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ON THE CONFORMAL GAUGE
OF A COMPACT METRIC SPACE

BY MaTtias CARRASCO PIAGGIO

ABSTRACT. — In this article we study the Ahlfors regular conformal gauge of a compact metric
space (X, d), and its conformal dimension dim 4 r (X, d). Using a sequence of finite coverings of (X, d),
we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We
obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics
in the gauge. We show how to compute dim 4 (X, d) using the critical exponent @~ associated to the
combinatorial modulus.

REsuME. — Dans cet article, on étudie la jauge conforme Ahlfors réguliére d’un espace métrique
compact et sa dimension conforme dim 4z (X, d). A I'aide d’une suite de recouvrements finis de (X, d),
on construit des distances dans sa jauge Ahlfors réguli¢re de dimension de Hausdorff contrélée. On ob-
tient ainsi une description combinatoire, a homéomorphismes bi-Lipschitz prés, de toutes les métriques
dans la jauge. On montre comment calculer dim 4z X a partir de modules combinatoires en considé-
rant un exposant critique Qn.

1. Introduction

The subject of this article is the study of quasisymmetric deformations of a compact metric
space. More precisely, let (X, d) be a compact metric space, we are interested in its conformal
gauge:

J(X,d) := {0 distance on X :  ~ys d},
where two distances in X, d and 6, are quasisymmetrically equivalent d ~gs; 6 if the
identity map id : (X,d) — (X,0) is a quasisymmetric homeomorphism. Recall that a
homeomorphism h : (X,d) — (Y, 6) between two metric spaces is quasisymmetric if there is
an increasing homeomorphism 7 : R, — R —called a distortion function—such that:

YOI (4062
0 (h(y),h(z)) ~ " \d(y,2)/’

for all z,y,z € X with y # z. In other words, a homeomorphism is quasisymmetric if

it distorts relative distances in a uniform and scale invariant fashion. This class of maps
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provides a natural substitute of quasiconformal homeomorphisms in the broader context of
metric spaces. Their precise definition was given by Tukia and Véiséli in [29]. See [21] for a
detailed exposition of these notions.

For example, if d is a distance in X, then d€ is also a distance for all ¢ € (0, 1], and the
identity map id : (X,d) — (X,d°) is n-quasisymmetric with n(¢t) = t¢. In particular,
dimpg (X, d€) = e ! dimgy (X, d). Therefore, quasisymmetric homeomorphisms can distort
the Hausdorff dimension of the space, and one can always find distances in the gauge of
arbitrarily large dimension.

The conformal gauge encodes the quasisymmetric invariant properties of the space. A
fundamental quasisymmetry numerical invariant is the conformal dimension introduced by
P. Pansu in [27]. There are different related versions of this invariant; in this article we are
concerned with the Ahlfors regular conformal dimension, which is a variant introduced by
M. Bourdon and H. Pajot in [&].

A distance 6 € J(X,d) is Ahlfors regular of dimension oo > 0—AR for short—if there
exist a Radon measure ;4 on X and a constant K > 1 such that:

K—l S 1% (BT‘) S K,
rrzOl
for any ball B, of radius 0 < r < diamyX. In that case, u is comparable to the a-dimen-
sional Hausdorff measure and o = dimg (X, 6) is the Hausdorff dimension of (X, #). The
collection of all AR distances in 4 (X, d) is the Ahlfors regular conformal gauge of (X, d), and

is denoted by ./ , » (X, d).

The AR conformal dimension measures the simplest representative of the gauge. It is
defined by

dim 4 (X, d) := inf {dimp (X,0): 6 € J ,p(X,d)} .

We write dim 4 X when there is no ambiguity on the metric d. Note that we always have
the estimate dim7 X < dimag X, where dimr X denotes the topological dimension of X.
Apart from this, the AR conformal dimension is generally difficult to estimate. However, it
was computed by P. Pansu for the boundaries of homogeneous spaces of negative curvature
[27]. An exposition of the theory of conformal dimension, its variants and its applications
can be found in [25], [2], [23], [18] and [26].

The interest in studying quasisymmetric invariants comes from the strong relationship
between the geometric properties of a Gromov-hyperbolic space and the analytical proper-
ties of its boundary at infinity. Quasi-isometries between hyperbolic spaces induce quasisym-
metric homeomorphisms between their boundaries, so any quasisymmetric invariant gives a
quasi-isometric one.

For hyperbolic groups, the understanding of the canonical conformal gauge of the
boundary at infinity—induced by the visual metrics—is an important step in the approach
by Bonk and Kleiner to the characterization problem of uniform lattices of PSLy(C), via
their boundaries—Cannon’s conjecture [5]. They showed that Cannon’s conjecture is equiv-
alent to the following: if G is a hyperbolic group, whose boundary is homeomorphic to the
topological two-sphere S2, then the Ahlfors regular conformal dimension of G is attained.
Motivated by Sullivan’s dictionary, Haissinsky and Pilgrim translated these notions to the
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context of branched coverings [20]. In particular, the AR conformal dimension characterizes
rational maps between CXC branched coverings (see [20]).

Discretization has proved to be a useful tool in the study of conformal analytical objects in
metric spaces. Different versions of combinatorial modulus have been considered by several
authors, in connection with Cannon’s conjecture (see [9, 4, 1 7]). The combinatorial modulus
is a discrete version of the analytical conformal modulus from complex analysis, but unlike
the latter, is independent of any analytical framework. It is defined using coverings of X;
therefore, it depends only on the combinatorics of such coverings. In [6], the authors proved
several important properties of combinatorial modulus for approximately self-similar sets.
By defining a combinatorial modulus of a metric space (X, d) that takes into account all the
“annuli” of the space, with some fixed radius ratio, we extend to a more general setting some
of these properties.

The two main results of the present paper are Theorem 1.1 and Theorem 1.3. The first
gives a combinatorial description of the AR conformal gauge from an appropriate sequence
of coverings of the space. The second shows how to compute the AR conformal dimension
using a critical exponent associated to the combinatorial modulus. The main technical result
of the paper is Theorem 1.2, which gives sufficient conditions to bound from above the AR
conformal dimension of X. To state the theorems we need to introduce some definitions.

Given an appropriate sequence of finite coverings {J,, },, of X, with
(L.1) [|4,|] := max {diamB : B € J,} — 0, asn — +oo,

we adapt a construction of Elek, Bourdon and Pajot [8, 15], and construct a geodesic hyper-
bolic metric graph Z; with boundary at infinity homeomorphic to X (see Section 2 for precise
definitions). With this identification the distance d becomes a visual metric on 0Z4. The ver-
tices of the graph Z,; are the elements of J := | J,, ,,, and the edges are of two types: vertical
or horizontal. The vertical edges form a connected rooted tree 7—which is a spanning tree
of Z;—and the horizontal ones describe the combinatorics of intersections of the elements
of J, i.e., two vertices B and B’ in the same J,, are connected by an edgeif \- BNA- B’ # @,
where ) is a large enough universal constant. We remark that one of the assumptions involv-
ing the elements of J is that they are “almost balls” (see (2.1),(2.2)). In particular, it makes
sense to write A - B, and to talk about the center of B, for an element B €  (see Section 2).

The vertical edges connect an element of J,, with an element of J,, for |n — m| = 1. All
the edges of Z,; are isometric to the unit interval [0, 1]. We denote by w the root of T', and
B ~ B’ means that B and B’ are connected by a horizontal edge. For each n > 0, we denote
by G, the subgraph of Z; consisting of all the vertices in ¢f,, with all the horizontal edges
of Z; connecting two of them.

Consider a function p : J — (0,1). This function can be interpreted as an assignment
of “new relative radius” of the elements of J, or as an assignment of “new lengths” for the
edges of Z,. For each element B € ¢, there exists a unique geodesic segment in Z; which
joins the base point w and Bj; it consists of vertical edges and we denote it by [w, B]. The
“new radius” of an element B € ( is expressed by the function 7 : J — (0, 1) given by

~(B) = [[ o(B"),

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



498 M. CARRASCO PIAGGIO

where the product is taken over all elements B’ € J N [w, B]. Theorem 1.1 says that from
an appropriate function p : J — (0,1) one can change the lengths of the edges of Zg,
and obtain a metric graph Z, quasi-isometric to Zg. This graph admits a visual metric §,,,
automatically in / , (X, d), of controlled Hausdorff dimension. When p goes through all
the possible choices we get all the gauge ./ , (X, d) up to bi-Lipschitz homeomorphisms.
To state the conditions on the function p we need the following notation (see Section 2).

For a path of edges in Zy, v = {(B;, Bi+1)}£\:11 with B; € J, we define the p-length by

i=1
Let @ > 1. For z,y € X, by the assumption (1.1), there exists a maximal level m € N with
the property that there exists an element B € f, withz,y € o - B. We let

ca(z,y) ={B €Sy 2,y €a- B},

and we call it the center of x and y. We define 7 (co(z,y)) as the maximum of 7 (B) for

B € cq(x,y). We also define I'y, (z,y) as the family of paths in Z; that join two elements

Band B’ of J,, withz € Band y € B’. We remark that the paths in I, (z,y) are not

constrained to be contained in G,,. Finally, for an element B € ,, and n > m, we denote

by D, (B) the set of elements B’ in J,, such that the geodesic segment [w, B'] contains B.
The conditions to be imposed to the wight function p are the following:

(H1) (Quasi-isometry) There exist 0 < n— < ny < lsothatn_ < p(B) < n, forall B € (.
(H2) (Gromov product) There exists a constant Ky > 1 such that for all B, B’ €  with
B ~ B’, we have
m(B)
(B’
(H3) (Visual parameter) There exist & € [2,\/4] and a constant K; > 1 such that for any
pair of points z,y € X, there exists ng > 1 such that if n > ng and + is a path
in,(z,y), then

< K.

~—

Lo (7) 2 Kyt m(ca(,y)
(H4) (Ahlfors regularity) There exist p > 0 and a constant Ky > 1 such that forall B €
and n > m, we have
K;y'-m(BP< Y a(B) <Ky n(B).
B’eD,(B)

We obtain the following results.

THEOREM 1.1 (Combinatorial description of the gauge). — Let (X,d) be a compact
metric space such that J , (X, d) # @. Suppose the function p : J — (0,1) verifies the condi-
tions (HI1), (H2), (H3) and (H4). Then there exists a distance 8, on X quasisymmetrically
equivalent to d and Ahlfors regular of dimension p. Furthermore, the distortion function
ofid : (X,d) — (X,0,) depends only on the constants n_,n4, Ko and K1, and

0(z,y) < 7 (calz,9)),

for all points z,y € X. Conversely, any distance in the AR conformal gauge of (X,d) is bi-
Lipschitz equivalent to a distance built in that way.
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The terminology used in naming the hypotheses of the theorem will be explained in
Section 2. For instance, the condition stated in the hypothesis (H1) serves to prove that
Z4, with the new distance induced by p, is quasi-isometric to G. The other hypotheses are
interpreted in the same way. A similar approach has been used by Cannon to construct an
Ahlfors 2-regular distance on a topological surface, see Thm. 4.2.1, Thm. 5.5 and Prop. 5.6
in [9].

Using this combinatorial description we can obtain the following control of the dimen-
sion. Let B be a ball in X, for n large enough we define I',, (B) to be the set of paths y of G,,,
with vertices {Bi}i]il, such that the center of By belongs to B and that of By belongs to
X \ 2- B (see Section 3 for a precise definition). In the following statement, £ denotes a con-
stant which bounds the roundness of the elements of .

THEOREM 1.2 (Dimension control). — Let p > 0. There exists ng € (0, 1), which depends
only onp, \, k and the doubling constant of X, such that if there exists a function o : J — R
which verifies:

(S1) forall B € J, andk > 0, if y = {Bi}ij\il is a path inTy11(B), then

o (BZ) >1,
i=1

(S2) and for all k > 0 and all B € ,,, we have
(1.2) > a(B) <,

B’€Dy11(B)
then there exists an Ahlfors regular distance 0 € J (X, d) of dimension p. Therefore, the Ahlfors
regular conformal dimension of X is smaller than or equal to p.

The important point of this theorem is that we can get rid of the condition (H2), as long
as the sum (1.2) is sufficiently small. We remark that even if 79 depends on p, we can take 7
to be uniform if p varies in a bounded interval of (0, 4+00).

These conditions are particularly adapted to work with the combinatorial modulus. Let B
be a ball in X, we consider the set R, (B) of all admissible weight functions p : J,, — Ry;

ie,V~y e, (B) wehave
N
(7)== p(Bi) > 1.
i=1

Let p > 0. We define the p-combinatorial modulus associated to the ball B C X at scale n as

Mod,(B,n) := inf Z p(B')?
pPERn(B)
B'ed,
That is, one minimizes the p-volume among all the admissible weight functions. From this
combinatorial modulus, defined for the annuli associated to the balls of X, we define in
Section 3 a combinatorial modulus M, ,, that takes into account all these annuli. We are
interested in the asymptotic behavior of M, , as n tends to infinity, and its dependence
on p. We set M, := liminf, M,,. For fixed p > 0, the sequence {M, ,}, verifies a
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sub-multiplicative inequality (see Lemma 3.7). This allows us to define the critical exponent
Qn =inf{p > 0: M, = 0}.

THEOREM 1.3. — Let (X,d) be a compact metric space such that J ,5(X,d) # &. Then
the AR conformal dimension of (X, d) is equal to the critical exponent Q.

Bruce Kleiner informed me in May 2009 that, inspired by the work of Keith and Laakso,
he and Stephen Keith proved a similar (unpublished) result. In [0] it is stated and used in
the self-similar case, see the Remark 2 after Corollary 3.7 therein. We obtain this result as
a corollary of Theorem 1.3. This was part of the motivation for working on these questions
and they led me to a proof of Theorem 1.3 in this general setting.

COROLLARY 1.4 (Keith-Kleiner). — Let X be a connected and locally connected approxi-
mately self-similar space. For § > 0, denote I's the family of curves of diameter bounded below
by 6, and let

Qp () := inf {Mod,, (T's, ;) — 0, when k — +o0}.
Then there exists &g > 0 such that dimar X = Qp (§) for all 0 < § < .

See Corollary 3.13 of this paper for a more general result.

We derive Theorem 1.3 from Theorem 1.2. The idea of the proof is the following: by
definition, the combinatorial moduli M, ,, tend to zero as n tends to infinity for p > Q.
Therefore, one can choose n large enough, depending on the difference p — @, so that
Mod,(B,n) is small for all the “balls” B € . This gives some flexibility to change the
optimal weight functions, so as to obtain a function p : J — (0,1) which satisfies
the conditions of the combinatorial description of the gauge given in Theorem 1.1; this is
essentially the content of the proof of Theorem 1.2. This gives an AR metric 6, in (X, d) of
dimension p. The distortion of id : (X, d) — (X, 6,) depends on n, and thus on the difference
p—QN.

This result confirms that the combinatorics of the graph Z; contains all the information
of the AR conformal gauge of X. It should be noted that it is true regardless of the topology
of X, it just requires jAR(X, d) to be non empty.

Let us discuss some important aspects of Theorem 1.3. First, it relates the two a priori
different definitions of conformal dimension. The definition given here is due to Bourdon
and Pajot [8], and is better suited for analytical issues. Nevertheless, the original definition
given in [27] is closer to that of the critical exponent . For example, if Z is a geodesic
proper hyperbolic space, then 3, := {U(z, R),z € Z \ B, }—where B, is the ball of radius
n centered at a base point w € Z, and U(z, R) is the shadow of the ball B(z, R) projected
from the point w—defines a quasiconformal structure, in the sense of Pansu, on dZ. Pansu
associates a p-module grossier to such a quasiconformal structure, and defines the conformal
dimension as the infimum of p > 1 such that the p-module grossier of all—non trivial—
connected subsets of 07 is zero. From the theoretical point of view, Theorem 1.3 shows that
these two approaches are actually equivalent. In relation to Pansu’s definition, one advantage
of the critical exponent @y is its discrete nature, and the fact that @)y is computed only from
the horizontal curves of Z;.

Second, Theorem 1.3 enables to compute the AR conformal dimension when the com-
binatorics of the coverings J is not too complicated. Hopefully, this is the case in general
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when the space X has good symmetry properties, such as the Sierpinski carpet. Also, for this
important fractal, the discrete nature of @ could provide a numerical estimate of the AR
conformal dimension.

