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LINEAR RESPONSE FOR SMOOTH DEFORMATIONS
OF GENERIC NONUNIFORMLY HYPERBOLIC

UNIMODAL MAPS

 V BALADI  D SMANIA

A. – We considerC2 families t 7→ ft ofC4 unimodal maps ft whose critical point is slowly
recurrent, and we show that the unique absolutely continuous invariant measure µt of ft depends
differentiably on t, as a distribution of order 1. The proof uses transfer operators on towers whose level
boundaries are mollified via smooth cutoff functions, in order to avoid artificial discontinuities. We
give a new representation of µt for a Benedicks-Carleson map ft, in terms of a single smooth function
and the inverse branches of ft along the postcritical orbit. Along the way, we prove that the twisted
cohomological equation v = α ◦ f − f ′α has a continuous solution α, if f is Benedicks-Carleson and
v is horizontal for f .

R. – Nous considérons des familles t 7→ ft d’applications unimodales C4, de récurrence
postcritique lente, avec une dépendance C2 en fonction du paramètre t. Nous montrons que l’unique
mesure invariante µt de ft est différentiable en fonction de t, en tant que distribution d’ordre 1. La
preuve utilise des opérateurs de transfert sur des tours dont les bords sont mollifiés avec des fonctions
de troncation lisses, pour éviter l’introduction de discontinuités artificielles. Nous donnons de plus une
représentation de µt dépendant d’une unique fonction lisse et des branches inverses de ft le long de
l’orbite postcritique. Nous prouvons enfin que l’équation cohomologique tordue v = α ◦ f − f ′α

admet une solution continue α, si f est Benedicks-Carleson et v est horizontal pour f .

1. Introduction

The linear response problem for discrete-time dynamical systems can be posed in the
following way. Suppose that for each parameter t (or many parameters t) in a smooth family
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862 V. BALADI AND D. SMANIA

of maps t 7→ ft with ft : M → M , (M a compact Riemann manifold, say) there exists
a unique physical (or SRB) measure µt. (See [63] for a discussion of SRB measures.) One
can ask for conditions which ensure the differentiability, possibly in the sense of Whitney, of
the function µt in a weak sense (in the weak ∗-topology, i.e., as a distribution of order 0, or
possibly as a distribution of higher order). Ruelle has discussed this problem in several survey
papers [46], [48], [50], to which we refer for motivation.

The case of smooth hyperbolic dynamics has been settled over a decade ago ([25], [45]),
although recent technical progress in the functional analytic tools (namely, the introduction
of anisotropic Sobolev spaces on which the transfer operator has a spectral gap) has allowed
for a great simplification of the proofs (see, e.g., [19]): For smooth Anosov diffeomorphisms
fs and a C1 observable A, letting

Xs = ∂tft|t=s ◦ f−1
s ,

Ruelle [45], [47] obtained the following explicit linear response formula (the derivative here is
in the usual sense)

∂t

∫
Adµt|t=0 = ΨA(1) ,

where ΨA(z) is the susceptibility function

ΨA(z) =

∞∑
k=0

∫
zk〈X0, grad (A ◦ fk0 )〉 dµ0 ,

and the series ΨA(z) at z = 1 converges exponentially. In fact, in the Anosov case, the
susceptibility function is holomorphic in a disc of radius larger than 1. This is related to the
fact (see [7] for a survey and references) that the transfer operator of each fs has a spectral
gap on a space which contains not only the product of the distribution µs and the smooth
vector field Xs, but also the derivative of that product, that is, 〈Xs, gradµs〉+ (divXs)µs.

One feature of smooth hyperbolic dynamics is structural stability: Each ft, for small
t, is topologically conjugated to f0 via a homeomorphism ht, which turns out to depend
smoothly on the parameter t. With the exception of a deep result of Dolgopyat [21] on rapidly
mixing partially hyperbolic systems (where structural stability may be violated, but where
there are no critical points and shadowing holds for a set of points of large measure, so that
the bifurcation structure is relatively mild), the study of linear response in the absence of
structural stability, or in the presence of critical points, has begun only recently.

However, the easier property of continuity ofµt with respect to t (in other words, statistical
stability) has been established also in the presence of critical points: For piecewise expanding
unimodal interval maps, Keller [26] proved in 1982 that the density φt of µt, viewed as an
element of L1, has a modulus of continuity at least t ln t, so that t 7→ φt is r-Hölder, for any
exponent r ∈ (0, 1). For nonuniformly smooth unimodal maps, in general not all nearby
maps ft admit an SRB measure even if f0 does. Therefore, continuity of t 7→ µt can only be
proved in the sense of Whitney, on a set of “good” parameters. This was done by Tsujii [58]
and Rychlik–Sorets [53] in the 90’s. More recently, Alves et al. [2], [1] proved that for Hénon
maps, t 7→ µt is continuous in the sense of Whitney in the weak ∗-topology. (We refer, e.g.,
to [8] for more references.)

Differentiability of µt, even in the sense of Whitney, is a more delicate issue, even in dimen-
sion one. For nonuniformly hyperbolic smooth unimodal maps ft with a quadratic critical
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LINEAR RESPONSE FOR DEFORMATIONS OF GENERIC UNIMODAL MAPS 863

point (f ′′t (c) < 0), it is known [61], [30] that the density φt of the absolutely continuous
invariant measure µt of ft has singularities (called spikes) of the form

√
x− ck,t−1, where the

ck,t = fkt (c) are the points along the forward orbit of the critical point c. Thus, the deriva-
tive φ′t of the invariant density has nonintegrable singularities, and the transfer operator can-
not have a spectral gap in general on a space containing (Xtφt)

′. In fact, the radius of con-
vergence of the susceptibility function ΨA(z) is very likely strictly smaller than 1 in general.
Ruelle [49] observed however that, in the case of a subhyperbolic (preperiodic) critical point
for a real analytic unimodal map, ΨA(z) is meromorphic in a disc of radius larger than 1,
and that 1 is not a pole of ΨA(z). He expressed the hope that the value ΨA(1) obtained by
analytic continuation could correspond to the actual derivative of the SRB measure, at least
in the sense of Whitney.

This analytic continuation phenomenon in the subhyperbolic smooth unimodal case
(where a finite Markov partition exists) could well be a red herring, in view of the linear
response theory for the “toy model” of piecewise expanding interval maps that we recently
established in a series of papers [7], [10], [12], [13]: Unimodal piecewise expanding interval
maps ft have a unique SRB measure, whose density φt is a function of bounded variation
(since φ′t is a measure, the situation is much easier than for smooth unimodal maps). In [7],
[10], [14], we showed that Keller’s [26] t ln t modulus of continuity was optimal (see also
[35]): In fact, there exist smooth families ft so that t 7→ µt is not Lipschitz, even when
viewed as a distribution of arbitrarily high order, and even in the sense of Whitney. Such
counter-examples ft are transversal to the topological class of f0. If, on the contrary, the
family ft is tangent at t = 0 to the topological class of f0 (we say that ft is horizontal) then
([10], [12]) we proved that the map t 7→ µt is differentiable for the weak ∗-topology. The series
for ΨA(1) may diverge (for the preperiodic case, see [7, §5]), but can be resumed under the
horizontality condition [7], [10]. This gives an explicit linear response formula. In fact, the
susceptibility function ΨA(z) is holomorphic in the open unit disc, and, under a condition
slightly stronger than horizontality, ∂t

∫
Adµt|t=0 is the Abel limit of ΨA(z) as z → 1.

Worrying about lack of differentiability of the SRB measure is not just a mathematician’s
pedantry: Indeed, this phenomenon can be observed numerically, for example in the guise of
fractal transport coefficients. We refer, e.g., to the work of Keller et al. [28] (see also references
therein), who obtained a t ln(t) modulus of continuity compatible with the results of [26], for
drift and diffusion coefficients of models related to those analyzed in [10] [14].

Let us move on now to the topic of the present work, linear response for smooth unimodal
interval maps: Ruelle recently obtained a linear response formula for real analytic families
of analytic unimodal maps of Misiurewicz type [51], that is, assuming infk |fk(c)− c| > 0,
a nongeneric condition which implies the existence of a hyperbolic Cantor set. (Again, this
linear response formula can be viewed as a resumation of the generally divergent series
ΨA(1).) In [11], we showed that t 7→ µt is real analytic in the weak sense for complex
analytic families of Collet-Eckmann quadratic-like maps (the – very rigid – holomorphicity
assumption allowed us to use tools from complex analysis). Both these recent results are for
families ft in the conjugacy class of a single (analytic) unimodal map, and the assumptions
were somewhat nongeneric.
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864 V. BALADI AND D. SMANIA

The main result of the present work, Theorem 2.13, is a linear response formula for C2

families t 7→ ft ofC4 unimodal maps (1) with quadratic critical points satisfying the so-called
topological slow recurrence (TSR) condition ([54],[57],[32], see (5) below). (We assume that
the maps have negative Schwarzian and are symmetric, to limit technicalities, and we only
consider infinite postcritical orbits, since the preperiodic case is much easier.) The topological
slow recurrence condition is much weaker than Misiurewicz, so that we give a new proof
of Ruelle’s result [51] in the symmetric infinite postcritical case (this may shed light on the
informal study in §17 there). Topological slow recurrence implies the well-known Benedicks-
Carleson and Collet-Eckmann conditions. Furthermore, the work of Tsujii [57] and Avila-
Moreira [6] gives that real-analytic unimodal maps with a quadratic critical point satisfying
the TSR condition are measure-theoretical generic among non regular parameter in non
trivial real-analytic families unimodal maps. (See Remark 2.3.) If all maps in a family of
unimodal maps ft satisfy the topological slow recurrence condition then [55] this family is
a deformation, that is, the family {ft} lies entirely in the topological class of f0 (there exist
homeomorphisms ht such that ht(c) = c and ht ◦ f0 = ft ◦ ht). In particular, horizontality
holds.

We next briefly discuss a few new ingredients of our arguments, as well as a couple of
additional results we obtained along the way. A first remark is that we need uniformity of
the hyperbolicity constants of ft for all small t. We deduce this uniformity from previous
work of Nowicki, making use of the TSR assumption (Section 5).

When one moves the parameter t, the orbit of the critical point also moves, and so do the
spikes. Therefore, in order to understand ∂tµt, we need upper bounds on

∂tck,t|t=0 = ∂tf
k
t (c)|t=0 = ∂tht(f

k
0 (c))|t=0 = ∂tht(ck,0)|t=0 ,

uniformly in k. It is not very difficult to show (Lemma 2.10, see also Proposition 2.15)
that ∂tck,t|t=0 = α(ck,0) if α solves the twisted cohomological equation (2) (TCE) for
v = ∂tft|t=0, given by,

v = α ◦ f0 + f ′0 · α , α(c) = 0 .

(Such a function α is called an infinitesimal conjugacy.) In fact, we prove in Theorem 2.4
that if f0 is Benedicks-Carleson and v satisfies a horizontality condition for f0, then the TCE
above has a unique solution α. In addition, α is continuous.

In the case of piecewise expanding maps on the interval, the invariant density φt is a
fixed point of a Perron-Frobenius type transfer operator Lt in an appropriate space, where
1 is a simple isolated eigenvalue. So if we are able to verify some (weak) smoothness in the
family t→ Lt, then we can show (weak) differentiability of µt by using perturbation theory.
(We may use different norms in the range and the domain, in the spirit of Lasota-Yorke or
Doeblin-Fortet inequalities.) This is, roughly speaking, what was done in [10] and [13] (as
already mentioned, a serious additional difficulty in the presence of critical points, which had
to be overcome even in the toy model, is the absence of a spectral gap on a space containing
the derivative of the invariant density). For Collet-Eckmann unimodal maps ft, however, an

(1) The C4 regularity is only used to get W 2
1 regularity in Proposition 4.11 and Lemma 4.12, and one can perhaps

weaken this to C3+η .
(2) In one-dimensional dynamics, the acronym TCE also stands [44] for “topological Collet-Eckmann,” there should
be no confusion since the topological Collet-Eckmann condition is not used here.
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LINEAR RESPONSE FOR DEFORMATIONS OF GENERIC UNIMODAL MAPS 865

inducing procedure or a tower construction ([30], [61], [62]) is needed to obtain good spectral
properties for the transfer operator and to properly analyse the density φt, even for a single
map.

We use the tower construction from [15], under a Benedicks-Carleson assumption. How-
ever, when we consider a one-parameter family of maps ft, the phase space of the tower
moves with t. To compare the operators for ft and f0, it is convenient to work with a finite
part of the tower, the height of which goes exponentially to infinity as t→ 0. (We use results
of Keller and Liverani [29] to control the spectrum of the truncated operator.) The uniform
boundedness of α(ck) is instrumental in working with such truncated towers and operators.
In fact, the tower construction in [15] also has a key role in the proof of boundedness for α:
The natural candidate for the solution is a divergent series, but, under the horizontality con-
dition, we devise a dynamical resumation (the mantra being: “don’t perform a partial sum
for the series while you are climbing the tower, unless you are ready to fall").

The tower from [15] has a drawback: The orbits of the edges of the tower levels apparently
create “artificial discontinuities” in the functions. To eliminate these potential discontinuities,
we modify the construction of the Banach spaces and transfer operators on the towers by
introducing smooth cutoff functions (called ξk below, see Section 4). As a consequence, we
obtain a new expression for the invariant density of a Benedicks-Carleson unimodal map
(Proposition 2.7), in terms of a single smooth function and of the dynamics.

