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INVARIANTS, TORSION INDICES AND
ORIENTED COHOMOLOGY OF COMPLETE FLAGS

 B CALMÈS, V PETROV
 K ZAINOULLINE

A. – Let G be a split semisimple linear algebraic group over a field and let T be a split
maximal torus of G. Let h be an oriented cohomology (algebraic cobordism, connective K-theory,
Chow groups, Grothendieck’s K0, etc.) with formal group law F . We construct a ring from F and the
characters of T , that we call a formal group ring, and we define a characteristic ring morphism c from
this formal group ring to h(G/B) where G/B is the variety of Borel subgroups of G. Our main result
says that when the torsion index of G is inverted, c is surjective and its kernel is generated by elements
invariant under the Weyl group of G. As an application, we provide an algorithm to compute the ring
structure of h(G/B) and to describe the classes of desingularized Schubert varieties and their products.

R. – Soit G un groupe algébrique linéaire semi-simple déployé sur un corps et soit T

un tore maximal déployé de G. Étant donnée une cohomologie orientée h (anneau de Chow, K0

de Grothendieck, K-théorie connective, etc.) et sa loi de groupe formel F , nous construisons un
anneau appelé anneau de groupe formel, associé à F et aux caractères de T , puis un homomorphisme
caractéristique c de cet anneau de groupe formel vers l’anneau h(G/B) où G/B est la variété des sous-
groupes de Borel de G. Le résultat principal de cet article montre que, lorsque l’indice de torsion du
groupe G est inversé, c est surjectif et son noyau est engendré par des éléments invariants sous l’action
du groupe de Weyl de G. En guise d’application, nous fournissons un algorithme qui permet de calculer
la structure d’anneau de h(G/B) et d’y calculer les classes de variétés de Schubert désingularisées et
leur produits.

1. Introduction

Let H be an algebraic cohomology theory endowed with Chern classes ci such that for any
two line bundles L1 and L2 over a variety X we have

(1) c1( L1 ⊗ L2) = c1( L1) + c2( L2).
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406 B. CALMÈS, V. PETROV AND K. ZAINOULLINE

The basic example of such a theory is the Chow group CH of algebraic cycles modulo rational
equivalence.

Let G be a split semi-simple linear algebraic group over a field k and let T be a split
maximal torus insideG contained in a Borel subgroupB. Consider the varietyG/B of Borel
subgroups of G with respect to T . In two classical papers [7] and [8] Demazure studied the
cohomology ring H(G/B; Z) and provided an algorithm to compute H(G/B; Z) in terms of
generators and relations.

The main object of his consideration was the so called characteristic map

(2) c : S∗(M)→ H(G/B; Z),

where S∗(M) is the symmetric algebra of the character group M of T . In [7] Demazure
interpreted this map from the point of view of invariant theory of the Weyl group W of G
by identifying its kernel with the ideal generated by non-constant invariants S∗(M)W . The
cohomology ring H(G/B; Z) was then replaced by a certain algebra constructed in terms of
operators and defined in purely combinatorial terms.

In the present paper, we generalize most of the results of [7] to the case of an arbitrary
oriented cohomology theory h, i.e., when (1) is replaced by

c1( L1 ⊗ L2) = F (c1( L1), c1( L2))

where F is the formal group law associated to h. Such theories were extensively studied
by Levine-Morel [14], Panin-Smirnov [16], Merkurjev [15] and others. Apart from the
Chow ring, other examples include algebraic K-theory, étale cohomology H∗ét(−, µm),
(m, char(k)) = 1, connective K-theory, elliptic cohomology and the universal such theory:
algebraic cobordism Ω.

To generalize the characteristic map (2), we first introduce a substitute for the symmetric
algebra S∗(M) = CH∗(BT ). This new combinatorial object, which we call a formal group
ring, is denoted by R[[M ]]F , where R = h(pt) is the coefficient ring, and can be viewed as
a substitute of the cohomology ring of the classifying space h(BT ) of T . In the case of a
finite group G this object is related to generalized group characters studied in [12]. As in [7],
we introduce a subalgebra D(M)F of the R-linear endomorphisms of R[[M ]]F generated by
specific differential operators and by taking its R-dual we obtain H (M)F , a combinatorial
substitute for the cohomology ring h(G/B; Z). The characteristic map (2) then turns into the
map

c : R[[M ]]F → H (M)F .

The Weyl groupW acts naturally onR[[M ]]F and the main result of our paper (Theorems 6.4
and 6.9) says that:

T. – If the torsion index of G is invertible in R and R has no 2-torsion, then the
characteristic map is surjective and its kernel is generated by W -invariant elements in the
augmentation ideal.

Demazure’s methods to prove this theorem in the special case of the additive formal
group law do not work in general, for the following reason: the main objects used in his
proofs are operators ∆w for every w ∈ W . They are defined first for simple reflections,
and afterwards for any w by decomposing it into simple reflections and composing the
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ORIENTED COHOMOLOGY OF COMPLETE FLAGS 407

corresponding operators. It is then proved that the resulting composition is independent of
the decomposition of w. For more general formal group laws, similar operators can still be
defined for simple reflections (see Definition 3.5), but independence of the decomposition
does not hold, as it was observed in [5]. Geometrically, it can be translated into the fact that
the cobordism class of a desingularized Schubert variety depends on the desingularization,
and not only on the Schubert variety itself (see Lemma 13.3). We overcome this problem by
working with suitable filtrations such that the associated graded structures are covered by
the additive case of Demazure (see in particular Proposition 4.4). We therefore encourage the
reader unfamiliar with [7] to start by having a quick look at it before reading our Sections 3
to 7.

As an immediate application of the developed techniques, we provide an efficient algo-
rithm for computing the cohomology ring H (M)F = h(G/B; Z). To do this we general-
ize the Bott-Samelson approach introduced in [1] and [8]. For oriented topological theories,
some algorithms were considered by Bressler-Evens in [4, 5] and for algebraic theories in
characteristic 0 by Hornbostel-Kiritchenko in [13]. See Remark 15.2 for a comparison.

Note that the theorem also provides another approach to computing the cohomology
ring h(G/B; Z) by looking at the subring of invariantsR[[M ]]WF . Observe that in the classical
case when h = CH (or K0) and G is simply-connected it is known that R[[M ]]WF is a power
series ring in basic polynomial invariants (resp. fundamental representations). In general, the
structure of R[[M ]]WF remains unknown.

Finally, for the reader primarily interested in topology, let us mention that while all our
proofs are algebraic and written in the language of algebraic geometry, the results apply
as they are to topological cobordism or other complex oriented theories. Indeed, there is a
canonical ring morphism

Ω∗(G/B)→ MU∗(G/B(C))

(see [14, Ex. 1.2.10]) that is an isomorphism because both are free modules over the Lazard
ring with bases corresponding to each other (given by desingularized Schubert cells).

The paper consists of three parts.
In the first part, we generalize the results of [7] by introducing and studying the generalized

characteristic map c : R[[M ]]F → H (M)F . In Section 2, we introduce the formal group ring
R[[M ]]F and prove its main properties. In Section 3, we define the main operators ∆ and C
onR[[M ]]F . In Sections 4 and 5 we study the subalgebra D(M)F of operators generated by ∆

(resp. C) and multiplications. In Section 6 we define H (M)F and prove the main theorem.
In Section 7 we introduce a product on H (M)F compatible with the characteristic map c.

In the second part, we generalize some of the results of [8] to arbitrary oriented cohomol-
ogy theories. In Section 8, we discuss properties of oriented theories. In Sections 9 to 12, we
carry out the Bott-Samelson desingularization approach.

In the last part, we apply the results of the first and the second parts to obtain information
about the ring structure in h(G/B; Z). In Section 13, we prove that our algebraic replacement
H (M)F is isomorphic (as a ring) to the oriented cohomology h(G/B; Z) and that the
characteristic maps cG/B and c correspond to each other via this isomorphism. In Section 14,
we give an algebraic description of the push-forward to the point and we prove various
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formulas. In Sections 15 and 16, we explain an algorithm to compute the ring structure
of h(G/B; Z) and the Landweber-Novikov operations on algebraic cobordism. Finally, in
Section 17, we give multiplication tables for Ω∗(G/B; Z) for groups G of rank 2.

Notation

Let k denote a base field of arbitrary characteristic. A variety over k means a reduced
irreducible scheme of finite type over k. ByX and Y we always mean smooth varieties over k.
The base point Spec k is denoted by pt.

A ring always means a commutative ring with a unit and R always denotes a ring. A ring
R′ is called anR-algebra if it comes equipped with an injective ring homomorphismR ↪→ R′.
The letter M always denotes an Abelian group.

All formal group laws are assumed to be one-dimensional and commutative. LetF denote
a formal group law and let L denote the Lazard ring, i.e., the coefficient ring of the universal
formal group law U .
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PART I

INVARIANTS, TORSION INDICES AND FORMAL GROUP LAWS

2. Formal group rings

LetR be a ring, letM be an Abelian group and let F be a formal group law overR. In the
present section we introduce and study the formal group ringR[[M ]]F . For this, we use several
auxiliary facts concerning topological rings and their completions which can be found in [3,
III, §2]. The main result here is the decomposition Theorem 2.11. At the end we provide some
examples of computations of R[[M ]]F .

D 2.1. – Let R be a ring and let S be a set. Let R[xS ] := R[xs, s ∈ S] denote
the polynomial ring over R with variables indexed by S. Let ε : R[xS ] → R be the aug-
mentation morphism which maps any xs to 0. Consider the ker(ε)-adic topology on R[xS ]

given by ideals ker(ε)i, i ≥ 0, which form a fundamental system of open neighborhoods
of 0. Note that a polynomial is in ker(ε)i if and only if its valuation is at least i, hence, we
have ∩i ker(ε)i = {0} and the ker(ε)-adic topology is Hausdorff.

We define R[[xS ]] to be the ker(ε)-adic completion of the polynomial ring R[xS ].
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R 2.2. – By definition, an element in R[[xS ]] can be written uniquely as a formal
sum ∑

s1,...,sm∈S
as1,...,sm · xs1 . . . xsm , as1,...,sm ∈ R,

where for any positive m there is only a finite number of non-zero coefficients as1,...,sm . In
particular, when S is a finite set of order n, the ring R[[xS ]] is the usual ring of power series
in n variables.

2.3. – Let F be a formal group law over a ring R (see [14, p.4]). Given an integer m ≥ 0

we use the notation

x+F y = F (x, y), m ·F x = x+F . . .+F x︸ ︷︷ ︸
m times

and (−m) ·F x = −F (m ·F x).

By associativity of F , for any m1,m2 ∈ Z we have

(m1 +m2) ·F x = (m1 ·F x) +F (m2 ·F x).

Now, here comes the definition playing a central role in the sequel.

D 2.4. – Let M be an Abelian group and let F be a formal group law over
a ring R. Consider the ring R[[xM ]] and let J F be the closure of the ideal generated by the
elements x0 and xλ+µ−(xλ+F xµ) for all λ, µ ∈M . We define the formal group ringR[[M ]]F
to be the quotient

R[[M ]]F = R[[xM ]]/ J F .

The class of xλ in R[[M ]]F will be denoted by the same letter.

2.5. – By definition, R[[xM ]] is a complete Hausdorff ring with respect to the topology
induced by the kernel of the augmentationR[[xM ]]→ R. Since J F is clearly contained in this
kernel, the augmentation mapR[[xM ]]→ R factors through the quotientR[[M ]]F . Therefore,
R[[M ]]F is a complete Hausdorff ring with respect to the I F -adic topology, where I F denotes
the kernel of the augmentation R[[M ]]F → R.

Let f : R → R′ be a morphism of rings respecting the formal group laws, i.e., sending
every coefficient of F to the corresponding coefficient of F ′. Then, for every Abelian group
M , f induces a ring homomorphism f? : R[[M ]]F → R′[[M ]]F ′ sending xλ ∈ R[[M ]]F to
xλ ∈ R′[[M ]]F ′ for every λ ∈M . This morphism sends I F to I F ′ and, hence, is continuous.

Let now f : M → M ′ be a morphism of Abelian groups. It induces a continuous ring
homomorphism f̂ : R[[M ]]F → R[[M ′]]F sending xλ to xf(λ). Moreover, if f is surjective,
then so is f̂ .

Finally, let f : F → F ′ be a morphism of formal group laws over R, i.e., a formal power
series f ∈ R[[x]] such that f(x +F y) = f(x) +F ′ f(y). Then, f induces a continuous ring
homomorphism f? : R[[M ]]F ′ → R[[M ]]F sending xλ to f(xλ).

We have therefore proved:
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L 2.6. – Via the above constructions (−)?, ˆ(−) and (−)?, the assignment taking
(R,M,F ) to the topological ringR[[M ]]F is covariant with respect to ring morphismsR→ R′

and morphisms of Abelian groups M → M ′, and is contravariant with respect to morphisms
of formal group laws F → F ′.

2.7. – LetA be anR-algebra with an ideal I such thatA is Hausdorff and complete for the
I -adic topology. By scalar extension, we may consider the formal group law F as an element
of A[[x, y]]. Let a, b ∈ I . The specialization at x = a and y = b defines a pairing

� : I × I → I .

Similarly, we define � : I → I using the inverse of F and � : Z× I → I by applying � or
� iteratively. From the associativity, commutativity and inverse properties of F , one shows
that ( I ,�) is an Abelian group, in which the inverse of a ∈ I is �a. In particular, when
A = R[[M ]]F and I = I F , from the continuity of the quotient map R[[xM ]] → R[[M ]]F it
follows that xλ+µ = xλ � xµ and

x−λ = x−λ � (xλ � xλ) = (x−λ � xλ) � xλ = 0 � (xλ) = �(xλ).

Therefore x : λ 7→ xλ is a group homomorphism from M to ( I F ,�).

2.8. – We consider the category of triples (A, I, f) where I is an ideal of A, a complete
Hausdorff R-algebra for the I-adic topology, and f is a group homomorphism from M

to (I,�). The morphisms from an object (A, I, f) to an object (A′, I ′, f ′) are continuous
R-algebra morphisms φ : A → A′ such that φ ◦ f = f ′. It is straightforward that
(R[[M ]]F , I F , x) is an initial object in this category, and is thus uniquely defined (up to
unique isomorphism) by that universal property.(1)

2.9. – Let f : R → R′ be a morphism of rings. The morphism f? of Lemma 2.6 induces
a morphism of R-algebras

R′ ⊗R R[[M ]]F → R′[[M ]]F , r′ ⊗ z 7→ r′ · f?(z)

sendingR′⊗ I F to I ′F , kernel of the augmentation map onR′[[M ]]F . It is thus continuous for
the corresponding adic topologies and therefore extends to a morphism between completed
rings

(R′ ⊗R R[[M ]]F )∧ → R′[[M ]]F

(R[[M ]]F is already complete). This morphism is an isomorphism; the universal property 2.8
of R′[[M ]]F gives the inverse morphism. In particular, let L be the Lazard ring of coefficients
of the universal formal group law U . For any formal group law F over R, there is a unique
ring homomorphism ϑF : L→ R sending the universal formal group law U on L to F . So

(R⊗L L[[M ]]U )∧ ' R[[M ]]F .