Theorem 1.3 also relates the AR conformal dimension to other quasisymmetry invariants,
like the £,-equivalence classes defined using the ¢,-cohomology of the conformal gauge
J(X,d) (see [7]). In a forthcoming paper [11] we give some applications of Theorem 1.3 to
the boundary of hyperbolic groups, and to a certain class of dynamical systems, induced by
branched coverings, including hyperbolic rational maps on the Riemann sphere.

The existence of curve families of positive analytical modulus is strongly related to the AR
conformal dimension. This was already showed by J. Tyson [30] who proved that if (X, d) is
AR of dimension ¢ > 1 and admits a family of curves of positive (J-analytical modulus,
then (X, d) attains its AR conformal dimension. Certainly more surprising, S. Keith and
T. Laakso [22] showed that this condition is almost necessary. We obtain this result as
corollary of Theorem 1.3:

CoOROLLARY 1.5 (Keith-Laakso). — Let X be compact and Q-regular, Q > 1, such that
dimagr X = Q. Then there exists a weak tangent space X , of X, which admits a curve family
I' C X of definite diameter and of positive Q-analytical modulus.

We note the importance of this fact in the proof of the theorem of Bonk and Kleiner [5].
Therefore, Theorem 1.3 clarifies the reasons for the existence of curve families of positive
analytical modulus when the AR conformal dimension is attained: this is a consequence of
the sub-multiplicative inequality of the combinatorial modulus and the fact that the latter is
bounded from above by the analytical modulus on weak tangent spaces (see Section 3.3 for
a definition of tangent space of a metric space).

The proofs of Theorem 1.1 and Theorem 1.2 are rather technical and involve a careful
study of the dependence of some constants on the parameters used in the constructions. For
this reason, at risk of being repetitive, we include in the proofs detailed computations.
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1.1. Outline of the paper

The paper is mainly divided into two parts. In Section 2 we construct the graph Z; and
we prove Theorem 1.1. In Subsection 2.4 we give sufficient conditions that will allow us to
construct regular distances, of given dimension, in the conformal gauge (Proposition 2.9),
and we simplify the hypothesis of Theorem 1.1 to work with the combinatorial modulus
(Theorem 1.2).

The purpose of Section 3 is to show how to compute the AR conformal dimension of
a compact metric space using the combinatorial modulus. In Subsection 3.1 we define the
combinatorial modulus associated to a sequence of graphs, the nerves of a sequence of
coverings of X, and its critical exponent Q). In Subsection 3.2 we complete the proof that
Q@n 1s equal to the AR conformal dimension of X (Theorem 1.3).
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In Subsection 3.3, inspired by [6], we show that the combinatorial modulus satisfies some
kind of sub-multiplicative inequality giving the positiveness of the combinatorial modulus
at the critical exponent (Corollary 3.9). We adapt to our situation arguments from [22] and
[17] to bound from above the combinatorial modulus by the analytical moduli defined in
the tangent spaces. Finally, these two facts with the equality @Qn = dimagr X give a more
conceptual proof of Keith and Laakso’s theorem (Corollary 1.5).

In Subsection 3.5 we treat different definitions of combinatorial modulus. In Theo-
rem 3.11, we give metric conditions on X that allow us to compute its AR conformal
dimension using another critical exponent @ x, defined from “genuine” curves of X.
In Corollary 3.13, we give a proof of the result of Keith and Kleiner mentioned earlier
(Remark 1 after Corollary 3.13 in [6]), i.e., when X is approximately self-similar, it suf-
fices to work with the modulus of curves with definite diameter. This allows us to give, in
Corollary 3.14, conditions under which the AR conformal dimension of X is equal to the
supremum of the AR conformal dimensions of its connected components.

1.2. Notations and some useful properties

Two quantities f(r) and g(r) are said to be comparable, which will be denoted by
f(r)=<g(r), if there exists a constant K which does not depend on r, such that
K=1f(r) < g(r) < Kf(r). If only the second inequality holds, we write g(r) < f(r). Simi-
larly, we say that f(r) and g(r) differ by an additive constant, denoted by g(r) = f(r)+0O(1),
if there exists a constant K such that |g(r) — f(r)| < K. For a finite set A we denote by #A
its cardinal number.

A global distortion property of quasisymmetric homeomorphisms, which we will
use repeatedly throughout this article, is the following (see [21] Proposition 10.8): let
h: X1 — X3 be a n-quasisymmetric homeomorphism. If A € B C X; and diam; B < +o0,
then diamsh(B) < 400 and

(1.3) 17] (d%amlB>—1 g d.iamQh(A) < (Qd.iamlA) ‘
2 " \diam; A diamqh(B) diamq B

Let (X, d) be a compact metric space. We say that X is a doubling space if there exists a
constant Kp > 1 such that any ball of X can be covered by at most Kp balls of half the
radius. This is equivalent to the existence of a function Kp : (0,1/2) — R such that the
cardinal number of any er-separated subset contained in a ball of radius r > 0, is bounded
from above by K p(€). We recall that a subset S of X is called e-separated, where € > 0, if for
any two different points z and y of S we have d(z,y) > e.

We say that X is uniformly perfect if there exists a constant K p > 1 such that for any ball
B (z,r) of X, with 0 < r < diamX, we have B (z,7) \B (z, K5'r) # @. This is equivalent
to the fact that the diameter of any ball in X is comparable to the radius of the ball. These two
properties are quasisymmetric invariant and in fact we have: (X, d) is doubling and uniformly
perfect if and only if J , o (X, d) # @ (see [21] Corollary 14.15).

Throughout the text, unless explicitly mentioned, X denotes a compact, doubling and uni-
formly perfect metric space. We denote by dimy X its Hausdorff dimension and by dimp X
its topological dimension. We reserve the letter Z for a geodesic proper Gromov-hyperbolic
metric space.
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The distance between two subsets A and B of a metric space is denoted by
dist(A, B) :=inf{d(z,y) : z € A,y € B}.
We denote the ball centered at z € X and radius r > 0 by B(z,7) = {y € X : d(z,y) < r}.

The r-neighborhood V;.(A) of A is defined as the union of all balls centered at A of radius r.
The diameter of A is denoted by diam A. The Hausdorff distance between A and B is

distg (4, B) := min{d(A, B),0(B, A)},

where (A, B) = inf{r >0: A C V,.(B)}.

We use in general the letters A, B, C, ... to denote subsets of the space X and the letters
z,y,2,... to denote its points. The letters K, L and M, eventually with indices, denote
constants bigger than or equal to 1, and the letter ¢, eventually with an index, denotes a
positive constant.

2. Combinatorial description of the AR conformal gauge

2.1. Hyperbolic structure of the snapshots of a compact metric space

To construct distances in the gauge we use tools and techniques from hyperbolic geometry.
This approach is based on the hyperbolicity of the snapshots of a compact metric space. By
the snapshots we mean the balls of the space, in the sense that a ball is a snapshot of the space
at a certain point and at a certain scale. This terminology comes from S. Semmes [28].

We adapt a construction of Bourdon and Pajot, based on a nearby construction due to
G. Elek (see [8] Section 2.1 and [15]). This allows us to see the conformal gauge of a compact
metric space (X, d) as the canonical gauge of the boundary at infinity of a hyperbolic space
(Proposition 2.1). This hyperbolic space is a graph that reflects the combinatorics of the balls
of (X, d).

It is assumed in the following that X is doubling and uniformly perfect. Let x > 1,a > 1
and A > 3; the following constructions depend on these parameters. Forn > 1, let J,, be a
finite covering of X such that for all B € ¢, there exists zp € X with

2.1 B(xB,/-e_lrn) C B C B(xzp,kry),
where 7, := a~". We also suppose that for all B # B’ in J,,, we have
2.2) B (IB,Eil’I"n) NnB (xB/,rflrn) =d.

We define J,, to be a one point subset of X, which we denote by w := {z}, and represents
the covering consisting of X itself. We set J := |J,, J,,- Also denote by X,, the subset of X
consisting of the centers zp, with B € ¢, , defined in 2.1. We write |B| = nif B € .
For 4 € R4 and B € (J,, we denote by 1 - B the ball centered at x5 and of radius pxr,,.

We define a metric graph G4 as follows. Its vertices are the elements of J, and two distinct
vertices B and B’ are connected by an edge if

||[B| - |B'||<1and \-BN\-B+# @.

We say that B, B’ € {, are neighbors, and we write B ~ B’, if B = B’ or if they are
connected by an edge of G4. We equip G4 with the length metric obtained by identifying
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FIGURE 2.1. Let X be the interval [0,1] in R. We choose a = 2 and A = 3.
For each n > 0, let X, be the set of all mid points of the dyadic intervals

{ [2% 12%1] :j=0,..., 2”}. Then X, is a maximal 27 "-separated set. The figure

shows a sketch of the graph G4. The edge length is equal to 1 and the reader can see
the hyperbolic nature of Gg4.

each edge isometrically to the interval [0, 1]; we denote this distance by |B — B’|. So d/,, is
the sphere of G4 centered at w and of radius n. See Figure 2.1.

Before proceeding, we recall some notions from the theory of Gromov-hyperbolic spaces.
We refer to [13] and [16] for a detailed exposition. Let Z be a metric space, we say that Z is
proper if all closed balls are compact. A geodesic is an isometric embedding of an interval
of Rin Z. We say that Z is a geodesic space if for any pair of points there exists a geodesic
joining them. In general, we use the notation |x — y| for the distance between points, when
the space Z is geodesic, proper and unbounded. We fix w € Z a base point and we denote
|z| := |z — w]| for z € Z. The Gromov product of two points z,y € Z, seen from the base
point w, is defined by

1
(zly) := 5 (2] + |yl = |z = yl).
We say that Z is Gromov-hyperbolic (with hyperbolicity constant § > 0) if

(zly) = min {(z[2), (2|y)} — 6,
forall z,y,2 € Z. A ray from w is a geodesic v : R, — Z such that v(0) = w. Let Roo
be the set of rays from w. The Gromov-boundary of Z, denoted by 07, is defined as the
quotient of R, by the following equivalence relation: two rays ~; and v, are said to be
equivalent if distg (y1,v2) < +oo. The space Z U 8Z has a canonical topology so that it
is a compactification of Z. This topology is in fact metrizable.
Let € > 0, denote by ¢. : Z — (0, +00) the application ¢, (z) = exp(—¢|z|). We define a
new metric on Z by setting

0.3 dy) = mf (), where () = [ 6.,
v
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and where the infimum is taken over all rectifiable curves v of Z joining x and y. The
space (Z,d.) is bounded and not complete. Let Z. be the completion of (Z, d.) and denote
0.Z = Z_\Z. When Z is a Gromov-hyperbolic space, there exists £g = £¢(d) > 0 such that
forall 0 < e < g, the space 0. Z coincides with the Gromov-boundary of Z and d. is a visual
metric of parameter €. That is to say, we can extend the Gromov product to the boundary 87,
and for all x,y € 0Z we have

(2.4) de(z,y) < exp (—e(z(y)) .

We can interpret (2.4) as follows: if 71 and 7, are two geodesic rays which represent the
points z and y of 9Z respectively, then the Gromov product (z|y) measures the length over
which these two geodesics are at a distance comparable to §. So these two points of the
boundary are close for the visual metric if the two geodesic rays are at a distance comparable
to 4, for a long period of time. Since visual metrics are always quasisymmetrically equivalent,
they define a canonical conformal gauge on the boundary 0Z.

Since X is doubling, the graph G| is of finite valence and hence it is a proper space. It is
also geodesic, because it is a complete length space. The vertices of a ray «y from w determine
a sequence of elements B,, € J,, with A - B, N A - B,,+1 # &. Such a sequence has a unique
limit point in X denoted p(v). If 1 and 5 are two rays at finite Hausdorff distance, then
p(71) = p(72). Also themap p : Roo — X is surjective, because {(J,,} is a sequence of
coverings. The following proposition, due to Bourdon and Pajot, allows us to use the tools
of hyperbolic geometry to study the conformal gauge of X.

ProrosiTION 2.1 ([8] Proposition 2.1). — The metric graph Gg4 is a Gromov-hyperbolic
space. The map p induces a homeomorphism between 0G4 and X, and the metric d of X is
a visual metric of visual parameter log a. That is, for all £, € 0G4, we have

d(p(¢),p(n)) < a~ M.

In particular, with this identification, the conformal gauge of X coincides with the canonical
conformal gauge of 0G .

REMARK. From the proof of the proposition, we know that the comparison constants
depend on A\, Kp, x and a: indeed, for any pair of vertices B and B’ of G4, we have
1
a?Kpk
This shows that the distortion of p tends to infinity when @ — oo. Nevertheless, the
hyperbolicity constant of G is given by

.a~(BIB') < diam (BUB’) < dAra .~ (BIB'),

a—1

5—1o (8)\Kpl€2a3>
- ga a— 1 )
which remains bounded when a — oo.

We start by simplifying the space G4, by taking a subgraph with less vertical edges on
which it will be easier to control the length of vertical curves, while remaining within the same
quasi-isometry class. To do this, we need the notion of a genealogy on . Let V := { ¥V }n>0
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be a sequence of “almost partitions” of X, defined by V,, := {V,,(B) : B € ,, }, where for
eachn > 0and B € ,,, V,,(B) is the subset of X defined by

(2.5) Va(B) :=={y € X : d(y,zp) = dist(y, Xn)} .
The sets in 9/, satisfy the following properties:

1. X= |J Vo(B)foreachn >0,
Bed,
2. foreachn > 0and B € ¢, the set V,,(B) is compact and from (2.1) and (2.2), we have

(2.6) B (zp,k" ') C Vi(B) C B(zp, kry).

The second inclusion is a consequence of the fact that J,, is a covering of X. From 9/ we can
define for each n > 0, a partition {7, (B)}pey, of ,,, as follows: associate to B’ € ¢, ;
an element B € ,, which verifies 25 € V,,(B). Choose any one of them if there are several
such elements.

If B € J,andr > 0, we denote by N,(B) the set of B’ € |J;>,,1¢; such that
rp € B(xp,r). We also set A,(B) := N,(B) N, . With this notation, according to
(2.6) above, we have

2.7) A1, (B) C To(B) C Ay, (B).

We say that the elements of T,,(B) are descendants of B € ¢, , and that B is their common
parent. This is reminiscent of the construction of dyadic decompositions, see for example
[12].

Note that for alln > 0 and B € ,,, the cardinal number of T),(B) is less than or equal
to Kp (k,a) a constant which depends only on &, a and the doubling constant of X. Also
since X is uniformly perfect, for any constant N € N, we can choose a large enough which
depends only on the constants K p and , such that #A4,.-1,. (B) > N forallnand B € {,,.

We define the genealogy of an element B € S as

(@) B if B e d,
g = . )
(Bo,Bl,...,Bn+1) lfBE(Jn_,’_l,TLZO

where By, 11 = B and B; € ¢J, is the parent of Bj 11 € J;,, forj =0,...,n. Let B € ,,,

denote by D(B) the elements of J which are descendants of B. That is,
DB)={B' €d,:l>n+1,9(B), = B}.

We also set D;(B) := D(B) N ,, | > n, the descendants of B in the generation {. The
genealogy 9/ determines a spanning tree T of Gy, where e = (B, B') is an edge of T if and
only if B or B’ is the parent of the other.

Let Z; be the subgraph of G4 such that it has the same vertices that G4, and the edge
e = (B, B’) of G4 is also an edge of Z; if and only if either e is a horizontal edge (i.e., B and
B’ belong to the same (), or e belongs to the spanning tree T' given by the genealogy {V/,, }.
In this way, Z, is a connected graph, and we equip it with the length distance that makes
all edges isometric to the interval [0, 1]. Thus, we obtain a geodesic distance which we will
denote by | - |;. The inclusion Z; — G, is co-bounded, because all vertices belong to Z;,
and we have | - | < |- |1.
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Recall that a quasi-isometry between two metric spaces isa map f : (Z1,] 1) — (Za,| - |2)
which satisfies the following properties: there exist constants A > 1 and ¢ > 0 such that

(1) forall z,y € Z;, we have

1
ey —es|f(@) = fW)l2 < Az —yh +e,
(if) and for all z € Zy, dista (2, f(Z1)) < ¢, i.e., f has co-bounded image.