We would like to list now a few directions for further work. Several of them can be
explored by exploiting the techniques developed in the present article (see [8] for other open
problems):

• In the setting of the present paper (for example), can one show that ∂tµt(A)|t=0 is a
resumation of the divergent series ΨA(z) at z = 1? (Presumably, a dynamical resumation
is possible, maybe using the operator P(ψ) = ψ ◦ f dual to L acting on dual Banach
spaces, and using, e.g., the proof of the main result in [23].) Can one get an Abelian limit
along the real axis? The radius of convergence of ΨA(z) is strictly smaller than 1 in general.
There appears to be an essential boundary, except in the subhyperbolic cases when the critical
point is preperiodic. Analytic continuation in the usual sense is thus probably not available,
some kind of Borel or Abelian continuation seems necessary. (In subhyperbolic cases ΨA(z)

is meromorphic, and horizontality very likely implies vanishing of the residue of the pole
in [0, 1].)

•Can one replace the topological slow recurrence condition on f0 by Benedicks-Carleson,
Collet-Eckmann, or possibly just a summability condition on the inverse of the postcritical
derivative (see [43] and [17]), and still get differentiability (3) of t 7→ µt, as a distribution of
order 1, at t = 0?

• If ft is a smooth family of quadratic unimodal maps, with f0 a good map (summable, or
Collet-Eckmann, or Benedicks-Carleson, or TSR), and if v = ∂ft|t=0 is horizontal for f0,

(3) Perturbation theory of isolated eigenvalues cannot be used if there is no spectral gap, but the analysis in Hairer-
Majda [23], e.g., indicates that existence of the resolvent (id − L)−1 (up to replacing L by P if necessary) should
be enough.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



866 V. BALADI AND D. SMANIA

that is, (10) holds (4), is t 7→ µt differentiable, as a distribution of order 1, in the sense of
Whitney, at t = 0?

• If ft is a smooth (possibly transversal, that is, not horizontal) family of quadratic
unimodal maps, with f0 a good map, is t 7→ µt always r-Hölder in the sense of Whitney
for r ∈ (0, 1/2) at t = 0? Which is the strongest topology one can use in the image? (Possibly,
one could show Hölder continuity in the sense of Whitney of the Lyapunov exponent.)

• Can one construct a (non-horizontal) smooth family ft of quadratic unimodal maps,
with f0 a good map, so that t 7→ µt, as a distribution of any order, is not differentiable (even
in the sense of Whitney, at least for large subsets) at t = 0? So that it is not Hölder for any
exponent > 1/2?

•What about Hénon-like maps? Note that even the formula defining horizontality is not
available in this case, see [8] (Numerical results of Cessac [20] indicate that ΨA(z) has a
singularity in the interior of the unit disc. In view of the above discussion, we expect that
this singularity is not an isolated pole in general.)

•The dynamical zeta function associated to a Collet-Eckmann map f and describing part
of the spectrum of L was studied by Keller and Nowicki [30]. Can one study the analytic
properties of a dynamical determinant for L in the spirit of what was done for subhyperbolic
analytic maps [9]? (Analyticity would hold only in a disc of finite radius, and the correcting
rational factor from [9, Theorem B] would be replaced by an infinite product, corresponding
to the essential boundary of convergence within this disc.) Can one find and describe a
dynamical determinant playing for ΨA(z) the part that L plays for the Fourier transform of
the correlation function of the SRB measure of f? (See [7] for piecewise expanding interval
maps.)

The structure of the paper is as follows. In Section 2, we give precise definitions and state
our main results formally. Section 3 is devoted to the proof (by dynamical resumation) that
horizontality implies that the TCE has a continuous solution α (Theorem 2.4). In particular,
we recall in Subsection 3.1 the construction of the tower map f̂ : Î → Î from [15]
which will be used in later sections. We also show (Subsection 3.5) that the formal candidate
for α diverges at countably many points (Proposition 2.5). In Section 4, we revisit the tower
construction, introducing Banach spaces and a transfer operator L̂ involving the smooth
cutoff functions discussed above. In particular, Proposition 4.11, which immediately implies
our new expression for the invariant density (Proposition 2.7), is proved in Subsection 4.1.
Also, we study truncations L̂M on finite parts of the tower in Subsection 4.2. Uniformity in t
of the hyperbolicity constants of ft involved in the construction of Sections 3 and 4, is the
topic of Section 5, the main result of which is Lemma 5.8 (proved by exploiting previous work
of Nowicki). Finally, our linear response result, Theorem 2.13, is proved in Section 6. The
argument borrows some ideas from [10], but their implementation required several nontrivial
innovations, as explained above. The three appendices contain proofs of a more technical
nature.

(4) By [4], we can heuristically view ft as tangent to the topological class of f0.
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2. Formal statement of our results

2.1. Collet-Eckmann, Benedicks-Carleson, and topologically slowly recurrent (TSR) uni-
modal maps

We start by formally defining the classes of maps that we shall consider. Note that we shall
sometimes write [a, b] with b < a to represent [b, a]. Another frequent abuse of notation is
that we sometimes use C > 0 to denote different (uniform) constants in the same formula.

Let I = [−1, 1]. We say that f is S-unimodal if f : I → I is a C3 map with negative
Schwarzian derivative such that f(−1) = f(1) = −1, f ′|[−1,0) > 0, f ′|(0,1] < 0,
and f ′′(0) < 0 (i.e., we only consider the quadratic case). The following notation will be
convenient throughout: For k ≥ 1, we let J+ be the monotonicity interval of fk containing c
and to the right of c, J− be the monotonicity interval of fk containing c and to the left of c,
and we put

(1) f−k+ := (fk|J+)−1 , f−k− := (fk|J−)−1 .

R 2.1. – It is likely that the negative Schwarzian derivative assumption is not
needed for our results, see [31]. Note however that we cannot apply trivially the work of
Graczyk-Sands-Świa̧tek [22] to study linear response: If ft is a one-parameter family of C3

unimodal maps, the smooth changes of coordinates which make their Schwarzian derivative
negative will depend on t, and this dependency will require a precise study. In view of keeping
the length of this paper within reasonable bounds, we refrained from considering the more
general case.

Let c = 0 be the critical point of f , and put ck = fk(c) for all k ≥ 0. We say that an
S-unimodal map f is (λc, H0)-Collet-Eckmann (CE) if λc > 1, H0 ≥ 1, and

(2) |(fk)′(f(c))| ≥ λkc , ∀k ≥ H0 .

All periodic orbits of Collet-Eckmann maps are repelling, and [42, Theorem B] gives that for
any C2 unimodal (or multimodal) map without periodic attractors there exists γ > 0 so that
|fn(c) − c| ≥ e−γn for all large enough n. Benedicks and Carleson [16] showed that S-uni-
modal Collet-Eckmann maps which satisfy the following Benedicks-Carleson assumption

(3) ∃0 < γ <
ln(λc)

G
so that |fk(c)− c| ≥ e−γk , ∀k ≥ H0

for G = 4, form a positive measure set of parameters of non degenerate families. The Bene-
dicks-Carleson assumption will suffice for some of our results, sometimes replacing G = 4

by a larger constant.

A stronger condition, topologically slow recurrence (TSR), will allow us to obtain linear
response. To define TSR, we shall use the following auxiliary sequence: Let f be an S-uni-
modal map whose critical point is not preperiodic. The itinerary of a point x ∈ I is the
sequence sgn(f i(x)) ∈ {−1, 0, 1}. We put

(4) Rf (x) := min{j | sgn(f j(c)) 6= sgn(f j(x)), j ≥ 1} .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



868 V. BALADI AND D. SMANIA

We say that an S-unimodal map f with non preperiodic critical point satisfies the topo-
logical slow recurrence (TSR) condition if

(5) lim
m→∞

lim sup
n→∞

1

n

∑
1≤j≤n

Rf (fj(c))≥m

Rf (f j(c)) = 0 .

It follows from the definition that any S-unimodal map topologically conjugated with
a map f satisfying TSR also satisfies TSR. (Indeed, Rf (cn) = j if and only if f j is a
diffeomorphism on (c, cn) and c ∈ f j(c, cn).) We also have the much less trivial result below:

P 2.2 ([54], [60]. See also [32]). – An S-unimodal map f with non preperiodic
critical point satisfies the TSR condition if and only if f is a Collet-Eckmann map and

(6) lim
η→0+

lim inf
n→∞

1

n

∑
1≤j≤n

|fj(c)−c|<η

ln |f ′(f j(c))| = 0 .

In Section 5, we shall prove that TSR implies Collet-Eckmann and Benedicks-Carleson-
type conditions, uniformly in a subset of small enough C3 diameter of a topological class.

R 2.3 (TSR is generic). – Avila and Moreira [5] proved that for almost every
parameter s in a non-degenerate analytic family of quadratic unimodal maps fs, the map fs
is either regular or Collet-Eckmann with subexponential recurrence of its critical orbit (i.e.,
for every γ > 0, there is H0 so that |ck − c| > exp(−γk) for all k ≥ H0). (Non-degenerate,
or transversal, means that the family is not contained in a topological class.) Tsujii [57] had
previously proved that the set of Collet-Eckmann and subexponentially recurrent para-
meters s in a transversal family fs of S-unimodal maps has positive Lebesgue measure. By
combining the results of Avila and Moreira [5] and Tsujii [57], we can see that TSR is a
generic condition: In a nondegenerate analytic family fs of S-unimodal maps, almost every
parameter is either regular or TSR.

2.2. Boundedness and continuity of the infinitesimal conjugacy α

Let f be an S-unimodal Collet-Eckmann map, and let v : I → C be bounded. We want
to find a bounded solution α : I → C of the twisted cohomological equation (TCE):

(7) v(x) = α(f(x))− f ′(x)α(x) ,∀x ∈ I .

By analogy with the piecewise expanding unimodal case (that we studied in previous
works [10], [12]), a candidate αcand for the solution α of (7) is defined, for those x ∈ I so
that f j(x) 6= c for all j ≥ 0, by the formal series

(8) αcand(x) = −
∞∑
j=0

v(f j(x))

(f j+1)′(x)
,

and, for those x ∈ I so that there exists ` ≥ 0 with f `(x) = c, but f j(x) 6= c for 0 ≤ j ≤ `−1,
by the sum

(9) αcand(x) = −
`−1∑
j=0

v(f j(x))

(f j+1)′(x)
.
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(In particular, αcand(c) = 0.) Clearly, the series (8) converges absolutely at every point x for
which the Lyapunov exponent

Λ(x) = lim
j→∞

ln |(f j)′(x)|1/j

is well-defined and strictly positive. In particular, (8) converges absolutely for x in the forward
orbit {ck, k ≥ 1} of the critical point of the Collet-Eckmann S-unimodal map f , and also
on the set of its preperiodic points.

We say that v satisfies the horizontality condition if

(10) v(c) = −
∞∑
j=0

v(f j(c1))

(f j+1)′(c1)
,

(note that the right-hand side of the above identity is just αcand(c1)). If v satisfies the
horizontality, then it is easy to see that whenever the formal series (8) for αcand(x) converges
absolutely, then the corresponding series αcand(f(x)) also converges absolutely, and αcand

satisfies the twisted cohomological Equation (7) at x. Violation of horizontality (that is,
v(c) 6= αcand(c1)) is a transversality condition which has been used for a long time in one-
parameter families ft of smooth unimodal maps with v(x) = ∂tft|t=0 (see, e.g., [56] for the
transversality condition, see [57] for the transversality condition expressed as a postcritical
sum, see, e.g., [12, §5] for the link between the two expressions, see [4] for a recent occurrence,
and see [51] for its use in linear response).

Nowicki and van Strien [43] showed that the absolutely continuous invariant probability
measure µ of a quadratic Collet-Eckmann map satisfies

µ(A) ≤ Cm(A)1/2 ,

where m is the Lebesgue measure. In particular ln |f ′| is µ-integrable, and for Lebesgue
almost every point x the Lyapunov exponent Λ(x) is well-defined and positive and coincides
with

∫
ln |f ′| dµ (see Keller [27]). So the series αcand(x) converges absolutely at Lebesgue

almost every point x, and if v is horizontal then αcand satisfies the TCE (7) along the forward
orbit of each such good x. However it is not clear a priori that there exists an upper bound
for |αcand(x)| on the set where αcand(x) converges absolutely (for example, ck may be very
close to c).

One can ask whether the formal series αcand(x) converges everywhere. We shall show in
Proposition 2.5 that for fairly general v (see Remark 2.6), the series (8) for αcand(x) diverges
on an uncountable and dense subset (this set has Lebesgue measure zero, however, by the
observations in the previous paragraph). This lack of convergence is a new phenomenon with
respect to [10], [12]. In order to prove that the TCE nevertheless has a bounded solution in the
horizontal case, we shall make a Benedicks-Carleson assumption (3) (with G = 4) on f , and
we shall group the terms of the formal series αcand(x) to obtain an absolutely convergent
series. The resumation procedure depends on x through its dynamics with respect to an
induced map on the tower introduced in [15], using strong expansion properties available in
the Benedicks-Carleson case. This dynamical resumation will allow us to prove our first main
result:

T 2.4 (Boundedness and continuity of α). – Assume that f is a (λc, H0)-Collet-
Eckmann S-unimodal map satisfying the Benedicks-Carleson condition (3) with G = 4.
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For any bounded function v : I → C, if the TCE (7) admits a bounded solution α : I → C
with α(c) = 0, then this solution is unique and v satisfies the horizontality condition (10).