2.10. – A formal group law F on R induces via a ring homomorphism R → R′ a formal
group law on R′. In particular, if M and N are Abelian groups, then using R→ R[[M ]]F = R′,

(1) The universal property was first made explicit in [18, Def. 3.1.2], following the first version of the present paper.
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we can define R[[M ]]F [[N ]]F , which is naturally an R[[M ]]F -algebra. By functoriality,
R[[M ⊕N ]]F is also an R[[M ]]F -algebra. We define two morphisms of R[[M ]]F -algebras

φ : R[[M ⊕N ]]F → R[[M ]]F [[N ]]F and ψ : R[[M ]]F [[N ]]F → R[[M ⊕N ]]F

as follows:
The map R[xM⊕N ] → R[[xM ]][[yN ]] sending x(λ,γ) to xλ +F yγ extends to a continuous

map f : R[[xM⊕N ]]→ R[[xM ]][[yN ]]. Consider the composition

R[[xM⊕N ]]
f→ R[[xM ]][[yN ]]

g→ R[[M ]]F [[yN ]]
h→ R[[M ]]F [[N ]]F

where g is induced by R[[xM ]]→ R[[M ]]F and h is the quotient map. We have

h ◦ g◦f(x(λ,γ) +F x(µ,δ))
(1)
= h ◦ g

(
(xλ +F yγ) +F (xµ +F yδ)

)
(2)
= h ◦ g

(
(xλ +F xµ) +F (yγ +F yδ)

) (3)
= h

(
(xλ � xµ) +F (yγ +F yδ)

)
(4)
= (xλ � xµ) +F (yγ � yδ)

(5)
= xλ+µ +F yγ+δ

(6)
= h(xλ+µ +F yγ+δ)

(7)
= h ◦ g(xλ+µ +F yγ+δ)

(8)
= h ◦ g ◦ f(x(λ+µ,γ+δ)),

where (1) and (8) hold by definition and continuity of f , (2) by associativity and commuta-
tivity of F , (3) and (7) by definition of g, (4) and (6) by definition of h and (5) by definition
of �. It shows that h ◦ g ◦ f factors through R[[M ⊕N ]]F as

h ◦ g ◦ f : R[[xM⊕N ]]→ R[[M ⊕N ]]F
φ→ R[[M ]]F [[N ]]F ,

where φ is a morphism of R[[M ]]F -algebras.
In the opposite direction, we proceed as follows: By functoriality, R[[M ⊕ N ]]F is an

R[[M ]]F -algebra and it has an augmentation map back to R[[M ]]F , whose kernel is tem-
porarily denoted by Ĩ F . It is complete for the Ĩ F -adic topology. The group homomorphism
N → ( Ĩ F ,�) sending λ to x(0,λ) therefore gives, by the universal property 2.8, a continuous
morphism of R[[M ]]F -algebras ψ : R[[M ]]F [[N ]]F → R[[M ⊕ N ]]F . We have ψ(xλ) = x(λ,0)

for λ ∈ M because ψ is a morphism of R[[M ]]F -algebras and ψ(yµ) = x(0,µ) for µ ∈ N by
the universal property.

T 2.11. – The morphisms of R[[M ]]F -algebras φ and ψ defined above are inverses
to each other. In other words, we have a natural isomorphism

R[[M ⊕N ]]F ' R[[M ]]F [[N ]]F .

Proof. – We have

ψ ◦ φ(x(λ,γ)) = ψ(xλ +F yγ) = ψ(xλ) +F ψ(yγ) = x(λ,0) +F x(0,γ) = x(λ,γ)

where the second equality holds by continuity of ψ. The other composition can be checked
on yγ , since we are dealing with morphisms of R[[M ]]F -algebras, and we have φ ◦ ψ(yγ) =

φ(x(0,γ)) = x0 +F yγ = 0 +F yγ = yγ .

L 2.12. – LetM = Z. Then sending xm tom ·F x defines an isomorphism ofR-alge-
bras

R[[Z]]F ' R[[x]].

In particular, if M is a free Abelian group of rank one, then R[[M ]]F is isomorphic to R[[x]].
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Proof. – By the universal property 2.8, the group homomorphism Z → ker(ε) sending
n to n � x yields a morphism of R-algebras φ : R[[Z]]F → R[[x]]. A map ψ in the opposite
direction is defined similarly using completeness, by sending x to x1. By continuity, checking
that φ ◦ψ = id and ψ ◦φ = id can be done on generators. Namely, φ ◦ψ(x) = φ(x1) = x by
definition, and ψ ◦ φ(xn) = ψ(n� x) = n� ψ(x) = n� x1 = xn.

C 2.13. – Let φ : M → Z⊕n be an isomorphism. Then φ induces an isomor-
phism of R-algebras

R[[M ]]F ' R[[x1, . . . , xn]].

Proof. – It follows from Lemma 2.12 and Theorem 2.11 by induction on n.

R 2.14. – Note that the right hand side is independent of F , although the iso-
morphism depends on F . Also note that if R is an integral domain, so is R[[Z⊕n]]F .

E 2.15. – Similarly, one can prove that R[[Z/n]]F ' R[[x]]/(n ·F x) by sending
xm to m ·F x (cf. [12, §6] for n = pr). Observe that n ·F x = nx + x2q. In particular, if n is
invertible in R, then (n ·F x) = (x) and R[[Z/n]]F ' R.

Let us now examine what happens at a finite level in R[[M ]]F .

2.16. – Let R[M ]F denote the subring of R[[M ]]F defined as the image of the subring
R[xM ] by means of the composition R[xM ]→ R[[xM ]]→ R[[M ]]F . Then the ring R[[M ]]F is
the completion of R[M ]F at the ideal I F ∩R[M ]F . By the functoriality of R[[M ]]F (see 2.6)
the assignment

(R,M,F ) 7→ R[M ]F

is a covariant functor with respect to morphism of rings R→ R′ and morphisms of Abelian
groups M →M ′. Moreover, if M →M ′ is surjective, then so is R[M ]F → R[M ′]F .

E 2.17. – IfM = Z, the isomorphism of Lemma 2.12 mapsR[Z]F to polynomi-
als in n ·F x. In particular, unless F and the formal inverse have a finite number of nonzero
coefficients only, R[Z]F does not map to R[x].

R 2.18. – The morphism φ from 2.10 does not necessarily send R[M ⊕ N ]F
to R[M ]F [N ]F . The morphism ψ from 2.10 sends R[M ]F [N ]F into R[M ⊕ N ]F but is not
necessarily surjective.

E 2.19 (cf. 8.3). – The additive formal group law over R is given by
F (x, y) = x+ y. In this case we have ring isomorphisms

R[[M ]]F '
∞∏
i=0

SiR(M) and R[M ]F '
∞⊕
i=0

SiR(M)

where SiR(M) is the i-th symmetric power of M over R and the isomorphisms are induced
by sending xλ to λ ∈ S1

R(M).
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E 2.20 (cf. 8.4). – The multiplicative periodic formal group law over R is given
by F (x, y) = x+ y − βxy, where β is an invertible element in R. Consider the group ring

R[M ] :=

{∑
j

rje
λj | rj ∈ R, λj ∈M

}
.

Let tr : R[M ]→ R be the trace map, i.e., a R-linear map sending any eλ to 1. Let R[M ]∧ be
the completion of R[M ] at ker(tr). Then we have ring isomorphisms

R[[M ]]F ' R[M ]∧ and R[M ]F ' R[M ]

induced by xλ 7→ β−1(1− eλ) and eλ 7→ (1− βxλ) = (1− βx−λ)−1.

E 2.21 (cf. 8.5). – The multiplicative non-periodic formal group law over R is
given byF (x, y) = x+y−vxy, where v is not invertible inR. SpecializingR[[M ]]F at v = 0 or
v = β where β is invertible in R, we obtain the formal group rings of the previous examples.

R 2.22. – Let h be an oriented cohomology theory as defined in [14, Def. 1.1.2]
and letF be the associated formal group law (see Section 8). LetM be the group of characters
of a split torus T over k. Then the formal group ring R[[M ]]F can be viewed as an algebraic
substitute of the equivariant cohomology ring hT (pt) or of the cohomology ring of the
classifying space h(BT ).

3. Differential operators ∆α and Cα

In the present section we introduce two linear operators onR[[M ]]F . The first operator ∆F
α

is a generalized version of the operator ∆α from [7, §3 and §4]. Indeed, one recovers the results
of loc. cit. whenR = Z and F is the additive formal group law from Example 2.19. A version
of the second operator CFα was already used in [5, §5] for topological complex cobordism.

3.1. – Consider a reduced root datum(2) as in [7, §1], i.e., a free Z-moduleM of finite rank,
a finite subset ofM whose elements are called roots and a map associating a corootα∨ ∈M∨
to a root α, satisfying certain axioms. The reflection map λ 7→ λ−α∨(λ)α is denoted by sα.

3.2. – The Weyl group W associated to a reduced root datum is the subgroup of linear
automorphisms ofM generated by reflections sα. It acts linearly onM and thus byR-algebra
automorphisms on R[[M ]]F using the functoriality in M of R[[M ]]F . We have the following
obvious equalities for any u ∈ R[[M ]]F :

sα(u) = s−α(u) and s2
α(u) = u.

L 3.3. – For any n ∈ Z, the element x − x +F (n ·F y) is uniquely divisible by y
in R[[x, y]].

Proof. – Since y is a regular element in R[[x, y]], we just need to prove divisibility. Note
that for any power series g(x, y), the series g(x, 0) − g(x, y) is divisible by y. Apply it
to g(x, y) = x+F (n ·F y).

(2) In [7], this is called a “système de racines précisé”.
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C 3.4. – Assume thatR is integral. For any u ∈ R[[M ]]F , the element u−sα(u)

is uniquely divisible by xα.

Proof. – First note that R[[M ]]F is an integral domain by 2.14, so we just need to prove
divisibility. Since

sα(xλ) = xλ−α∨(λ)α = xλ � (−α∨(λ) � xα)

it holds by the previous lemma when u = xλ. Then, by the formula

(3) uv − sα(uv) = (u− sα(u))v + u(v − sα(v))− (u− sα(u))(v − sα(v))

the result holds by induction on the degree of monomials for any element inR[M ]F . Finally,
it holds by density on the whole R[[M ]]F .

For a given root α we define a linear operator ∆F
α on R[[M ]]F as follows:

D 3.5. – First, using Corollary 3.4 we define a linear operator ∆U
α on L[[M ]]U ,

where U is the universal formal group law over the Lazard ring L, as

∆U
α (u) =

u− sα(u)

xα
, where u ∈ L[[M ]]U .

Finally, identifying R[[M ]]F with (R ⊗L L[[M ]]U )∧ via the isomorphism from 2.9 we define
the desired operator ∆F

α on R[[M ]]F as the extension of the continuous operator idR⊗∆U
α .

We simply write ∆α(u) when the formal group law F over R is understood.

R 3.6. – Observe that if R is integral, then the operator ∆F can be defined
directly using the same formula as for ∆U . If R is torsion, then it is not the case. Indeed,
take R = Z/2, M = Z, F to be an additive law and α = 2 to be a root. Then xα = x1+1 =

x1 + x1 = 2x1 = 0 in R[[M ]]F .

R 3.7. – We could instead have defined ∆α as ∆α(u) = sα(u)−u
x−α

. This exchanges
∆α with −∆−α so it is easy to switch from one convention to the other. Both conventions
give the same classical operator when the formal group law is additive.

P 3.8. – The following formulas hold for any u, v ∈ R[[M ]]F , λ ∈ M and
w ∈W (Compare to [7, §3](3)).

1. ∆α(1) = 0, ∆α(u)xα = u− sα(u),
2. ∆2

α(u)xα = ∆α(u) + ∆−α(u), ∆α(u)xα = ∆−α(u)x−α,
3. sα∆α(u) = −∆−α(u), ∆αsα(u) = −∆α(u),
4. ∆α(uv) = ∆α(u)v + u∆α(v)−∆α(u)∆α(v)xα = ∆α(u)v + sα(u)∆α(v),
5. w∆αw

−1(u) = ∆w(α)(u).

Proof. – All formulas can be proved in L[[M ]]U (which is an integral domain) and then
specialized to any other R[[M ]]F . Formula (4) follows from Equation (3) above. Formula (5)
follows from the fact that α∨(w−1(λ)) = w(α)∨(λ). All other formulas follow by definition.

(3) There is a sign mistake in Equation (3) of [7, §3]. One should read ∆α = −∆−α
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From now on, we fix a basis of simple roots (α1, . . . , αn), with associated simple reflec-
tions s1, . . . , sn. This defines a length function onW . Let I denote a sequence (i1, . . . , il) of l
integers in [1, n] and letw(I) = si1 · · · sil be the corresponding product of simple reflections.
The decomposition I is reduced if w has length l.

D 3.9. – The linear operator ∆F
I is defined as the composition

∆F
I = ∆F

αi1
◦ · · · ◦∆αF

il

.

As usual, we write ∆I for ∆F
I when F is understood.

The operators ∆I have the following important property:

T 3.10. – LetF be a formal group law of the formF (x, y) = x+y−v ·xy for some
v ∈ R. Let I and I ′ be two reduced decompositions of w in simple reflections. Then ∆I = ∆I′ .

Proof. – See [8, Theorem 2 p. 86]. The proof assumes v = 1 but it works for any other
value.

When the formal group law is of the above type, the previous theorem justifies the notation
∆w instead of ∆I , but in general, we have to keep the dependence on the decomposition.

R 3.11. – Theorem 3.10 was proved in [4] (see loc. cit. Thm. 3.7) for topological
oriented theories. Moreover, the result of [4] says that the formal group law has to be of the
above form for such an independence of the decomposition to hold.

For a given root α we define another linear operator CFα on R[[M ]]F as follows:

D 3.12. – Let g(x, y) be the power series defined by

x+F y = x+ y − xy · g(x, y)

and let eα be the element g(xα, x−α) in R[[M ]]F . We set

CFα (u) = ueα −∆F
α (u), where u ∈ R[[M ]]F .

The geometric meaning of the operator CFα will be explained in 10.10. Note that there is no
difference between CFα and ∆F

α when eα = 0, i.e., when F is additive. For a sequence of
integers I in [1, n], we define the operatorCFI in the same way as ∆F

I . Again, we simply write
Cα or CI when the formal group law F is clear from the context.