See for example [13] and [16]. More important for us, is the fact that a quasi-isometry
f:(Z1,] 1) = (Za,]|2) induces a quasisymmetric homeomorphism f : 8Z; — 8Z,
between the boundaries, when they are endowed with visual metrics. Therefore, it preserves
the canonical conformal gauge of the boundary. See Section 3 of [18] for a more precise
statement of this property.

Now let e = (B, B’) be an edge of G4 which does not belong to Z;. We can assume,
without loss of generality, that B € ,,,, and B’ € ,,. According to item (v) of Lemma 2.2
below, if B” € ¢, is the parent of B, then ¢/ = (B”, B’) is a horizontal edge of G4, and
hence of Z;. This implies that for any edge-path v in G4, there exists an edge-path v; € Zy4
with £1 (1) < 2€ (). This implies that | - |; < 2| - | + 2, so Z; is quasi-isometric to Gg.

This completes the construction of the geodesic hyperbolic metric graph Z; with bound-
ary at infinity homeomorphic to X. With this identification, the distance d is quasisymmet-
rically equivalent to any visual metric on 7. The vertices of the graph Z; are the elements
of J = U, d,. and the edges are of two types: vertical or horizontal. The vertical edges form
a connected rooted tree 7" and the horizontal ones describe the combinatorics of intersections
of the elements in J.

2.2. Some properties of the graph Z,

For some technical reasons, the parameters a and A must be large enough. We fix A > 32,
and it is thought to be an additional constant. Once A is fixed, we can choose the parameter
a freely, with the sole condition that

(2.8) a > K := 6k?max{\, Kp}.

This inequality ensures that certain conditions, which occur naturally in subsequent compu-
tations, are verified, and guarantees some geometric properties of the graph Z;. In the fol-
lowing lemma we list some of these properties which will be useful in the sequel, and which
show how the relation (2.8) is involved in the geometry of the graph. The reader may skip
this lemma and consult the required points at the time these properties are quoted.

a7n+1

LeEmmMmA 2.2 (Properties of the graph). — Write T = %5 and €, = *-—~

(i) Letn > 0and B € ,,. Then
(2.9) Ny-1,, (B) C D(B) C N,.,(B).

Recall the notation adopted in (2.7).
(ii) Let z be a point of X, v > 0 andn > 1 such that r,, < r. If B is an element of J
which verifies d(z,xg) < Tny1, then

(2.10) X(B) :={zp : B € D(B)} C B <z g) .

=TT,.

n+1
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(iii) If B is an element of J,, and z is a point of X such that d(z,x) > r + 2kry, then
(2.11) X(B)N B(z,r)=@.

(iv) Let B and B’ be two elements of J,, | such that d(xp,xp') < 4ry. If C and C' are
elements of J,, such that d (zc,xp) < 2r, and d(xcr,xp') < 21y, then C and C' are
neighbors.

(v) Let B be an element of 4, ., and C, B’ € {J,, be such that there exists an edge in G4
Jjoining B and C, and B’ is the parent of B. Then B’ and C are neighbors.

(vi) Foralln > 0 and B € {,, the cardinal number of the set A,-1,. (B), defined in (2.7)
above, is at least two.

(vii) Let B be an element of ,, and B’ an element of §,, , , such that x belongs to the ball
B (zp/, krny1). Then, all the neighbors of B' in f,, | are descendants of B, i.e., they
belong to T,,(B).

Proof. —
(i) If Be (J,, and B’ € D(B) NJ, withl > n + 1, then

a—n—i—l

= ke,
a—1 ’

-1 -1
d(zp,zp) < Zd(fb’i,xiﬂ) < Z/ﬁa_i <
i=n i=n

where z; is the center of g(B);. Thus D(B) C N, (B). Analogously, if
d(zp,rp) < 3=, with B" € S, B € S, andl > n, then B’ € D(B). In fact,
let B” = g(B’)n+1, then

a” " KT 1 a” "
d(zpr,zp) < d(xp:,zp)+d(xzp,xB) < Kent1 + - = a " (— + 7) < —,

according to (2.8). Thus B” € D(B) N Sy,+1, which implies B’ € D(B).
(ii) We see that if B’ € D(B), then

d(z,zp) < d(z,zp) + d(zp,zp") < a~ (D) 4 K€n41
n (1 /W) (1—1—&7’) r
=a -+ — ) <r <z,
a a a 2
according to (2.8).

(iii) Since D(B) C Ny, (B), for all B’ € D(B), we have

d(z,xp) > 1+ 2ka™" — Kep, > 1,

because after the choice of a, we have 7 < 2 (see (2.8)).
(iv) Since d (zp,xp/) < 4a~™ we have

d(xC7mC') < ain(4 + 25) < )"iaina

where the last inequality is true because A > 6. Therefore C ~ C'.
(v) Letw € X - B. Then

d(w,zp) <d(w,zp) +d(zp,2) < kAa” "D 4+ ka™" = (2 + 1) ka™" < Aka"",

according to (2.8). Thus A - B C X - B’, which implies A - C N A\ - B’ # & and that
B' ~C.
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(vi) Let B be an element of f,, with n > 0. Since X is uniformly perfect, there exists a
point y in the ball B (z, (2x)~'ry) such that d(y,zp) > (26Kp)~'r,. So if B is an
element of J,, , such thaty € B (zp/, k7,41), We have

Tn

26Kp
The first and the last inequalities are consequence of (2.8). Let B” be an element
of ., such that 2 belongs to the ball B (zp,krn11). Then B’ and B” are two
different elements of A,.-1,. (B).

(vii) Indeed, if B” ~ B'ind,,_,, then d(zp/,zp) < 2Akr,41 < k~1r,, so all neighbors
of B in ,  , belong to the set A,-1,. (B). O

k 1 a1
Kyl < —Krpp1 <d(zph,zp) < |-+ —)a " < —rp.

a 2k K

n+1

2.3. Proof of Theorem 1.1

We start by recalling the notation, given in the introduction, involved in the statement of
the theorem. For each element B € ¢, there exists a unique geodesic segment in Z; which
joins the base point w and B; it consists of vertical edges that join the parents of B. Denote
it by [w, B]. Given a function p : J — (0, 1), which can be interpreted as an assignment of
“new relative radius” of the elements of J—or, as we will see later, an assignment of “new
lengths” for the edges of Z;—the “new radius” of an element B € J, is expressed by the
function  : J — (0,1) given by

n(B) =[] (B,
where the product is taken over all the balls B’ € J N [w, B].
If v = {(Bs, Bi+1)}ili_11 is a path of edges in Z; with B; € (J, we define the p-length of
by

L,(y) =) (By).
i=1
Leta > 1. Forz,y € X, let m € N be maximal such that there exists B € S, with
z,y € a- B. We let
co(z,y) ={B €Sy 2,y €a- B},
and call it the center of x and y. Note that if m = |c, (2, y)|—distance to the base point
w—then by maximality of m, and the fact that f, ., is a covering of X, we have

(@ —1) krme1 < d(z,y) < 2kar,.

Define 7 (cq (z,y)) as the maximum of 7 (B) for B € cy(z,y). We also let ', (z, y) be the
family of paths in Z; that join two elements B and B’ of J,,, withz € Bandy € B’. Finally,
for an element B € ,, and n > m, we denote by D,,(B) the set of its descendants B in J,,.

Suppose the parameters a and X verify (2.8), and the function p satisfies the following
conditions.

(H1) (Quasi-isometry) There exist 0 < — < ny < 1sothatn_ < p(B) < n, forall B € (.
(H2) (Gromov product) There exists a constant Ky > 1 such that for all B, B’ €  with
B ~ B’, we have
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(H3) (Visual parameter) There exist & € [2,\/4] and a constant K; > 1 such that for any
pair of points z,y € X, there exists ny > 1 such that if n > ng and + is a path
inT,(z,y), then

L, (v) > Kl_l -7 (cal®,y)) -

(H4) (Ahlfors regularity) There exist p > 0 and a constant K > 1 such that forall B € ,,

and n > m, we have
K;y'-m(BP< > a(B) <K n(B)P.
B’'eD,(B)

We must show that there exists a distance 6, on X, quasisymmetrically equivalent to d
and Ahlfors regular of dimension p. Moreover, from the proof we will obtain 6,(x,y) =<
7 (co(z,y)) forall z,y € X. Conversely, any distance in the gauge is bi-Lipschitz equivalent
to a distance built in that way.

The proof of the direct implication is made in several steps. The first one (Lemma 2.3), is
to find a distance ||, in Zg, so that (Zy, |- |,) is quasi-isometric to Z, and |B|, = log n(B) ™!
for all B € . This is where the hypotheses (H1) and (H2) are used, they give us a control of
the length of vertical curves in Z and of the Gromov product in this new metric.

The second step is to show the existence of a visual metric 6, in the boundary of (Zg4, | - |,),
of large enough visual parameter (Proposition 2.4). It is mainly here where we use the
assumption (H3). We automatically have 6, € /(X d), because it is a visual metric. Finally,
the control of the visual parameter and hypothesis (H4), will enable us to show that the
p-dimensional Hausdorff measure is Ahlfors regular (Proposition 2.8).

2.3.1. Proof of the converse. — We start by proving the converse of the theorem, because it
helps understanding the significance of the hypotheses.

Let € 4 (X,d) be Ahlfors regular of dimension p > 0, and let  : [0,00) — [0, 00)
be the distortion function of id : (X,d) — (X, 6). We write diamy for the diameter in the
distance 6, and p its p-dimensional Hausdorff measure. For n > 1 and B € ¢, if we denote
the parent of B by B’ = g,,_1(B), we define

p(B) := <5(())\\_.BB/))>1/IJ'

With this definition, 7(B) = p (A - B)l/ P We begin with some general remarks. Let 3 > 1,
r > 0and z € X, then there exists s > 0 such that if we denote by By(s) the ball in the
distance 6 centered at = and of radius s, then By(s) C B(z,r) C B(z,fr) C By(Hgs),
where Hz = n(3). Therefore, there exists a constant K, which depends only on Hz and the
constant K p, such that
diémgB(ac, Br) < K.
~ diamgB(z,r) —
In particular, this implies—by taking 5 = 1—that there exists a constant K, depending only
on p, H; and the regularity constant of y, such that

K~ . diamgB(z,r)? < pu(B(z,r)) < K - diamgB(z,r)?.

First we check (H1): let n > 1and B € ¢, denote B’ the parent of B in ,_;.
We have A - B C 2 - B’. Since X is uniformly perfect of constant Kp, we know that
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A,_1:=(2Kp-B’)\2- B’ # @. Hence, there exists C € J,, such that C N A,,_1 # &. We
have \- BNC = @&, because by the triangle inequality d(C, A- B) > &(2r,—1— (A+3)r,) > 0,
and by the choice of a and A\, we have C' C - B’ (see (2.8)). Since p1 (A - B)+u (C) < p (AB’),

we obtain
pA-B) . p(C)
p(A-B) = p(AB)
On the other hand,
w(C) S 1 (diamyC)? S 1 _

p(N-B') = K2 (diamgA - B')’ = 2K2 .5 (2AKpa)?
So it suffices to take . = 1 — 6*/7. Similarly, we have
(B2 Lo (B BT L (20)
PR =k "\ diamx- B/ = 2k2p "\&p) ~
For (H2), we see that if B, B’ € (J,, are neighbors, then A - B’ C 3\ - B. Thus, there exists
a constant K that depends only on 7, K and p, such that

: 1/p i :
m(B) _ (u()\ B)) < K2/ d.1am9)\ B < K.
m(B’) w(A-B) diamp\ - B’
We take o = 2 and we now look at (H3). Let z,y € X, m = |c2(x, y)| and C € ca(z, y).
We have

0(z,y) 1 <dia,m)\~C)71 1 1
I s g (2T > 2 (22 .
diamgr-C = 2 "\ d(z, y) =5 n(2Aa)
Therefore, there exists a constant K’ which depends only on K and a, such that
1
On the other hand, if B, B’ € (J, are such that z € Bandy € B’, withn > m, and if
~v={(B;, Bi+1)}i]\i1 is a path of the graph Zy with B; = B and By = B’, we have
N N
O(z,y) < Zdiamg)\ .B; < K/ ZT( (B;) -
=1 =1
Thus, we obtain (H3) with K; = (K’Kl/”)_l.
Finally, we look at (H4). Let m > 0,n > m+1 and B € . Since the union of the balls
A - B’, with B’ € D,,(B), contains the ball centered at x5 and of radius (2x)~!r,,, we have

1 (B(zs, (26) 'ry)) < Z w(B)P.
B’€D,(B)

Remember that the balls {B (zp/, k7 'r,) : B’ € D,(B)} are pairwise disjoint. Therefore,
there exists a constant K"/ which depends only on the function H and the constants A, x and
K, such that

Z 7(B')? < K" Z p(B(zp,c ') < (X B).
B’eD, (B) B’eD.,(B)
This proves (H4) with a constant K which depends on A\. Moreover, the proof of (H3) shows
that for all z,y € X, we have
™ (02(‘7}7 y)) = 9(58, y)a
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F1GURE 2.2. Proof of the Lemma 2.3.

where the constants of comparison depend on a and A. The distance ¢, constructed using
the function p is also bi-Lipschitz to 7 (cz(z, y)), so 6 is bi-Lipschitz equivalent to 6,. This
ends the proof of the converse.

2.3.2. Proof of the direct implication. — We start with the following lemma.

LEMMA 2.3. — There exists a distance | - |, on the graph Zg bi-Lipschitz equivalent to | - |,
with the property that any vertical path of edges v in Zg, joining B € J, and B' € {J,,, is a
geodesic segment for the distance | - |, and its length is

1 1
£ =l —1 .
P(’Y) Og 7T(B) Og 7T(B/)
In particular, for all B € J, we have |x — w|, = log ﬁ. We denote by Z, the graph Zq with

the distance

o

Proof. — By (H2), there exists a constant Ky > 1 such that if B and B’ belong to J,, and
B ~ B’, then
1 m(B)

2.12 <
2.12) Ko ~ n(B

< K,.

~

Set K3 := 2max {— logn_,— (logny )", log Kg} > 0. Let | - |, be the length distance in Z4
such that the length of an edge e = (B, B’) is given by

p K3 if e 1s horizontal
e) =
g log 5057 if B €, and B' = g(B)n.

Since %3 < {,(e) < K3 for any edge e of Z; (by (H1)), the distance | - |, is bi-Lipschitz
equivalent to | - |. Finally, it suffices to show that if y is a geodesic for | - |, which joins w and
B € ,,, then v is a path of vertical edges.

Suppose v = {e;}Y,, and that there is a first & > 1 such that exy; = (B/,B)isa
horizontal edge. Set v/ = {e;}**! and remark that B, B € J,. Let g = {g;}*_, be the
path of vertical edges joining w and B, where g; = (g(B);-1,9(B);) foralli = 1,... k.

Then £,(g) = log 555 and £,(y') = log 7y + K3. Since B’ ~ B, we have by (2.12)
1 1 Ks
1/ =log —— <log——~ + — < £,(v/
P(g) Og 7T(B) — Og ﬂ'(Bl) + 2 < P(Py )7
which is a contradiction, since +’ is also a geodesic for | - |,. O
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Since Z, is a geodesic space quasi-isometric to Zg4, Z, is Gromov hyperbolic, its boundary
at infinity 0Z, is homeomorphic to X and any visual metric on 07, is quasisymmetrically
equivalent to the original distance d of X. We identify 07, with X.

The following proposition allows us to control the visual parameter that guarantees the
existence of visual metrics on 8Z,. For B, B’ € Z,, we denote the Gromov product of B
and B’ in the distance | - |, by (B|B’),. To simplify the notation, we write ¢(z,y) instead
of co(z,y) forz,y € X.

PROPOSITION 2.4 (Visual parameter control). — There exists a visual metric 0, on 0Z, of
visual parameter equal to 1. Moreover, for all x,y € X, we have

(2.13) e~ @ < n(e(x, y)).

The proof of Proposition 2.4 is divided into several lemmas. Recall that for e > 0, we
denote by ¢, : Z; — (0, +00) the function given by ¢, (z) = exp (—¢|z — w/,) (see (2.4)). We
have the metric d. on Z, defined in (2.3). Also recall that (Z,, d.) is a non complete bounded
metric space. Set p.(B) := p(B)¢ and 7.(B) := w(B)°®.