Let X : I → C be Lipschitz, and let v = X ◦ f . If v satisfies the horizontality condition
(10), then there exists a continuous function α : I → C with α(c) = 0 solving the TCE (7). In
addition, α(x) = αcand(x) for all x so that f j(x) = c for some j ≥ 0, or so that the infinite
series αcand(x) in (8) converges absolutely.

The condition v = X ◦ f can be weakened but the term k = 0 of (I) in (47) in the proof
of Proposition 3.9 shows that we need something like v′(c) = 0. (If we allowed f ′′(c) = 0,
then we would need v′′(c) = 0, etc.)

We do not know whether Theorem 2.4 holds for all S-unimodal Collet-Eckmann maps,
i.e., whether the Benedicks-Carleson assumption is needed. In any case, we shall use the
stronger, but still generic (recall Remark 2.3), TSR assumption in Section 5 to show uni-
formity of the various hyperbolicity constants. This uniformity is required to prove linear
response, the other main result of this paper.

The proof of Theorem 2.4 is given in Section 3 and organized as follows: In Section 3.1,
we recall the tower construction from Baladi and Viana [15]. We study its properties in
Section 3.2, which also contains two new (and key) estimates, Proposition 3.7 and its Corol-
lary 3.8. In Section 3.3, we define a function α(x) by grouping the terms of the formal
series (8) to obtain an absolutely convergent series (Definition 3.10 and Proposition 3.9).
The resumation procedure for α(x) depends on the dynamics of x on the tower. Finally,
in Section 3.4 we complete the proof of Theorem 2.4: We show that α(x) is a continuous
function, that it satisfies the TCE, and that if the TCE admits a bounded solution then it is
unique.

We end this section with a result on the lack of convergence of the formal power series
for αcand(x) (recall that it converges at Lebesgue almost every x):

P 2.5. – Let f be an S-unimodal map, with all its periodic points repelling and
an infinite postcritical orbit. Let v be aC1 function on I, with v′(c) = 0, such that v(f i0(c)) 6= 0

for some i0. Let Σ be the set of points x such that fn(x) 6= c for every n ≥ 0 and so that the
series αcand(x) = −

∑∞
i=0

v(fi(x))
(fi+1)′(x) diverges. Then for every non empty open set A ⊂ I, the

intersection A ∩ Σ contains a Cantor set.

R 2.6. – If f is a Collet-Eckmann map whose critical orbit is not preperiodic, an
open and dense set of horizontal vectors v satisfies the conditions of Proposition 2.5. Indeed,
the set {v | v(f i(c)) = 0,∀ i} is a subspace of infinite codimension, and the subspace of
horizontal directions v has codimension one.

The proof of Proposition 2.5 is to be found in Section 3.5.
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2.3. A new expression for the a.c.i.m. of a Benedicks-Carleson unimodal map

It is well-known that an S-unimodal map which is Collet-Eckmann admits an abso-
lutely continuous invariant measure. The following expression for the invariant density of a
Benedicks-Carleson unimodal map appears to be new. It is a byproduct of our proof, and
follows immediately from Proposition 4.11 and the definitions in Section 4 (the case when
the critical point is preperiodic can be obtained by a much more elementary proof). The
remarkable feature of (11) is that the defining function ψ0 is smooth, and that the square-root
singularities appear dynamically, through the inverse iterates of f and their jacobians.

P 2.7. – Let f be a (λc, H0)-Collet-Eckmann S-unimodal map satisfying the
Benedicks-Carleson condition (3) for G = 14, with c not preperiodic. If f isC4, then there exist

– a C1 function ψ0 : I → R+, which belongs to the Sobolev space W 2
1 ,

– for each k ≥ 1, neighborhoods Vk ⊂ Wk of c = 0, so that fk|Wk∩[0,1] and fk|[−1,0]∩Wk

are injective,
– for each k ≥ 1, a C∞ function ξk : I → [0, 1], supported in Wk and ≡ 1 on Vk,

so that the density φ of the unique absolutely continuous invariant probability measure of f
satisfies

(11) φ(x) = ψ0(x) +

∞∑
k=1

∑
ς∈{+,−}

∏k−1
j=1 ξj(f

−k
ς (x))

|(fk)′(f−kς (x))|
χk(x)ψ0(f−kς (x)) ,

whereχk = 1[−1,ck] if fk has a local maximum at c, whileχk = 1[ck,1] if fk has a local minimum
at c.

There is some flexibility in choosing the (exponentially decaying) intervals Vk, Wk, and
the functions ξk, see Definition 4.7 for details, noting also the parameter δ used in the
construction of the tower. The function ψ0 depends on these choices.

By Lemma 4.1, which describes the nature of the singularities of |(fk)′f−k± (x)| on the
support of ξk(f−k± (x)), the expression for φ belongs to Lp(I) for all p < 2 (this fact is well
known, and was proved recently [18] under much weaker assumptions). In fact, Lemma 4.1
(see also (75)) implies that the invariant density of f can be written as

ψ0 +
∑
k≥1

φk
χk√
|x− ck|

,

where the C1 norms of the φk decay exponentially with k. (A slightly weaker version of this
result, replacing differentiable by bounded variation, was first proved by L.S. Young [61].
Ruelle obtained a formula involving differentiable objects in the analytic Misiurewicz case
[51], but his expression is somewhat less dynamical.)

2.4. Uniformity of hyperbolicity constants in deformations of slowly recurrent maps

We shall study one-parameter families t 7→ ft of S-unimodal maps which stay in a
topological class, i.e., deformations:
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D 2.8 (Cr deformations ft. Notations vt, Xt, ht). – Let f : I → I be a
S-unimodal Collet-Eckmann map. For r ≥ 1, a Cr one-parameter family through f is a Cr

map
t 7→ ft , t ∈ [−ε, ε] ,

(taking the topology of C3 endomorphisms of I in the image), with f0 = f , and so that each
ft is S-unimodal. We use the notations:

ck,t = fkt (c) , k ≥ 1 , vs := ∂tft|t=s , v = v0 , ck = ck,0 .

A Cr deformation of f is a Cr one-parameter family through f so that, in addition, for
each |t| ≤ ε, there exists a homeomorphism ht : I → I with

(12) h0(x) ≡ x , and ft ◦ ht = ht ◦ f0 ,∀t ∈ [−ε, ε] ,

and (5) vs = Xs ◦ fs for each |s| ≤ ε, with Xs : I → R a C2 function. (We write X = X0.)

R 2.9. – If ft is a deformation then each vs is horizontal. (This was proved by
Tsujii [57].)

Given Theorem 2.4, the next lemma is easy to prove. It is essential in our argument:

L 2.10. – Let ft be aC1 one-parameter family of Collet-Eckmann S-unimodal maps
through f = f0. Assume that v is horizontal, that is, αcand(c1) = v(c) (by Theorem 2.4, the
TCE then admits a unique bounded solution α).

Then, we have for all k ≥ 1

lim
t→0

ck,t − ck
t

= αcand(ck) .

If, in addition, ft is a C1 deformation of f0 then

∂tht(ck)|t=0 = αcand(ck) = α(ck) , ∀k ≥ 1 .

Proof. – Our assumptions ensure that for each k ≥ 1 the limit

a(ck) = lim
t→0

ck,t − ck
t

exists. Clearly, a(c1) = v(c). More generally, it is easy to check that we have

a(ck) =

k−1∑
j=0

(f j)′(ck−j)v(ck−j−1) ,

so that a satisfies the TCE (7). By the horizontality condition, this implies that a = αcand

on {ck}k≥0.
The additional assumption that ft and f0 are conjugated via ht implies that ht(ck) = ck,t,

for all t and all k ≥ 0. The last statement of Theorem 2.4 implies that αcand(ck) = α(ck) for
all k ≥ 1.

The following fact is an immediate consequence of van Strien’s remark on “robust chaos”
[55, Theorem 1.1], using the well-known fact that Collet-Eckmann maps do not have any
attracting periodic orbit:

(5) This is mostly a technical assumption, see also the remark after Theorem 2.4.
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L 2.11. – Let f : I → I be an S-unimodal (λc, H0) Collet-Eckmann map and let ft
be a C1 one-parameter family through f . If each ft is Collet-Eckmann for some parameters
λc(t) and H0(t), then ft is a C1 deformation of f .

In the other direction, although topological invariance of the Collet-Eckmann condition
is known, we do not know how to prove topological invariance of Benedicks-Carleson
conditions (3). Since we also need uniformity of the various constants in the definitions, we
shall work with the stronger, but still generic (see Remark 2.3), assumption of topological
slow recurrence TSR (recall (5)). In Section 5, assuming for simplicity that the maps are
symmetric, we shall prove that if fs is a C0 deformation of a TSR map f0 then the various
hyperbolicity constants of fs (that is λc(fs) andH0(fs), but also σ(fs), cfs(δ)

−1, ρ(fs) from
Subsection 3.2, and, especially, γ(fs)) are uniform in small s. We refer to Lemma 5.8 for a
precise statement. Also, it will follow from Propositions 5.1 and 5.2 that (TSR) implies (CE)
and the Benedicks-Carleson condition (3).

The uniformity of the constants from Lemma 5.8 implies in particular that, if ft is a C1

deformation of symmetric S-unimodal maps so that f0 enjoys topological slow recurrence
TSR, then the assumptions of Theorem 2.4 are satisfied for each fs. We may thus state a
lemma which will be essential in many places in the proof of Theorem 2.13:

L 2.12. – Let ft be a C1 deformation of symmetric S-unimodal maps so that f0

enjoys topological slow recurrence TSR. Denote by αt the continuous solution to the TCE given
by Theorem 2.4 applied to ft. Then there exist ε > 0 and L <∞ so that

(13) sup
x

sup
|t|<ε
|αt(x)| ≤ L ,

and

(14) |ck − ck,t| ≤ L|t| ∀k ≥ 1 , ∀|t| < ε .

The proof of Lemma 2.12 is simple, but since it uses notation to be introduced later on,
we postpone it until after the proof of Lemma 5.8.

2.5. Linear response

Our main result will be proved in Section 6:

T 2.13 (Linear response and linear response formula). – Let η > 0 and let ft be
aC2 deformation of aC4 S-unimodal map f0 which satisfies TSR. Assume that all maps ft are
symmetric. Write µt = φt dx for the unique absolutely continuous invariant probability of ft.
Then, letting (C1(I))∗ be the dual of C1(I), the map

(15) t 7→ µt ∈ (C1(I))∗ , t ∈ [−ε, ε]

is differentiable. In addition, for any A ∈ C1(I),

(16)
∫
I

(A−A ◦ fs)∂tµt|t=s =

∫
I

A′Xsφs dx ,
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Formula (16) is an easy consequence of the differentiability of (15), as was pointed out to
us by Ruelle [52].

We next give an explicit formula for ∂tµt|t=0 (we choose t = 0 for definiteness). For this,

we need further notation. Introduce Yk,s = limt→s
fkt −f

k
s

t−s for k ≥ 1 (we write Yk instead
of Yk,0). Then Y1,s = Xs ◦ fs, Y2,s = Xs ◦ f2

s + (f ′s ◦ fs)Xs ◦ fs, and

(17) Yk,s =

k∑
j=1

((fk−js )′ ◦ f js ) ·Xs ◦ f js , k ≥ 1 .

Put (note the shift in indices!)

(18) Ŷs = (Ŷs(x, k) = Yk+1,s(x), k ≥ 0) , Ŷ = Ŷ0 .

Referring to Section 4 for the definitions of λ, L̂, φ̂, Π, and T 0, and summing (131) and (150)
from the proof of Theorem 2.13, we get∫

A∂tµt|t=0

= −
∫
A ·Π((id− L̂)−1 T 0( L̂(Ŷ φ̂))′ dx− λ

∫
A′ ·Π((id− T 0)( L̂(Ŷ φ̂))) dx .

Using the definitions of L̂, φ̂, Π, and T 0, the linear response formula above can be rewritten
in terms of f and the functions ψ0, ξk and χk from Proposition 2.7. The reader can then
compare this rewriting to the expression in [51, §17 and §18], obtained under the additional
assumptions that f0 is Misiurewicz and all the ft are real analytic. (See also Remark 2.14
below.)

We next discuss (16). Using (133), we find∫
(A−A◦f)∂tµt|t=0 =

∫
A′ T 0( L̂(Ŷ φ̂)) dx−λ

∫
(A′− (A◦f)′) ·Π((id− T 0) L̂(Ŷ φ̂)) dy .

By Theorem 2.13, the right-hand side above coincides with the expression (16). We sketch
here a direct proof of this fact: The left-hand side above being independent of the parameter
δ used in the construction of the tower (note however that Π, L̂, and φ̂ depend on δ), we can
let δ → 0.

