/2 is equivalent
to ±ε /∈ K s

i + µi · Ku
i for every i = 1, . . . ,M . However, this property can be achieved by a

C1-typical perturbation “F of F ∈ D2: by Moreira’s Theorem 4.3, we can choose, for each i,
a ( K̂ s

i , f̂i)C
1-dynamically defined Cantor setC1-close to ( K s

i , fi) so that±ε /∈ K̂ s
i +µi · Ku

i ,
and, consequently, “F |Pi(x, y) := (f̂i(x),Ksgn(x)(y)) ∈ D2 has the desired property.

4.2. (Quasi) Critical points eventually return

D 9. – Given ε > 0, we call any point (±ε, y) with y ∈ K 0 an ε-quasi-critical
point (or simply quasi-critical point).

Now we use again C. G. Moreira’s fundamental result (Theorem 4.3) to show that, for a
C1 generic F ∈ D2, any quasi critical point returns to the “critical region”. In other words,
roughly speaking, the next result states that we can avoid in the C1 topology the thickness
obstruction (responsible for C2 Newhouse phenomena).

L 4.3. – Let ε > 0 be a positive constant. Then, for F in a C1-generic (Gδ-dense)
subset of D1, there exists m0 ∈ N such that any quasi-critical point (±ε, y) ∈ {±ε} × K 0

satisfies

Fmy (±ε, y) ∈ Rε := (−ε, ε)× [0, 1] and Fm(±ε, y) /∈ (−ε, ε)× [0, 1], ∀ 0 < m < my

for some positive integer my ≤ m0 or it is contained in the basin of attraction of some of the
(finitely many) attracting periodic points of Theorem 4.1.
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Proof. – Take F ∈ D1 with the properties described during the proof of Corollary 4.1.
Since the maximal invariant set Λε of Uε is the union of a finite number of periodic sinks and
a hyperbolic set Λ̂ε of saddle type, we see that our task is equivalent to show thatÑ⋃

k≥0

F k({±ε} × K 0)

é⋂
W s

loc(Λ̂ε) = ∅

for a C1-generic F ∈ D1. Keeping this goal in mind, given N ∈ N, we define

GN := {F ∈ D1 :

(
N⋃
k=0

F k({±ε} × K 0)

)⋂
W s

loc(Λ̂ε) = ∅}.

It follows that the proof of the lemma is complete once we show that GN isC1-dense (because
it is clearly C1-open). Observe that G0 is C1 dense because Λε is locally maximal with
isolating neighborhood Uε for a C1-typical F (in view of Corollary 4.1). Assuming that
GN−1 is C1-dense for some N ≥ 1, we claim that GN is also C1-dense. In fact, given F ∈
GN−1 ∩ D2 with the properties appearing in the proof of Corollary 4.1, we can refine the
Markov partition {Pi}Mi=1 so that F j({±ε} × K 0) ∩ Pi = ∅ for every 0 ≤ j ≤ N − 1.

Next, for every p ∈ {±ε} × [0, 1], we denote by E(p) the tangent line of the C2 curve
FN ({±ε} × [0, 1]) at the point FN (p). Note that E(p) is a C1 function of p ∈ {±ε} × [0, 1].
Therefore, since K 0 is a C2 dynamical Cantor set of Hausdorff dimension HD( K 0) < 1,
we see that, without loss of generality, one can assume that the directions Ei of the stable
foliations (by parallel straight lines) of Pi ∩W s

loc(Λ̂ε) do not belong to the set of directions
{E(p) : p ∈ {±ε}× K 0}. Furthermore, by compactness, we can also fix a Markov partition
I1, . . . , Ik of K 0 of sufficiently small diameter so that the directions Ei are still transversal
to the finite collection of C2 curves FN ({±ε} × Il) for every i = 1, . . . ,M and l = 1, . . . , k.
At this stage, we write

Pi ∩ FN ({±ε} × K 0) = Pi ∩
a(i)⋃
b=1

FN ({±ε} × ( K 0 ∩ Il(b,i)))

for an adequate choice of indices l(b, i) ∈ {1, . . . , k}, and we observe that, by transversality,
the projection of each FN ({±ε}×(Il(b,i)∩ K 0)) along the directionEi gives aC2 dynamical
Cantor set Lb,i. Moreover, we note that Pi ∩ FN ({±ε} × K 0) ∩W s

loc(Λ̂ε) 6= ∅ if and only
if K s

i ∩ (∪a(i)
b=1Lb,i) 6= ∅ (where K s

i is the stable Cantor set introduced during the proof

of Corollary 4.1). Using Moreira’s Theorem 4.3, we obtain (›K s
i ,
‹fi) dynamical Cantor sets

C1-close to ( K s
i , fi) such that ›K s

i ∩ (∪a(i)
b=1Lb,i) = ∅ for every i. It follows that ‹F |Pi(x, y) :=

(‹fi(x),Ksgn(x)y) (in the linearizing coordinates inside each Pi) isC1-close to F ∈ GN−1 and

Λ̃ε ∩Pi = ›K s
i × K 0 (in the same linearizing coordinates). In particular, by construction, we

have ‹F ∈ GN . This ends the argument.