Note that for all e € (0, 1], the function p. satisfies the hypotheses (H1), (H2) and (H3)
of Theorem 1.1, with the constants to the power ¢, and the hypothesis (H4) holds with
pe = p/e. In the sequel we will always assume ¢ € (0, 1]. We first need to estimate the
pe-length of an edge e of the graph Z,.

LEMMA 2.5. — There exists a constant K4 such that for any edge e = (B, B') of the graph
Zg, we have

1 7e(B) + m(B’) me(B) + m.(B’)
e R <Kl T
K 2 < bele) = Ko 2

Proof. — Lete = (B, B') be an edge of Zg. Since 1/K3 < £,(e) < K3 and ||z|, — | B|,| < K3
for all z € e, we have

(2.14)

1
71'€(B)F3 exp(—eK3) < /exp (—elz|,) ds < m.(B)K3exp(eK3).
e

Thus K4_17r5(B) < l.(e) < Kym.(B), where K, is a constant which depends only on K3
and €. In the same way we obtain £, (e) < m-(B’). This show (2.14). O
LEMMA 2.6. — Let x and y be two points in X and let m = |c(x,y)|. Then for alln > m,
we have
(2.15) ds(B7BI) S e (e(,y))
where B and B’ are elements in J,, that contain x and y respectively.
Proof. — Let B and B’ be as in the statement of the lemma and let C € ¢(z, y). Consider
the geodesic segments g1 = [B,,, B] and g2 = [B,,, B'], where we write B,,, = g(B)m € d,,

and B],, = g(B')m, € {,,,. To simplify the notation, we write z,,, and y,, for the centers of B,,
and B/, respectively. Then

d(@m,zc) < d(Tm,zB) +d(zp,z) + d(z,zc)
<k(T+14+a)a ™ <k@B+A/4)a™™ < Aka™™,
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FIGURE 2.3. The curve 7 of Z, is minimizing, up to a multiplicative constant, for
the length /.

where the last inequality follows from the fact that A > 4. So e = (B,,, C) is a horizontal
edge of Z,. Similarly (B}, C) is an edge of Z,.

Set « to be the curve of Z4, which joins B and B’, given by
(2.16) v := [B, By] * (Bm, C) * (C, By,) x [B.,,, B'].

We also write B; = g(B); and B, = g(B’); fori =m+1,...,n — 1. Then, by Lemma 2.5,
we can bound from above the p.-length of v by

£ (7) < Le (g1) + £ ((Bm, €)) + £e ((C, B;n)) + £e (92)
<Ky- (i 7(B;)® +2m(C)° + nz_: w(B;)€>

<K, (ﬂBm)f ST ) + 20(CY + 7(BL)* i(niw‘) < (O,

i
3

i=m i=m

where the last inequality follows from (2.12). This implies (2.15). O

Proof of Proposition 2.4. — Let x and y be two points in X, from (H3) and Lemma 2.5,
there exists ng such that if n > ng and if v = {(B;, Bi+1)}f\;1 is a curve with B; = B and
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By = B’, where B and B’ are elements in J,, such that z € B and y € B’, then

N-1
™ Bi + Bi 1 1 1
Lz Yy BB S ) (et )).
i=1 1
This and Lemma 2.6 imply that for any € € (0, 1], the boundary at infinity 9. Z4 is homeo-
morphic to X. Moreover, for all z,y € X, we have

dE(xa y) = 7T(C(:L‘, y))s’
where ¢(z,y) is the center of z and y in Z. On the other hand, we know that there exists
€0 > 0 small enough, depending only on the hyperbolicity constant of Z,, such that for all
z,y € X, we have

ey (2,y) = =),
But then, for ¢ = 1, we obtain

dy(z,9)%° < m(e(z,y))™ < dey(z,y) < e~ c0@lv),

That is, §, = d; is a visual metric and in addition 7(c(z,y)) =< e~(*I¥)s. This finishes the
proof of the proposition. O

REMARK. This proposition can be interpreted as an analogue of the Gehring-Hayman
theorem for Gromov-hyperbolic spaces (see Theorem 5.1 of [3]). The assumption (H2) is
equivalent to a Harnack type inequality. The proposition says that geodesics of Z, are
minimizers, up to a multiplicative constant, for the length ¢.. Indeed, given two points
z,y € X,ifn > m = |c(z,y)| and B, B’ € J, are such that z € B and y € B’, then the
curvey = [B, By, ] % (B, C) x(C, B,) *B.,, B'], where C € c¢(z,y) and B,,, B,, € {,, are
the parents of B and B’ respectively, has an e-length comparable to 7. (¢(z,y)). Therefore,
this curve is minimizing up to a multiplicative constant—for n > ng. The important point
here is the fact that one can control the visual parameter ¢ using the hypothesis (H3). See
Figure 2.3.

The third step is to show that for the distance 6, the p-dimensional Hausdorff measure
is Ahlfors regular. We will use the assumption (H4) to construct a measure g on X which is
comparable to the p-dimensional Hausdorff measure.

Letw : J — (0,400) be given by w(B) = p(B)P. We can define by induction a sequence
of purely atomic measures x,,, with atoms on X, the centers of the elements in ¢, , by setting
po(zy) = 1 for the sole point w € ¢J,, and

Nn+1($B) = w(B)Mn(xB’)ﬂ
for B € T,,(B’) and B’ € . Thatis, u,(zg) = n(B)? if B € ¢, and if we denote d, the
Dirac measure at x, we can write
pin =Y 7(B)Pby,.
Bed,

Recall that we write X (B) for the set of centers of the elements B’ € D(B). Note that
according to (H4), foralln > 0, B € J,, and | > n, we have

E,Ufn(IB) < i (X(B)) < Kapn(w ).
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In particular, we have K5 < un(X) < K for all n > 0. Moreover, according to (H1) and
(H2):

(i) There exists a constant ¢ € (0,1) such that ¢ < w(B) < 1forall B € (.

(ii) There exists a constant K, = K} > 1 such that if B, B’ € (J,, satisfy B ~ B’, then

pn(zB) < K(/] .
pn(TB7)

Let p be any weak limit of the sequence u.,,. More precisely, there exists a subsequence i,
which weakly converges to the measure p on X. To simplify notation, we remove the sub-
index i.

2.17)

LEMMA 2.7. — Let x and y be two points in X and let r = d(z,y). Then
(2.18) pu(B(z,r)) < m(c(z,y))" -

Proof. — Let m = |c(zx,y)| so that (a« — 1)krp41 < 7 < 2akr, holds. Let us start with
the lower bound. There exists By € ,,,, such that d(z,zp,) < k7Tm2. Indeed, the balls
B (2B, kTm42), With B € 5, form a covering of X. For simplicity, write 1 := zp,.
According to the inclusion (2.10), we have X (B;) C B (z, %), because rp, 10 = a=(m+2) < 7.
Therefore, for all n > m + 2, we obtain

(2.19) i (B (2,5)) = #a(X(B1) 2 K5 pmsa(21).

Take B € {,, such that d(z,zp) > r + 2kr,. By property (2.11), we know that
X(B) N B(z,r) = @. This implies that for all n > m, if an element B of ¢, is such
that x5 € B(x,r), then its m-generation parent g(B),, belongs to B(z,r + 2kr,,). Thus,

(2.20) b (B(z, 7)) < Kopiy (B(z,7 4+ 2671,)) -
Making n — oo (in the subsequence n;), from (2.19) and (2.20), one concludes that

(2.21) w(B(z,r)) < liminf p, (B(z,r)) < Kopim, (B(z, 7 + 2k7,,)) and
(s ")) > 1 Z(n " =

(2.22) w(B(z,7)) > (B (:L‘, 2)) > lim sup py, (B (at, 2)) > Ky pmaa(z1)-
LetY = X,, N B(z,r + 2kry,) and let Bs = g(B;).,; we denote by x5 the center of Bs.
On the one hand, recall that from (i) w > ¢, so we have pi,12(21) > cum(22). Moreover,
the cardinal number of Y is uniformly bounded by a constant M, which depends only on the
doubling constant of X, so

tm (B(x,r + 261),)) = Z m(2) < M max{um(z):2€Y}.

z€Y

It remains to compare p,, (z) with p,(z2) forall z € Y. If z € Y, then

d(z, 1) < d(z,z) + d(z, z1) + d(x1, 22) <7+ 26a™™ + ka~ " 4 ke,
<KkRa+3+71)a™ < Aka™™,

where the last two inequalities are true by (2.8) and the choice of A. Thus, according to item
(ii), there exists a constant K, > 1 such that p,,(2) < Kjum(z2) for all z € Y. Therefore,
we obtain

(2.23) Ky m (12) < K5 g2 (1) < p(B(a, 7)) < M - Kj - Ko - i (z2).
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Let zo be the center of an element C' € ¢(z, y), then
d(za,20) < d(z2,z1) + d(z1,2) + d(z, 20) < €1y + a2 4 aa™™ < Aa”™,
so By ~ C; recall that B, ~ C means that By and C are the ends of a horizontal edge.
According to (H2), we have
(2.24) 7(B2)? < n(C)? =< 7 (c(z,y))? .
Finally, (2.23) and (2.24) imply (2.18). O

ProrosiTION 2.8 (Ahlfors regularity). — The p-dimensional Hausdor[f measure of the dis-
tance 0, of Proposition 2.4 is regular.

Proof. — We show that (X, 6, ) is p-regular. Write By and By for the balls in the metric
d and 6, respectively. Let € X and 0 < r < 1, we take yo and y; in X such that

ro = d(yo,z) = min {d(w, z) : 6,(w,z) >},
r1 = d(y1,z) = max{d(w,z) : 0,(w,z) < r}.
So we have
By(z,70) C Bg(z,7) C By(z,71).

Since 0,(y;, )P < 7 (c(z,y:))’ < p(Ba(z,m;)) by (2.18) and 0,(y1,2) <7 < 0,(yo, ), we
obtain

r? S (e(@,90))” < p(Ba(x,m0)) < p(Bo(x,7)) < p(Ba(z,m1)) < 7 (c(z,91))" S 7.

Then p (Bg(z,r)) =< rP. This proves the proposition. O

2.4. Dimension control: proof of Theorem 1.2

We now simplify the hypothesis of Theorem 1.1 to facilitate its application in concrete
situations, like in the following sections. We always assume that X is a compact, doubling
and uniformly perfect metric space. We continue to assume that a and A verify (2.8).

We recall some of the notation used in the introduction. Let v = {(B;, Bi11)}Y " be
a path of edges in Z,, we say that + is a horizontal path of level k > 1if B; € , for all
i = 1,...,N. We adopt the convention that for such a path ~ the point z; € X denotes
the center of B; for i = 1,..., N. Denote by I'y1; (B), where B € J, and k > 0, the
family of horizontal paths v = {(B;, Bi+1)}f\;1 oflevel kK + 1suchthatz; € B,z; € 2- B
fori=2,...,N—1landzy € X\2-B.

Let p > 0. We must show that there exists a constant 79 € (0, 1), which depends only on p,
A, x and the doubling constant of X, such that if there exists a function o : J — R which
verifies:

(S1) forall B € and k > 0,if v = {B; ]\L is a path in 'y 1 (B), then
k =1

(2.25) o(B;) >1,
=1
(S2) and for all k > 0 and all B € (J,,, we have
(2.26) > a(B) <,
B’'eTy(B)
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then there exists an Ahlfors regular distance § € 4 (X, d) of dimension p.

The proof is based on Proposition 2.9 below. We start by modifying the hypothesis (H3)
of Theorem 1.1. The purpose is to state a condition on the lengths of horizontal curves which
implies (H3).

Let p: J — R, be a function, we define p* : J — R by

p*(B) = B,rrrvljlgnedp(B), for B € .

If =y is a horizontal path of level k, we define
N-1
Lu(v,p) =Y p*(B;j) A p*(Bjs1).
j=1

The h stands for horizontal. We have the following result.

PROPOSITION 2.9. — Let (X, d) be a compact, doubling and uniformly perfect metric space.
Consider the graph Z g constructed in the previous section with a and X satisfying (2.8). Assume
there exist p > 0 and a function p : J — (0,400), which satisfy the hypothesis (HI1), (H2),
(H4) of Theorem 1.1, and also

(H3') forallk > 0andall B € J,, if v € Ty41 (B), then Ly(vy,p) > 1.
Then the function p also verifies the hypothesis (H3).

We first prove Proposition 2.9. We divide the proof into several lemmas. We start with the
following remark: by Lemma 2.5, we have ¢ (y) < L,(v); recall that we denote by ¢; the
length ¢, for ¢ = 1. Thus, to control the length L, () of curves in Zg, in order to show (H3),
it is enough to work with the length function ¢; . For technical reasons, we modify the length
function ¢; by replacing it with another bi-Lipschitz equivalent one. For ¥ > 0, we define
7 : J — (0,+00) by setting

7*(B) = min = (B’).

B'~BeyJ
From (2.12), one has
1
(2.27) m(B) > n*(B) > FF(B) for all B € .
0
This and (H1), imply that if B € , ,, and if B’ = g(B)y, then
1 1 1
2.2 —7*(B) < —n(B) < —n(B') < n*(B’
(2.28) o (B) < on(B) < on(B) <7 (B,
and
* / / 1 KO *
(2.29) (B') < n(B') < —n(B) < ~2r*(B).
n- n-

Let e = (B, B’) be an edge of Z;; by Lemma 2.5 and the inequalities (2.28) and (2.29), we
have:
1. if e is horizontal with B, B’ € J,, then
m(B) + (B’

(2.30) tile) x T < (B) AT (B)),
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2. and if e is vertical with B’ € ;. and B = g(B’)j_1, then
(2.31) l1(e) < n(B') < m*(B").
Let K5 = Ko/n—. We simply change the length of an edge in Z; by setting

ir(e) 7*(B) An*(B'), ife= (B, B’)isahorizontal edge.
e) =
! Kyn*(B'), if e = (B, B’) is a vertical edge.

This definition is inspired by a similar one used in [22]. From (2.30) and (2.31), the length
functions ¢; and /; are bi-Lipschitz equivalent. We note in particular that the length distance
induced by #; is bi-Lipschitz equivalent to d; (d. with ¢ = 1).

The first step is to estimate the length ¢, (7) of certain curves in Z. The first type of curves,
discussed in the following lemma, are horizontal curves which have a large enough, relative
to the scale, “diameter”, i.e., curves which verify the statement of (H3’).

LEmMMA 2.10. — Let k > 0 and B € (. Consider v = {(Bi, Bi11)}1" a horizontal path
of level k + 1, such that z; € 3- B foralli, z1 € Band zy ¢ 2- B. We denote by B' € ;. the
parent of z,. Then

N-1

(2.32) b(y) =Y 7*(Bi) Am*(Bit1) > max {r*(B'),7*(B)} .

i=1
Proof. — First we show that forall j = 1,..., N, we have

(2.33) 7*(B;) > max {7*(B’), 7" (B)} p*(B;).

Let A ~ B; € ., be such that 7*(B;) = 7(A) and let A" = g(A). Then

d(zp,ra) < d(zp,2;) +d(zj,z4) +d(xa,xa) < 36TE + 2AETK 41 + KT
A
=K (4—|- ;) e < AKTL.

The last inequality follows from the choice made in (2.8). Since d(xz g/, xp) < 2krE < AKTE,
we also have zg € X - B’ N X - A'. This implies A’ ~ B and A’ ~ B’. Therefore,
max {7*(B’),7*(B)} < n(A’) and

w(B,) = 7(4) = 7(4) - p(4) 2 max (" (B), = (B)} __min,  p(C).

This shows (2.33). By (H3’), we know that L, (y, p) > 1 so

Z ) AT (Bj1) Zmax{w (B), 7 (B)} (0 (B;) A p*(Bj11))

j=1 j=1
= max {n*(B’),7*(B)} L(v, p) > max {n*(B’),n*(B)} .
This ends the proof of the lemma. O
The second type of curves is the set of curves which possess a vertical edge, despite a small
“diameter”. The definition of /1 (e, ) for e, a vertical edge, can be used to estimate their length

from below. More precisely: if e, = (x,y) is a vertical edge, with B € J; ; and B’ = g(B)x,
and if e, = (B’, C) is a horizontal edge, then

(2.34) l1(en) < bi(ew).
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t1 82 t2 83
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S

FIGURE 2.4. Proof of Lemma 2.11: decomposing the path in sub-paths ;.