We expect that, when δ → 0, the function φ0 converges to φ in the L1 topology, and that
for any continuous function B, on the one hand, we have

(19) lim
δ→0

∫
I

B ·Π((id− T 0)( L̂(Ŷ φ̂))) dy = 0 ,

and on the other hand, using in particular (134) and the facts that (6) Y1 = X0 ◦ f0 and
L̂(φ̂) = φ̂, we get

(20) lim
δ→0

∫
B T 0( L̂(Ŷ φ̂)) dx =

∫
BXφdx .

(6) Note also that, as δ → 0, the smallest level from which points may fall from the tower tends to infinity.
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R 2.14. – If L denotes the transfer operator defined on distributions υ of order
one by

∫
A Lυ =

∫
(A ◦ f)υ, for all C1 functions A, expression (16) can be written as a left

inverse (both sides should be viewed as distributions of order one)

(21) ∂tµt|t=0 = −(id− L)−1
L (Xφ)′ dx .

Indeed ∫
(A−A ◦ f)∂tµt|t=0 =

∫
A(id− L)∂tµt|t=0 ,

and, in the sense of distributions (writing µ = µ0 as usual),∫
A′Xφdx = −

∫
A(Xφ)′ dx = −

∫
Adivµ(X) dµ .

We next explain the heuristics of the connection with the susceptibility function. In situations
where more information is available (such as smooth expanding circle maps), the following
formal manipulations become licit (they are not licit in the present case of smooth unimodal
maps, in particular the sum below diverges in general):∫

A(id− L)−1
L (Xφ)′ dx =

∫
A

∞∑
j=0

Lj(Xφ)′ dx

=

∫ ∞∑
j=0

Lj((A ◦ f j)(Xφ)′) dx = −
∞∑
j=0

∫
(A ◦ f j)′Xφdx ,

so that

∫
A∂tdµt|t=0 =

∞∑
j=0

∫
(A ◦ f j)′Xdµ = ΨA(1) .

We end this section with a result that we shall not need, but which is of independent
interest (the proof is given in Appendix A):

P 2.15 (The solution of the TCE is an infinitesimal conjugacy)

Let t 7→ ft be aC1 deformation of theS-unimodal (λc, H0) Collet-Eckmann map f0. Assume
furthermore that for each |t| ≤ ε there exists a unique continuous function αt on I which solves
the TCE (7) for v = vt := ∂sfs|s=t and f = ft, and in addition that the family {αt}|t|≤ε of (7)

continuous maps is equicontinuous. Then for each x ∈ I the function t 7→ ht(x) is C1, and

∂shs(x)|s=t = αt(ht(x)) , ∀ t ∈ (−ε, ε) .

Note that if each ft satisfies the Benedicks-Carleson assumption (3) for G = 4 then
Theorem 2.4 ensures that the TCE associated to ft and vt has a unique solution αt, which
is continuous (recall Remark 2.9). We expect that equicontinuity of the family αt can be
obtained, possibly under the topological slow recurrence condition TSR.

(7) By compactness of I and [−ε, ε], continuity is equivalent to uniform continuity here.
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3. Proof of Theorem 2.4: Boundedness and continuity of the solution α of the TCE

3.1. The tower map f̂ , the times Si(x) and Ti(x), and the intervals Ij

Before recalling the tower construction from [15], we mention crucial expansion properties
of Collet-Eckmann maps which improve (8) over [15, Lemma 1]:

L 3.1 (Collet-Eckmann maps expansion). – Let f be an S-unimodal (λc, H0)-Col-
let-Eckmann map.

There exist σ = σf > 1 andC = Cf > 0 and for every small δ > 0 there exists c(δ) = cf (δ)

such that for any j ≥ 1

(22) |(f i)′(x)| ≥ c(δ)σi , ∀0 ≤ i ≤ j , ∀x so that |fk(x)| > δ , ∀0 ≤ k < j .

For every 1 < ρ <
√
λc there exists C1 = C1(ρ) ∈ (0, 1] and for each δ0 > 0 there exists

δ ∈ (0, δ0) such that for any j ≥ 1

(23) |(f j)′(x)| ≥ C1ρ
j , ∀x so that |f i(x)| > δ , ∀0 ≤ i < j , |f j(x)| ≤ δ .

In addition, we can assume that either±δ are preperiodic points, or that they have infinite orbits
and that their Lyapunov exponents exist and are strictly positive.

R 3.2. – Except in Remarks (19) and (20), and, more importantly, in Remark 4.9
(which is used in Appendix B), we do not use that c(δ) ≥ Cδ, only that c(δ) > 0 if δ > 0.

Proof. – By Theorem 7.7 in [41], there exist σ > 1 and K > 0 such that

|(f i)′(x)| ≥ Kσi min
0≤k<i

|f ′(fk(x))| .

Since |f ′(y)| ≥ K̃|y| and |fk(x)| ≥ δ for k < j and i ≤ j, we have (22).
To prove (23), we use Proposition 3.2(6) in [39] which says that for every 1 < ρ < λ

1/2
c

there exists C̃ such that if f j(y) = c then

(24) |(f j)′(y)| ≥ C̃ρj .

By Theorem 3.2 in [33] and the Koebe lemma, there exist K > 0 and arbitrarily small δ > 0

such that the following holds: if |f i(x)| > δ for 0 ≤ i < j and |f j(x)| ≤ δ then there exists
an interval J , with x ∈ J , such that f j(J) = [−δ, δ], f j is a diffeomorphism on J , and

(25)
1

K
≤ |(f

j)′(y)|
|(f j)′(x)|

≤ K , ∀y ∈ J .

Let y ∈ J be such that f j(y) = c. By (24) and (25) it follows that

|(f j)′(x)| ≥ C̃

K
ρj .

Finally we can choose δ so that±δ are preperiodic points, or±δ non preperiodic with Λ(±δ)
well-defined and positive. Indeed by [34], f admits an expanding induced map M that is a
C3 Markov map. In particular M : ∪i Ji → J , where Ji and J are open intervals, c ∈ J ,
∪iJi is dense in J , M(x) = fni(x) for x ∈ Ji and some ni > 0, M(Ji) = K, and

(8) The improvements are: The Benedicks-Carleson condition is not needed, the expansion factor ρ in (23) can be
taken arbitrarily close to

√
λc, and c(δ) > C|δ|. The flexibility on ρ means we can take any ρ ∈ (eγ , e−γ

√
λc) in

Lemma 3.5. This makes (3) for G = 4 sufficient for Proposition 3.7, with no condition relating σ and γ.
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inf M ′(x) > 1. Let p be a periodic point of M . Then it is easy to see that ∪jM−j{p} is
dense in J , so in particular c can be approximated by preperiodic points. Now consider the
restriction M : J1 ∪ J2 → J . Then the maximal invariant set of this map is an expanding
Cantor set. Let q be a point in this set with infinite orbit and whose Lyapunov exponent
exists. Then ∪jM−j{q} is dense in J , so c can be approximated by non preperiodic points
with well-defined and positive Λ(±δ).

We now recall the tower f̂ : Î → Î associated in [15] to a (λc, H0)-Collet Eckmann
S-unimodal map f satisfying the Benedicks-Carleson assumption (3) for G = 4. As the (so-
called subhyperbolic) case of a finite postcritical orbit is much simpler, we shall assume in this
construction that this orbit is infinite. Choose ρ so that

(26) eγ < ρ < e−γ
√
λc ,

and fix (9) two constants

(27)
3

2
γ < β1 < β2 < 2γ .

The tower Î is the union Î = ∪k≥0Ek of levels Ek = Bk × {k} satisfying the following
properties: The ground floor interval B0 = [a0, b0] is just the interval I. For k ≥ 1, the
interval Bk = [ak, bk] is such that

(28) [ck − e−β2k, ck + e−β2k] ⊂ Bk ⊂ [ck − e−β1k, ck + e−β1k] .

(Observe that 0 = c /∈ Bk for all k ≥ H0.) Fix δ > 0 such that the Lyapunov exponents
Λ(±δ) are well defined and strictly positive, so that both claims of Lemma 3.1 hold (for our
present choice of ρ), and small enough so that

(29) |f j(x)− cj | < min{|cj |e−γj , e−β2j} for all 1 ≤ j ≤ H0 and |x| ≤ δ .

(Just after (31), and later on, in Section 3.2, we may need to take a smaller choice of δ still
assuming that Λ(±δ) > 0 and that both claims of Lemma 3.1 hold.)

We may assume that the Lyapunov exponents Λ(ak) > 0 and Λ(bk) > 0 for all k, recalling
that the set of points with a positive Lyapunov exponent has full Lebesgue measure. Let us
write

{0,±δ} ∪ {aj | j ≥ 0} ∪ {bj | j ≥ 0} = {e0 = c, e1 = δ, e2 = −δ, e3, . . .} .

We may and do require additionally that

(30) f j(ek) 6= ek and f j(ek) 6= f i(e`) ∀i, j ≥ 1 , k 6= ` ≥ 0 .

(Indeed, (30) is a co-countable set of conditions, while the set of points x with Lyapunov
exponent Λ(x) well defined and strictly positive has full Lebesgue measure, as recalled in
Section 2.2.) The positivity condition on the Lyapunov exponents Λ(ek) (k 6= 0) ensures
that αcand(ek) converges absolutely for each k ≥ 1, and this will be used in the proof of
Theorem 2.4.

(9) Our lower bound on β1 is stronger than the one in [15] because we use some estimates in [59].
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For (x, k) ∈ Ek we set (10)

(31) f̂(x, k) =


(f(x), k + 1) if k ≥ 1 and f(x) ∈ Bk+1 ,

(f(x), k + 1) if k = 0 and x ∈ [−δ, δ] ,
(f(x), 0) otherwise.

Denoting π : Î → I the projection to the first factor, we have f ◦ π = π ◦ f̂ on Î.
Define H(δ) to be the minimal k ≥ 1 such that there exists some x ∈ (−δ, δ) such that

f̂k+1(x, 0) ∈ E0. By continuity,H(δ) can be made arbitrarily large by choosing small enough
δ, and we assume that H(δ) ≥ max(2, H0).

Having defined the tower f̂ , we next introduce notations Ij , Ti(x) and Si(x) which will
play a key part in the proof. We decompose (−δ, δ) \ {0} as a disjoint union of intervals

(−δ, δ) \ {0} = ∪j≥H(δ)Ij , Ij := I+
j ∪ I

−
j ,

I±j := {|x| < δ,±x > 0, f̂ `(x, 0) ∈ E`, 0 ≤ ` < j, f̂ j(x, 0) ∈ E0} .(32)

(Note that I±j can be empty for some j.) For any k ≥ H(δ) both sets J+
k := ∪H(δ)≤j≤kI

+
j

and J−k := ∪H(δ)≤j≤kI
−
j are intervals.

For each x ∈ I we next define inductively an infinite non decreasing sequence

0 = S0(x) ≤ T1(x) < S1(x) ≤ · · · < Si(x) ≤ Ti+1(x) < Si+1(x) ≤ · · · ,

with Si(x), Ti(x) ∈ N ∪ {∞} as follows: Put T0(x) = S0(x) = 0 for every x ∈ I. Let i ≥ 1

and assume recursively that Sj(x) and Tj(x) have been defined for j ≤ i − 1. Then, we set
(as usual, we put inf ∅ =∞)

Ti(x) = inf{j ≥ Si−1(x) | |f j(x)| ≤ δ} .

If Ti(x) = ∞ for some i ≥ 1 then we set Si(x) = ∞. Otherwise, either fTi(x)(x) = c, and
then we put Si(x) =∞, or fTi(x)(x) ∈ Ij , for some j ≥ H(δ), and we put Si(x) = Ti(x)+j.

Note that if Ti(x) <∞ for some i ≥ 1 then

f̂ j(x, 0) /∈ E0 , Ti(x) + 1 ≤ j ≤ Si(x)− 1 ,

f̂ `(x, 0) ∈ E0 , Si−1(x) ≤ ` ≤ Ti(x) .

If Ti0(x) = ∞ for i0 ≥ 1, minimal with this property, then f̂ `(x, 0) ∈ E0 for all ` ≥ Si0−1

(that is, |f `(x)| > δ for all ` ≥ Si0−1).
In other words, Ti is the beginning of the i-th bound period and Si−1 is the end of the i-th

bound period, (11) and if Si < Ti+1 then Si is the beginning of the i+ 1-th free period (which
ends when the i+ 1-th bound period starts).

In order to give a meaning to some expressions below, e.g., when Si =∞ or Ti =∞, we
set

Si − Ti = 0 if Si = Ti =∞ , Ti − Si−1 = 0 if Si−1 = Ti =∞ ,

and, for all x ∈ I, we set (f∞)′(x) :=∞ and f∞(x) := c1.

(10) With respect to the definition in [15], note that we replaced (−δ, δ) by [−δ, δ], this is not essential but convenient,
e.g., in (76).
(11) Bound period refers to the fact that the orbit is bound, i.e., sufficiently exponentially close, to the postcritical
orbit.
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3.2. Properties of the tower map

After recalling in Lemma 3.3 and Lemma 3.4 some results of [15], we shall state in
Lemma 3.5 expansion and distortion control properties of the tower map f̂ (invoking
Lemma 3.1 instead of [15, Lemma 1]). Then we shall prove two new estimates (Proposi-
tion 3.7 and its Corollary 3.8) which will play a key part in the resumation argument of
Proposition 3.9.