P 3.13. – The following formulas hold for any u, v ∈ R[[M ]]F , λ ∈ M and
w ∈W .

1. Cα(1) = eα, Cα(x−α) = 2,
2. Cα(u)xαx−α = uxα + sα(u)x−α, Cα(ux−α) = u+ sα(u),
3. Cαsα(u) = C−α(u), sαCα(u) = Cα(u),
4. Cα(uv) = Cα(u)v + sα(u)Cα(v)− sα(u)veα = Cα(u)v − sα(u)∆α(v),
5. wCαw−1(u) = Cw(α)(u),
6. Cα∆α = ∆αCα = ∆αC−α = 0.

Proof. – All these formulas can easily be derived from the ones of Proposition 3.8 using
the definition of Cα and the fact that eαxαx−α = xα + x−α.
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P 3.14. – Let Wα be the subgroup of order 2 generated by sα in W .
Let R[[M ]]Wα

F denote the subring of fixed elements of R[[M ]]F under the action of Wα.
If the ring R has no 2-torsion, then the operators ∆α and Cα are R[[M ]]Wα

F -linear. In
particular, they are R[[M ]]WF -linear.

Proof. – For the operator ∆α, by Formula (4) of 3.8 it suffices to show that ∆α(u) = 0

for u ∈ R[[M ]]Wα

F . If R and thus R[[M ]]F has no 2-torsion, it is equivalent to ∆α(u) = −∆α(u),
which holds by Formula (3) of 3.8.

The same facts for Cα then follow from its definition in terms of ∆α.

L 3.15. – AssumeR has no 2-torsion. Then for any root α, the element xα is regular
in R[[M ]]F and the set of elements u such that ∆α(u) = 0 is R[[M ]]Wα

F .

Proof. – Let ω1, . . . , ωn be the fundamental weights corresponding to a choice of simple
rootsα = α1, . . . , αn of the root system. Possibly extendingM , we can assume that theωi are
a basis ofM . By the isomorphismR[[M ]]F ' R[[xω1

, . . . , xωn ]] of Corollary 2.13, xα becomes∑
i <α,αi > xωi + u, u ∈ I 2. One easily checks that this element is regular if at least one

of the <α,αi> is regular in R. In particular, this is the case if <α1, α1>= 2 is regular in R.
By Equation (1) of Proposition 3.8, the last part of the claim is then clear.

P 3.16. – Let f : R → R′ be a ring morphism sending a formal group law F

over R to a formal group law F ′ over R′. Then, the operators ∆ and C satisfy

f∗∆
F
α = ∆F ′

α f∗ and f∗C
F
α = CF

′

α f∗

where f∗ : R[[M ]]F → R′[[M ]]F ′ is the morphism of Lemma 2.6.

Proof. – This is clear by construction.

4. Endomorphisms of a formal group ring

In the present section we introduce and study the subalgebra D(M)F of R-linear endo-
morphisms of a formal group ringR[[M ]]F generated by the ∆ operators of the previous sec-
tion. The main result (Theorem 4.11) says that operators ∆F

Iw
, where w runs through all ele-

ments of the Weyl group and Iw is any chosen reduced decomposition of w, form a basis
of D(M)F as an R[[M ]]F -module.

4.1. – Let R[[M ]]F be a formal group ring corresponding to a formal group law F over
a ring R and an Abelian group M (see Def. 2.4). Let I F be the kernel of the augmentation
map R[[M ]]F → R as in 2.5. By convention, we set I iF = R[[M ]]F for any i ≤ 0. We define
the associated graded ring

Gr∗R(M)F =
∞⊕
i=0

I iF / I i+1
F .

L 4.2. – The morphism of graded R-algebras

φ : S∗R(M)→ Gr∗R(M)F

defined by sending λ to xλ is an isomorphism.
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Proof. – The map is well-defined since xλ+µ − (xλ + xµ) is in I 2
F , and it is obviously

surjective. Let us define a map in the other direction. Recall that by definition R[[M ]]F =

R[[xM ]]/ J F . Let Ĩ denote the kernel of the augmentation map R[[xM ]]→ R (see 2.5). Then
we have

I F = Ĩ / J F and I iF / I i+1
F = Ĩ

i
/( J F ∩ Ĩ

i
+ Ĩ

i+1
).

Since Ĩ
i
/ Ĩ

i+1
is given by monomials of degree i, we may define a map of R-modules

ψi : Ĩ
i
/ Ĩ

i+1
→ SiR(M)

by sending a monomial of degree i in some xλ-s to the symmetric product of the λ-s involved.

This map passes to the quotient since ( J F ∩ Ĩ
i

+ Ĩ
i+1

)/ Ĩ
i+1

is generated as an R-module
by elements of the form ρ.(xλ +xµ−xλ+µ) where ρ is a monomial of degree i− 1. The sum
⊕iψi passes through the quotient as well and, hence, gives the desired inverse map.

4.3. – Consider now a reduced root datum on M as in Section 3 and let R[[M ]]F be the
associated formal group ring. Consider the operators ∆F

α introduced in Def. 3.5. By their
very definition, the operators ∆F

α send I iF to I i−1
F . Hence, they induce R-linear operators

of degree −1 on the graded ring Gr∗R(M)F , denoted by Gr∆F
α . Similarly, we define graded

versions of operators CFα (see Def. 3.12) on Gr∗R(M)F , denoted by GrCFα .

P 4.4. – The isomorphism φ of Lemma 4.2 exchanges the operator Gr∆F
α

(resp. GrCFα ) on Gr∗R(M)F with ∆Fa
α (resp.−∆Fa

α ) on the symmetric algebra S∗R(M), where
Fa denotes the additive formal group law as in Example 2.19 and the ∆Fa

α = −CFaα are the
classical operators of [7].

Proof. – Induction on the degree using (4) of Prop. 3.8.

D 4.5. – Let D(M)F be the subalgebra of R-linear endomorphisms of
R[[M ]]F generated by the ∆F

α for all roots α and by multiplications by elements of R[[M ]]F .
Note that by Formula (1) of Proposition 3.8, D(M)F contains sα and it contains CFα by its
definition. Let D(M)

(i)
F be the sub R[[M ]]F -module of D(M)F generated by u∆F

α1
· · ·∆F

αn ,
where u ∈ ImF and m− n ≥ i. This defines a filtration on D(M)F

D(M)F ⊇ · · · ⊇ D(M)
(i)
F ⊇ D(M)

(i+1)
F ⊇ · · · ⊇ 0

with the property that D(M)F = ∪i D(M)
(i)
F . We define the associated graded R[[M ]]F -

module

Gr∗ D(M)F =
∞⊕

i=−∞
D(M)

(i)
F /D(M)

(i+1)
F .

P 4.6. – The filtration on D(M)F above has the following properties:

1. For any root α, we have

∆F
α D(M)

(i)
F ⊆ D(M)

(i−1)
F , D(M)

(i)
F ∆F

α ⊆ D(M)
(i−1)
F

and similarly for CFα .
2. For any integer j, we have I jF D(M)

(i)
F ⊆ D(M)

(i+j)
F .

3. For any operator D ∈ D(M)
(i)
F , we have D( I jF ) ⊆ I i+jF .
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4. ∩i D(M)
(i)
F = {0}.

Proof. – The claim (1) follows from Equation (4) in Prop. 3.8 (resp. Equation (4) in
Prop. 3.13). The claim (2) is obvious. The claim (3) follows from the fact that ∆F

α ( I iF ) ⊆ I i−1
F .

To prove (4) observe that any D in ∩i D(M)
(i)
F sends R[[M ]]F to ∩i I

i
F = 0 by (3) so is the

zero operator.

4.7. – By claim (3) of Prop. 4.6 the graded module Gr∗ D(M)F acts by graded endo-
morphisms on the graded ring Gr∗R(M)F , which is isomorphic to S∗R(M) by Lemma 4.2.
Let Fa denote the additive formal group law. Then the associated subalgebra D = D(M)Fa
coincides with one considered in [7, §3]. By Prop. 4.4, the class of ∆F

α (resp. CFα ) in
Gr(−1) D(M)F acts by ∆Fa

α (resp. −∆Fa
α ) on S∗R(M) and the class of the multiplication

by xα in Gr(1) D(M)F acts by the multiplication by α on S∗R(M).

P 4.8. – The graded module Gr∗ D(M)F over the graded ring Gr∗R(M)F '
S∗R(M) is isomorphic to D.

Proof. – It is a sub-module of the R-linear endomorphisms of Gr∗R[[M ]]F generated by
the same elements as D.

4.9. – Let A be a ring and let I be an ideal of A, such that A is complete and Hausdorff

for the I -adic topology. Let M be an A-module together with a I -filtration (M (i))i∈Z, i.e.,
IM (i) ⊆ M (i+1) for any i. Consider the associated graded ring Gr∗A and the associated
graded Gr∗A-module Gr∗M .

The filtration is called exhaustive (see [2, III, §2, 1]) if any λ ∈ M belongs to some M (i),
i.e., M = ∪iM (i). For an exhaustive filtration let ν(λ) denote the largest integer such that
λ ∈ Mν(λ) and let λ̄ denote the class of λ in M (ν(λ))/M (ν(λ)+1) if ν(λ) exists and 0 if ν(λ)

does not exist. Note that λ̄ is nonzero if and only if λ is not in ∩iM (i).

L 4.10. – Let M be an A-module with an exhaustive I -filtration. Let λ1, . . . , λn be
elements of M . Then

1. AssumeA is complete for the I -adic topology andM is Hausdorff. If λ̄1, . . . , λ̄n generate
Gr∗M as a Gr∗A-module, then λ1, . . . , λn generate M as an A-module.

2. Assume A is Hausdorff. If λ̄1, . . . , λ̄n are independent elements in the Gr∗A-module
Gr∗M , then λ1, . . . , λn are independent in the A-module M .

3. Assume A is Hausdorff complete and M is Hausdorff. If Gr∗M is a finitely generated
free Gr∗A-module, then M is a finitely generated free A-module.

Proof. – Let A[i] be A itself considered as an A-module with the shifted filtration
I j+ν(λi) (by convention, I j = A for j ≤ 0). The claims (1) and (2) then follow from [3,
III, §2, 8, Cor. 1 and 2] applied to X =

⊕
iA[i], to Y = M and to

⊕
iA[i] → M equal

to the map sending (ai)i to
∑
i aiλi. The last claim (3) is an immediate consequence of (1)

and (2).

We now come to the main result of this section:
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T 4.11. – Let D(M)F be the algebra of operators defined above. For each element
w ∈W , choose a reduced decomposition Iw in simple reflections. Then the operators ∆F

Iw
(resp.

CFIw) form a basis of D(M)F as an R[[M ]]F -module.

Proof. – When the formal group law is additive, this is proved in [7, §4, Cor. 1] for the
∆Fa
w (and CFaw = (−1)l(w)∆Fa

w ). The filtered module D(M)F is Hausdorff by part (4) of
Proposition 4.6, and R[[M ]]F is complete. We can therefore apply part (3) of Lemma 4.10 to
deduce the general case from the corresponding fact on the associated graded objects, which
is the additive case by Proposition 4.8.

5. Torsion indices and augmented operators

In the present section we study the augmentation εD(M)F of the algebra of operators
D(M)F . The main result is Proposition 5.4 which is what becomes of Theorem 4.11 when
the augmentation ε is applied. Similarly, we then examine the filtration on εD(M)F obtained
by applying ε to the one on D(M)F introduced in 4.5.

5.1. – Consider the torsion index t of the root datum as defined in [7, §5] and its prime
divisors, called torsion primes. It has been computed for simply connected root data of all
types (see [7, §7, Prop. 8] and [20, 21]). The results of these computations are summarized in
the following table:

Type Al Bl, l ≥ 3 Cl Dl, l ≥ 4 G2 F4 E6 E7 E8

Torsion primes ∅ 2 ∅ 2 2 2, 3 2, 3 2, 3 2, 3, 5

Torsion index 1 2e(l) 1 2e(l−1) 2 2 · 3 2 · 3 22 · 3 26 · 32 · 5

The exponent e(l) is equal to l − blog2(
(
l+1
2

)
+ 1)c except for certain values of l equal

to or slightly larger than a power of 2 which are explicitly given in [21, Thm. 0.1]. Since
t( R1 × R2) = t( R1) · t( R2), we may compute torsion indices of semi-simple root data by
reducing to irreducible ones.

5.2. – Let M be the character group of the root datum of G and let F be a formal group
law over a ring R. Let ε : R[[M ]]F → R be the augmentation map with the kernel I F . Let N
be the length of the longest element w0 of the Weyl group W of G. Let Fa be an additive
formal group law.

By definition of the torsion index (see [7, §5]) there exists an element a of the symmetric
algebra SNR (M) such that

∆Fa
w0

(a) = t.

Let φ : S∗R(M)
'→ Gr∗R(M)F be an isomorphism from Lemma 4.2. Let u0 ∈ INF be an

element such that ū0 = φ(a). Therefore, for any reduced decomposition I0 of w0 we have
ε∆F

I0
(u0) = t or, in other words, by Prop. 4.4

∆F
I0(u0) = t+ I F and CFI0(u0) = (−1)N t+ I F in R[[M ]]F .

L 5.3. – Let I be a sequence of simple reflections and let l(I) be its length. Then

1. for any i ∈ Z, ∆F
I ( I iF ) ⊆ I i−l(I)F and CFI ( I iF ) ⊆ I i−l(I)F ;
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2. if l(I) ≤ i and I is not reduced, then

∆F
I ( I iF ) ⊆ I i−l(I)+1

F and CFI ( I iF ) ⊆ I i−l(I)+1
F ;

3. let u0 ∈ INF be the element chosen above. If l(I) ≤ N then

ε∆F
I (u0) = (−1)N εCFI (u0) =

{
t if I is reduced and l(I) = N

0 otherwise.

Proof. – Claim (1) follows from Prop. 4.6, (1). To check (2), it therefore suffices to check
that Gr∆F

I is zero. It follows from the corresponding fact in the additive case [7, §4, Prop. 3,
(a)] after applying Prop. 4.4. The “otherwise” case of (3) follows from (2). The case where I
is reduced and has length N follows from the definition of u0.

P 5.4. – Consider the R-module εD(M)F of all R-linear forms εD, where
D ∈ D(M)F . Assume the torsion index t is regular in R. Then for any choice of a collection of
reduced decomposition Iw for each w ∈ W , the (ε∆Iw)w∈W (resp. the (εCIw)w∈W ) form an
R-basis of εD(M)F .