In fact, by definition and from (2.29), we have #;(e,) < 7*(B') < Cy7*(B) = {1 (ey).

Let vy = {e; = (Bi, Biy1)};"! be an edge-path in Z,, we say that «y is of level at most k if
|B;| < k for all 4.

LEMMA 2.11. — Let Ay and Az be two elements of ., such that 4kry, < d(y1,y2), where
we write y; := x4,. Let v = {(Bj, Bj+1) ;V;ll be a path of level at most k + 1 joining A,

and Ay. Then there exists a path of level at most k, v = {(C;, Ci11) £v=’1—1, such that:

1. C1,Cn: € {,, are the parents of Ay and A, respectively, and
2. 4(y') < ()

Proof. — Let y be such a path of level at most k 4 1 with By, By € ), ;. We denote z;
the center of the ball B;. We can decompose  in sub-paths of level at most k, or level equal
to k + 1. Let s; = 1 and define inductively positive integers s; and ¢; as follows:

t; =1’I11H{_] > 8t IBJ| Sk‘OI'j=N},
Si+1 = mln{j Z tz : |Bj+1| = k‘+ 1} .
We stop when t; = N for some i := M. Note that |B,| = |B:,,| = k + 1, and for the
others | Bs,| = |By,| = k (see Figure 2.4). Since we are trying to bound from below the length

of v, we can assume without loss of generality that v is a path without self-intersections; thus

B, # By, for all 4.
Foreachi € {1,..., M}, sety;, = {(B;, BjH)};.":_;; we will construct v, of level at most &

such that #; (v}) < £; (;). We let the cases i = 1 and i = M to the end.

Fixi € {2,...,M — 1} and we write C = B,,. We divide the construction into two cases.

First case. — x; € B (xc,2kry) forallj e {s; +1,...,¢; — 1}

In this case, B, and By, in ), are the parents of B, 1, and By,_; respectively. Since
d(zs,41,%t,—1) < 4kry, by item (iv) of Lemma 2.2, we know that e = (B;,, By, ) is an edge
of Z;. So we set v, = e. Since e’ = (By,_1, B, ) is a vertical edge, from (2.34), we obtain

0 (7)) = li(e) < b () < by (m).
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Second case. — There exists j1 € {s; +1,...,t; — 1} such that z;, ¢ B (z¢,2k7).

We can assume that j; is the first index with this property. The path {(B;, Bj+1)}§?'=_s2i 41
is of level equal to k + 1. We decompose this path again to use the estimate (2.32). We denote
jo = s; + 1 and Cy = C. Suppose j; and C| defined, we denote z; the center of C, and if
Ji < t; — 1, we define

Jigr =min{j <j<t;—1:z; ¢ B(z,2kr,) orj=t; — 1},

andlet Cj1; € J,, be the parent of B, ,; we also denote 2, the center of Cj;. In particular,
wehavex;, , € B (241, k7). Thus, we obtain a sequence {jo, ..., jr,} C {si+1,...,t;—1}
with jo = s; + 1 and Jjr, =t — 1. Write o7 := {(Bj, Bj+1)}jl+;l 1.

Let us show that o; and z; satisfy the hypotheses of Lemma 2.10 for each I € {0, ..., L; — 2}.
We know by construction that z;,,, ¢ B (z,2kry) and that 2; € B (z,2kry) for all

Ji £ j < jiy1. Moreover, since
(235) d (Zl, $jl+1) S d (Zl, :Ejl+1—1) + d (mjl+1_1’ mjl+1)
2
< 2ka"* + 2 ka~ Bt = ¢ (2 + —) a”k < 3krg,
a

—the last inequality follows from the choice made in (2.8)—we have

{x]};”;l C B (z;,3k71) -

So, from (2.32), we know that

(2.36) 7(C)) < 4y (07) forle{0,...,L; —2}.

By item (v) of Lemma 2.2, ¢; = (C}, Ci41) isan edge of Zy. In fact, the edge (Cy, Bj,,, ) € Ga,
and Cp 4 is the parent of By, . Since forl = L;—1, wehave z, 1 = z;,, €B (z1,-1,2K7%),
similarly the existence of the edge e;, = (Cr,—1, Bt,) holds. Moreover, since (By,—1, Bz, ) 1s
a vertical edge, from (2.34), we have

(2.37) l1(er,) <41 ((Br,-1,Br,)).-

Lety, = eg* -+ xer,_a e, then 4/ joins By, and By,. Moreover, from (2.36) and (2.37),
we have

Li—2 Li—2
b = 3 die) +iler) < 3 7 (C) + 1 (Byy1, By))
1=0 1=0
Li—2
< ti(o1) + 41 ((Bt,-1, Bt,)) < ().
1=0
Consider the case 7 = 1, we do a similar construction to the one above. Let 2 be the
center of D; € ¢, the parent of By, so in particular ;1 € B (z, kry). Similarly, divide the
construction into two cases. Assume first that z; € B (z,2xri) forallj € {1,...,t; — 1}.

Since d(z1,zn) > 4kry, we know that ; is a proper sub-path of 4. Thus (B, —1, By, ) is a
vertical edge. An argument similar to that given above shows that e = (D4, By, ) is an edge
of Z,, and that if we set v, = e, we obtain #1(v}) < ¢;(71). If instead, there exists j such that
z; ¢ B (z,2k7y), as in the second case above let v = e * -+ -k ep, o * €.

Also for i =M we do the same construction. Set z =x,,, so in particular
ZTsy+1 € B(z,krg). lf z; € B(z,26r) forall j = sy + 1,..., N, using the fact that
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(Bs,,» Bsy+1) 1s a vertical edge, we see as above that it suffices to take v}, = (Bs,,, D2),
where Dy € |, is the parent of By. Otherwise, with jo = sps + 1 and Cy = By,,, we do as
in the second case above and we obtain v}, = eg*---*er,,—3*(Cpr,,—2, D). If L)y < 2 we
take (Cp, D3). We must show the existence of the edge (Cf,,—2, D2), which is done similarly

as in the other cases.

Finally, we note that if M = 1, i.e., v = ~; is a path of level £ + 1, we have s; = 1 and
ty = M. We define similarly jo = 1, and zg the center of Cy the parent of B;. We also define
by induction

Jiv1 :=min{j; < j < N:z; ¢ B(z,2kr;) orj =N},

and 241 the center of Cjy; the parent of Bj, ,. We obtain a sequence {jo,...,jr} C
{1,...,N} with jo = 1 and j;, = N. Write oy = {(Bj, Bj+1)}§l:+;l_1. We show in the same
way that both edges e; = (C}, Ci4+1) and e = (C,_2, CL) are in Z;. The same arguments as
above show that if ¥/ :=eg * - -- x e _3 * e, then 0 ) < [1(7).

In conclusion, in both cases, for ¢ # 1, M, we obtain a path ~, of level at most & joining
B,, and By,, and length less than or equal to #; (;). For i = 1, we obtain such a path joining
D, € {,, the parent of By, to B,. And for ¢ = M, we obtain such a path joining
Bs,, to Dy € d,, the parent of By. Finally, if we denote (; = {(Bj,BjH)};:tl;l for
1=1,...,M — 1, it suffices to take

Y =kl x vy x Qa1 * Yy

This completes the proof of the lemma. O

We take @ = 8 in the statement of (H3), and to simplify the notation, we write ¢(z, y)
instead of ¢, (z,y).

LeEmMMA 2.12. — There exists a uniform constant Kg > 1 with the following property. for
allz,y € X, there exists kg depending on x and y, such that for k > ko, if B, B’ € ), are such
that x € B and y € B’, then any edge-path v joining B and B’ verifies

(2.38) bi(y) > KLB -7 (c(z,y)) -

Proof. — Let m = |c(z,y)| be the level of the center of z and y. We suppose k£ > m + 1.
By definition of m, we know that d(z,y) > Tkr,+1 and

(2.39) d(zp,zp) > d(z,y) — 267K > BKETmy1.

Let v be an edge-path joining B and B’. The idea is to inductively use Lemma 2.11 to find a
path of level at most m + 1, and of length smaller than or equal to that of v. We divide the
proof into two cases.
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FiGURE 2.5. Proof of Lemma 2.12, second case.

First case. — The path ~ is of level at most k.

From (2.39), we can apply Lemma 2.11 at least once. Set 75 = -, and suppose constructed
the paths v, fori € {l,1+ 1,..., k}, which verify the following properties:

— ~, is of level at most ¢ and joins the elements B;, B} € d,,
— B;, Bj are the parents of B; 1, Bj; respectively, and

— 0 () < b (yig1)-

We denote z; and y; the centers of the elements B; and B} respectively. Then, we recall that

a

T= a—1°

k—1
d(zy,y1) > d(zk, yr) — 2 Z ka~" > 5ka” (MY — 27ka7,

i=l
Using (2.8), we have d(z;, ;) > 4ka~"=1) if [ > m 4 2. But this allows us to apply, provided
that I > m + 2, at least one more time Lemma 2.11 to obtain a path «;_;. In conclusion, we
know that there exists a path +,, 41 of level at most m+-1 joining By, 1 and B, . ;, the parents
ind,, ,, of B and B’ respectively, with the property that A (Ym+1) < A (7). Furthermore, if
B, € {,, is the parent of By, 11, then

k-1

(2.40) d( X, x) < Z ka~ 4+ kaTF < TRa™™,
where we write x,,, for the center of B,,,. Thus, if A € ¢(z,y), the fact that d(z 4, ) < 8xka™™
and (2.40) give d(z 4, zm) < Aka™™. Thatis, e = (A4, B,,) is an edge of Z; and therefore
7(Bm) > K 'n(A). Finally, since #1(Vmi1) > Ki°m*(Bmy1) > Ki°Ki'n(By,), we
obtain

(41) B 2 Bl 2 g=rle(z. ).
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Second case. — ~ is a path of level at least k£ + 1.
Let kg be large enough such that

1
2.42 2K < m
(2.42) 5z];n+ _2K4K5( 7,

T 0
and suppose k > k. Let n > k be the maximal level of a vertex of v, and let B,,, B], € J,, be
such that z € B, and y € B),. Set Ay, = g(B,)r and A}, = g(B},)r. We write g, = [Ay, By,]
and g, = [A}, B} for the corresponding geodesic segments. As usual, zj, z,, and z}, denote

the centers of B, B,, and A, respectively. By the triangle inequality and from (2.8), we have
d(z}, xr) < d(xh, x0) + d(zn, zp) < (T4 2)ka™" < Asa™*F

So e; = (Ag, B) is an edge of Z,. Analogously, we see that e, = (B’, A}) is an edge of Z,.
Then vy, = g, * €5 * 7y * e, * g, is a path of level at most n joining B,, and B},. From (2.41),
we know that

(2.43) 01(m) >

On the other hand, we have

KiKs m(c(z,y)) > m(m)m-

n

01(gs % €x) < (n4)" + Ks > (n4)" < K5y (n4)"
i—k

i=k+1

The same computation holds for e, * g,; therefore, we obtain

EI(V) = gl('}’n) - gl(gw *eg) — gl(ey * gy)
> () ~ 2K Y (04)' 2 g el ).
i=k

The last inequality holds by definition of k¢ and (2.43). This completes the proof of the
lemma. H

We now give the proof of Theorem 1.2. We first show two lemmas, the first proofis inspired
by the construction of doubling measures of Vol’berg and Koniagyn [31] (see also [32] and

[21]).
LEMMA 2.13. — Suppose we have a function my : J,, — (0, +00) which verifies
1 _ mo(B)
2.44 B~ B — < <K
( ) V € Sjka K — WO(BI) — 9
where K > 1 is a constant. Suppose also that we have a function my : ;. — (0,+00) which
verifies the following property:

mo(4) _ 5

(2.45) VB € ;. 1,3A € J withd(xp,za) < 2k, and 1 < B) =
Uyt

Then there exists a function 1 : Jy, | — Ry such that
1. ForallB~ B € .,
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FIGURE 2.6. Typical situation for a vertex B’ € ¢, ,, with entering edges.
2. forall B' € |, we have 7t,(B') = w1 (B’) or there exists B ~ B’ € | such that
#1(B') = %. More precisely, in the second case, we have
1
71 (B') =  max {m(B): B~ B'}.

Proof. — For each pair of neighbors B, B’ € , , |, we check if the inequalities
1 < T (B)

K<mm) =%
hold or not. Only one of these two inequalities can be false; therefore, we put an oriented
edge going from B to B’ if m1(B) > Km(B’). The fundamental property is the following:
there is no oriented path of edges of length at least two. In fact, suppose that B ~ B’
and B’ ~ B’ are such that 7 (B) > Km(B’) and m1(B’) > Km(B"). Then we obtain
m1(B) > K?m(B"). Since d (zp,zpr) < 4Awa~*+1) < dxa=F, if we write A, A" € ,
such that
d(iL’B, :cA) < 2ka”* and d(l‘B//, l‘A//) < 250,7]6,

and also such that

7T0(A) 71'0(AH)
1< < Kand1l< <
=SB S Mt s S

we obtain, from item (iv) of Lemma 2.2, that A ~ A”. But since

m0(A) > m(B) > K*m(B") > Kmo(A"),

K,

we get mo(A) > Kmo(A”), which is impossible. As a consequence, for all B € ,;, the
directed edges which have B as an extremity, or all enter or all leave the vertex B. We modify
1 only in that subset of vertices B’ for which all directed edges enter. See Figure 2.6.

Let B’ € ¢, be such that there exists at least one entering directed edge. To define
71 (B’) we proceed in the following way. Let B; ~ B’,i = 1,...,l, be all the neighbors of B’,
and let B € {By, ..., B;} be such that

7T1(B) > 7['1(Bi), = 17"'71'
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We replace 1 (B’) by %. In other words, we replace it by #1(B’) = a1 (B’), where

_ m(B)
“EKmB) "

Thus, for all ¢ € {1,...,1}, we have
m(Bi) _ o m(Bi)
71(B') m1(B)
by definition of B. To see the other inequality, let A; € J, besuchthatd(z,,zp,) < 2ka*,
and such that

<K,

mo(As)
1< <K.
S B S
We denote A the element corresponding to B. Then
7['1(Bi) _ . 7T1(Bi) > 7T0(Al') > i
frl(B’) 7T1(B) - 7T0(A) - K
Finally, we obtain 71 (B’) which verifies
™ (B)
= <K
K — (B — 7

for all B ~ B’, and such that there exists B ~ B’ with 71 (B’) = %. That completes the
proof of the lemma. O

LeEmMMA 2.14. — Let G = (V, E) be a graph with valence bounded by a constant K and
let p > 0. Let T" be a family of edge-paths of G and let p > 0. Suppose that T : V — R isa
function verifying

N-1
3" 7(z) > 1, forall path y = {(z, z101)}y " €T
=1

Then there exists 7 : V. — Ry such that

N-1
(2.46) Z YA T (zi41) > 1 for all path v = {(z;, zz+1)} ler,

=1
where 7*(z) = min {7(y) : y ~ x}, and such that

(2.47) S AP <KDY 1(2)P.

zeV zeV

Proof. — Forx € V,let Va(z) = {y €V :32z€ Vst .y~ 2z~ z} bethe “combinato-
rial” ball of radius 2 in the graph G. We define 7 : V' — R, by setting
#(z) = max {r(y) : y € Va()}

If v = {(2, zi+1)}£V=711 isa path of I, for ¢ € {1,..., N — 1}, we write A; the vertices of G
which are neighbors of z; or neighbors of z;11. Then

N-1

Z YA T (zig1) Z min {7(z) : z € 4;}.
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If y € Va(x), then 7(y) > 7(x). But this implies that
(2.48) min {7(2) : 2 € A;} > min {7(z) : z € V2 (2;)} > max {7 (2;),7 (zi+1)},

since A; is contained in V5 (z;) and in V5 (2;41). Therefore,

= zi)+7(zix1) _ 1
% i+1
(2.49) ; 1 T (2) AT (2i41) > 1221 % 5

On the other hand, the cardinal number of V(x) is bounded from above by K2 forallz € V.
So

Y@ <Y D rRP <KDY r(a)r.

zeV €S z€Va(x) zeV

It is enough to take ¥ = 2 - 7. This finishes the proof of the lemma. O

Proof of Theorem 1.2. — Take ng € (0,1) which will be fixed later, and define

_1\1/
n- = (770 'Ml 1) b € (Oal)a
where Mj is a constant, depending only on a, A, x and the constant K p, which bounds from
above the cardinal number of Tj(B) for all k > 0 and B € ¢f,. We define the function

7= (a? + 1) 1/p > n_, which also verifies item (S1). From inequality (2.26), forall B €
and k > 0, we have

(2.50) Y. TBY< Y a(BY A+ M <20
B’eTy(B) B’eTy(B)

For B € J,,let Vo x(B) = {B' € J,,: 3B" € J;. s.t. B~ B” ~ B’} be the “combinato-
rial” ball of radius 2 in the graph . For £ > 0 and B € ,, we define

#(B) =2 max{r(B'): B' € Vo(B)}.