For the sake of completeness (we shall use an estimate from the proof later on), we first
recall how to obtain distortion bounds (see [15] or [59, Lemma 5.3(1)]):

L 3.3 (Bounded distortion in the bound period). – Let f be an S-unimodal
(λc, H0)-Collet-Eckmann map satisfying the Benedicks-Carleson condition (3) for G = 4, with
non preperiodic critical point. Then, if δ is small enough, there exists C > 0 such that for every
j ≥ 1, and every k ≤ j − 1, recalling (32)

(33) C−1 ≤ |(f
k)′(x)|

|(fk)′(y)|
≤ C , ∀x, y ∈ Uj := f

(
{c} ∪

⋃
m≥j

Im
)
.

Note thatUj is the set of points in (−δ, δ)×{0} ⊂ E0 which climb at least up to level j−1

before their first return to E0.

Proof. – Recall the intervals B` from § 3.1. For 1 ≤ ` ≤ k ≤ j − 1, pick x` and y`
in ∪m≥j(f `(Im)) ⊂ B`. We have

k∏
`=1

|f ′(x`)|
|f ′(y`)|

≤
k∏
`=1

(
1 +

sup |f ′′|
|f ′(y`)|

|x` − y`|
)
≤

k∏
`=1

(
1 + C sup |f ′′| |x` − y`|

|y`|

)

≤
∞∏
`=1

(1 + C̃C sup |f ′′|e−β1`) <∞ ,(34)

uniformly in m ≥ j. We used that |x` − y`| ≤ e−β1` and, if ` ≥ H0, that
|y`| ≥ e−γ` − e−β1` with β1 > 3γ/2, but any summable condition would be enough
here. If we choose y` = f `−1(y) and x` = f `−1(x) we get the upper bound in (34). If we
pick y` = f `−1(x) and x` = f `−1(y) then we obtain the lower bound in (34).

The following upper and lower bounds from [15], about points which climb for exactly
j − 1 steps, will be used several times:

L 3.4 (The j-bound intervals I±j ). – Let f be an S-unimodal (λc, H0)-Collet-
Eckmann map satisfying the Benedicks-Carleson condition (3) for G = 4 and with non
preperiodic critical point. Then there exist C and C2 so that for any j ≥ H(δ), recalling (32),
we have

(35) |x− c| ≤ Ce
−3γ(j−1)

4 |(f j−2)′(c1)|−1/2 , ∀x ∈ Ij ,

and

(36) |(f j)′(x)| ≥ C2e
− β2j2 |(f j−1)′(c1)|1/2 , ∀x ∈ Ij ,

and, finally,

(37) |f ′(x)| ≥ C−1e−γj |(f j−1)′(c1)|−1/2 , ∀x ∈ Ij .
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Proof. – If Ij is empty, there is nothing to prove. Otherwise, our definitions and the mean
value theorem imply that there exists y with f(y) ∈ [f(x), c1] so that

|(f j−2)′(f(y))||f(x)− c1| ≤ Ce−β1(j−1) .

Therefore, since β1 > 3γ/2 (recall (27)) the lower bound in (33) and the fact that |f(x)−c1| ≥
C−1|x− c|2 yield (35).

The bound (36) follows from [15, (3.10), Proof of Lemma 2].

For (37), use (36) and that β2 < 2γ from (27).

Recall the timesSi,Ti from Subsection 3.1, for suitably small δ. The following lemma gives
expansion at the end of the free period Ti−1 (just before climbing the tower), at the end Si−1

of the bound period (after falling from the tower), and during the free period (when staying
at level zero):

L 3.5 (Tower expansion for Benedicks-Carleson maps). – Let f be an S-unimodal
(λc, H0)-Collet-Eckmann map satisfying the Benedicks-Carleson condition (3) for G = 4, with
non preperiodic critical point, and let ρ satisfy (26). For every small enough δ0 > 0, if δ < δ0,
σ > 1, C1 = C1(ρ) ∈ (0, 1], and c(δ) > 0 are as in Lemma 3.1, letting Si(x) and Ti(x) be the
times associated to the tower for δ, then

(38) |(fSi(x))′(x)| ≥ ρSi(x) , |(fTi(x))′(x)| ≥ C1ρ
Ti(x) , ∀x ∈ I , ∀i ≥ 0 ,

and

|(fSi(x)+j)′(x)| ≥ c(δ)ρSi(x)σj , ∀x ∈ I , ∀i ≥ 0 , ∀0 ≤ j < Ti+1(x)− Si(x) .

R 3.6. – An immediate consequence of Lemma 3.5 is that, for every x such that
fn(x) 6= c, for every n, we have lim supn |(fn)′(x)|1/n ≥ ξ > 1, where ξ = min(ρ, σ).

Proof of Lemma 3.5. – Choose δ < δ0 as in the second claim of Lemma 3.1, small enough
so that

C1C2 · e−
β2j
2 λ

j−1
2

c ≥ ρj , ∀j ≥ H(δ) .

Let now x ∈ I. Recall that for any ` ≥ 1, the definitions imply fS`−1(x)+k(x) ∈ I \ [−δ, δ] for
all 0 ≤ k < T`(x)− S`−1(x) and fT`(x)(x) ∈ Ij with j = S`(x)− T`(x) ≥ H(δ). Therefore,
the second claim of Lemma 3.1 and (36) give for all i ≥ 0

|(fSi)′(x)| =
i∏

`=1

|(fS`(x)−T`(x))′(fT`(x)x)||(fT`(x)−S`−1(x))′(fS`−1(x)x)| ≥ ρSi(x) ,

and

|(fTi)′(x)| = |(fTi(x)−Si−1(x))′(fSi−1(x)x)||(fSi)′(x)| ≥ C1ρ
Ti(x)−Si(x)ρSi(x) .

Using in addition the first claim of Lemma 3.1, we get, for 0 ≤ j ≤ Ti+1(x)− Si(x),

|(fSi(x)+j)′(x)| = |(f j)′(fSi(x)(x))||(fSi)′(x)| ≥ c(δ)σjρSi(x) .
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The information on the tower will allow us to prove the next proposition, which is a crucial
ingredient (12) to show that αcand can be resummed to a bounded function (Proposition 3.9
and Definition 3.10):

P 3.7 (Key estimate for Benedicks Carleson maps). – Let f be an S-uni-
modal (λc, H0)-Collet-Eckmann map satisfying the Benedicks-Carleson condition (3)
for G = 4, with non preperiodic critical point. There exists C > 0 such that for every
j ≥ 0 we have

(39)
∞∑

k=j+1

1

|(fk−j)′(f j(c1))|
≤ Ceγj .

The proof shows thatC = O((c(δ))−1), where δ is the parameter used in the construction
of the tower and c(δ) is given by Lemma 3.1. More importantly, the proposition implies that
|αcand(cj)| ≤ C sup |v|eγj . This bound is of course not uniform in j, but it will act as a
bootstrap for the proof of the Proposition 3.9 which performs the resumation.

Proof. – Fix j ≥ 1. Since the summands are all positive, we may (and shall) group them
in a convenient way, using the times Ti := Ti(cj+1) and Si := Si(cj+1) defined in the tower
construction for a small enough δ. We have

∞∑
k=j+1

1

|(fk−j)′(f j(c1))|

=

∞∑
i=0

1

|(fSi)′(cj+1)|
uTi+1−Si(f

Si(cj+1)) +

∞∑
i=1

1

|(fTi)′(cj+1)|
uSi−Ti(f

Ti(cj+1)) ,

where we use the notation

un(y) =

n∑
`=1

1

|(f `)′(y)|
.

(In particular u0 ≡ 0.) Since Ti+1 − Si = T1(fSi(cj+1)), Lemma 3.5 implies

uTi+1−Si(f
Si(cj+1)) ≤ C

c(δ)(1− σ−1)

(in particular the series converges if n = Ti+1 − Si = ∞). Since f ′′(c) 6= 0, the Benedicks-
Carleson assumption (3) for G = 4 implies for all i

|f ′(fTi(cj+1))| = |f ′(fTi+j(c1))| ≥ C−1e−γ(Ti+j) .

Therefore, the bounded distortion estimate (34) in the proof of Lemma 3.3 gives, together
with the Collet-Eckmann assumption, (13)

uSi−Ti(f
Ti(cj+1)) ≤ 1

|f ′(fTi(cj+1))|

∞∑
`=0

C

|(f `)′(c1)|
≤ C3

(1− λ−1
c )

eγ(Ti+j) .

(12) Proposition 3.7 will also be used in an essential way in the proof of Theorem 2.13, in particular in the proof of
Lemma 4.1, and also in Lemma 4.12.
(13) The constant C above depends on [sup1≤j<H0

λc/|(fj)′(c1)|1/j ]H0 . By Lemma 5.8, this expression is uni-
form for suitable families ft.
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By Lemma 3.5 we have |(fSi)′(cj+1)| ≥ CρSi and |(fTi)′(cj+1)| ≥ C1ρ
Ti . Therefore,

there exist constants K1(δ), K2(δ) so that

∞∑
k=j+1

1

|(fk−j)′(f j(c1))|
≤ K1(δ)eγj

[ ∞∑
i=0

ρ−Si +

∞∑
i=1

ρ−TieγTi
]
≤ K2(δ)eγj .

(We used that ρ > eγ .)

We end this section of preparations by a consequence of Proposition 3.7 which will also
be needed in our resumation Proposition 3.9:

C 3.8. – Let f be an S-unimodal (λc, H0)-Collet-Eckmann map satisfying the
Benedicks-Carleson condition (3) for G = 4, with non preperiodic critical point. Then there
exists C so that for any j ≥ 1

(40)
1

|f ′(x)|

j−1∑
k=1

∣∣∣∣ 1

|(fk)′(c1)|
− 1

|(fk)′(f(x))|

∣∣∣∣ ≤ C e5γj/4

|f j−2(c1)|1/2
, ∀x ∈ Ij .

Proof. – For any j ≥ 1, x ∈ Ij , and 1 ≤ k < j we get by using (34) from the proof of
Lemma 3.3 that∣∣∣∣ 1

(fk)′(f(x))
− 1

(fk)′(c1)

∣∣∣∣
≤

k−1∑
n=0

∣∣∣∣ 1

f ′(fn(f(x)))
− 1

f ′(fn(c1))

∣∣∣∣ n−1∏
`=0

1

|f ′(f `(c1))|

k−1∏
i=n+1

1

|f ′(f i(f(x)))|

≤
k−1∑
n=0

sup
y∈fn[f(x),c1]

|f ′′(y)|
|f ′(y)|2

|fn(f(x))− fn(c1)|
n−1∏
`=0

1

|f ′(f `(c1)|

k−1∏
i=n+1

1

|f ′(f i(f(x)))|

≤
k−1∑
n=0

sup
y∈fn[f(x),c1]

|f ′′(y)|
|f ′(y)|2

sup
z∈[f(x),c1]

|(fn)′(z)||f(x)− c1|

·
n−1∏
`=0

1

|f ′(f `(c1)|

k−1∏
i=n+1

1

|f ′(f i(f(x)))|

(34)
≤ C|f(x)− c1|

k∑
n=0

sup
y∈fn[f(x),c1]

|f ′′(y)|
|f ′(y)|

|(fn)′(c1)|
|(fk)′(c1)|

≤ C

1− e−γ/2
|f(x)− c1|

k−1∑
n=0

eγn
1

|(fk−n)′(fn(c1))|
.

(In the last inequality, we used that fn[f(x), c1] ⊂ Bn+1, and that the Benedicks-Carleson
assumption (3) for G = 4 implies |y − c| > e−γ(n+1) − e−β1(n+1) for y ∈ Bn+1, together
with (27).)
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Therefore, for any j ≥ 1 and x ∈ Ij , since |f(x)−c1| ≤ C|x−c|2, Proposition 3.7 implies

1

|f ′(x)|

j−1∑
k=0

∣∣∣∣ 1

(fk)′(f(x))
− 1

(fk)′(c1)

∣∣∣∣(41)

≤ C|x− c|
j−1∑
k=0

k∑
n=0

eγn
1

|(fk−n)′(fn(c1))|

≤ C|x− c|
j−1∑
n=0

eγn
j−n−1∑
i=0

1

|(f i)′(fn(c1))|

≤ C|x− c|
j−1∑
n=0

eγn
∞∑
i=0

1

|(f i)′(fn(c1))|

(39)
≤ C|x− c|

j−1∑
n=0

e2γn ≤ C|x− c|e2γj ≤ C e−3γ(j−1)/4

|(f j−2)′(c1)|1/2
e2γj ,

where we used (35) from Lemma 3.4 in the last inequality.

3.3. Resumation: Definition and boundedness of α for horizontal v

Proposition 3.9 is the heart of the proof of Theorem 2.4. This is where we define the
dynamical resumation for the series αcand, under a horizontality condition.

P 3.9 (Resumation). – Let f be an S-unimodal (λc, H0)-Collet-Eckmann
map satisfying the Benedicks-Carleson condition (3) for G = 4, with non preperiodic critical
point. Let v = X ◦ f , for X a Lipschitz function, and assume that v satisfies the horizontality
condition (10) for f .