Proof. – By Theorem 4.11, the ε∆Iw generate εD(M)F . We prove that the ε∆Iw such
that l(Iw) ≤ i are independent by induction on i. It is obviously true when i < 0.
Let

∑
l(w)≤i rwε∆Iw = 0. By induction, it suffices to show that the coefficients rw with

l(w) = i are zero. For any v and w of length i, the concatenation Iw + Iv−1w0
is a reduced

decomposition of w0 if and only if v = w. Thus, by Lemma 5.3 (1) and (3) we have∑
l(w)≤i rwε∆Iw(∆Iv−1w0

(u0)) = rvt which implies that rv = 0 by regularity of t. The same
proof works for the CIw .

L 5.5. – Assume t is regular in R.

1. For any reduced decomposition Iw of w and any element u ∈ I iF \ I i+1
F , the element

u∆F
Iw

is in D(M)
(i−l(w))
F \ D(M)

(i−l(w)+1)
F .

2. The group D(M)
(i)
F is the set of D ∈ D(M)F such that D( I jF ) ⊆ I i+jF .

Proof. – It suffices to prove (1) after inverting the torsion index. By Lemma 5.3 (1), the
operator u∆F

Iw
is in D(M)

(i−l(w))
F . Consider the element y = ∆F

Iw−1w0

(u0). It is in I l(w)
F .

By Lemma 5.3 (3) the element s = ∆F
Iw

(y) is invertible. Hence, u∆F
Iw

(y) = us cannot be

in I i+1
F , and therefore u∆F

Iw
is not in D(M)

(i−l(w)+1)
F .

To prove (2), first note that Prop. 4.6 (3) immediately gives one inclusion. Suppose D is
such that D( I jF ) ⊆ I i+jF . Using Theorem 4.11 we may write it as

D =
∑
w

uw∆F
Iw .

Recall that ν(uw) denotes the largest integer such that uw ∈ I vF (see 4.9). Consider the set
S of w ∈W such that ν(uw)− l(w) is minimal and take an element w1 ∈ S such that l(w1)

is maximal. To show that D ∈ D(M)
(i)
F , it suffices to show that ν(uw1) − l(w1) ≥ i by

minimality of elements of S.
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Let y1 = ∆F
I
w
−1
1

w0

(u0) be the corresponding element in I l(w1). We have

D(y1) = uw1
∆F
Iw1

(y1) +
∑

w∈S\{w1}

uw∆Iw(y1) +
∑
w/∈S

uw∆Iw(y1).

By Lemma 5.3 (1) and (2), two sums on the right are in I ν(uw1 )+1

F . As in the proof of (1),

uw1∆F
Iw1

(y1) is not in I ν(uw1
)+1 so D(y1) is in I ν(uw1 )

F \ I ν(uw1 )+1

F . Since D(y1) is also

in I l(w1)+i
F , we obtain that ν(uw1)− l(w1) ≥ i.

We now consider the filtration on εD(M)F that is the image by ε of the filtration
on D(M)F defined in 4.5, i.e.,

εD(M)F ⊇ · · · ⊇ εD(M)
(i)
F ⊇ εD(M)

(i+1)
F ⊇ · · · ⊇ 0.

P 5.6. – Assume t is regular in R. This filtration satisfies the following.

1. For any i ∈ Z and εD ∈ εD(M)
(i)
F , we have εD( I−i+1

F ) = 0.
2. Let E be a subset of W of elements of length l, and let the Iw be reduced decompositions

of each of the w ∈ E. Then any nonzero R-linear combination

f =
∑
w∈E

rw · ε∆F
Iw (resp. εCFIw)

is in εD(M)−lF \ εD(M)−l+1
F . In particular, for any w

ε∆F
Iw ∈ εD(M)

−l(w)
F \ εD(M)

−l(w)+1
F (resp. with CFIw).

3. For any choice of reduced decompositions Iw for every element w ∈ W , the R-module
εD(M)

(−i)
F is a free R-module with basis the ε∆Iw (resp. εCIw) with l(w) ≤ i.

4. For any i ≤ −N , we have εD(M)
(i)
F = εD(M)F and for any i > 0, we have εD(M)

(i)
F = 0,

i.e., the filtration is of the form

εD(M)F = εD(M)
(−N)
F ⊇ εD(M)

(−N+1)
F ⊇ · · · ⊇ εD(M)

(0)
F ⊇ 0.

Proof. – Claim (1) follows from Lemma 5.5 (2). To prove (2), we first apply f to
∆F
Iw−1w0

(u0). By Lemma 5.3 (3), we obtain trw, which has to be zero by (1) for the ele-

ment f to be in I l+1
F . Therefore, each rw is zero. The last two claims follow.

6. Invariants and the characteristic map

We now come to the definition of an algebraic replacement H (M)F for the oriented coho-
mology h(G/B) whenG is a split semi-simple simply connected algebraic group correspond-
ing to the root datum and B is a Borel of G. The identification of H (M)F with h(G/B) is
the subject of Section 13.

D 6.1. – Let H (M)F be the R-dual of εD(M)F and let

cF : R[[M ]]F → H (M)F

denote the natural map obtained by duality, i.e., sending u to the evaluation at u. When the
formal group law is clear from the context, we write c for cF .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



422 B. CALMÈS, V. PETROV AND K. ZAINOULLINE

Again, when F = Fa is additive, this H (M)F corresponds to the one defined by
Demazure in [7, §3].

R 6.2. – Observe that when R has no 2-torsion, since the operators ∆F
α are

R[[M ]]WF -linear by Proposition 3.14, the characteristic map satisfies c(fu) = ε(f)c(u) when
f is in R[[M ]]WF .

T 6.3. – Let (Iw)w∈W be a choice of reduced decompositions and let ∆F
Iw

be the
operator defined in 3.9. When the torsion index t is regular in R, there is a unique R-basis z∆

Iw

of H (M)F such that the characteristic map is given by

c(u) =
∑
w

ε∆F
Iw(u)z∆

Iw .

Similarly, there is a unique R-basis zCIw of H (M)F such that the characteristic map is given by

c(u) =
∑
w

εCFIw(u)zCIw .

Proof. – We take the bases that are dual to the ones of Proposition 5.4.

T 6.4. – Assume that the torsion index t is invertible in R. Then for any choice
of a collection of reduced decompositions Iw for every w ∈ W , the c

(
∆Iw(u0)

)
(resp. the

c
(
CIw(u0)

)
) form an R-basis of the image of c. In particular, the characteristic map c is

surjective.

Proof. – We have c(u0) = t.z∆
I0

and

c
(
∆Iw−1w0

(u0)
)

= t.z∆
Iw +

∑
l(v)>l(w)

ε∆Iv∆Iw−1w0
(u0)z∆

Iv

by part (3) of Lemma 5.3. All the z∆
Iw

are thus in the image of the characteristic map by
decreasing induction on the length of w. The same proof works when replacing ∆ by C.

Still assuming that t is regular in R, let f : R→ R′ be a ring morphism sending a formal
group law F overR to a formal group law F ′ overR′. By restriction (through f ), H R′(M)F ′

is a R-module. Let f H : H (M)F → H R′(M)F ′ be the R-linear map sending the element
z∆
Iw

in H (M)F to the corresponding one in H R′(M)F ′ .

P 6.5. – We have the following:

1. The assignment f → f H defines a functor from the category of formal group laws (R,F )

(t regular in R) to the category of pairs (R,M) where M is a module over R, and the
morphisms are the obvious ones.

2. We have f H c
F = cF

′
f∗.

3. The map f H defined above is independent of the choice of the reduced decompositions Iw.

Proof. – Point (1) holds by construction. Point (2) follows from the formula for the
characteristic map given in Theorem 6.3. Since f∗ is defined independently of the Iw, the last
item (3) holds if the characteristic map is surjective. The general case follows by embedding
H R(M)F into H R[1/t](M)F where the characteristic map is surjective by Theorem 6.4.
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P 6.6. – Assume that t is invertible in R. Fix a reduced decomposition Iw for
each w ∈W . Then

1. For any x ∈ R[[M ]]F , the system of linear equations in R[[M ]]F

∆Iv (x) =
∑
w∈W

rw∆Iv∆Iw(u0)

for all v in W , has a unique solution (rw)w∈W .
2. If (rw)w∈W is the solution of (1), then for any D ∈ D(M)F , we have the equality

D(x) =
∑
w∈W

rwD∆Iw(u0).

3. If (rw)w∈W is the solution of (1) and if R has no 2-torsion, then all the rw are in fact
in R[[M ]]WF .

The same is true when replacing ∆ by C everywhere in (1), (2) and (3).

Proof. – LetA be a ring and I be an ideal ofA contained in its Jacobson radical. A matrix
with coefficients in A is invertible if and only if the corresponding matrix with coefficients
in A/ I is invertible. Since I F is contained in the radical of R[[M ]]F , it suffices to show that
the matrix of the system in R[[M ]]F / I F is invertible. If we order the v’s by increasing length
and the w’s by decreasing length, Lemma 5.3 shows that the matrix is lower triangular with
t on the diagonal, and it is therefore invertible. Part (2) follows from part (1) since the ∆Iw

(resp. theCIw ) form a basis of D(M)F as anR[[M ]]F -module by Theorem 4.11. Let us prove
part (3). For any simple root α and for any v ∈W , we have

∆α∆Iv (x) =
∑
w∈W

∆α

(
rw∆Iv∆Iw(u0)

)
=
∑
w∈W

rw∆α∆Iv∆Iw(u0) +
∑
w∈W

∆α(rw)sα∆Iv∆Iw(u0)

using part (4) of Proposition 3.8. But we also have

∆α∆Iv (x) =
∑
w∈W

rw∆α∆Iv∆Iw(u0)

by (2) with D = ∆α∆Iv . So ∑
w∈W

∆α(rw)sα∆Iv∆Iw(u0) = 0

for any v ∈ W . Applying the ring automorphism sα, we obtain that the sα∆α(rw) are
solution of the system (1) with x = 0 and are therefore 0 by uniqueness. Thus ∆α(rw) = 0

and rw is fixed by sα for any simple root α by Lemma 3.15 hence by the whole Weyl group
W , since it is generated by the simple reflections.

Point (3) for C is proved exactly in the same way (still using ∆α, not Cα).

T 6.7. – Assume that the torsion index t is invertible in R and that R has no
2-torsion. Choose a reduced decomposition Iw for every w ∈W . The elements ∆Iw(u0) (resp.
CIw(u0)) form a basis of R[[M ]]F as an R[[M ]]WF -module.
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Proof. – We need to show that any x can be decomposed in a unique way as
x =

∑
w∈W rw∆Iw(u0). Note that this is the row v = 1 of the system (1) of Proposition 6.6.

By R[[M ]]WF -linearity of any ∆Iv (see Prop. 3.14), if that row is satisfied with coefficients rw
in R[[M ]]WF , the rest of the system is satisfied, so this proves uniqueness. Existence of the
decomposition then follows from parts (1) and (3) of the proposition. The same proof goes
through with the CIw(u0).

R 6.8. – The previous theorem for the (uncompleted) symmetric algebra, i.e., the
additive case, is [7, §6, Théorème 2, (c)], but the proof given there is incorrect: in the notation
of loc. cit., the ideal I is only known a priori to be of the right form to apply the graded
Nakayama lemma when it is tensored by Q, a fact that cannot be assumed, this is the whole
point of the theorem. When contacted by one of the authors, Demazure kindly and quickly
supplied another proof which we adapted to our setting in Proposition 6.6. There is a slight
difference: in the symmetric algebra case, the matrix of the system is upper triangular with
diagonal t and is therefore invertible, whereas in our case, the lower triangular part does not
vanish because our formal group law is not additive, but the strictly upper triangular part is
in the radical because our ring is complete.

T 6.9. – Assume that the torsion index t is invertible in R and that R has no
2-torsion. Then the kernel of the characteristic map c : R[[M ]]F → H (M)F is the ideal
of R[[M ]]F generated by elements in IWF .

Proof. – By Remark 6.2, the ideal generated by IWF is included in ker c. Conversely,
let x ∈ ker c, and decompose it as

∑
w∈W rw∆Iw(u0) with the rw ∈ R[[M ]]WF by the previous

theorem. We then have 0 = c(x) =
∑
w∈W ε(rw)c

(
∆Iw(u0)

)
. But the c

(
∆Iw(u0)

)
form an

R-basis of the image of c by Theorem 6.4, so ε(rw) = 0 for all w ∈ W and x is the ideal
generated by IWF .

7. The product structure of the cohomology

In this section, we explain how to define a product on H (M)F in order that the charac-
teristic map be a ring homomorphism. Then, we study the structure of H (M)F .

L 7.1. – For any D ∈ D(M)F ,

1. there is a finite family (Di, D
′
i) of elements of D(M)F such thatD(uv) =

∑
iDi(u)D′i(v)

for any elements u, v ∈ R[[M ]]F .
2. Furthermore if D is in D(M)

(j)
F , each Di and D′i can be chosen in D(M)

(mi)
F and

D(M)
(m′i)
F respectively, such that mi +m′i ≥ j.

Proof. – To show (1), the elements of D(M)F satisfying the statement form a sub-
R[[M ]]F -algebra of D(M)F , and it is clear for generators of D(M)F by Equation (4) of
Prop. 3.8. This same equation also proves (2) for generators by induction.

Let R[[M ]]o∨F be the continuous R-dual of R[[M ]]F , i.e., the set of R-linear morphisms f
from R[[M ]]F to R such that f( I iF ) = 0 for some i (depending on f ).

4 e SÉRIE – TOME 46 – 2013 – No 3



ORIENTED COHOMOLOGY OF COMPLETE FLAGS 425

L 7.2. – The R-module R[[M ]]o∨F is flat. When t is regular in R, the R-module
εD(M)F is also flat.

Proof. – For any i, the R-module I iF / I i−1
F is a free R-module since it is isomorphic

to SiR(M). Thus, by induction, for any i, the quotientR[[M ]]F / I iF is a finitely generated free
R-module, thus flat. Now R[[M ]]o∨F is the direct limit of the (R[[M ]]F / I i)∨ (usual R-duals)
and it is therefore flat. When t is regular, the module εD(M)F is a finitely generated free
R-module by 5.4, so it is flat.

T 7.3. – Let t be regular in R. There is a unique ring structure on H (M)F such
that the characteristic map c : R[[M ]]F → H (M)F is a ring morphism.