By Lemma 2.14, we obtain a function 7 satisfying condition (H3’), bounded from below
by n_ and such that

(2.51) > AB)P < 2Pt M -,
B’€Ty(B)

forall B € {J, and k > 0. Here, the constant M,, that only depends on A, x and the
doubling constant K p, bounds from above the cardinal number of horizontal 2-neighbors
of any vertex B € dJ,, i.e., elements in J,, and at combinatorial distance at most 2 from B.
Let K = n_"'; we construct a function j : J — R verifying

1. p>7,and

2. (H2) 1th the constant K.

Moreover, we will see that by construction, p also verifies
(3) p(B) < max{7(B’) : B’ ~ B}.
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We will construct p by defining it inductively on each f,. We set p(w) = 1, and since
n- < 7 < 1wecanset g = 7|y . Suppose constructed p; : ; — Ry verifying items 1
and 2 fori = 1,2,...,7, let us construct p;1 : J;; — Ry using Lemma 2.13. With the
same notation as in the lemma, we denote for A € >

J
mo(A) = [T 4 (9(A)s),
=1
and for B € djﬂ,
m1(B) = 7(B)mo (9(B);) -

Since K = n_!, and for all B € ;41> we have d (zp,zy(p),) < ka™/, we see that the
hypotheses of Lemma 2.13 are verified. Let #; : j+1 — Ry be the application given by the
lemma.

Let B € 4, from the item (2) of Lemma 2.13, we have two possibilities for 71 (B): it

is equal to 71 (B), or there exists some B’ € ¢, such that B’ ~ B and 71(B) = %B/).
Equivalently, we can write 71 (B) = p;+1(B)mo(9(B);), where p;1(B) is equal to 7(B), or
it is equal to a7 (B), with

1 7(B")mo(9(B');)

=K #B)mo(e(B);) -

(0]

We remark that
_ #B)m(g(B);) _ #(B)
K7(B)mo(9(B);)

IN

Thus, we obtain
pi+1(B) = aF(B) < #(B).
In any case, the function p;4 verifies
7(B) < pj41(B) < max #(B'),

forall B € ;. This shows the existence of the function p;+1 : ¢ — Ry which verifies
items (1), (2) and (3) above. Finally, define p : J — (0, +o0) by setting |y, = pr.-

We now estimate, using item (3) above, the sum of 4P over Ty (B). Since for all ¥ > 1 and
all B € ¢, the cardinal number of the set {C' : C ~ B} is bounded from above by the
constant M,, we obtain

(2.52)
SoopBY< > > FBY<M Y, > #B)<2TM-no = Mano.
B’€Ty(B) B'€T,(B) B"~B' C~B B'eT,(C)

We fix g = (2M3)_1, which only depends on A, x and the doubling constant K.
Therefore, the sum (2.52) is smaller than 1/2.

We still have to modify g taking into account (H4). Note that for each level £ > 1, it makes
sense to ask about conditions (H1), (H2), and (H3’), since they are concerned with properties
of the function p up to this level. To start, we can simply normalize g, so that the sum is equal
to 1. Since we divide by a quantity smaller than 1, and the same for all B € ,, we preserve
also the conditions (H1), (H2) and (H3).

Let now k£ > 1. We should remark that if B € ,_,, then by item (vii) of Lemma 2.2, we
know that all neighbors of an element B’ in ¢, are descendants of B if x5 belongs to the

4¢ SERIE - TOME 46 — 2013 - N° 3



ON THE CONFORMAL GAUGE OF A COMPACT METRIC SPACE 529

ball B (zp/, kri). For each B € J,_,, we chose one descendant Cg € ¢, with the above
property. We denote T} ;(B) = Tx—1(B)\{Cgs}, and we call Cp the center of Tj_1(B).
For B € J,,_,,letwp € [1,+00) be such that

(wBpr(Cr))" + Z pr(B')F = 1.
B'eT;_,(B)

The fact that the sum (2.52) is strictly smaller than 1 justifies the existence of the number
w(B). We define py, : J,, — Ry by setting

, wppr(Cg) f B'=CpgforsomeBe d,_;.
pe(B) =4 .
pr(B") otherwise.

Since wp > 1, conditions (H1) and (H3’) are verified. For (H1), it is enough to take
ny = 1 — n_, because #71;(B) > 2. By the choice of wp, we also have condition (H4)
with constant Ko = 1.

Let us show that the condition (H2) is also verified. Recall that for B € ¢, _,, allneighbors
of Cpind, belongtoTy_1(B).Let A, A’ € J, besuchthat A ~ A’,andlet0 <n < k—1be
the biggest positive integer such that g(A),, = g(A4’),. Since A ~ A’, we have g(A); ~ g(A4");
foralli € {n + 1,...,k}. Therefore, for all i € {n + 2,...,k}, neither g(A); nor g(A");
can be centers. Otherwise, since they are neighbors, they would have the same parent, which
is in contradiction with the definition of n. This implies that p; (g(A);) = p; (9(A);) and
pi (9(A"):) = pi (g(A");) foralli € {n+2,...,k}. Fori = n+ 1, only one of them can be a
center. If neither is a center we have

0 sl 11 pila(d))

(2‘53) i=7]7;+1 _ i=7]7;+1 -1
T pi(g(A))  T1 pi(9(A))
i=n+1 i=n+1

If for example g(A),41 is a center, the quotient (2.53) is equal to wy(4),,,. Since for all
center C', we have n_ < wpp;(Cp) < 1, we see that in any case the quotient (2.53) is
between 1 and K?2. Therefore we obtain (H2) with Ky = K?2. This completes the proof of
the proposition. O

3. Abhlfors regular conformal dimension and combinatorial modulus

The purpose of this section is to show how to compute the AR conformal dimension of
a compact metric space using the combinatorial modulus. We start by defining the critical
exponent @ in the Subsection 3.1. Then in the Subsection 3.2 we complete the proof of
Theorem 1.3. The Subsections 3.3 and 3.4 are devoted to the proof of Corollary 1.5. In
Theorem 3.11 of Subsection 3.5, we give metric conditions on X that allow us to compute
its AR conformal dimension using another critical exponent @ x, defined from “genuine”
curves of X. We use this result to prove Corollary 3.13 in the Subsection 3.6.
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3.1. The critical exponent

Let G = (V,E) be a graph and let I be a family of subsets of V. Consider a function
p:V — R, and for v € T, define its p-length as

(3.1) L) = p).
vey

For p > 0, we denote the p-volume of p by

(3.2) Vol,(p) = > p(v)’.
veV

Thus the p-combinatorial modulus of I is by definition

(3.3) Mod,, (T, G) = inf Vol,(p),
p

where the infimum is taken over all functions p : V' — R, which are I'-admissible, i.e.,
£,(y) > 1forall v € T'. We remark that if p € (0,1), then Mod,, (I',G) > 1 unless I is
empty.

REMARK. This definition is a discretization of the classical notion of conformal modulus
from complex analysis, see [1]. See also [17] for a detailed exposition on the combinatorial
modulus.

We recall that we suppose X doubling of constant Kp > 1, and uniformly perfect of
constant Kp > 1. In particular, the conformal gauge ./ ,z(X,d) # @. We fix x > 1 and
b > 1. For each k > 1, let %y, be a finite covering of X satisfying Equations (2.1) and (2.2)
with b in the place of a. We write % := J;, %. For each k > 1, we define the graph G}, as
the nerve of %y, i.e., the vertices of G, are the elements of %/, and we put an edge between
Band B'if \- BN A- B’ # @, where X is a constant (recall (2.8)). We use the same notation
as in the previous sections.

DEerINITION 3.1 (Combinatorial modulus). — Letp > 0 and L > 1, we define
3.4 My (L) == Jsgu;{; Mod, (Fk,L(B)7G|B|+k) ,
€

where, for k > 1 and B € U, we denote by Ty, 1,(B) the family of paths v = {Bi}ijil of G\ B+
such that zy, the center of By, belongs to B and zy, the center of By, belongs to X \ L - B.
See Figure 3. 1.

In this first part, L is considered as a fixed parameter. We remark that M, (L) < +o0
for all kK > 1, since the number of elements in ‘ll| Bl+k that intersect L - B is bounded above
by some constant, which only depends on k, and therefore not on B € %.

We study the asymptotic behavior of the sequence { M), x (L)}, when k tends to infinity,
and its dependence on p. We define

3.5) My (L) = liminf M,  (L).

For fixed k, the function p — M, ; (L) is non-increasing, since an optimal function for the
combinatorial modulus, which always exists, is less than or equal to 1. This important fact
implies that the set of p € (0, co) such that M, (L) = 0 is an interval.
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FIGURE 3.1. Definition of the combinatorial modulus M, x(L) (Definition 3.4).
In the figure, B is an element of % and z1, zn are the centers of the extremities of
a path v in I'y, . (B). The scale of the covering is |B| + k so k represents the scale
relative to that of B. The number L represents the relative diameter of the paths ~.
The modulus M, (L) takes into account all moduli of the “annuli” associated to
the elements of %.

DEerINITION 3.2 (The critical exponent). — We define the critical exponent of the combi-
natorial modulus by setting

(3.6) Qn (L) =inf {p € (0,+00) : M, (L) = 0}.

REMARK 1. Later we will consider another critical exponent closely related to the topology
of X, so it is important to note that @) is defined in purely combinatorial terms, i.e., we only
use the combinatorial modulus on the nerves Gy, of the sequence of coverings %y.

REMARK 2. If p € (0,1), then M, (L) > 1 unless I'y (B) is empty for all B € %.
Conversely, if the curve families I'y, 1,(B) are empty, for all k sufficiently large we also have
My(L) = Oforall p > 0. Therefore, Qn (L) ¢ (0,1), and @n (L) = 01if and only if X is
uniformly disconnected (for a definition, see Chapter 15 of [14]).

3.2. Proof of Theorem 1.3

We can prove now the first inequality between @ (L) and the Ahlfors regular conformal
dimension of X (compare with [19] Corollaire 3.3). We will prove that if p > dimugr X,
then M, (L) = 0. Therefore, Qn (L) < dimag X. In particular, since X is doubling and
uniformly perfect, we have Qn (L) < +o0.

Proof of Qn (L) < dimag X. — Suppose that dimsg X < ¢ < p, and let 6 be an Ahlfors
g-regular distance in the gauge of X. We denote u the g-dimensional Hausdorff measure
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of (X,0) and n : Ry — Ry the distortion function of id : (X,d) — (X,0). Fix some
element B € % and let k > 1, we set i = |B|. Define p : %51, — R4 by setting
( n(B)
(3.7) p(B') = { \WEZFDB)
0 otherwise.

1/q
> ifBBNL-B# .

Then
> p(B)Y< max p(B) Y p(B).
B'E{/I|B|+k B’ﬁﬁ;ﬁg
We write diamy for the diameter, and By(s) for a ball of radius s, both in the distance 6. Since
X is uniformly perfect,
diam ((L+1)-B) > (L+1) Kp'sb™".
From the diameter distortion formula for quasisymmetric maps (see Equation (1.3)), for all
element B’ in ;1 such that B'N L - B # &, we have
(B)) = ( p(B) )”q _ diamyB’
PET=\(@+1)-B)) ~damp(L+1)-B
diam B’ ) < 4Kp >
<pl2——————— | < —— ) =,
~77< dam(L+1)-B) = "\@Z+1) o/ "
There exists a constant K > 1, which depends only on 7 and &, such that for any B’ € %; 1,
there is a ball By(s) for the distance 6 such that

1 .
BQ(S) CcB (:KB/, ;b_(H—k)) cB c BQ(KS)

Since the balls { B (zp, s~ 'b=®)) : B’ € 9; } are pairwise disjoint, the same holds for
the balls By(s). Also, since the union of the elements B’ such that B' N L-B # &, is
contained in (L + 1) - B, we obtain

neg _ 1 / 1
Z P(B)—m' Z #(B)Sm' Z 1 (Bo(Ks))

B'NL-B#Z B'NL-B#@ B'NL-B#@

L Y uBs) <L

I
~u(L+1)-B
p((L+D)-B) =

We now look at the admissibility condition. Let v = {B; };Vzl € T'y,(B), we can sup-
pose that B; N L-B # @ for all j. We denote the center of B; by z;. Since for each
je{l,...,N —1} we have 0 (2, zj4+1) < diamg (X - B;) + diamg (X - Bj11), we obtain

N N
S5y =30 (2B
i) =
Jj=1 j=1 ”((L+1)'B)
= iv: diam, B; > 0 (21,2N) >c
,\jzldiame([]-i-l).B ~2.diamg (L+1)-B — )

where ¢ > 0is a constant that depends only onn, A\, ks, K p and L. Therefore, we finally obtain

pP—q
MPJC 5 nk )

4¢ SERIE - TOME 46 — 2013 - N° 3



ON THE CONFORMAL GAUGE OF A COMPACT METRIC SPACE 533

which tends to zero when k tends to infinity. This completes the proof of the inequality. [J

IfL’ > L >1,then My, (L") < M, (L) for all k > 1; therefore, Qn (L) < @Qn (L). We
start by showing in the following lemma that, in fact, @ (L) does not depend on L > 1.

LeEMMA 3.3 (Independence on L). — Let1 < L < L' andp > 0. There exists an integer
1 > 0 and a constant K7 > 1, which depend only on L, L' and k, such that for all k > 1, we
have

Mp1k (L) < K7 - My (L').
In particular, Qn (L) = Qn (L) for all L and L.
Proof. — Let1 < L < L' and B € U; for some ¢ > 1. We take [ > 0 the smallest integer
such that b=! < £=1 and let
Uini(B):={A€ Uy : ANB #+ o}.

Lety = {B; };.Vzl be a path of I';1 4, 1, (B), and denote by z; the center of B;. If Ais an element
of %;1;(B) such that z; belongs to A, then y is a path in I'; 4 1/ (A). In fact, by the choice
of I the point 2 does not belong to L’ - A, since d (21, 2x) > (L — 1)xb™%.

Foreach A € U;+1(B),let pa : Uir14k — Ry be an optimal function for I'y4y 1/ (A). We
define p : Ui+ — Ry by setting

p(B') = max {pa(B') : A € Uini(B)}.

Therefore, pisT';4 1 (B)-admissible. Remark that there exists a constant K7, which depends
only on /, k and the doubling constant of X, that bounds from above the number of elements
in %;1+1(B). So we obtain

Vol, (p) < Y. Mod, (Cisk,10(A), Gisirr) < K7+ My (L)
A€Ui+1(B)

Therefore, My, ;11 (L) < K7 - My (L'). O

We fix L = 2, and we consider M, ; := M, (2), M, := M, (2) and Qn := Qn(2). We
can prove now the main result of this section.

Proof of the inequality dimap X < Qn. — Let p > 0 such that M, = 0, applying
Theorem 2.9 we will show that dim4z X < p. Let ny > 1 be large enough so that a := b™°
verifies (2.8), and that M), ,, < n, where n € (0, 1) is a number that will be fixed later.