If δ is small enough, then for every x ∈ I, letting Ti = Ti(x) and Si = Si(x) be the times
associated to the tower for δ, the following series converges:

(42)
∞∑
i=1

(
1

|(fTi)′(x)|
|wSi−Ti(fTi(x))|+ 1

|(fSi−1)′(x)|
|wTi−Si−1

(fSi−1(x))|
)
,

where w∞(c) = 0 and (14)

wn(y) :=
n−1∑
`=0

v(f `(y))

(f `+1)′(y)
, y 6= c , n ∈ Z+ ∪ {∞} .

Moreover the sum of the series (42) is bounded uniformly in x ∈ I.

The proposition allows us to give the following definition:

D 3.10. – We define α(x) for any x ∈ I by

(43) α(x) = −
∞∑
i=1

(
1

(fTi)′(x)
wSi−Ti(f

Ti(x)) +
1

(fSi−1)′(x)
wTi−Si−1

(fSi−1(x))

)
.

(14) In particular, we claim thatwn(y) converges ifn = Si−Ti =∞ and y = fTi (x) 6= c, or ifn = Ti−Si−1 =∞
and y = fSi−1 (x).
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If the formal series (8) is absolutely convergent at x, then (43) is just the sum of this series.
If f j(x) = c for some j ≥ 0, minimal with this property, then our notation ensures that (43)
is just the finite sum (9). In both these cases, α(x) = αcand(x).

Proof of Proposition 3.9.. – Choose δ small enough, as in Lemma 3.5, and C1(ρ), σ > 1,
and c(δ) from Lemma 3.1.

For any i ≥ 1 so that Si−1 <∞, since Ti − Si−1 = T1(fSi−1(x)), Lemma 3.5 implies

|wTi−Si−1(fSi−1(x))| ≤
Ti−Si−1−1∑

`=0

∣∣∣∣ v(f `(fSi−1(x)))

(f `+1)′(fSi−1(x))

∣∣∣∣
≤ C

c(δ)(1− σ−1)
sup |v| , ∀i ≥ 0 .(44)

(Note that Ti =∞ is allowed in the previous estimate.)

If Si =∞ then either fTi(x) = c or Ti =∞; in both cases wSi−Ti(f
Ti(x)) = 0. Next, we

claim that whenever Si 6=∞, we have,

(45) |wSi−Ti(fTi(x))| ≤ C max{sup |v|,LipX} e2γ(Si−Ti)

|(fSi−Ti−1)′(c1)|1/2
,∀i ≥ 0 .

We shall prove (45), which requires horizontality as well as the key Proposition 3.7 and its
Corollary 3.8, at the end of this proof.

Putting together (44) and (45), and recalling Lemma 3.5, we find the following upper
bound for (42) :

∞∑
i=1

Cρ−Si−1

c(δ)(1− σ−1)
sup |v|+ C

ρ−Ti

C1(ρ)
max(sup |v|,LipX)

e2γ(Si−Ti)

|(fSi−Ti−1)′(c1)|1/2
.

Using again (3) for G = 4, we are done.

It remains to prove (45). The definitions imply fTi(x) ∈ Ij for j = Si − Ti, for all i ≥ 1.
So it suffices to show that

(46) |wj(y)| ≤ C max(sup |v|,LipX)
e2γj

|(f j−1)′(c1)|1/2
, ∀y ∈ Ij .

We shall use the decomposition

|wj(y)| ≤ 1

|f ′(y)|

∣∣∣∣ j−1∑
k=0

v(ck)

(fk)′(c1)

∣∣∣∣︸ ︷︷ ︸
I

+
1

|f ′(y)|

j−1∑
k=0

|v(ck)|
∣∣∣∣ 1

(fk)′(f(y))
− 1

(fk)′(c1)

∣∣∣∣︸ ︷︷ ︸
II

+
1

|f ′(y)|

j−1∑
k=0

∣∣∣∣v(fk(y))− v(ck)

(fk)′(y)

∣∣∣∣︸ ︷︷ ︸
III

.(47)

We first consider I. By the horizontality condition (10) for v, we have

j−1∑
k=0

v(ck)

(fk)′(c1)
+

1

(f j)′(c1)

∞∑
k=j

v(ck)

(fk−j)′(cj+1)
= 0 .
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Therefore, (37) in Lemma 3.4 and Proposition 3.7 imply

I =
1

|f ′(y)|
1

|(f j)′(c1)|

∣∣∣∣ ∞∑
k=j

v(ck)

(fk−j)′(cj+1)

∣∣∣∣
≤ Ceγj |(f j−1)′(c1)|1/2 1

|(f j)′(c1)|
sup |v|eγj

≤ C sup |v| e2γj

|(f j−1)′(c1)|1/2
.(48)

Next, by Corollary 3.8 we find

II ≤ sup |v| 1

|f ′(y)|

j−1∑
k=0

∣∣∣∣ 1

(fk)′(f(y))
− 1

(fk)′(c1)

∣∣∣∣
≤ C sup |v| e5γj/4

|(f j−2)′(c1)|1/2
.(49)

Recalling our assumption v = X ◦ f , we consider now

(50) III =
1

|f ′(y)|

j−1∑
k=0

∣∣∣∣X(fk+1(y))−X(ck+1)

(fk)′(y)

∣∣∣∣ .
Since X is Lipschitz and f is C1, for any 0 ≤ k ≤ j − 1 there exists z between c1 and f(y)

so that

|X(fk+1(y))−X(fk+1(c))| ≤ Lip(X)|fk(f(y))− fk(c1)|(51)

≤ Lip(X)|f(y)− c1||(fk)′(z)| .

Then (51), together with (33) from the proof of Lemma 3.3 (recall k ≤ j − 1 and y ∈ Ij),
imply

|X(fk+1(y))−X(fk+1(c))|
|(fk)′(c1)|

≤ LipX|f(y)− c1| sup
z∈[f(y),c1]

|(fk)′(z)|
(fk)′(c1)

≤ CLipX|f(y)− c1|
≤ CLipX|y − c| sup

z∈[c,y]

|f ′(z)| .

(Recall that in this proof C denotes a universal constant, which can however vary.) Since
|f ′(y)| ≥ C|y − c| and |f ′(z)| ≤ C|z − c|, the bound (35) in Lemma 3.4 gives

III ≤ C j

|f ′(y)|
LipX|y − c| sup

z∈[c,y]

|f ′(z)| ≤ CjLipX sup
z∈[c,y]

|z − c|

≤ CjLipXe−
3γ(j−1)

4 |(f j−2)′(c1)|−1/2 ≤ CLipX
1

|(f j−2)′(c1)|1/2
.(52)

Putting (48), (49), and (52) together, we get (46).
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3.4. Proof of Theorem 2.4: Continuity of α and checking the TCE

We prove that Proposition 3.9 implies Theorem 2.4:

Proof of Theorem 2.4. – The so-called subhyperbolic case when the critical point is
preperiodic is easier and left to the reader. For small enough δ (recall Sections 3.1 and 3.2),
we construct a tower map and associated times Ti(x) and Si(x).

To show the uniqueness statement for bounded v, suppose that β : I → C is a bounded
function such that v = β ◦ f − f ′ · β on I. It is easy to see that for every x and n ≥ 1 such
that (fn)′(x) 6= 0 we have

(53) β(x) = −
n−1∑
i=0

v(f i(x))

(f i+1)′(x)
+
β(fn(x))

(fn)′(x)
.

If fn(x) 6= c for every n, Remark 3.6 implies that lim supn |(fn)′(x)| = ∞, so that there
exists(15) ni(x) →i ∞ with limi |(fni(x))′(x)| = ∞. Since β is bounded, it follows from (53)
that

(54) β(x) = − lim
i→∞

ni∑
j=0

v(f j(x))

(f j+1)′(x)
.

This proves that β is uniquely defined on {x | fn(x) 6= c ,∀n}. In particular, β(c1) =

αcand(c1), so that v is horizontal (using the TCE, that f ′(c) = 0, and that β is bounded).
Now, if f i(x) 6= c for 0 ≤ i < n and fn(x) = c, then (53) and β(c) = 0 give

(55) β(x) = −
n−1∑
i=0

v(f i(x))

(f i+1)′(x)
.

Therefore, β(x) = αcand(x). This ends the proof of uniqueness.

From now on, we assume that v = X ◦ f with X Lipschitz. If v is horizontal, Propo-
sition 3.9 implies that the function α(x) defined by the series (43) is bounded uniformly in
x ∈ I. It remains to show that α is continuous and satisfies the TCE.

The definitions easily imply that for every x ∈ I and all i ≥ 1 the following limits exist:

S+
i (x) = lim

y→x+
Si(y) , S−i (x) = lim

y→x−
Si(y) ,

T+
i (x) = lim

y→x+
Ti(y) , T−i (x) = lim

y→x−
Ti(y) .

Writing T±i and S±i for T±i (x) and S±i (x), define

α±(x) := −
∞∑
i=1

(
1

(fT
±
i )′(x)

wS±i −T
±
i

(fT
±
i (x)) +

1

(fS
±
i−1)′(x)

wT±i −S
±
i−1

(fS
±
i−1(x))

)
.

We claim that for every x ∈ I we have

(56) lim
y→x+

α(y) = α+(x) , and lim
y→x−

α(y) = α−(x) .

We shall show (56) at the end of the proof of this theorem.
Let now S be the set of x ∈ I so that there exists ` ≥ 0 with f̂ `(x, 0) ∈ ∂Ek for some k ≥ 1,

or f̂ `(x, 0) = (±δ, 0), or f̂ `(x, 0) = (c, 0). Clearly, if x 6∈ S, then Si(x) = S+
i (x) = S−i (x)

(15) Note that if Ti(x) <∞ for all i, we can take ni(x) = Ti(x).
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and Ti(x) = T+
i (x) = T−i (x), for every i ≥ 1. Consequently α is continuous at x /∈ S. If

x ∈ S but f̂ `(x, 0) 6= (c, 0) for all ` ≥ 0, then the conditions on {ek} in Section 3.1 imply
that the series (8) converges absolutely at x. If f̂ `(x, 0) = (c, 0) for some ` ≥ 0, then α(x) is
the finite sum (9). Let now x ∈ S. The three series, or finite sums, which define α(x), α+(x),
and α−(x) are obtained by grouping together in different ways the terms of the absolutely
convergent series (8), or of the sum (9). Therefore, α(x) = α+(x) = α−(x), and (56) implies
that α is continuous at x.

To show that α satisfies the twisted cohomological equation, note that if x is a repelling
periodic point then f `(x) 6= c for all `, and the series (8) is absolutely convergent
at x. Therefore, this series coincides with α(x). In particular one can easily check that
v(x) = α(f(x)) − f ′(x)α(x) for repelling periodic points x. Since all periodic points of a
Collet-Eckmann map are repelling, since the set of periodic points is dense, and since α is
continuous, it follows that α satisfies the twisted cohomological equation everywhere.

The fact that α(x) = αcand(x) for all x so that f j(x) = c or such that the series αcand(x)

converges absolutely follows from the remark after Definition 3.10.

It remains to prove (56). We shall consider the limit as y approaches x from above (the
proof of the other one-sided limit is identical).

Before we start, note that for any ε > 0, the uniform constants and exponential rates in
the proof of Proposition 3.9 (see (44), where Ti = ∞ is allowed, and (45), (38)) imply that
there is n0 = n0(ε) ≥ 1 such that for all x ∈ I

(57)
∑

i : Ti≥n0

1

|(fTi)′(x)|
|wSi−Ti(fTi(x))|+

∑
i : Si≥n0

1

|(fSi)′(x)
|wTi+1−Si(f

Si(x))| < ε

4
.

Fix x ∈ I, and let Ti = Ti(x), Si = Si(x), T+
i = T+

i (x), S+
i = S+

i (x). There are three
cases to consider to prove (56) when y → x+. The first case occurs when Ti <∞ and Si <∞
for every i. This means that the forward f̂ -orbit of x never hits the critical point (c, 0) and
never gets trapped inside the base E0. Then observe that there exists ε1 > 0 such that if
x < y < x + ε1 then, for every i so that S+

i < n0, we have Si(y) = S+
i , and for every i

so that T+
i (x) < n0, we have Ti(y) = T+

i . Clearly, for any n0 ≥ 1, the function

α̃(y) = α̃n0
(y) = −

∑
i : T+

i <n0

1

(fT
+
i )′(y)

wS+
i −T

+
i

(fT
+
i (y))

−
∑

i : S+
i <n0

1

(fS
+
i )′(y)

wT+
i+1(x)−S+

i
(fS

+
i (y))

is continuous on [x, x+ ε1). So for any ε > 0 there exists 0 < ε2 < ε1 (depending also on n0)
such that if x ≤ y < x+ ε2 then |α̃(y)− α̃(x)| < ε/2. Clearly, α̃(x) is just the n0-truncation
of α+(x) while the observation above implies that α̃(y) is the n0-truncation of α(y). Thus,
taking n0(ε) as in (57), we get that

|α(y)− α+(x)| < |α̃(y)− α̃(x)|+ 2ε

4
< ε , ∀y ∈ [x, x+ ε2) .