Proof. – Since R → R[1/t] is an injection and H (M)F is a free R-module, we can
check uniqueness after inverting t, in which case it is obvious since the characteristic map
is surjective. Let us now prove the existence of this product. The R-module R[[M ]]o∨F has a
natural structure of coalgebra induced by the collection of maps

(R[[M ]]F / I i)∨ → (R[[M ]]F / I i)∨ ⊗ (R[[M ]]F / I i)∨

dual to the product, and taking direct limits. The inclusion εD(M)F ⊆ R[[M ]]o∨F induces
the diagonal map εD(M)F ⊗R εD(M)F → R[[M ]]o∨F ⊗R R[[M ]]o∨F which is injective by
Lemma 7.2. To show that εD(M)F is a subcoalgebra ofR[[M ]]o∨F , it therefore suffices to show
that the composition εD(M)F → R[[M ]]o∨F → R[[M ]]o∨F ⊗R R[[M ]]o∨F factors through the
image of εD(M)F ⊗R εD(M)F in R[[M ]]o∨F ⊗R R[[M ]]o∨F . This is ensured by Lemma 7.1.
Now H (M)F is the dual of a coalgebra, and is therefore an R-algebra. By construction, the
characteristic map is a ring homomorphism.

7.4. – We now filter the ring H (M)F by setting that H (M)
(i)
F is the set of forms

on εD(M)F that are zero on εD(M)
(−i+1)
F . By Proposition 5.6, we therefore have

H (M)
(0)
F = H (M)F and H (M)

(N+1)
F = 0. In other words, the filtration has the form

H (M)F = H (M)
(0)
F ⊇ H (M)

(1)
F ⊇ · · · ⊇ H (M)

(N)
F ⊇ 0.

We consider the augmentation map ε : H (M)F → R defined as the evaluation at
ε ∈ εD(M)F .

P 7.5. – Assume t is regular in R. We have:

1. H (M)
(1)
F is the kernel of ε.

2. The filtration is compatible with the product:

H (M)
(j)
F H (M)

(k)
F ⊆ H (M)

(j+k)
F .

3. The characteristic map c is a morphism of filtered rings.

Proof. – Point (1) is clear since ε generates D(M)
(0)
F . Let h1 ∈ H (M)

(j)
F and

h2 ∈ H (M)
(k)
F . The product h = h1.h2 is defined as h(εD) =

∑
i h1(εDi)h2(εD′i)

where the (Di, D
′
i) are as in Lemma 7.1. By the same lemma, if D ∈ D(M)

(−j−k+1)
F , they

can be chosen such that Di ∈ D(M)
(ji)
F and D′i ∈ D(M)

(ki)
F with ji + ki ≥ −j − k + 1.

Thus, for any i, either ji ≥ −j + 1 or ki ≥ −k + 1, so every term in the sum is zero and
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h ∈ H (M)
(j+k)
F . For part (3), take an element u in I iF . By definition, c(u) is the evaluation

at u in εD(M)∨F = H (M)F so by Prop. 5.6 (1), c(u) is in H (M)
(i)
F .

P 7.6. – Let Iw be choices of reduced decompositions for every w ∈ W .
Assume the torsion index t is regular in R. Then

1. For any i, the elements z∆
Iw

(resp. zCIw) with l(w) ≥ i generate H (M)
(i)
F .

2. The elements z∆
Iw0

and zCIw0
of Theorem 6.3 do not depend on the choices of decompositions

Iw and are equal up to the sign (−1)N . The element zCIw0
is denoted by z0 and for any u0

as in Section 5, we have c(u0) = (−1)N tz0.

Proof. – Point (1) follows from part (3) of Proposition 5.6 since the z∆
Iw

(resp. zCIw ) are
the dual basis to the ε∆Iw (resp. εCIw ). By Theorem 6.3, we have c(u0) = tz∆

Iw0
. But the left

hand side is independent of the choices of the Iw and the right hand side is independent of
the choice of u0, which proves the claim. We also have c(u0) = (−1)N tz0.

7.7. – We now consider operators on H (M)F . For any root α, multiplication on the right
by Cα (resp. ∆α)) defines an endomorphism on εD(M)F , and therefore one on H (M)F by
duality. This operator is denoted by Aα (resp. Bα). In other words, for any h ∈ H (M)F and
εD ∈ εD(M)F , we have

Aα(h)(εD) = h(εDCα) and Bα(h)(εD) = h(εD∆α).

As for the operators ∆ and C, we use the notation AI and BI for a sequence I of simple
reflections.

P 7.8. – When t is regular in R, these operators satisfy:

1. Aα ◦ c(u) = c ◦ Cα(u) and Bα ◦ c(u) = c ◦∆α(u).
2. Aα H (M)

(i)
F ⊆ H (M)

(i−1)
F and Bα H (M)

(i)
F ⊆ H (M)

(i−1)
F .

3. For any reduced decomposition I0 ofw0, the elementAI0(z0) (resp.BI0(z0)) is invertible
in H (M)F .

4. If I is nonreduced and of length N , then the element AI(z0) (resp. BI(z0)) is
in H (M)

(1)
F = ker ε.

Proof. – Point (1) follows directly from the definitions of the characteristic map and of
the operators. Point (2) follows from part (1) of Proposition 4.6. For (3), first note that by
Proposition 7.5, an element h ∈ H (M)F is invertible if and only if ε(h) is invertible in R.
Now

t εAI0(z0) = εAI0(tz0) = εAI0c(u0) = εc
(
CI0(u0)

)
= εCI0(u0) = t.

Therefore, εAI0(z0) = 1. The same proof works for εBI0(z0). For part (4), the same series
of equalities is used, except that the last term is zero by Prop. 5.3.

P 7.9. – Let Iw be a choice of reduced decompositions for allw ∈W . Assume
t is regular inR. Then the elementsAIw(z0) (resp.BIw(z0)) with l(w) ≤ N−i form anR-basis
of H (M)

(i)
F .
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Proof. – We prove it for the AIw(z0), the proof for the BIw(z0) is similar. First note that
by Proposition 7.6, z0 is the unique element of H (M)F such that z0(εCIw) = δw,w0

. Thus, if
l(w) + l(v) ≤ N , we have AIw(z0)

(
εCIv

)
= δw,v−1w0

. In other words, if we decompose AIw
on the basis of the zIv , the coordinate on zIv is δw,v−1w0

if l(v)+l(w) ≤ N . Thus, theAIw(z0)

with l(w) ≤ N − i can be expressed as linear combinations of the zIv with l(v) ≥ i and the
matrix of their expressions is unitriangular up to a correct ordering of rows and columns and
is therefore invertible.

P 7.10. – Assume t is regular in R and R′, respectively endowed with formal
group laws F and F ′. Let f : R→ R′ be a ring morphism sending F to F ′. Then the morphism
f H : H R(M)F → H R′(M)F ′ introduced before Proposition 6.5 is actually a morphism of
filtered rings. It satisfies

AF
′

I f H = f HA
F
I and BF

′

I f H = f HB
F
I

for any sequence I.

Proof. – Both facts are clear by Point 2 of 6.5 when the characteristic map is surjective,
and therefore when t is regular by extending scalars to R [1/t].

PART II

BOTT-SAMELSON RESOLUTIONS FOR ORIENTED THEORIES

8. Algebraic cobordism and oriented cohomology theories

In the present section we recall the notion of oriented cohomology theory and the notion
of algebraic cobordism Ω following the book of Levine and Morel [14]. As main examples
of oriented theories we consider the Chow ring CH, Grothendieck’s K0 and connective
K-theory k.

8.1. – According to [14, §1.1] an oriented cohomology theory h is a contravariant func-
tor from the category of smooth varieties over a field k of an arbitrary characteristic to the
category of graded rings satisfying the standard cohomological axioms: existence of push-
forwards for projective morphisms, the projection formula, base change, homotopy invari-
ance and the projective bundle axiom (see [14, Def. 1.1.2]).

A universal theory Ω satisfying these properties was constructed in [14, §2] assuming the
base field k has characteristic 0. It is called algebraic cobordism. An element of codimension i
in Ω(X), i.e., in Ωi(X), is additively generated by classes [Y → X] of projective maps of
codimension i from smooth schemes Y .

For any map f : X1 → X2 the induced functorial map f∗ : Ωi(X2) → Ωi(X1) is called
the pull-back. For a projective map f : X1 → X2, there is a corresponding push-forward map
f∗ : Ω(X1) → Ω(X2) shifting the cohomological degree by dimX2 − dimX1 when X1 and

X2 are equidimensional and given by [Y1 → X1] 7→ [Y1 → X1
f−→ X2].
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8.2. – An oriented cohomology theory h comes with a formal group law F over the
coefficient ring h(pt) such that

F (ch1( L1), ch2( L2)) = ch1( L1 ⊗ L2),

where L1 and L2 are lines bundles onX and ch1 denotes the first Chern class in the cohomol-
ogy theory h (see [14, Cor.4.1.8]). For Ω, the associated formal group law U

U(x, y) = x+ y +
∑
i,j≥1

aijx
iyj , where aij ∈ Ω(pt)

turns out to be universal. The ring of coefficients Ω(pt) is generated by the coefficients aij
and coincides with the classical Lazard ring L.

There is a canonical map prh : Ω → h sending the coefficients of U to the corresponding
coefficients of F , and hence inducing a morphism of formal group laws.

E 8.3. – Consider the Chow ring CH(X) of algebraic cycles on X modulo
rational equivalence. According to [14, Thm. 4.5.1] the canonical map prCH : Ω → CH

induces an isomorphism Ω ⊗L Z '→ CH of oriented cohomology theories. In partic-
ular, prCH : Ω → CH is surjective and its kernel is generated by L>0, the subgroup of
elements of positive dimension in the Lazard ring. Observe that prCH restricted to the
coefficient rings L → Z = CH(pt) coincides with the augmentation map. The associated
formal group law, denoted by F0, is called the additive formal group law and is given by
F0(x, y) = x+ y.

E 8.4. – Consider the oriented cohomology theory K(X) = K0(X)[β, β−1],
where K0(X) is the Grothendieck K0 of X. Observe that K(pt) = Z[β, β−1]. According
to [14, Cor.4.2.12] the canonical map prK : Ω → K sending [P1] to β induces an isomor-
phism Ω ⊗L Z[β, β−1] → K of oriented cohomology theories. The associated formal group
law, denoted by Fβ , is called a multiplicative periodic formal group law and is given by
Fβ(x, y) = x+ y − βxy.

E 8.5. – Consider a ring homomorphism L → Z[v] given by [P1] = −a11 7→ v

and aij 7→ 0 for (i, j) 6= (1, 1). We define a new cohomology theory, called a connective
K-theory, by k = Ω ⊗L Z[v] (see [14, §4.3.3]). Its formal group law is denoted by Fv and is
given by Fv(x, y) = x + y − vxy. Observe that contrary to Example 8.4 the element v is
non-invertible in the coefficient ring k(pt) = Z[v].

R 8.6. – In positive characteristic, one can replace Ω by the theory ›CH obtained
by applying Merkurjev’s “tilde operation” [15] to Chow theory. Note that the Lazard ring L
injects into the coefficient ring C̃H(pt).

Let us prove a general fact concerning cellular filtrations.

D 8.7. – The oriented cohomology theory h is said to satisfy the weak local-
ization axiom if for any closed embeddingD → X between smooth schemes with open com-
plement U , the sequence h(Z) → h(X) → h(U), composed of the push-forward from D

followed by the restriction to U , is exact.
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Let now X be a smooth variety over k together with a filtration

U0 = ∅ ⊂ U1 ⊂ · · · ⊂ Un = X

by open subsets, such that for each i = 1, . . . , n, the closed complementAi = Ui \Ui−1 has a
scheme structure of affine spaces over k. Let Zi be the closure of Ai in X. Note in particular
that all Ui are smooth varieties over k, and that Zi ∩Ui = Ai. Let Xi be a desingularization
ofZi by a projective morphism, such that the preimage ofUi inXi maps isomorphically toUi
(this is not really needed, but it simplifies exposition, and will be true in the cases where we
will use this setting). Let ζi be the pushforward of 1Zi ∈ h(Zi) to h(X).

T 8.8. – If h satisfies the weak localization axiom, then the classes ζi generate
h(X) as a module over h(pt).

Proof. – By base change, the class ζi restricted to Ui is the push-forward of 1Ai ∈ h(Ai)

to h(Ui). By homotopy invariance, h(Ai) is a free h(pt)-module of rank 1 and 1Ai is a
basis. Now, by induction, using exactness (in the middle only) of the localization sequence
h(Ai)→ h(Ui)→ h(Ui−1), one simultaneously proves the following facts: 1. The restriction
from h(Ui) to h(Ui−1) is surjective. 2. h(Ui) is generated by the restrictions of the classes ζk
for k ≤ i.

We now come to the following important property of an algebraic cohomology theory:

D 8.9. – We say that a cohomology theory is weakly birationally invariant if
for any proper birational morphism f : Y → X the push-forward of the fundamental class
f∗(1Y ) is invertible.

E 8.10. – Any birationally invariant theory, i.e., such that f∗(1Y ) = 1X for any
proper birational f : Y → X, is weakly birationally invariant. The Chow ring CH considered
over an arbitrary field and theK-theory K considered over a field of characteristic 0 provide
examples of birationally invariant theories. According to [14, Thm.4.3.9] the connective
K-theory k defined over a field of characteristic 0 is universal among all birationally invariant
theories. In particular, the kernel of the canonical map L→ k(pt) is generated by differences
of classes [X]− [X ′], where X and X ′ are birationally equivalent.

L 8.11. – For any smooth variety X over a field of characteristic 0, the kernel of
the natural map Ωn(X) → CHn(X) consists of nilpotent elements if n ≥ 0 and is trivial if
n = dimX.

Proof. – According to [14, Rem. 4.5.6] the kernel is additively generated by products of
the form ab, a ∈ L−i, b ∈ Ωn+i(X), i > 0. Now the claim follows from the fact that
Ωj(X) = 0 when j > dimX.

C 8.12. – Over a field of characteristic 0, any oriented cohomology theory in the
sense of Levine-Morel is weakly birationally invariant.

Proof. – Consider the algebraic cobordism Ω. Let f : Y → X be a proper birational map.
The element fΩ

∗ (1Y ) − 1X is in the kernel of the map Ω0(X) → CH0(X). By Lemma 8.11
the difference fΩ

∗ (1Y )−1X is nilpotent, therefore, fΩ
∗ (1Y ) is invertible. The statement for an

arbitrary theory follows by the universality of Ω.
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9. A sequence of split P1-bundles

In the present section we compute the oriented cohomology h of a variety obtained as a
sequence of split P1-bundles. The main tool is the projective bundle theorem for h. Observe
that all formulas are given in terms of pull-backs and push-forwards of fundamental classes.
This invariant description will play an important role in the sequel.

L 9.1. – Let X be a smooth projective variety over a field k. Let p : PX( E)→ X be
the projective bundle of a vector bundle E of rank 2 overX. Assume that p has a section σ. Then
there is a ring isomorphism

h(PX( E)) ' h(X)[ξ]/(ξ2 − yξ), where ξ = σ∗(1X) and y = p∗σ∗ξ.