R 4.1. – In the previous statement, we deal with the returns to the critical strip
of “quasi-critical” points (±ε, y), y ∈ K 0, instead of critical points c±y . The technical
reason behind this procedure will be clear in the next section (when we perform the “flatness”
perturbation to force critical points to fall into the basins of sinks).
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4.3. Creating sinks whose large basins contain all critical points

L 4.4. – For a C1-open and dense subset of F ∈ D1, the critical points c±y ∈
{0±} × K 0 belong to the union of the basins of a finite number of periodic sinks of F .

Proof. – Let F ∈ D1 be a C1-generic map satisfying the properties of Lemma 4.3.
Given δ > 0, we will find a C1-perturbation of F with size δ whose critical points belong
to the basins of finitely many periodic sinks. In this direction, we take ε > 0 sufficiently small
such that |∂xf(x, y)| < δ/2 for every |x| ≤ ε and y ∈ [0, 1]. Now, we perturb F to make it
“flat” in the critical strip Rε := [−ε, ε]× [0, 1], i.e., we define

g(x, y) =

{
f(x, y) if |x| ≥ ε
f(±ε, y) if |x| ≤ ε

and G(x, y) := (g(x, y),Ksgn(x)(y)). Observe that, although G /∈ D1 because g(x, y) is not
C1, G is δ/2-close to F in the Lipschitz norm and G = F outside the critical strip Rε. In
particular, the pieces of orbits of F and G are equal while they stay outside Rε. Hence, since
F satisfies Lemma 4.3, we have that G satisfies the same properties, namely, either its quasi-
critical points {±ε}× K 0 return to the critical regionRε (after a bounded number of iterates)
or they fall into the basins of finitely many periodic sinks (inside Λε). We claim that the
quasi-critical points returning toRε belong to the basins of finitely many periodic sinks ofG.
Indeed, by compactness and continuity, we can take a Markov partition I1, . . . , Ik of K0 of
small diameter and some integers r1, . . . , rk so that every quasi-critical point p ∈ {±ε} × Il
return to Rε or fall into the basin of a sink after exactly rl iterates. Since the pieces of orbits
of F and G outside Rε are the same, and the piece of the G-orbit outside Rε of a point
(x, y) ∈ Rε is equal to the piece of F -orbit outside Rε of the point (±ε, y), we obtain that
G sends the boxes [−ε, ε]×Il strictly inside another (a priori different box) [−ε, ε]×Ij or inside
the basin of a periodic sink after rl iterates (exactly), so that our claim follows. Finally, we
complete the proof by noticing that, although G /∈ D1, one can slightly “undo” the “flat”
perturbation in order to get a H ∈ D1 such that its critical points belong to the basin of
finitely many periodic sinks and H is δ/2-close to G in the Lipschitz norm (and, a fortiori,
H ∈ D1 is δ-close to F ∈ D1 in the C1-topology).

4.4. End of the proof of Theorem B

By combining Corollary 4.1 and Lemma 4.4, we get that the non-wandering set Ω(F ) of a
C1-typical F ∈ D2 can be written as Ω(F ) = Λε∪{p1, . . . , pk}where p1, . . . , pk are periodic
sinks of F whose (large) basins contain an ε-neighborhood of the critical set, i.e., Ω(F ) is a
hyperbolic set.
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Thus, the proof of Theorem B will be complete once we can show the following claim: a
Kupka-Smale(6) F ∈ D1 such that Ω(F ) is hyperbolic is Axiom A. However, this is a con-
sequence of the following argument of Pujals and Sambarino [16, p. 966]: Ω(F ) hyperbolic
implies L(F ) hyperbolic, so that the results of Newhouse [10] say that (1) periodic points are
dense in L(F ) and we can do the spectral decomposition of L(F ) into finitely many basic
sets L1, . . . , Lk, and (2) we have Ω(F ) = L(F ) whenever there is no cycle between the Li.
Hence, we can show that Ω(F ) = L(F ) whenever we can verify the no-cycles condition. Since
our phase space is two-dimensional, a cycle can only occur among basic sets of saddle-type.
However, since F is Kupka-Smale, the intersections of invariant manifolds involved in this
cycle are transversal, a contradiction.
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