The second case occurs when the forward f̂ -orbit of x gets trapped in the base E0. That
is, there exists i0 ≥ 0 such that Si0 < ∞ but Ti0+1(x) = ∞. Then, for any n0 ≥ 1, there
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exists ε1 > 0 such that if x < y < x+ ε1 then Si(y) = S+
i and Ti(y) = T+

i for every i ≤ i0,
and Ti0+1(y) ≥ n0. Clearly, the function

α̃(y) = −
∑
i<i0

1

(fS
+
i (x))′(y)

wT+
i+1−S

+
i

(fS
+
i (y))− 1

(fSi0 )′(y)
wn0−S+

i0

(fS
+
i0 (y))

−
∑
i≤i0

1

(fT
+
i )′(y)

wS+
i −T

+
i

(fTi(y))

is continuous on [x, x+ ε1). Choose ε2 < ε1 such that if x ≤ y < x+ ε2 then |α̃(y)− α̃(x)| < ε/4.
Using again the uniformity of the estimates in the proof of Proposition 3.9 (in particular of
the exponentially decaying term of the series (44) for i = i0), it is easy to see that if n0 is
large enough then |α(y)− α+(x)| < ε for y ∈ [x, x+ ε2).

The third case occurs when f̂ i0(x, 0) = (c, 0) for some i0 ≥ 0. That is, there exists i0 ≥ 1

such that Ti0(x) < ∞ but Si0(x) = ∞, and α(x) is just a finite sum. (If x = c then i0 = 1.)
Then there exists ε2 > 0 such that if x < y < x + ε2 then Ti(y) = T+

i and Si−1(y) = S+
i−1

for every i ≤ i0, while Si0(y) ≥ n0. To finish, define

α̃(y) = −
∑
i<i0

1

(fS
+
i )′(y)

wT+
i+1−S

+
i

(fS
+
i (y))−

∑
i<i0

1

(fT
+
i )′(y)

wS+
i −T

+
i

(fT
+
i (y))

and adapt the arguments from the first two cases. This ends the proof of (56) and of Theo-
rem 2.4.

3.5. Divergence of the formal power series (Proposition 2.5)

In this final subsection, we show that the formal power seriesαcand(x) diverges for manyx.

Proof of Proposition 2.5. – It is enough to show that the set of points such that
lim supi

∣∣ v(fi(x))
(fi+1)′(x)

∣∣ > 0 has the desired property. Let A be as in the statement of the
proposition. We shall build a decreasing sequence of closed sets

A ⊃ Kn ⊃ Kn+1 ,

where each connected component of Kn is a closed interval with positive length, and a
sequence of functions

Γn+1 : {C | C connected comp. of Kn} → P({1, . . . , n+ i0}) ,

where P({1, . . . , n}) stands for the family of all subsets of {1, . . . , n+ i0}, with the following
properties:

i. If C is a connected component of Kn and x ∈ C, then
∣∣ v(fj(x))

(fj+1)′(x)

∣∣ ≥ 2 for every
j ∈ Γn(C).

ii. If C is a connected component of Kn, then fn is a diffeomorphism on C.
iii. IfCn+1 ⊂ Cn are connected components of Kn and Kn+1 respectively, then Γn(Cn) ⊂

Γn+1(Cn+1).
iv. If Cn is a connected component of Kn, then there exists m > n such that Km has at

least two connected components contained in Cn.
v. If x ∈ ∩nCn, where Cn is a connected component of Kn, then {x} = ∩nCn and

limn #Γn(Cn) =∞.

4 e SÉRIE – TOME 45 – 2012 – No 6



LINEAR RESPONSE FOR DEFORMATIONS OF GENERIC UNIMODAL MAPS 889

Note that (iv) and (v) imply that ∩n Kn is a Cantor set. If x ∈ ∩nCn then∣∣ v(f j(x))

(f j+1)′(x)

∣∣ ≥ 2

holds for every j ∈ ∪nΓn(Cn), and condition (v) implies that ∪nΓn(Cn) is an infinite set.
Denote

O(c) = {x ∈ I | f i(x) = c, for some i ≥ 0} .
Let K 0 ⊂ A be a closed interval [a, b], a 6= b, with a, b 6∈ O(c), and Γ0( K 0) = ∅.
Suppose that we have defined Kn. Let C be a connected component of Kn. If c 6∈ fn(C)

then C is the unique connected component of Kn+1 which intersects C and Γn+1(C) =

Γn(C). Otherwise, let x ∈ C be such that fn(x) = c. Since c is the critical point, we have
(fn+i0+1)′(x) = 0. Moreover v(fn+i0(x)) = v(f i0(x)) 6= 0, so

lim
y→x

∣∣ v(fn+i0(y))

(fn+i0+1)′(y)

∣∣ =∞ .

Let ε > 0 be such that if 0 < |y − x| ≤ ε then y ∈ C and∣∣ v(fn+i0(y))

(fn+i0+1)′(y)

∣∣ ≥ 2 .

Choose two closed disjoint intervals J1 and J2 with positive lengths, such that
J1∪J2 ⊂ (x−ε, x+ε)\{x} and O(c)∩∂(J1∪J2) = ∅. Then J1 and J2 will be the unique con-
nected component of Kn+1 that intersectsC and Γn+1(J1) = Γn+1(J2) = Γn(C)∪{n+i0}.
Note that in this case Γn+1(J1) = Γn+1(J2) ' Γn(C).

Properties (i)–(iii) follow from the definition of Kn. To show (iv) and (v), consider
C∞ = ∩nCn, where the Cn are the connected components of Kn containing x. The set C∞
is either a closed interval of positive length or {x}. In the first case, in particular we have
that fn is a diffeomorphism on C∞, for every n. This is not possible, since f has neither
wandering intervals nor periodic attractors. Furthermore, note that if limn #Γn(Cn) < ∞,
then there exists n0 such that Γn(Cn) = Γn0(Cn0) for every n ≥ n0, so by the construction
of K i this occurs only if f i is a diffeomorphism on Cn0 for every i, which is not possible, as
we saw above. The proof of (iv) is similar. If (iv) does not hold for certain Cn0 , then by the
construction of K i we have that f i is a diffeomorphism onCn0 for every i, which contradicts
the non-existence of wandering intervals and periodic attractors.

4. Transfer operators L̂ and their spectra

In this section, we study a transfer operator associated to a Collet-Eckmann S-unimodal
map f satisfying the Benedicks-Carleson condition. More precisely, in Subsection 4.1, we
introduce a Banach space B = B1 of smooth (W 1

1 ) functions (see Definition 4.3) on the
tower Î defined in the previous section, maps Π : B → L1(I) (see (72)), as well as a
transfer operator L̂ acting on B (Definition 4.8). We shall prove that L̂ has essential spectral
radius strictly smaller than 1 (Proposition 4.10), and then (Proposition 4.11) that 1 is a simple
eigenvalue, and that the fixed point φ̂ of L̂ is such that Π(φ̂) is the invariant density of f . In
Subsection 4.2, we present results of truncated versions of L̂, acting on finite parts of the
tower.
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The methods in this section are inspired from [15], but we would like to point out here
that nontrivial modifications were needed in view of proving Theorem 2.13. (See Remark 4.4
below for the comparison with [51].) Also, the transfer operator we use here is slightly
different from the one in [15]: First, and this is the most original ingredient, we introduce
a smooth cutoff function ξk at each level on which there exist points which “fall” to the
ground level; second, we do not compose with the dynamics until we fall (this strategy was
used by L.S. Young in [61], [62]). Finally, our Banach spaces B are not exactly the same
as the space B̂ used in [15]: The functions in B are smooth and locally supported at each
level (this is possible in view of the other two changes). These are the main new ideas in the
present section, and they allow to circumscribe the effect of the discontinuities and square
root singularities (the spikes) to the maps Π and Πt (see Step 3 in the proof of Theorem 2.13).
See also the comments after Definition 4.8.

4.1. Spectral gap for a transfer operator L̂ associated to the tower map

Let f be a (λc, H0)-Collet-Eckmann S-unimodal map, with a non preperiodic critical
point (the preperiodic case is easier and left to the reader) satisfying the Benedicks-Carleson
condition (3) for G = 4. (We shall need to take larger values for G below, see also (109).)
We consider the tower map f̂ : Î → Î from Section 3.1, for some small enough fixed δ. We
shall not require the fact that the Lyapunov exponents of ±δ, or of the endpoints ak and
bk of the tower levels Bk, are positive, and we remove (16) this assumption. (The positivity of
the exponents was useful only when proving that αt is continuous, and one can use different
towers for ft when studying α and when considering the transfer operator.) In particular,
recalling β1 from (27), we may take for all k ≥ H0

Bk = [ck − e−β1k, ck + e−β1k] .

The following refinement of the estimates in Subsection 3.2 will play an important part in
our argument (see Proposition 4.10, and—in view of (72)—Proposition 4.11, see also Step 2
in the proof of Theorem 2.13):

L 4.1. – Let f be an S-unimodal (λc, H0)-Collet-Eckmann map satisfying the
Benedicks-Carleson condition (3) for G = 4, and with a non-preperiodic critical point. Then
there exists C so that for any k ≥ 1, we have

(58)
1

|(fk)′(f−k± (x))|
≤ C 1

|(fk−1)′(c1)|1/2
√
|x− ck|

, ∀x ∈ π(Ek ∩ f̂k(E0)) .

In addition, recalling the intervals Ik defined in (32), we have for any k ≥ H(δ)

(59) sup
x∈fk(Ik)

∣∣∣∣∂x 1

|(fk)′(f−k± (x))|

∣∣∣∣ ≤ C e3γk

|(fk−1)′(c1)|1/2
,

and

(60) sup
x∈fk(Ik)

∣∣∣∣∂2
x

1

|(fk)′(f−k± (x))|

∣∣∣∣ ≤ CC e5γk

|(fk−1)′(c1)|1/2
.

(16) This additional freedom will also be used in Subsection 5.2.

4 e SÉRIE – TOME 45 – 2012 – No 6



LINEAR RESPONSE FOR DEFORMATIONS OF GENERIC UNIMODAL MAPS 891

Proof. – We consider the case ς = +, the other case is identical. Let us first show (58).
Putting z = f

−(k−1)
+ (x), we decompose

|(fk)′(f−k+ (x))| = |(fk−1)′(z)||f ′(f−k+ (x))| .

By Lemma 3.3, the first factor can be estimated by (17)

(61) |(fk−1)′(z)| ≥ C−1|(fk−1)′(c1)| .

For the second factor, we have

|f ′(f−k+ (x))| ≥ C−1|f−k+ (x)− c| .

Put w = f(f−k+ (x)). Then, Lemma 3.3 and the mean value theorem imply

|w − c1| ≥
|x− ck|

C|(fk−1)′(c1)|
.

Next, noting that w ∈ π(E1 ∩ f̂(E0)), we have

|f−k+ (x)| = |f−1
+ (w)| ≥ C−1

√
|w − c1|.

(Just use that f(y) = c1 +f ′′(c)y2 +f
′′′

(ỹ)y3 for some |ỹ| ≤ δ, if |y| ≤ δ.) The three previous
inequalities give

(62) |f ′(f−k+ (x))| ≥ C−1

√
|x− ck|

|(fk−1)′(c1)|1/2
.

Putting together (61) and (62), we get (58).
To prove (59), we first note that there is C ≥ 1 so that

(63) |f ′(f j(y))| ≥ C−1e−γj , ∀y ∈ Ik , ∀1 ≤ j ≤ k .

Indeed, |f j(y) − cj | ≤ e−β1j and |cj − c| ≥ e−γk for j ≥ H0, with β1 ≥ 3γ/2, and we
assumed that f is C2 with f ′(c) = 0 and f ′′(c) 6= 0. Next, Lemma 3.3 and Lemma 3.7 give
C > 0 so that

sup
y∈Ik

1

|(fk−j)′(f j(y))|
≤ C

∞∑
`=1

1

|(f `)′(f j−1(c1))|
≤ Ceγj , ∀1 ≤ j ≤ k − 1 .(64)

Then, (36) from Lemma 3.4 gives

(65) sup
y∈Ik

1

|(fm)′(y)|
≤ C−1

2 eγk
1

|(fm−1)′(c1)|1/2
, ∀1 ≤ m ≤ k .

Applying (63) and (64), we get C > 0 so that

sup
y∈Ik

∂y
1

|(fk)′(y)|
≤ sup
y∈Ik

k−1∑
j=0

|f ′′(f j(y))|
|(fk)′(y)|

|(f j)′(y)|
|f ′(f j(y))|

= sup
y∈Ik

k−1∑
j=0

|f ′′(f j(y))|
|(fk−j)′(f j(y))|

1

|f ′(f j(y))|
≤ Ce2γk .(66)

Finally,

(67) ∂x
1

|(fk)′(f−k+ (x))|
=

1

|(fk)′(f−k+ (x))|
· ∂y

1

|(fk)′(y)|
.

(17) The constant C depends on H0, by Lemma 5.8 it will be uniform within our families ft.
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The first factor in (67) is bounded by (65) for m = k, the second by (66), so that we have
proved (59).

To prove (60), we start from the decomposition (67), and we deduce from (66) that for any
x ∈ fk(Ik), setting y = f−k+ (x),

∂2
x

1

|(fk)′(f−k+ (x))|
≤ Ce2γk∂x

1

|(fk)′(f−k+ (x))|

+
1

|(fk)′(f−k+ (x))|
·
k−1∑
j=0

∂x

(
|f ′′(f j(y))|

|(fk−j)′(f j(y))||f ′(f j(y))|

)
.(68)

By (59), the first term in the right-hand side is bounded by Ce5γk|(fk−1)′(c1)|−1/2. For the
second term, we have, for 0 ≤ j ≤ k − 1,

∂x
|f ′′(f j(y))|

|(fk−j)′(f j(y))||f ′(f j(y))|
≤ 1

|(fk)′(f−k+ (x))|
∂y

|f ′′(f j(y))|
|(fk−j)′(f j(y))||f ′(f j(y))|

.