We take , = Uj.n,. For simplicity, we write Gy, in the place of Gi.,, and I'(B)
for the family of paths in Gp41 which “join” B and X \ 2 - B. Therefore, we have
Mod,, (I'(B), Gx4+1) < nfor all B € J. We fix the genealogy ¥/ as that of Equation (2.5),
1.e., we set

Vi(B) ={y € X : d(y,zp) = dist(y, Xx)} .
Using the fact that the combinatorial modulus is small, we construct a function
p : 4 — (0,1) which verifies the hypotheses (S1) and (S2) of Proposition 1.2. In fact,
for all B € J, there exists o : ¢f, | — R such that:

1. ifweset Vg = {B' € J,,, : B N3-B# &}, thenop(B')=0if B’ ¢ Vp.
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2. for any pathy = {Bi}fil of level k+1 such that z; € B and zy € X \ 2- B—we write
as usual z; the center of B;,—we have

N
> op(Bi) > 1,
=1

3.and > op(B)P<n.
B'€dy 14

To define p, we start by setting o441 : J; 1 — Ry to be
ok+1(B') =max{ca(B'): A€ J,}.

Since o;+1 > op, item 2 above still holds if we replace o by o+1. Using the item (1) and
the fact that Ty (B) C Vg for all B € , we obtain

Z orr1(B)P = Z max {04 (B')’: A€ J,} < Z Z o4 (B
B'€Ty(B) B'E€Ty,(B) B/E€Ty(B) A:B'€Va

< Z Z oA (Bl)p < Ks -,

A:VBﬂVA;ﬁ@ B'eVy

where Kg is a constant, which depends only on s and the doubling constant of X, such
that {Ae ., : VanVp # @} < Kgforallk > 1and all B € (J,. Therefore, to apply
Proposition 1.2 it is enough to choose n < Kg 9. This ends the proof of Theorem 1.3. [

REMARK 1. One consequence of the proof of Theorem 1.3 is the following: if p > Qy, i.€.,
M, = liminfy M, = 0, we have shown that dimsr X < p. Therefore, from the proof of
the first inequality, we have limy M, = 0 for all ¢ > p. In other words, we can replace the

lower limit by the limit in the definition of Q .

REMARK 2. From the remark that follows Definition 3.2, we have that dimar X ¢ (0,1),
and is equal to zero if and only if X is uniformly disconnected. In that case, the AR conformal
dimension is not attained. Compare with [24].

3.3. Comparison with the moduli on the tangent spaces

The purpose of this section is to show that when X is p-regular, M, is bounded from
above by the p-analytical modulus of curve families on the weak tangent spaces of X. This
is motivated by recovering Keith-Laakso’s theorem (Corollary 1.5), which will be completed
in the following subsection (Subsection 3.4).

We start by recalling some definitions, for a detailed exposition we refer to [26]. A sequence
of nonempty closed subsets {F, },, of a metric space (Z, d) converges in the sense of Haus-
dorff to a closed set F' C Z if

(3.8) lim sup dist(z, F) = 0and lim sup  dist(z, F,) =0,
N0 eF,NB(z,R) N0 2eFNB(z,R)

forallz € Z and R > 0.
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DEerINITION 3.4 (Convergence of metric measure spaces). — A pointed sequence of com-
plete metric measure spaces {(Zy,, dy, pin, Pr) } converges to a pointed complete metric measure
space (Z,d, u,p), if there exist a pointed metric space (Z, D, q), and isometric embeddings
tn t Zn = Zand v : Z — Z, with t,(p,) = t(p) = q foralln > 0, such that {v,(Z,)}
converges in the sense of Hausdorff to 1(Z), and the sequence of measures {(t,)«pin } weakly
converges to v, i. If we ignore measures, we obtain the Gromov-Hausdorff convergence of metric
spaces.

If X is a doubling space, for any sequence {r,, } of scales and any sequence of points {z, }
of X, the family { (X, z,,,r,'d)} is relatively compact in the Gromov-Hausdorff topology.
The limit points are called weak tangent spaces of X, and tangent spaces when {z,} is
constant and {r,} tends to zero.

If (X, d, u) is Ahlfors regular of dimension p > 0 and (X, dw, Too) is @ weak tangent
space of X, with sequence of scales {r,}, then X, is also regular of dimension p, where
the p-dimensional Hausdorff measure is comparable to a weak limit of {r, Pu}, which we
denote by po.. We remark that if p € (0,1), then X is uniformly disconnected (see also
Theorem 5.1.9 of [26]). We also recall that if T" is a curve family of X, then the p-analytic
modulus of I" is by definition

Mod,, (') = inf/ PP du,
X

where the infimum is taken over all Borel measurable functions p : X — R, U {400} which
are I'-admissible (see [21]). The analytic moduli in the weak tangent spaces of X are always
defined using this measure pio.

From now on we suppose that X is p-regular. Let (X, doo, Zoo ) be @ weak tangent space
of X. We consider the family I'(z ) of curves which join B(z, 1) and X \ B(z, 2).

DEFINITION 3.5 (Moduli on the tangent spaces). — We define
Mg = sup {Mod, (I'(z)) : (Xoo, doo; Too) is a weak tangent space of X} .

The following proposition shows that the combinatorial modulus is dominated by the
analytical moduli on the weak tangent spaces of X.

PROPOSITION 3.6. — There exists a constant Kg, which depends only on k and the doubling
constant of X, such that M, < Kg - MpT.

Proof. — Ifp € (0,1), the inequality trivially holds, because X is uniformly disconnected,
and therefore, both M,, and MpT are null. So we can suppose that p > 1. We do not provide
full details of the proof, because it consists of small modifications of arguments that appear
in Section 3 of [22] and Appendix B of [17].

Let C > 1, € > 0 and suppose that M, > K - MpT. This means that there exists kg > 1
such that for all k£ > kg, there exist ¢ = 7, > 1 and B = By, € %; such that

Mod,, (T (B) , Giyr) > K - M + 6, where § > 0.

Let r, = b~ and consider (X, doo, To0) a limit point of the sequence { (X, 7}, 'd, zx) e

We fix a compact metric space Z, and isometric embeddings ¢ : B (z,3) — Z and
w t (B(z,3),r;'d) — Z for each k, where we denote zj, the center of B. We identify
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the curve family I" (z,) and the family of paths 'y (B) with its images by the embedding ¢
and . Analogously, we identify the measure uo, with its image by ¢.

Consider p:Z — Ry a continuous TI'(zy)-admissible function such that
Vol,(p) < Mod,, (T (2s0)) + € < M + e. We can suppose that p > m > 0. Define
ok : Uirr, — Ry by—we also identify %4, with its image by ¢,—

(3.9) pr(A) = ginf {p(y):y € X- A}diamz (A - A).

For k big enough, the function py, is I'y(B)-admissible (see [17] Proposition B.2 and [22]
Proposition 3.2.4). Since the balls {B (z4,x7 26~ (**) : A € U; 44} are pairwise disjoint,
there exists a constant M, which depends only on s and the Ahlfors regularity constant of Z,
such that Vol, (px) < M - Vol,(p) < M - (M + €). Therefore, for all € > 0, we have

T T
K-M]+6<M-(M] +e),
which is impossible if K > M. This finishes the proof. O

3.4. Positiveness of moduli at the critical exponent

In this section, we show that the sequence { M), x }, admits a strictly positive lower bound
when p = @Qn (Corollary 3.9). Indeed, this is a consequence of the fact that the sequence
{M, 1}, satisfies a weak sub-multiplicative inequality on k. This with Proposition 3.6 will
allow us to prove Corollary 1.5.

The proof is an adaptation of arguments from [6] Section 3, Proposition 3.12. The differ-
ence here is that we don’t suppose X to be approximately self-similar.

We fix L > 2, and we also set M, , = M, (L). Fori,k > 1and B € %,, we denote
by I'}.(B) the family of paths in G4 which join L; - B and L, - B, where

1 1
L1 :1+gandL2:L—E.
Define M ; in the same way as M, x, replacing I'y(B) by I' (B) in the Definition 3.4. We
have the following lemma:

LemMA 3.7. — There exists a constant K1g > 1, which depends only on p, L, k and the
doubling constant K p, such that

(3.10) My py1 < Kio- My, - My,
forall k and .

Proof. — Foreachi, k > 1and B € %;, we denote pkB : Uirr, — R4 an optimal function,

i.e., which verifies: pP is T'y (B)-admissible and
S o (B') = Mod, (Tk(B), Gisx)
B'€ Uitk

Analogously, define o2 : %; 1, — R an optimal function for M, ;.. Optimality implies that
pB (A) = oP (A) = 0 for any element A of %; which does not intersect L - B. For B € %;,
we set U; 1k (B) the elements A € 9,1, suchthat AN L- B # &, and XkB s Uipr — {0,1}
the characteristic function of %, (B).
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We fix now ¢ > 1 and B € %;. We must bound from above the p-combinatorial modulus
of the path family 'y ;(B) of G;yr+;. We define p : U1 x+1 — Ry by

(3.11) p(C) =max {of (A) - pi* (C) : A€ Ui} - xi41 (O)-
Therefore, the p-volume is bounded from above by:

S p@F = Y max{of (Ao (O : A€ Uy} 1Pt (O)
CE%.HH_l CG‘MH_;C_H

< Y > AN O xR (O) X (O)

CE€Uitryt A€ Uitk

= > A D O @)Xt ()
A€Uitr CEUsyrt1

< Y of (AP Mod, (Ti(A), Giyry+1)
A€Uiyy

< Mod,, (T (B), Gitk) - max Mod, (Ti(A), G itr)41)

A€ U1

!
S Mp,k‘ M Mp,l'

We look now for the admissibility condition. Let v = {C; };Vzl € I'p41(B), we write w; for
the center of B;. For A € %, such that AN~y # &, the path v also belongs to I';(4),
because diamy > (L — 1)b~% and diam (L - B) < 2L - b=+ We fix A € %, 4 such that
ANy # @, andlet j; < jo2 € {1,..., N} be such that w;, € Aand wj, € X \ L - A. Using
the admissibility of p;*, we obtain

J2 J2
(3.12) > p(Ch) =D af (A)p (Ch) = of (A).
J=Jj1 Jj=Jj1

Let %;y1 () be the set of A € %4y such that ANy # @. Then there exists a pathy' € I'/.(B)
which is contained in ;. (vy). This implies

J2 N
(3.13) 1< > g A< D DY pC) <KD p(Cy),
ANy#Q ANy#9D  j1 1

where K is a constant that bounds from above the cardinal number of %; (B), and which
only depends on x, L and the doubling constant K. Therefore, if we multiply p by K, we
obtain aI'y;(B)-admissible function with p-volume bounded from above by K?-M 1’77 o Mpi.
This completes the proof of the proposition. O

An important consequence of this sub-multiplicative inequality is the following:

LEMMA 3.8. — Let ¢ = (3K10)_1, where Kig is the constant of Lemma 3.7. Then
M(’Q?N)k >eforallk > 1.

Proof. — Let 1 < k < n be any integers. Then, from Lemma 3.7, we have
My, < (Km . Mlg,k)m - max M/

b
o<r<k T

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



538 M. CARRASCO PIAGGIO

where m = [n/k]. In particular, for fixed k, the limit of M, ,, when n tends to infinity is
bounded from above by the limit of cka,[c"/ k], where 0, = K9 - M;’ & and ¢ is the maximum

of Mj, . with 0 < r < k. Therefore, M, = 0if there exists k > 1 such that M}, , < Ky That
is, we have the following interval inclusions:

I .= {p:MézO} cJ:= {p:EIk, M;,k<K1_01} cl:={p:M,=0}.
Suppose there exists & > 1 such that Mz/), r < €. Let K be a constant which bounds from
above the number of elements A € %, suchthat ANL-B # @ foralli > 1and B € %,.
Since M, ;. < €, we have Mod,, (I',(B), Gi+x) < eforalli > 1and B € ¥%;.

Leti¢ > 1and B € %;, we consider p : %y, — R, an optimal function for I'} (B).

By optimality p(A) = 0 for any A in %, Which does not intersect L - B. We define
o : Ui, — R4 by setting

o(A) := max {p(A), (eKﬁl)l/p} .

Then ¢ is a I'}(B)-admissible function, bounded from below by (eK _1)1/ P and with
p-volume bounded from above by
S oA < D p(AP+ (KT #{AE€ Uy ANL-B# o} < 2
AEE%H_;C ANL-B#2
This implies that for ¢ < p, we have
Mod, (T%(B),Giyr) < > o(A)? <max{c(A)7P}. Y o(A)P
A€ Uiy A€Uitk

K\ ®P-a/p K\~ %
<|— ‘2e= | — - 2e.

€ €
In particular, M, 47 <3=K 1o if ¢ < pis close enough to p. Suppose now by contradiction

that Mé?N’k < e. Then there exists ¢ < Qu, close enough to @y, such that M(;,k < Kl_ol.
Therefore, M, = 0 which is a contradiction. This finishes the proof. O

A slight modification of the proof of Lemma 3.3, shows that there exist an integer [ > 1
and a constant K; such that Mémkﬂ < Ki1-Mgy k- This allows us to prove the following
corollary.

CoROLLARY 3.9 (Positiveness of the modulus at the critical exponent)
The sequence of moduli {Mq, (L)}, admits a positive lower bound, which depends only
on L and the doubling constant of X.

This lower bound—therefore, the sub-multiplicative inequality—with the following facts:
(a) combinational modulus is bounded by the analytical moduli on tangent spaces of X, and
(b) the critical exponent is equal to the AR conformal dimension, give a more conceptual
proof of the Keith-Laakso theorem (see [22]):

Proof of Corollary 1.5. — Indeed, from Proposition 3.6, we know that Mg, < Ky - MgN.
Since from Corollary 3.9, we have that Mg, > 0, we conclude that there exists a weak
tangent space (Xoo,Too) Of X such that the family of curves joining B(z.,1) and
Xoo \ B(zo,2) is of positive Q y-modulus. O
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3.5. Some variants

When the tangent spaces of X are not locally homeomorphic to X, the nerves Gy, associ-
ated to the coverings of X, differ from X by approaching its tangent spaces when k becomes
large, i.e., small scales. For example, it is usually possible to find curves in Gy, that do not exist
in X.

In this subsection, we introduce a second combinatorial modulus M, defined using
curves of X. We give topological and metric conditions on X so that these two moduli, M fok
and M, i, have the same asymptotic behavior when & tends to infinity (Theorem 3.11). This
new modulus will allow us to compute the AR conformal dimension of X using “genuine”
curves of X.

Let I be a curve family in X, and let % be a covering of X. For v €T, we set
U(y) = {Be€ U: BN~ +# &}. Foreach B € %, we denote by I'(B) the family of curves
in X which intersect both £- B and X \ L - B, where L > 2 and £ := 1 + b~ !. Therefore, for
allk > 1 and B € %, we define the following family of subsets of G|g|4:

Ap(B) = {Upj4x (v) : v €T(B)} .
Finally, we set Mod,, (I'(B), % p|+x) := Mod,, (Ax(B), G|5|+k)-

DEerINITION 3.10 (Combinatorial modulus of curves in the space)
We define
(3.14) MY (L) = sup Mod,, (D(B), % 5+k) -
€U

The symbol X, in the notation, indicates that the modulus is computed using curves of X.

To simplify the notation, we write MY, instead of M_%, (L). The sequence { M, } has the
same properties as { M,  }: for fixed k, the function p — M;,(k is non-increasing, and the set
of p € (0,00) such that M, := liminf), M, = 0is an interval. We define in the same way
the critical exponent Qx.

The first remark, is that the sequence {M.¥,}x verifies a “stronger” sub-multiplicative
inequality on k: there exists a constant K > 1, which depends only on p, k, L and the
doubling constant Kp, such that

(3.15) MY < K- MY, - MY
for all k£ and [. The proof is analogous to that of (3.10), noting that here the family of curves

I'(B) does not change when scale does; therefore, it is not necessary to consider the modulus
MZI’7 . like before. If we set e;, = K !, we have (compare with [6] Section 3)

(3.16) kETOOM;fk =0 3k > 1tel que M < ey,

and therefore, szk >epforallk > 1ifp € (0,Qx]. We remark that @x < Qn always
holds, because for any curve v € I'(B), the subset % |1, (v) contains a path which belongs
to I'}.(B); and therefore, M,fk < lez, - In general, it is a strict inequality (see the remark
following Theorem 3.11).

Recall the following definition. Suppose X is connected, then for z,y € X, define

0(z,y) := inf{diam J : J is connected with z,y € J}.
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Forr > 0 let
h(r) := sup{d(x,y) : d(z,y) <r}.