Proof. – Consider the canonical embedding O E(−1) → p∗ E, where O E(−1) is a tauto-
logical line bundle over PX( E) (see [9, B.5.5]). Let L denote the quotient E/σ∗ O E(−1). By
the Whitney formula (see [14, Prop. 4.1.15]) we have

ch1( E) = ch1(σ∗ O E(−1)) + ch1( L) and ch2( E) = ch1(σ∗ O E(−1)) · ch1( L).

According to the projective bundle theorem (see [14, Def. 1.1.2 and Chern classes on p.3])
applied to p, there is a ring isomorphism

h(PX( E)) ' h(X)[t]/(t− a)(t− b),

where a = p∗ch1(σ∗ O E(−1)), b = p∗ch1( L) and t = ch1( O E(−1)).

Consider the elements ξ = b −F t and y = b −F a, where F is the formal group law
corresponding to h. Observe that by [17, 2.2.9] ξ = ch1( O E(1) ⊗ p∗ L) = σ∗(1X) and by the
very definition y = ch1(p∗σ∗ O E(1)⊗ p∗ L) = p∗σ∗ξ.

Since changing t to ξ induces an automorphism of h(PX( E)), we only need to prove
the relation ξ2 − yξ = 0. Note that for any power series f , we may write f(x) − f(y) =

(x − y)f ′(x, y) where f ′(x, y) is again a power series. Hence, we have b −F t =

(b −F t) − (t −F t) = (t − b)f ′1(b, t) and (b −F t) − (b −F a) = (t − a)f ′2(a, b, t) for
some power series f ′1 and f ′2. Therefore

ξ(ξ − y) = (b−F t)
(
(b−F t)− (b−F a)

)
= (t− b)(t− a)f ′1(b, t)f ′2(a, b, t) = 0

and the proof is finished.

C 9.2. – In the notation of Lemma 9.1 we have the following formula for the
push-forward of the fundamental class

p∗(1PX( E)) = σ∗(ξ−1 + (−F ξ)−1).

Proof. – By [22, Thm. 5.30] we have

p∗(1PX( E)) = (σ∗b−F σ∗a)−1 + (σ∗a−F σ∗b)−1,

where σ∗a and σ∗b are the roots of the bundle E as in the proof of Lemma 9.1. Since
y = b−F a = p∗σ∗ξ we obtain the desired formula.
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T 9.3. – More generally, letX be a variety obtained by means of a sequence of split
P1-bundles, i.e., there is a sequence of varieties Xi, 0 ≤ i ≤ N , starting from a point X0 = pt

and finishing at XN = X such that for each 1 ≤ i ≤ N

pi : Xi ' PXi−1( Ei)→ Xi−1

is a projective bundle with a section σi, where Ei is some vector bundle of rank 2 over Xi−1.
Then there is a ring isomorphism

h(XN ) ' h(pt)[ξ1, . . . , ξN ]/I,

where I is an ideal generated by elements {ξ2
i − yiξi}i=1...N , ξi = p∗σi∗(1Xi−1

),
yi = p∗σ∗i σi∗(1Xi−1

) and p∗ denotes the pull-back on XN .

Proof. – Follows by induction using Lemma 9.1.

R 9.4. – Observe that the element yi appearing in the relations is not necessar-
ily in h(pt). To obtain a complete answer in terms of generators ξ1, . . . , ξN and relations
with coefficients in h(pt) one has to express the elements yi in terms of the ‘previous’ gen-
erators ξ1, . . . , ξi−1. In the next section, we show how to obtain such an expression for Bott-
Samelson varieties using the characteristic map.

E 9.5. – LetX be as in Lemma 9.1. By [9, 3.2.11] we have the following formula
for the total Chern class of the tangent bundle of PX( E):

ch( T PX( E)) = ch(p∗ T X) · ch( O E(1)⊗ p∗ E).

Since there is an exact sequence

0→ O E(1)⊗ p∗σ∗ O E(−1)→ O E(1)⊗ p∗ E→ O E(1)⊗ p∗ L → 0,

by Cartan formula we obtain

ch( O E(1)⊗ p∗ E) = ch( O E(1)⊗ p∗ L) · ch( O E(1)⊗ p∗σ∗ O E(−1)).

Since O E(1)⊗ p∗σ∗ O E(−1) = ( O E(1)⊗ p∗ L)⊗ (p∗σ∗ O E(−1)⊗ p∗ L∨), we obtain that

ch( T PX( E)) = ch(p∗ T X) · (1 + ξ) · (1 + (ξ −F y)).

More generally, for XN from Theorem 9.3 we obtain by induction

(4) ch( T XN ) =
N∏
i=1

(1 + ξi)(1 + (ξi −F yi)).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



432 B. CALMÈS, V. PETROV AND K. ZAINOULLINE

10. An elementary step of the Bott-Samelson resolution

We apply the results of the previous section to compute an oriented cohomology of a split
P/B = P1-bundle, whereP is a semi-direct product of a split reductive linear algebraic group
of semisimple rank one and a connected unipotent group, and B is a Borel subgroup of P .
This example appears as an elementary step in the construction of a Bott-Samelson variety.

10.1. – Consider a split connected solvable algebraic group B over a field k. Let T denote
its split maximal torus. LetX be a scheme on whichB acts on the right such that the quotient
X/B exists and X → X/B is a principal B-bundle. Let M denote the group of characters
of T . Each character λ ∈M extends to a one-dimensional representation Vλ ofB and, hence,
defines a line bundle L(λ) overX/B whose total space is the fiber productX×B Vλ, i.e., the
quotient (X×k Vλ)/B by means of the rightB-action (x, v)b = (xb, b−1v) (see [1, Ch.1 §3]).

D 10.2. – Let h be an oriented cohomology theory and let F be the corre-
sponding formal group law over the coefficient ring R = h(pt). We define a ring homo-
morphism c : R[[M ]]F → h(X/B) from the formal group ring R[[M ]]F to the cohomol-
ogy ring h(X/B) by sending a generator xλ to the first Chern class ch1( L(λ)) of the line
bundle L(λ). This map is well-defined since all Chern classes are nilpotent and satisfy
ch1( L(λ + µ)) = ch1( L(λ) ⊗ L(µ)) = ch1( L(λ)) +F c

h
1( L(µ)). It is called the characteristic

map.

10.3. – We follow the notation of [7, §2]: Let P be a semi-direct product of a connected
unipotent group U and a reductive split group L of semi-simple rank 1. Let T be a maximal
split torus of L and let M denote its group of characters. Let α be the one of two roots of L
with respect to T , let Uα be the corresponding unipotent subgroup and let B = T · Uα · U
be the Borel subgroup of P containing T . Let sα(λ) = λ − α∨(λ) · α denote the reflection
corresponding to the root α.

Consider the fibered product X ′ = X ×B P , i.e., the quotient (X ×k P )/B by means of
the B-action (x, h)b = (xb, b−1h). By definition, X ′ is a principal P -bundle over X/B, all
fibers of the canonical projection p : X ′/B → X/B are isomorphic toP/B ' P1 and there is
an obvious section σ : X/B → X ′/B given by x 7→ (x, 1). According to [11, Exerc. 7.10.(c)]
there exists a vector bundle E of rank 2 over X/B such that X ′/B can be identified with the
projective bundle PX/B( E).

R 10.4. – Observe that in [7, §2] instead of the quotientX ′/B the author consid-
ers the quotient of X ′ modulo the opposite Borel subgroup B′. This does not change much,
since there is an obvious isomorphism i : X ′/B → X ′/B′ induced by an automorphism
of X ′ sending the class of (x, p) to the class of (x, pnα), where nα is an element of P rep-
resenting the reflection sα. In particular, for any character λ we have i∗ L ′(λ) = L ′(sα(λ)),
where L ′(λ) (resp. L ′(sα(λ))) is the line bundle over X ′/B′ (resp. over X ′/B).

10.5. – Applying Lemma 9.1 to the projective bundle p : PX/B( E) → X/B with the
section σ we obtain an isomorphism

h(X ′/B) ' h(X/B)[ξ]/(ξ2 − yξ), where ξ = σ∗(1X/B) and y = p∗σ∗ξ.
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L 10.6. – We have σ∗ξ = ch1( L(−α)) = c(x−α).

Proof. – By definition of the push-forward we have ξ = ch1( O(D)), where O(D) is a line
bundle corresponding to the divisor D = σ(X/B). The first equality then follows from [8,
§2.5 Lem. 3]. The second one follows from the definition of the characteristic map c.

C 10.7. – We have y = p∗σ∗ξ = p∗c(x−α).

L 10.8. – Consider the characteristic map c′ : R[[M ]]F → h(X ′/B). For any
u ∈ R[[M ]]F , we have

(1) σ∗c′(u) = c(u) and (2) c′(u) = p∗c(sα(u)) + p∗c
(
∆−α(u)

)
· ξ.

Proof. – By [8, §2.5 Lem. 1 and Prop.1], for any character λ ∈M , we have two equalities

σ∗ L ′(λ) = L(λ) and L ′(sα(λ)) = p∗( L(λ))⊗ O(D)⊗α
∨(λ),

where L ′(λ) is the corresponding line bundle over X ′/B and O(D) is a line bundle corre-
sponding to the divisor D = σ(X/B).

By the first equality, formula (1) holds for u = xλ. It therefore holds for all u ∈ R[M ]F
and then for all u ∈ R[[M ]]F by continuity.

By the second equality, we have for u = xλ

c′(xsα(λ)) = p∗c(xλ) +F (α∨(λ)) ·F ξ.

Note that for any power series g(ξ) in a variable ξ we may write g(ξ) = g(0)+ξ ·g′(ξ), where
g′(ξ) = (g(ξ)−g(0))/ξ is again a power series. Since, ξ2 = yξ, we have g(ξ) = g(0)+ξ ·g′(y).
Applying this to g(ξ) = p∗c(xλ) +F α

∨(λ) ·F ξ and observing that g(0) = p∗c(xλ) we obtain

c′(xsα(λ)
) = p∗c(xλ) + ξ · g′(y),

where g(y) = p∗c(xλ +F α∨(λ) ·F x−α) = p∗c(xsα(λ)) by Cor. 10.7. Then by defini-
tion of the operator ∆−α we obtain g′(y) = p∗(−∆−α(xλ)) and, hence, c′(xsα(λ)

) =

p∗c(xλ)− p∗c
(
∆−α(xλ)

)
ξ. Since ∆−αsα = −∆−α, applying sα to u we obtain

c′(xλ) = p∗c(sα(xλ)) + p∗c
(
∆−α(xλ)

)
· ξ.

For general u formula (2) then follows by induction on the degree of monomials and by
continuity, using Prop. 3.8 (4) and ξ2 = yξ.

R 10.9. – Following Remark 3.7, the second formula would look simpler with the
other definition of ∆α.

P 10.10. – The following formulas hold for any u ∈ R[[M ]]F

(1) p∗(1X′/B) = c
(
Cα(1)

)
, (3) p∗

(
c
(
Cα(u)

))
= c′

(
Cα(u)

)
,

(2) p∗
(
c′(u)

)
= c
(
Cα(u)

)
, (4) p∗p∗(c

′(u)) = c′(Cα(u)).
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Proof. – The first formula of the proposition follows from Corollary 9.2 applied to
the projective bundle p : X ′/B → X/B where we identify σ∗ξ with c(x−α) according to
Lemma 10.6.

By (2) of Lemma 10.8 and the projection formula we have

p∗
(
c′(u)

)
= c(sα(u)) · p∗(1X′/B) + c

(
∆−α(u)

)
· p∗(ξ).

By the first formula and the fact that p∗(ξ) = p∗(σ∗(1X/B)) = 1X/B it can be rewritten as

c(sα(u)) · c
(
Cα(1)

)
+ c
(
∆−α(u)

)
= c
(
sα(u)Cα(1) + ∆−α(u)

)
.

Using the definition of Cα and part (3) of Proposition 3.13 we finally obtain

= c(sα(u) · eα + ∆−α(u)) = c(C−α(s−α(u))) = c(Cα(u)).

This proves the second formula.
The third formula follows from part (2) of Lemma 10.8 and from the fact that

C−α∆−α = 0 (see (6) of Prop. 3.13). The last formula is obtained by the composite of
the second and the third one.

11. Bott-Samelson varieties

In the present section we compute an oriented cohomology of Bott-Samelson varieties.
For definition and basic properties of Bott-Samelson varieties, we refer to papers [1], [19], [5]
and [24].

11.1. – Let G be a split semisimple linear algebraic group over a field k, let T be a split
maximal torus of G and let T ⊂ B be a Borel subgroup. Let {α1, α2, . . . , αn}, where n
is the rank of G, be a set of simple roots of G. Let Pi be a minimal parabolic subgroup
corresponding to a simple root αi, i.e., the subgroup generated by unipotent subgroups Uαj ,
1 ≤ j ≤ n and U−αi .

D 11.2. – For an l-tuple of integers I = (i1, i2, . . . , il) with 1 ≤ ij ≤ n, we
define a variety XI to be the fiber product

XI = Pi1 ×B Pi2 ×B · · · ×B Pil .

If I = ∅, then we set X∅ = pt.
Observe that there is a natural right action of B on XI , the quotient XI/B exists and

XI → XI/B is a principal B-bundle. The variety XI/B is called a Bott-Samelson variety
corresponding to I.

11.3. – Let J = (i1, i2, . . . , il−1). Then XI = XJ ×B Pil , and we are in the situation of
10.3 for P = Pil , α = αil , X

′ = XI and X = XJ . In particular, the projection map

pI : XI/B → XJ/B

has a structure of a P1-bundle with a section denoted by σI .
Observe that the structure map πI : XI/B → pt can be written as a composite of

projection maps

XI/B → X(i1,...,il−1)/B → · · · → X(i1)/B → pt.
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Hence, the variety XI/B is obtained by means of a sequence of split P1-bundles.

According to 10.1 for an oriented cohomology theory h with a formal group law F there
is a well-defined characteristic map

cI : R[[M ]]F → h(XI/B),

where R[[M ]]F is the formal group ring of the group of characters M of T . Observe that
c∅ = ε is the augmentation map. Applying Theorem 9.3 and Corollary 10.7 we obtain an
isomorphism

(5) h(XI/B) ' h(pt)[ξ1, ξ2, . . . , ξl]/({ξ2
j − yjξj}j=1...l),

where yj = p∗c(i1,...,ij−1)(x−αij ) and p∗ denotes the pull-back to h(XI/B).

T 11.4. – Let XI/B be the Bott-Samelson variety corresponding to an l-tuple
I = (i1, . . . , il). For any subset K of [1, l] we define

ξK =
∏
j∈K

ξj and ΘK = Θ1 · · ·Θl, where Θj =

{
∆−αij if j ∈ K,
sαij otherwise.

Then the elements ξK , where K runs through all subsets of [1, l], form a basis of the free
h(pt)-module h(XI/B). As a ring h(XI/B) is a quotient of the polynomial ring h(pt)[ξ1, . . . , ξl]

modulo the relations
ξ2
j =

∑
K⊆[1,j−1]

εΘK(x−αij )ξKξj .

Proof. – The fact that h(XI/B) is a free h(pt)-module with a basis ξK follows by the pro-
jective bundle theorem, since XI/B is obtained by means of a sequence of split P1-bundles.
To obtain the relations, we first use Lemma 10.8.(2) to prove by induction that

(6) c(i1,...,ij)(u) =
∑

K⊆[1,j]

εΘK(u)ξK .

Using this we then compute yj and plug the result into the Formula (5).

The following lemma provides a formula for the push-forward of the structure map
πI : XI/B → pt:

L 11.5. – Consider the variety XI/B for a tuple I = (i1, . . . , il). For any
u ∈ R[[M ]]F we have

πI∗
(
cI(u)

)
= εCI(u),

where CI = Cα1
. . . Cαl is the composite of operators defined in 3.12.

Proof. – Decomposing the structure map as πI : XI/B
pI→ XJ/B

πJ→ pt, where
J = (i1, . . . , il−1) and applying Prop. 10.10.(2) we obtain

πI∗
(
cI(u)

)
= πJ∗pI∗

(
cI(u)

)
= πJ∗

(
cJ(Cαl(u))

)
.

Repeating this recursively for the structure map πJ : XJ/B → pt and so on, we obtain the
desired formula.
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12. Bott-Samelson resolutions

In the present section we discuss the relations between Bott-Samelson varieties and Schu-
bert varieties on G/B.

12.1. – According to Bruhat decomposition the variety of complete flags G/B is a finite
disjoint union of affine spacesG/B =

∐
w∈W BwB/B, whereW is the Weyl group ofG. The

closure of a cellBwB/B is denoted byXw and is called a Schubert variety. Observe thatXw

is not smooth in general.
Let w = si1si2 . . . sil be a (reduced) decomposition into a product of simple reflections

(here si denotes sαi ) with l = l(w) being the length of w. The multiplication map induces a
morphism

qI : XI/B → G/B, where I = (i1, i2, . . . , il).

By the results of [1, Ch. 3] (see also [19, §1.7] and [5, §4]) this map factors as
qI : XI/B → Xw ↪→ G/B, where the first map is surjective birational and the second
is a closed embedding. Furthermore, when J is I with the last entry removed, we have
qI ◦ σI = qJ .

L 12.2. – Consider the characteristic map cG/B : R[[M ]]F → h(G/B). For any
u ∈ R[[M ]]F we have

q∗I (cG/B(u)) = cI(u).

Proof. – By definition of the map qI and the bundle L(λ) we have q∗I ( L(λ)) = LI(λ),
where L(λ) (resp. LI(λ)) is the line bundle over G/B (resp. over XI/B) corresponding to a
character λ. Hence, q∗I (cG/B(xλ)) = cI(xλ). For a general u it follows by continuity.

Let w0 be the element of maximal length in W and let X = XI0/B be the Bott-Samelson
variety where I0 is a reduced decomposition of w0.

L 12.3. – Assume that h is weakly birationally invariant. Then the pull-back q∗I0 is
injective.

Proof. – Since our theory is weakly birationally invariant, the push-forward of the fun-
damental class qI0∗(1) is invertible. The lemma now follows by projection formula.

T 12.4 (cf. [5, Prop. 3]). – Assume that h is weakly birationally invariant. Con-
sider the quotient map pi : G/B → G/Pi, where 1 ≤ i ≤ n. Then for any u ∈ R[[M ]]F we have
the equality

p∗i pi∗
(
cG/B(u)

)
= cG/B

(
Cαi(u)

)
.

Proof. – We choose a reduced decomposition I0 of w0 in simple reflections such that the
last reflection is si. Let J be the same tuple without the last entry. Consider the Cartesian
diagram

(7) XI0/B
pI0 //

qI0

��

XJ/B

pi◦qJ
��

G/B
pi // G/Pi.

4 e SÉRIE – TOME 46 – 2013 – No 3



ORIENTED COHOMOLOGY OF COMPLETE FLAGS 437

Since the horizontal map pi is smooth, the diagram is transversal. Since q∗I0 is injective by
Lemma 12.3, it is enough to prove the equality after applying q∗I0 to both sides. By base
change and by transversality of the diagram we have

q∗I0p
∗
i pi∗

(
cG/B(u)

)
= p∗I0(pi ◦ qJ)∗pi∗

(
cG/B(u)

)
= p∗I0pI0∗q

∗
I0

(
cG/B(u)

)
.

By Lemma 12.2 and by Prop. 10.10.(4) we obtain

= p∗I0pI0∗
(
cI0(u)

)
= cI0

(
Cαi(u)

)
= q∗I0

(
cG/B

(
Cαi(u)

))
and the theorem is proved.

PART III

ALGEBRAIC AND GEOMETRIC COMPARISON. APPLICATIONS

13. Comparison results

In the present section we explain why the ring H (M)F is naturally isomorphic to the ring
h(G/B) (see 13.13) for most weakly birationally invariant theories.

13.1. – Let I be a sequence of simple reflections. Recall that w(I) = si1 · · · sil is the
corresponding product of simple reflections. Let

ζI = (qI)∗(1) ∈ h(G/B)

denote the push-forward of the fundamental class of the Bott-Samelson variety correspond-
ing to I.

We consider the characteristic map cG/B : R[[M ]]F → h(G/B). Let u0 ∈ IN be chosen as
in Section 5.

L 13.2. – Let Iw be a reduced decomposition of an element w. Then

ζIw · cG/B(u0) =

{
0 if w 6= w0,

cG/B(u0) if w = w0.

Proof. – We have ζIw · cG/B(u0) = qIw∗(cIw(u0)) by the projection formula and the fact
that q∗IwcG/B = cIw . By Formula (6), cIw(u0) = 0 if l(Iw) < N i.e., ifw 6= w0. This proves the
first part of the formula. The other case will follow if we show that ζIw0

= 1−
∑
w 6=w0

rwζIw
for some coefficients rw in R. For this, it suffices to show that the coefficient rw0

in front
of ζIw0

in the decomposition of 1 on the basis of the ζIw is 1. We have the commutative
diagram

U

�

iU′ // XI0/B

qI0

��

XI′/B
σoo

qI′zz
U

iU //// G/B

where I0 is any reduced decomposition of w0, I ′ is I0 with its last entry removed, σ is the
section of pI0 , U is the big open cell in G/B and U ′ is its pre-image in XI0/B. By [8, §3.10
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and 3.11], U ′ is indeed isomorphic to U and it is included in the complement of σXI′/B.
Thus, i∗U ′σ∗ = 0, using that XI0/B → XI′/B is a projective bundle. By base change on the
cartesian diagram, we obtain i∗UqI′∗ = 0 and i∗UqI0∗(1) = 1. Since any Iw can be completed to
a decomposition of w0, this proves that i∗U (ζIw) = 0 if w 6= w0. Pulling back 1 =

∑
w rwζIw

by iU , we get 1 = rw0
(by homotopy invariance, h(U) ' R).

L 13.3. – We have

t ζ∅ = cG/B(u0) and t ζI = cG/B
(
CIrev(u0)

)
.

Proof. – Let Iw0 = (i1, . . . , iN ). With the notation of Theorem 11.4, we have

t ζ∅ = t q∅∗(1) = t qIw0
∗σIw0

∗ · · ·σ(i1)∗(1) = qIw0
∗(t ξ[1,N ]) = qIw0

∗(cIw0
(u0))

= qIw0∗(1)cG/B(u0) = cG/B(u0)

where the two last equalities follow from the projection formula together with q∗IwcG/B = cIw
and then Lemma 13.2. For the second formula, which coincides with the first one when I is
empty, we use induction on the length of I. If I = (i1, . . . , il) and J = (i1, . . . , il−1), then
by base change via diagram (7) we obtain

t · ζI = t · qI∗(1) = t · qI∗p∗I(1) = t · p∗il(pil ◦ qJ)∗(1) = p∗ilpil∗
(
t · ζJ

)
.

By the induction step and Theorem 12.4 we obtain that this is equal to

p∗ilpil∗(cG/B(CJrev(u0))) = cG/B(Cαil ◦ CJrev(u0)) = cG/B(CIrev(u0))

and the proof is finished.

L 13.4. – Let π : G/B → pt be the structure map. For any sequence I and
u ∈ R[[M ]]F we have

π∗(ζI · cG/B(u)) = εCI(u).

Proof. – The projection formula and Lemma 11.5 imply that we have

π∗(ζI · cG/B(u)) = π∗(qI∗(1) · cG/B(u)) = π∗qI∗q
∗
I (cG/B(u)) = πI∗(cI(u)) = εCI(u).

Let us now discuss the following assumption.

A 13.5. – For each element w ∈ W , let Iw be a chosen reduced decomposi-
tion of w. The elements ζIw , where w runs through all elements of the Weyl group W , form
an R-basis of the cohomology h(G/B).

L 13.6. – If t is regular in R, then the ζIw are R-linearly independent.

Proof. – Assume that
∑
w rwζIw = 0 for some rw ∈ R. Then for any I,

0 = π∗
((∑

w

rwζIw
)
cG/B(CI(u0))

)
=
∑
w

rwεCIwCI(u0)

by Lemma 13.4. Then, by part (3) of Lemma 5.3, the matrix (εCIwCIv (u0))v,w∈W has zero
kernel, because it is “triangular” with the regular element t on the diagonal.

L 13.7. – Assumption 13.5 holds for

1. Chow groups (in arbitrary characteristic);
2. K-theory (in arbitrary characteristic);
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3. any oriented cohomology theory h∗1 = h∗0⊗R0
R1 obtained from another one h∗0 for which

the assumption already holds;
4. any oriented cohomology theory that satisfies the weak localization axiom and such that
t is regular in h(pt);

5. any oriented cohomology theory such that h⊗h(pt)Z = CH, e.g., algebraic cobordism and
connective K-theory.

Proof. – Part (3) is obvious since a free module stays free by base change. For Chow
groups and K-theory, this is classical and for example proved in [8]. When h satisfies the weak
localization axiom, by Theorem 8.8 applied to the filtration ofG/B by open subsets obtained
by adding open Schubert cells one by one, by increasing codimension, one gets that the ζIw
generate h(G/B). When furthermore t is regular in h(pt), Lemma 13.6 shows that they are
independent. For algebraic cobordism, sinceG/B is a cellular space and classes of Schubert
varieties form a Z-basis of CH(G/B), the lemma follows from [23, Cor. 2.9].

Recall from Definition 6.1 that we also have an algebraic characteristic map
c : R[[M ]]F → H (M)F .

L 13.8. – Assume the torsion index t is invertible in R and that Assumption 13.5 is
satisfied. Then, there is a unique morphism θ : H (M)F → h(G/B) of R-algebras such that
cG/B = θ ◦ c.

Proof. – We fix a reduced decomposition Iw for each w ∈ W . By 6.4, the map c is
surjective. We can therefore find a pre-image uw of each element zCIw of Theorem 6.3. By the
form of the characteristic map given there, these elements satisfy εCIw(uv) = δw,v. Let us set
τIw = cG/B(uw). By the previous lemma, (τIw)w∈W is a basis of h(G/B) that is dual basis
to the basis (ζIw)w∈W with respect to the bilinear form (ζ, τ) 7→ π∗(ζ.τ), and this form is
therefore nondegenerate. We now define θ as the R-linear morphism sending zCIw to τIw . By
the formula π∗(ζIw .cG/B(u)) = εCIw(u), we must have

(8) cG/B(u) =
∑
w∈W

εCIw(u)τIw

and the isomorphism θ therefore satisfies cG/B = θ ◦ c since the zCIw satisfy the same formula
with c. The uniqueness of θ is immediate by surjectivity of c.

C 13.9. – When t is invertible inR and Assumption 13.5 holds, the characteristic
map cG/B is surjective.

Proof. – Use Theorem 6.4 and the previous lemma.

C 13.10. – When t is invertible inRwhich has no 2-torsion and Assumption 13.5
holds, the kernel of the characteristic map cG/B is the ideal of R[[M ]]F generated by elements
in I fixed by W .

Proof. – Use Theorem 6.9 and the previous lemma.

L 13.11. – Under the assumptions of Proposition 13.8, we have ζ∅ = τIw0
. In

particular, τIw0
does not depend on the choices of the reduced decompositions Iw.
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Proof. – By definition of the dual basis (τIw)w∈W , it suffices to show that we have
π∗(ζIw · ζ∅) = δw0,w. By Lemmas 13.3 and 13.4, we have

π∗(ζIw · ζ∅) = π∗(ζIw · t−1cG/B(u0)) = t−1εCIw(u0) = δw,w0
.

Let Ãi denote the operator p∗i (pi)∗ on h(G/B) and let ÃI be as usual for a sequence I.

L 13.12. – The isomorphism θ of Lemma 13.8 satisfies θAI = ÃIθ and therefore
sends the AIw(z0) to the ÃIw(ζ∅).

Proof. – It follows from the surjectivity of the characteristic map, the fact that
θ ◦ c = cG/B , Theorem 12.4 and Proposition 7.8 part (1).

We can now show that the isomorphism θ of Lemma 13.8 descends to the case where t is
regular but not necessarily invertible.

T 13.13. – Let h be a weakly birationally invariant theory satisfying Assumption
13.5 and such that t is regular in R = h(pt). Then there is a unique isomorphism of R-algebras
θ : H (M)F → h(G/B) such that the characteristic map cG/B is given by θ ◦ c. It satisfies
θ ◦AI = ÃI ◦ θ.

Proof. – We know from 7.9 that theAIw(z0) are a basis of H (M)F and from Assumption
13.5 that the ζIw are a basis of h(G/B). We define θ as the isomorphism sending AIw(z0)

to ζIw . By Lemma 13.12, this definition coincides with the one of Lemma 13.8 when t is
invertible in R. We therefore have a commutative diagram

H (M)F ⊗R R[t−1]
θ⊗id // h(G/B)⊗R R[t−1]

H (M)F

OO

θ // h(G/B)

OO

where θ ⊗ id is the θ of Lemma 13.8 and the vertical maps are injective since H (M)F and
h(G/B) are freeR-modules andR injects inR[t−1]. Since all other maps are ring morphisms,
θ is one too, and the required equalities follow from the same ones in the case where t is
invertible. The morphism θ is unique since it is unique after inverting t.

R 13.14. – Note that the morphism θ is independent of the choices of the Iw used
in its construction. This is obvious by surjectivity of the characteristic map after inverting t.