We say that X is locally connected if h(r) — 0 when r — 0. The function h is called the
modulus of local connectivity. We say that X is linearly connected—LC for short—if there
exists a constant K, > 1 such that h(r) < Kpr forall0 < r < diamX. Up to changing
the constant K, this is equivalent to the following: for any x,y € X, there exists a curve ~y
in X joining them with diam~y < K,d(z,y). We can also give the following interpretation:
the distance ¢ is bi-Lipschitz equivalent to d: d < § < K,d. For the distance ¢, every ball is
path-connected.

We also recall that V,.(A) denotes the r-neighborhood of A. The goal of this section is to
prove the following result:

THEOREM 3.11. — Let X be a doubling, uniformly perfect, compact metric space. Suppose
that X also verifies the following two hypotheses:

1. (Uniform linear connectivity of components) There exists a constant Ky > 1 such that
any connected component of X is Ky-linearly connected.

2. (Uniform separation of components) There exists a constant Ky > 1 such that: for all
0 < r < diamX, there exists a covering W, of X, by open and closed sets, such that for
all W € W,., we have dist (W, X \ W) > r/ K, and there exists a connected component
YofXwithY CW CV,.(Y).

Then Qx = Q. In particular, when X is linearly connected, the critical exponent Qx is equal
to the AR conformal dimension of X.

We make some remarks before proving the theorem.

REMARK 1. In general, Qx < @Qn. It is not hard to construct a Cantor set X in the plane
R? such that Qx = 0 and Qx = 2. See also Figure 3.2.

REMARK 2. The hypothesis of the item (2) is inspired in the analogous notion of uniform
disconnectedness of David and Semmes [14]. By compactness, we can always suppose that
the covering W, is finite.

We can state this condition in the following way. Given € > 0, we can define an equivalence
relation ~. in X, for which two points x and y of X are e-equivalent if they can be connected
by an e-chain, i.e., there exists a sequence {,zz}f\]:1 C X withzy =z, 2y =yand d(z;,2;:41) < €
foralli=1,...,N —1.

Each e-class W, is open and closed with dist (W, X \ W) > e. Moreover, if ¢; < €3, and
if we denote W¢, (x), ¢ = 1,2, the ¢;-class which contains z, then W¢, (z) C W,,(z). Also
Neso We(z) =Y, where Y is the connected component of X containing x. In particular, for
all 0 < r < diam X, there exists €, such that if e < ¢,., then W,(z) C V,.(Y).

Condition 2 above is equivalent to the following: for all € € (0, diamX) and all e-class W,
there exists a connected component Y of X such that W C Vg _.(Y).

In fact, suppose that X verifies condition (2), then we take r = Kge. If W, is a finite
covering of X associated to r, like in the statement of condition 2, then each element W
of W, is a union of e-classes, and each one of these classes is in the r-neighborhood of the
connected component Y of X corresponding to W.
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€= m-Dn

,x
I
3=

FIGURE3.2. Let X = {1/n:n > 1} x]0, 1]. The condition of uniform separation
of connected components is not verified. Indeed, if e = 1/((n — 1)n), then with
e-chains we can connect 0 to all the r-neighborhood of {0} x [0, 1], where r = 1/n.
But r/e — oo when n — oo. This behavior is forbidden by condition 2 of the
theorem. For this simple example Qx < Qn.

Conversely, since the e-classes form an open covering of X and are pairwise disjoint,
for each ¢ > 0, there are only finitely many such classes. We denote them by W;(e) for
t=1,...,Nc. Ifacomponent Y of X intersects an e-class W;(e), it must be contained in that
class. Consider Y; a connected component of X such that W;(¢) is in the Kge-neighborhood
of Y;. For each Y;, we consider the open and closed set U; consisting of the e-classes contained
in the K e-neighborhood of Y;. Thus, we obtain a covering of X, by open and closed subsets
{U,}, at distance at least € of their complements, and such that Y; C U; C Vi _.(Y;) foreach .
We remark that the U; are not necessarily disjoint.

We end with another formulation of condition 2. For each ¢ > 0, each¢ € {1,...,N.}
and each component Y of X, we set

dy (€,7) :=1inf {r > 0: W;(e) C V.(Y)}.
For each class W;(¢), denote
r;(€) := inf {dy (€, %) : Y connected component of X},
and finally, define A : (0, diamX]| — R, by setting
(3.17) h(e) = max{r;(e) :i=1,...,N.}.
The hypothesis says that there exists a uniform constant K such that h(e) < K - € for all
0 <e<diamX (see also Figure 3.2). For example, the Cantor set of segments

X = 6 x [0,1], where @ is the standard middle Cantor set, verifies the hypothesis of
Theorem 3.11.

Proof of Theorem 3.11. — We must show the inequality Qnx < Qx. For p > 0, we show
that there exist constants M and kg, which depend only on A and the geometry of X, such
that My, ,, < MP+!- MY, for all k > k.

First, remark that condition (2) implies that paths of G,, are at distance comparable
to b~ of genuine curves of X. If By ~ By are two elements of %,,, then their centers, which
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we denote by z and w respectively, verify d(z,w) < 2Akb™™ = €, where ¢, := 2 kb~ ™.
Therefore, if v = {B; }§V=1 is a path in G,,, the centers of Bj, z;, j = 1,... N, belong to the
same €,,-class W of X. Since h(e,,) < K - €, there exists a connected component Y of X
such that W C V.. (V). This implies that  is contained in W C V,_(Y).

So there exists y; € Y such that d (y;, z;) < K, - €y, forall j € {1,..., N}. In particular,
we have d (y;,y;+1) < 3Ks€n, and since Y is Kj-linearly connected, there exists a curve +;
contained in Y, joining y; to y;+1, and with diameter bounded from above by 3K, K€y, .
Set K := 3K,K,. Let (; = 1 * - -+ x yn_1 be the concatenation of the curves ;. We write

¢y(1) = y1 and ¢, (2) = yn-
Letk > 1, B € U, and let pp : U p|+x — R4 be a I'(B)-admissible function such that

(3.18) > bp (AP =Mod, (T(B), ¥ p+) -

A€U B4k
Take a pathy = {B; };.V:l of G| g|+« Which verifies: z; belongs to B, z; belongs to (L +1)- B
forj=2,...,N —1and zy does not belong to (L + 1) - B. Let {y = 71 * - - - % yy_1 be the
curve constructed before. Write for simplicity ¢ = | B|. Since d(21,(y(1)) < K - €4, we have
20K
bk
Therefore, (,N ¢£-B# @ if k> ko, where ko is the smallest integer such that
ko > log,(2AK) + 1. Also, since

d(¢y(1),2) < d(z1,2) + K - €pr < Rb (1 +

20K
bk

we have (, N X \ L - B # @, and so ¢, € I'(B). For each point w of v;, we have

d(¢y(2),2) > d(2n,7) — d(¢,(2),28) > K (L +1-— ) b=" > Lkb™t,

d(zj,w) < diamy; + Kejp < 2Keip g, < Arb™(HF)

where A > 4MK is a uniform constant which only depends on A, k, K, and K,. We can
suppose A large enough so that any element A of %/, which intersects ~;, is contained
in A - B;. The same holds for j + 1. Define pp : %;+r — R4 by

(3.19) p5 (A) = max {jp (C): C C A- A}.

Since the number of elements C of %, which are contained in A - A, is bounded from above
by a constant M, which depends only on A and the doubling constant K, we have

1 R
(3.20) pp(Bj) 2+ Y ps(C).
CNy;#2
Therefore,
N 1 1
(3.21) D ore(B) =55 Y p8(0)= 55
j=1 CN¢#£D

On the other hand, take M large enough so that the number of elements A in %, such that
A - A contains C, is also bounded from above by M for each C in %; . M still depends only
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on A and the doubling constant. Then the p-volume is bounded by

> ps(AF = > max{pp(C)":CCA-A}

AE%H.]C AE%H—k
< Y. > @M D peC)
Ae([li+k CCA-A Ce?,li+k

=M - MOdp (F(B), %|B|+k) .

That is to say, if we multiply pp by M, we obtain a I'y(B)-admissible function which has
p-volume bounded from above by K - Mod,, (T'(B), % 5|+ ), where K := M?*!. Therefore,
Mod, (T'x(B), G|g+x) < K - Mod,, (['(B), % p|+k). This completes the proof of the theo-
rem. =

3.6. The approximately self-similar case

We finish by applying Theorem 3.11 to the case when the space is approximately self-
similar. In this case, we can simplify the definition of @ x using a family of curves of definite
diameter. We prove in Corollary 3.13 below a slightly more general version of Corollary 1.4
stated in the introduction. In Corollary 3.14, we give conditions under which the AR con-
formal dimension of X is equal to the supremum of the AR conformal dimensions of its
connected components.

The following definition appears in [6]: we say that X is approximately self-similar if
there exist constants ¢g > 0 and Ly > 1 such that for any 0 < r < diamX and any
x € X, there exists an open set U C X, with diamU > c¢p, and a Lg-bi-Lipschitz map
¢ : (B(a:, r), %) — (U, d). This definition implies that X is doubling and uniformly perfect,
and that if X is connected and locally connected, then X is LC (see [10] Chapter 2).

Two important classes of approximately self-similar spaces are the boundaries of hyper-
bolic groups and the Julia sets of hyperbolic rational maps. Other examples include the
Sierpinski carpet and gasket, the Menger curve and other classical fractals, which appear as
attractors of some Iterated Function Systems.

The following definition appears in [6] and [19]. From now on we suppose X approxi-
mately self-similar. For § > 0, denote

I's = {y C X : diamvy > §},

and let N, ;. (6) := Mod,, (I's, %). In [6] Section 3, several important properties of Ny, 1 (6)
for approximately self-similar sets are proved. In fact, the sequence { N}, verifies a sub-
multiplicative inequality, and there exists €5 > 0, which depends only on § and the doubling
constant of X, such that

(3.22) lim N, (8) =0« Ik > 1suchthat N, (6) < es.

k—+o0

Therefore, we can define the large scale critical exponent of X by
(3.23) Qp (0) =inf{p > 0: N, (6) — 0, when k — +oo}.
From [19] Corollary 3.3, we have Qp (§) < dimagr X for all § > 0.

PRrROPOSITION 3.12. — Let X be approximately self-similar. There exists 6o > 0, which
depends only on the constant Lo, such that if 0 < § < 0y, then Qx < Qp (9).
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Proof. — We use in the proof various ingredients taken from [6] Section 3. Take
0<é6< ﬁ,andletp> 0 so that N i, (6) — O when k — +o0. Letk > 1,and let p : %, — R4
be a I's-admissible optimal function, i.e., so that Vol,(p) = Mod,, (I's, %) = Np i (9).

Let L > 2. For B € %, consider ¢ : (L + 1) - B — U the map given by the definition of
self-similarity of X. We denote ¢ = | B| and

Ve ={A€U,x:AC (L+1)-B}.

The set A’ := ¢ (A) is defined for any A in Vg. Since the map ¢ is a Lo-bi-Lipschitz
homeomorphism, from (L + 1) - B with the rescaled distance (L + 1)1k ~1b'd, into U, for
any element A of Vg, we have:

B (WA), (L—l—ll)/-;QLgbk> C¢(B(za,s b *R))c A cB <¢(“), Lo sz> .

L+1
Set &' = (L + 1) &*Lo; since the balls { B (¢(za),x'~") } , .y, are pairwise disjoint, there
exists a constant K > 1, which only depends on «’ and the doubling constant of X, such
that:

(3.24) VO €U : #{AcVs: ANC+#0o}<K.

Define o : U+, — R4 by
max{p(C):CNA #g} ifAeVg.
c(A) =

0 otherwise.
Then
Y o= car<s Y Y )
A€ Ui Aevp AeVp CNA'#£D
<K Y p(C) =K -Mod, (Ts, Us).
CeU

We recall that £ = 1 + b~ comes from Definition 3.10. Let v C X be a curve such that
yNL-B#gandyNX\ L-B # . We can suppose 7 to be contained in L - B. Since the
diameter of «y is bounded from below by (L — £) kb~*%, the diameter of ¢ (7) is bounded from

below by ﬁ > ﬁ > 4. Thus, ¢ (v) is a curve in T's and
> A=
ANg(v)#2

An element A belongsto Vg if ANL - B # &. Then, for any element C' of %, which intersects
@ (7y), there exists an element A of Vg such that C' N A’ N ¢ (y) # @. Thus, for any element
C of Uk (¢ (7)), there exists an element Ac of U1 (77) such that p (C) < o (A¢).

We can suppose K big enough so that
since this quantity only depends on the doubling constant of X. Then

1< Y p@)< > o(Ag)<K ) o(A).

CelUr(o(v)) CelUr(o(7)) A€ Uiy ()
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This shows that M, (L) < K'*P N, ; (6), and therefore, M.%, (L) — 0 when k — co. This
completes the proof of the proposition. O

So to estimate the Ahlfors regular conformal dimension of an approximately self-similar
space, we just need to look at the modulus of curves of definite diameter.

COROLLARY 3.13. — Let X be an approximately self-similar space. If X verifies items I and
2 of Theorem 3.11, then dimagr X = Qp (9) for all 0 < § < &g. This is the case, in particular,
when X is connected and locally connected.

Proof. — Since Qx < Qp < dimagr X, it suffices to show that @) x = dim g X, but this
is true from Theorem 3.11. O

We say that the diameter of the connected components of X tends to zero, if for all 6 > 0,
there are only finitely many connected components of X which have diameter greater than or
equal to 6. By convention, we define the AR conformal dimension of a point set to be zero.
It is not clear in general whether the AR conformal dimension behaves well under countable
unions, see for example Figure 3.2 (see also [26] for a discussion on this problem). The next
corollary is a positive result in this direction.

COROLLARY 3.14. — Let X be approximately self-similar which verifies items 1 and 2 of
Theorem 3.11. Suppose that the diameter of the connected components of X tends to zero. Then

dimar X = sup{dimagr Y : Y connected component of X} .

Proof. — We remark that dimsr X > dim4g Y for any connected component Y of X. If
Y is a point, the inequality trivially holds. Otherwise, Y is doubling and uniformly perfect:
therefore, its AR conformal dimension is equal to the Assouad conformal dimension (see
[26]). For the Assouad conformal dimension the inequality is clear.

We show the other inequality. Set
g :=sup{dimar Y : Y connected component of X},

and letp > ¢. We can suppose that ¢ > 1, otherwise, any connected component is a singleton,
and since X verifies the uniform separation of components, it is uniformly disconnected. In
that case ¢ = dimy4r X = 0.

We know that there exists § > 0 such that dimagr X = @Qp(d). Consider the set ¥ of
connected components of X which have diameter bigger than or equal to §. By hypothesis,
% is finite, and we write

Ns =Y.
If Y is a component of X, we denote by I's(Y") the curves of I's which are contained in Y.
Therefore,
Is= |J Ts(Y),
Yey
and consequently, for all £ > 1, we have

MOdp (Fg, (le) S E MOdp (F,S(Y), ?/lk) S N(; . I;la}y( {Modp (F(;(Y), ?,lk)} .
€
Yey
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If we denote by % (Y") the set of elements B of % which intersect Y, we have the following
equality
Mod,, (T's(Y), U,) = Mod, (T's(Y), Uk (Y)) .
Fix now Y € %. For each element B of %(Y), consider a point ' € B NY and let
B’ = B (2',2kb™"); if the point z 5 already belongs to Y, we take ' = z .
Let W}, be the covering of Y by these balls. From Proposition B.2 of [17], the sequence of
moduli Mod,, (T's(Y"), W) tends to zero when k tends to infinity. Note that

Mod (Ts(Y), Ux(Y)) < Mod, (T5(Y), Wy),
where the comparison constant depends only on the doubling constant of X. Since % is finite,

we obtain Mod,, (I's, %) — 0 when k — +o0. Therefore, dim 4z X < p. This ends the proof
of the corollary. O

REMARK. The assumption of finiteness of connected components of definite diameter is
necessary, as it is shown by the example of a Cantor set of segments X := & x [0, 1], whose
AR conformal dimension is equal to 1 + dimyg & = 1 + logs(2) > 1, although the AR
conformal dimension of the connected components of X is equal to 1, and that of & is equal
to 0.
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