This completes the identification of H (M)F , the algebraic model for the cohomology ring
introduced in Section 5, with the actual cohomology h(G/B).
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14. Formulas for push-forwards

In the present section we assume that t and 2 are regular in R. Note that given a for-
mal group law F , both R[[M ]]F and H (M)F can be defined without any reference to
a cohomology theory. The goal of this section is to define an “algebraic push-forward”
π H : H (M)F → R and to prove formulas related to it. Of course, when the formal group
law comes from a cohomology theory, we prove that the morphism π H corresponds to its
geometric counterpart π∗ : h(G/B)→ R through the isomorphism θ : H (M)F

'→ h(G/B)

from Theorem 13.13. The general idea of the proofs is to use that there is a universal for-
mal group law U over the Lazard ring L, and therefore that such formulas can be proved
in H L(M)U , where they hold for geometric reasons, using algebraic cobordism. Then, they
hold in any H (M)F by specialization (even if it has no geometric origin).

14.1. – Recall that since (U,L) is the universal formal group law, for any given formal
group law F over a ring R, there is a unique morphism f : L → R sending U to F . By
Lemma 2.6 and Propositions 6.5 and 7.10, there is a commutative diagram

L[[M ]]U

f∗

��

cU // H L(M)U

f H

��
R[[M ]]F

cF // H R(M)F .

Furthermore, the morphism f H commutes with the operatorsAI andBI and sends zU0 to zR0
by definition. Therefore, it sends AUI (zU0 ) to AFI (zR0 ) for any sequence I.

Let (Iw)w∈W be a choice of reduced decompositions. Then, by Prop. 7.9, the elements
(AIw(z0))w∈W form an R-basis of H (M)F .

D 14.2. – Let π H : H (M)F → R be the R-linear morphism defined
by π H (AIw(z0)) = εCIw(1).

P 14.3. – We have

1. for any morphism f : R → R′ of rings sending a formal group law F to F ′, we have
πFH = πF

′

H ◦ f H .
2. Assume that h is an oriented cohomology theory satisfying the assumptions of Theo-

rem 13.13, in which the isomorphism θ : H (M)F
'→ h(G/B) is defined. Then the mor-

phism π H satisfies π H ◦ θ = θ ◦ π∗. In other words, the morphism π H is an algebraic
replacement for the push-forward π∗.

Proof. – Since f H (AFIw(zF0 )) = AF
′

Iw
(zF

′

0 ), (1) follows from the definition of π H . Since
the basis of h(G/B) formed by the ζIw and the basis of H (M)F formed by the AIw(z0)

correspond to each other through the isomorphism θ, (2) follows from Lemma 13.4.

C 14.4. – For any sequence I the morphism π H of the proposition satisfies

π H
(
AIrev(z0)c(u)

)
= εCI(u).

In particular, it is independent of the choice (Iw)w∈W of reduced decompositions.
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Proof. – By Proposition 14.3 (2) and by Lemma 13.4, the formula holds for H L(M)U . In
general, it reduces to the case where t is invertible. When v ∈ R[[M ]]WF , we have
εCI(vu) = ε(v)εCI(u) and c(vu) = ε(v)c(u) so by decomposing u on the CIw(u0), which
form an R[[M ]]WF -basis of R[[M ]]F , it suffices to prove the formula for u = CIw(u0). For
those, it follows by specialization using f H from H L(M)U .

R 14.5. – Note that the elements π H (AIrev(z0)) are particularly important
because they represent the images of desingularized Schubert varieties in the cohomology
of the point.

P 14.6. – The morphism π H satisfies

π H
(
AIrev

v
(z0).zCIw

)
= δv,w.

In other words, the bilinear form π H (−,−) is nondegenerate and the bases
(
zCIw
)
w∈W and(

AIrev
w

(z0)
)
w∈W are dual to each other.

Proof. – The formula can be computed after extending scalars to R
[
t−1
]
. Then, since

the characteristic map c is surjective, the elements zCIw have preimages uw, such that
εCIv (uw) = δv,w, by the expression of c given in Theorem 6.3. The result then follows
from Formula (14.4).

Let I0 be a reduced decomposition of the longest element w0. When t is invertible, the
element y0 = CIrev

0
(u0)/t is invertible (by Lemma 5.3), and c(y0) = AIrev

0
(z0) by Proposi-

tion 7.8.

L 14.7. – When t is invertible in R, the morphism π H satisfies

π H (c(u)) = εCI0
(
uy−1

0

)
.

Proof. – We have

π H (c(u)) = π H
(
c(uy−1

0 )c(y0)
)

= π H
(
c(uy−1

0 AIrev
0

(u0))
)

= εCI0(uy−1
0 ).

P 14.8. – The operators C satisfy the formula

εCI(uCJ(u0)) = εCJrev(uCIrev(u0))

for any pair of sequences I and J . In particular (u = 1, J = ∅), for any sequence I, we have
εCI(u0) = εCIrev(u0).

Proof. – The formula can be proved after extension to R
[
t−1
]
. It then follows from the

computation of π H in Formula (14.4) applied to both ends of

AIrev(z0)c
(
uCJ(u0)

)
= tc

(
CIrev(u0)uCJ(u0)

)
= c
(
uCIrev(u0)

)
AJ(z0).

R 14.9. – The formulas given in this section are purely algebraic, but their proofs
use geometric properties of cobordism. It would be interesting to have algebraic proofs
derived directly from the various formulas in Section 3.
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15. Algorithm for multiplying in h(G/B)

Fixing a choice of reduced decompositions Iw for all w ∈W , we define τIw as θ(zCIw).

P 15.1. – Under the assumptions of Theorem 13.13, the bilinear form (b, a) 7→
π∗(b · a) is non degenerate on h(G/B) and for any choice of reduced decompositions Iw, the
basis (ζIw) and (τIw) are dual to each other.

Proof. – The form can be computed after scalar extension to R[t−1], in which case it
follows from the proof of Lemma 13.8.

Now the multiplication algorithm goes as follows: Substituting u = CIrev
w

(u0) in (8) and
using that t ζIw = cG/B

(
CIrev

w
(u0)

)
we obtain the transition matrix from the basis (ζIw)

to the basis (τIw). Substituting u = CIrev
w

(u0)CIrev
w′

(u0) in (8) we obtain the decomposition
of the product ζIwζIw′ on the basis (τIw), and we rewrite it in terms of the ζIw by using the
transition matrix. This also explains how to decompose any ζI (I not necessarily reduced) on
a given basis of ζIw . Again, it suffices to substitute u = CI(u0) in (8) and use the transition
matrix.

R 15.2. – Note that this algorithm is an improvement over the one in [5] or [13]
in the following sense. In both of these articles, it is explained how to decompose a product
of two generators ζI and ζJ as a linear combination of other such generators. But starting
from a basis (i.e., the ζIw for a choice of a reduced decomposition for each w ∈W ), it is not
explained how to obtain a linear combination containing only generators ζI with I among
the Iw and an algorithm for redecomposing any given ζI on a chosen basis is not given either.
This is crucial to compute multiplication tables.

16. Landweber-Novikov operations

In this section we provide an algorithm for computing the Landweber-Novikov operations
SLN on Ω∗(G/B).

16.1. – Let us recall briefly the definition of SLN (details can be found in [14, § 4.1.9]).
Consider a graded polynomial ring Z[t] = Z[t1, t2, . . . , tk, . . . ] in infinite number of vari-
ables; for a multi-index I = (i1, i2, . . . , ik) we set

tI = ti11 t
i2
2 . . . tikk .

Let λ(t) denote the formal power series

λ(t)(x) = x+
∞∑
i=1

tix
i+1.

Consider a twisted theory Ω̃ of Ω[t] = Ω⊗Z Z[t] (see [15, §4]). By definition Ω̃(X) = Ω(X)[t]

for any X, its Chern class is given by the formula

(9) cΩ̃1 ( L) = λ(t)(c
Ω
1 ( L)),

and its formal group law is given by

F (x, y) = λ(t)(U(λ−1
(t)(x), λ−1

(t)(y))).
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By the universality of Ω there is a natural transformation Ω→ Ω̃ given by

a 7→
∑
I

SLNI (a)tI , a ∈ Ω(X)

where the components SLNI are called Landweber-Novikov operations on Ω(X).

16.2. – By functoriality of R[[M ]]F in R (see 2.6) the map L ' Ω(pt) → Ω̃(pt) ' L[t]

induces a homomorphism

L[[M ]]U → L[t][[M ]]F ,

while functoriality with respect to formal group laws induces a homomorphism

L[t][[M ]]F → L[t][[M ]]UΩ[t]

xµ 7→ λ(t)(xµ).

By (9) we have the following commutative diagram:

L[[M ]]U //

cΩ

��

L[t][[M ]]F //

cΩ̃

��

L[t][[M ]]UΩ[t]

cΩ[t]

��
Ω(G/B) // Ω̃(G/B) // Ω(G/B)[t].

16.3. – An action of the Landweber-Novikov operationSLNI on a basis element ζIw can be
computed as follows: First, we compute the image of u = CIrev

w
(u0) under the composition

of top horizontal arrows. Second, we extract the coefficient at the monomial tI of this image.
Finally, we apply the characteristic map cΩ to that coefficient. The result will give SLNI (ζIw).

Indeed, by definition SLNI (ζIw) is equal to the coefficient at tI of the image of ζIw under
the composition of bottom horizontal arrows. Since t ζI = cG/B

(
CIrev(u0)

)
and by

commutativity of the diagram we are done.

17. Examples of computations

In the present section we list the multiplication tables for rings Ω∗(G/B), where G has
rank 2. The results are obtained by means of the algorithm described in Section 15 and
realized in Macaulay 2 packages [6]. The answers for the other oriented cohomology theories
are easily derived by a specialization of the coefficients of the universal formal group law. For
instance, the answer for connectiveK-theory is obtained by specializing the coefficient a1 to v
and all others to zero.

17.1. – We use the presentation of the Lazard ring

L = Z[a1, a2, . . . ],
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where the first generators ai are the following linear combinations of the coefficients aij of
the universal formal group law U :

a1 = a11;

a2 = a12;

a3 = a22 − a13;

a4 = a14;

a5 = −9a15 + a24 + 2a33.

Note that the ai (resp. the aij) are of cohomological degree −i (resp. a1−i−j). For root
systems of rank 2, the longest element is of length at most N = 6 (in the G2 case), and we
therefore need to compute the universal formal group law up to order 7, which thus only
involves a1, . . . , a6. In fact, a6 does not appear in the formulas: it is not difficult to show that
aN will not appear in the multiplication formulas for a root system with longest element of
length N .

17.2. – We use the upper case letter ζI for the element ζI = qI∗(1). For brevity ζI with
I = (i1, . . . , il) is denoted just by ζi1...il , and when I is the empty sequence, ζI is denoted
by pt. Note that when l(w) + l(w′) ≤ N = dimG/B one has

ζIwζIw′ = δw,w0w′pt

so we list the remaining cases only.

17.3. – [A2 case]

ζ121 = 1 + a2ζ1;

ζ2
12 = ζ2;

ζ2
21 = ζ1;

ζ12ζ21 = ζ1 + ζ2 + a1pt.

This agrees with the computations of Hornbostel-Kiritchenko in [13].

17.4. – [B2 case]

ζ1212 = 1 + 2a2ζ12 + (a3 − a1a2)ζ2;

ζ2
121 = ζ21;

ζ2
212 = 2ζ12 + a1ζ2;

ζ121ζ212 = ζ12 + ζ21 + a1ζ1 + a1ζ2 + (2a2 + a2
1)pt;

ζ121ζ12 = ζ1 + ζ2 + a1pt;

ζ121ζ21 = ζ1;

ζ212ζ12 = ζ2;

ζ212ζ21 = 2ζ1 + ζ2 + 2a1pt.
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17.5. – [G2 case]

ζ121212 = 1 + 4a2ζ1212 + (10a3 − 10a1a2)ζ212

− (4a4 + 9a1a3 + 3a2
2 − 9a2

1a2)ζ12

− (54a5 − 459a1a4 − 1188a2a3 − 108a2
1a3 + 1080a1a

2
2 + 108a3

1a2)ζ2;

ζ2
12121 = 3ζ2121 + 3a1ζ121 + (13a2 + 2a2

1)ζ21 + (2a3 + 7a1a2 + a3
1)ζ1;

ζ2
21212 = ζ1212 + 5a2ζ12 + (6a3 − 5a1a2)ζ2;

ζ12121ζ21212 = ζ1212 + ζ2121 + a1ζ121 + a1ζ212 + (8a2 + a2
1)ζ12 + (8a2 + a2

1)ζ21

+ (4a3 + 8a1a2 + a3
1)ζ1 + (10a3 + 6a1a2 + a3

1)ζ2

+ (−4a4 + a1a3 + 13a2
2 + 15a2

1a2 + a4
1)pt;

ζ12121ζ1212 = ζ121 + 3ζ212 + 4a1ζ12 + 3a1ζ21 + (8a2 + 4a2
1)ζ1 + (13a2 + 5a2

1)ζ2

+ (a3 + 16a1a2 + 5a3
1)pt;

ζ12121ζ2121 = 2ζ121 + 2a1ζ21 + (4a2 + a2
1)ζ1;

ζ21212ζ1212 = 2ζ212 + a1ζ12 + 4a2ζ2;

ζ21212ζ2121 = ζ121 + ζ212 + a1ζ12 + a1ζ21 + (5a2 + a2
1)ζ1 + (8a2 + a2

1)ζ2

+ (3a3 + 6a1a2 + a3
1)pt;

ζ12121ζ121 = 3ζ21 + 2a1ζ1;

ζ12121ζ212 = 2ζ12 + ζ21 + 2a1ζ1 + 3a1ζ2 + (4a2 + 3a2
1)pt;

ζ21212ζ121 = ζ12 + 2ζ21 + 2a1ζ1 + 2a1ζ2 + (4a2 + 2a2
1)pt;

ζ21212ζ212 = ζ12;

ζ2
1212 = 2ζ12 + a1ζ2;

ζ2
2121 = 2ζ21 + a1ζ1;

ζ1212ζ2121 = 2ζ12 + 2ζ21 + 3a1ζ1 + 4a1ζ2 + (4a2 + 4a2
1)pt;

ζ12121ζ12 = ζ1 + 3ζ2 + 3a1pt;

ζ12121ζ21 = ζ1;

ζ21212ζ12 = ζ2;

ζ21212ζ21 = ζ1 + ζ2 + a1pt;

ζ1212ζ121 = 2ζ1 + 3ζ2 + 4a1pt;

ζ1212ζ212 = ζ2;

ζ2121ζ121 = ζ1;

ζ2121ζ212 = ζ1 + 2ζ2 + 2a1pt.
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