Since f is C3, the Leibniz formula gives for 0 ≤ j ≤ k − 1,

1

|(fk)′(f−k+ (x))|
∂y

|f ′′(f j(y))|
|(fk−j)′(f j(y))||f ′(f j(y))|

≤ 1

|(fk)′(f−k+ (x))|
1

|(fk−j)′(f j(y))||f ′(f j(y))|
·
[
|f ′′′(f j(y))||(f j)′(y)|

+ |f ′′(f j(y))|
[ |f ′′(f j(y))||(f j)′(y)|

|f ′(f j(y))|
+

k−1∑
`=j

|f ′′(f `(y))||(f `)′(y)|
|f ′(f `(y))|

]]
(69)

≤ C

|(fk−j)′(f j(y))|
·
[

1

|(fk−j)′(f j(y))|
( 1

|f ′(f j(y))|
+

1

|f ′(f j(y))|2
)

+
1

|(fk)′(y)|

k−1∑
`=j

|(f `)′(y)|
|f ′(f `(y))|

]
.

If j ≥ 1, we may apply (63). Then, (69), together with (65) form = k− ` and (64) imply that

1

|(fk)′(f−k+ (x))|

k−1∑
j=1

∂y
|f ′′(f j(y))|

|(fk−j)′(f j(y))||f ′(f j(y))|

≤ Ceγk ·
[
e2γk + e3γk + e2γk

]
.

If j = 0, then (69) together with (37) and (65) for m = k imply (distinguish between ` = 0

and ` ≥ 1)

1

|(fk)′(f−k+ (x))|
∂y

|f ′′(y)|
|(fk)′(y)||f ′(y)|

≤ C e3γk

|(fk)′(c1)|1/2
(eγk + e2γk|(fk)′(c1)|1/2 + e2γk) .

Putting the two above inequalities together with (68) and (65) for m = k, we get (60).

In view of the definition of our Banach space B, we need further preparations. First, we
assume from now on that f satisfies the Benedicks-Carleson condition (3) for G = 8.
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R 4.2. – In [15] we needed to assume that f was C4 or symmetric (see the com-
ments before [15, Lemma 5]) because of the more complicated form of the cocycle used in
the transfer operator there.

In view of (3) for G = 8 we may choose λ so that

(70) 1 < λ < eγ , and e4γλ <
√
λc .

It does not seem possible to work on spaces of sequences of C1 functions ψk (when
summing over critical inverse branches in the proof of Proposition 4.10, bounded distortion
would allow us to replace |(fk)′(x)|−1 by the square root of the length of the corresponding
monotonicity interval, instead of the length itself), and it will be convenient to work with
Sobolev spaces: For integer r ≥ 0, we recall that the generalized Sobolev norm of a function
ψ : I → C, compactly supported in the interior of I, is

‖ψ‖W r
1

= ‖∂rxϕ(x)‖L1 .

Compactly supported C∞ functions are dense in W r
1 for r ≥ 1. The Sobolev embedding in

dimension one gives ‖ · ‖C0 ≤ C‖ · ‖W 1
1

and ‖ · ‖C1 ≤ C‖ · ‖W 2
1

.

D 4.3 (The main Banach space B = BW
1
1 ). – Let B = BW

1
1 be the space of

sequences ψ̂ = (ψk : I → C, k ∈ Z+), so that each ψk is in W 1
1 and, in addition,

supp(ψ0) ⊂ (−1, 1) , supp(ψk) ⊂ [−δ, δ] , ∀1 ≤ k ≤ max(2, H0) ,

supp(ψk) ⊂ ∩H0≤j≤k(f−j+ (Bj) ∪ f−j− (Bj)) , ∀k > max(2, H0) ,(71)

endowed with the norm

‖ψ̂‖
BW

1
1

=
∑
k≥0

‖ψk‖W 1
1
.

We sometimes write ψ̂(x, k) instead of ψk(x).

R 4.4. – In contradistinction to the piecewise expanding case treated in [10], or
to the Misiurewicz and analytic case studied in [51], the postcritical data is not given here
by a finite set of complex numbers for each ck with k ≥ 1: We need a full “germ” ψk,
which is supported in a neighborhood of c. Since we shall later consider (ψk ◦f−k± )χk (recall
χk from Proposition 2.7, and see (72)), we can view ψk as the contribution in a one-sided
neighborhood of ck.

D 4.5 (The projection Π). – Define Π(ψ̂) for ψ̂ ∈ B by

Π(ψ̂)(x) =
∑

k≥0,ς∈{+,−}

λk

|(fk)′(f−kς (x))|
ψk(f−kς (x))χk(x) .(72)

(We set χ0 ≡ 1. When the meaning is clear, we sometimes omit the factor χk in the formula.)
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By (58) in Lemma 4.1 and our construction (18), setting [ck, dk] = π(Ek ∩ f̂k(E0)),∫
[ck,dk]

λk

|(fk)′(f−k+ (x))|
|ψk(f−k+ (x))| dx ≤ Cλkλ−k/2c

√
|dk − ck| sup |ψk|

≤ C(λλ−1/2
c e−3γ/4)k sup |ψk| .

Since λ <
√
λc, the above bound, and its analogue for the branch f−k− , imply that

Π(ψ̂) ∈ L1(I) for ψ̂ ∈ B.

We shall need a weak norm, in order to write Lasota-Yorke inequalities. Set

(73) w(x, k) = λk , x ∈ I , k ≥ 0 ,

and define ν to be the nonnegative measure on ∪k≥0{k} × I whose density with respect to
Lebesgue is w(x, k).

D 4.6 (Space BL
1(ν)). – Let BL

1

= BL
1(ν) be the space of sequences ψ̂ of

functions ψk, with the norm

(74) ‖ψ̂‖BL
1 =

∑
k≥0

λk‖ψk‖L1(I) = ‖ψ̂‖L1(ν) .

In order to define the transfer operator L̂, we next introduce smooth cutoff functions ξk.
Recall the constants 3γ/2 < β1 < β2 < 2γ from (27) and (28).

D 4.7 (The cutoff functions ξk). – For each k ≥ 0, let ξk : I → [0, 1] be a
C∞ function satisfying the following conditions: ξk ≡ 1 for those levels k from which no
point falls to level 0 and otherwise

supp(ξ0) = [−δ, δ] , ξ0|[− δ2 , δ2 ] ≡ 1 ,

k ≥ H(δ) :


supp(ξk) = f

−(k+1)
+ (Bk+1) ∪ f−(k+1)

− (Bk+1) ,

ξk|f−(k+1)
+ [ck+1−e−β2(k+1),ck+1+e−β2(k+1)]

≡ 1 ,

ξk is unimodal,

|∂jx(ξ0 ◦ f−1
± (x))| ≤ c(δ)−j for j = 1, 2, 3, and, finally, that β1 is close enough to 3γ/2 and

β2 is close enough to 2γ so that for some C > 0

(75) sup |∂jx(ξk ◦ f−(k+1)
± (x))| ≤ Ce2jγk , j = 1, 2, 3 .

Note that ξk(y) > 0 if and only if f̂(fk(y), k) ∈ Bk+1 × (k + 1), and ξk(y) = 1 implies
that πf̂(fk(y), k) ∈ [ck+1 − e−β2(k+1), ck+1 + e−β2(k+1)]. The low levels (k ≤ H(δ)) will be
taken care of by the condition supp(ψk) ⊂ [−δ, δ].

D 4.8 (Transfer operator). – The transfer operator L̂ is defined on B by

(76) ( L̂ψ̂)(x, k) =


ξk−1(x)

λ · ψ̂(x, k − 1) k ≥ 1 ,∑
j≥0,ς∈{+,−}

λj(1−ξj(f−(j+1)
ς (x)))

|(fj+1)′(f
−(j+1)
ς (x))|

· ψ̂(f
−(j+1)
ς (x), j) k = 0 .

(18) Uniformity of C within our families is important here, it will follow from Lemma 5.8.
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Some j-terms in the sum for ( L̂ψ̂)(x, 0) vanish, in particular, for all 1 ≤ j < H0 because
of our choice of small δ giving H(δ) ≥ H0.

As already mentioned in the beginning of this section, there are two differences between
the present definition and the one used in [15]. First, L̂ does not act via the dynamics
when climbing the tower, only when falling. Secondly, if 0 < ξj(y) < 1, then y will
contribute to both ( L̂ψ̂)(y, j+1) and ( L̂ψ̂)(f j+1(y), 0). In other words, the transfer operator
just defined is associated to a multivalued (probabilistic-type) tower dynamics. For this
multivalued dynamics, some points may fall from the tower a little earlier than they would
for f̂ . However, the conditions on the functions ξks guarantee that they do not fall too early.
More precisely, if we define “fuzzy” analogues of the intervals Ik from (32) as follows

(77) Ĩk := {x ∈ I | ξk(x) < 1 , ξj(x) > 0 ,∀0 ≤ j < k} ,

then we can replace Ik by Ĩk in the previous estimates, in particular in Lemma 4.1. Indeed,
just observe that if a point “falls” according to our fuzzy dynamics, it would have fallen for
some choice of intervals B̃k so that

[ck − e−β2k, ck + e−β2k] ⊂ B̃k ⊂ Bk .

R 4.9. – The intervals Ĩk do not have pairwise disjoint interiors. However, for
each k, the cardinality of those Ĩj whose interiors intersect the interior of Ĩk is bounded
by k for k ≥ N(f), where N(f) depends only on σ from Lemma 3.1 and on γ (the smaller
γ, the shorter this waiting time). We may assume by taking smaller δ that N(f) ≤ H(δ).
Indeed, if a point falls x from level k for the first time with the fuzzy dynamics, it will fall for
the last time at level 2k, because Lemma 3.1 for δ = e−4γk together with the Benedicks-
Carleson assumption give |(fk)′(x)| ≥ ce−4γkσk, and ce−4γkσke−2γk > e−

3
2 2k. (The

present remark will be used to get the Lasota-Yorke estimate at the heart of Proposition 4.10,
see Appendix B.)

These two modifications allow us to work with Sobolev spaces W r
1 (as opposed to the

BV functions in [15], where the jump singularities corresponding to the edges of the levels
are an artifact of the construction), and will simplify our spectral perturbation argument in
Section 6.

Before we continue, let us note that if we introduce the ordinary (Perron-Frobenius)
transfer operator

L : L1(I)→ L1(I) , Lϕ(x) =
∑

f(y)=x

ϕ(y)

|f ′(y)|
,

then one easily shows that

(78) L(Π(ψ̂)) = Π( L̂(ψ̂)) .
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Indeed, on the one hand, we have (recall χ0 ≡ 1)

[Π L̂(ψ̂)](x) = [ L̂(ψ̂)](x, 0)χ0(x)

+
∑

k≥1,ς∈{+,−}

λk

|(fk)′(f−kς (x))|
[ L̂(ψ̂)](f−kς (x), k)χk(x)

=
∑

j≥0,ς∈{+,−}

λj

|(f (j+1))′f
−(j+1)
ς (x)|

ψj(f
−(j+1)
ς (x))(1− ξj)(f−(j+1)

ς (x))χ1(x)

+
∑

k≥1,ς∈{+,−}

λk−1

|(fk)′(f−kς (x))|
ψk−1(f−kς (x))ξk−1(f−kς (x))χk(x)

=
∑

j≥0,ς∈{+,−}

λj

|(f (j+1))′f
−(j+1)
ς (x)|

ψj(f
−(j+1)
ς (x))(1− ξj)(f−(j+1)

ς (x))χ1(x)

+
∑

j≥0,ς∈{+,−}

λj

|(f (j+1))′(f
−(j+1)
ς (x))|

ψj(f
−(j+1)
ς (x))ξj(f

−(j+1)
ς (x))χj+1(x) .

On the other hand

( LΠψ̂)(x) =
∑

f(y)=x

χ1(x)

|f ′(y)|

( ∑
`≥0,ς∈{+,−}

λ`

|(f `)′(f−`ς (y))|
ψ`(f

−`
ς (y))χ`(y)

)

=
∑

f(y)=x

χ1(x)

|f ′(y)|

( ∑
`≥0,ς∈{+,−}

λ`

|(f `)′(f−`ς (y))|
ψ`(f

−`
ς (y))

(
1− ξ`(f−`ς (y)

)
χ`(y)

)

+
∑

f(y)=x

χ1(x)

|f ′(y)|

( ∑
`≥0,ς∈{+,−}

λ`

|(f `)′(f−`ς (y))|
ψ`(f

−`
ς (y))ξ`(f

−`
ς (y))χ`(y)

)

=
∑

f(y)=x

( ∑
j≥0,ς∈{+,−}

λj

|(f (j+1))′(f−jς (y))|
ψj(f

−j
ς (y))

(
1− ξj(f−jς (y)

)
χ1(x)χj(y)

)

+
∑

f(y)=x

( ∑
j≥0,ς∈{+,−}

λj

|(f (j+1))′(f−jς (y))|
ψj(f

−j
ς (y))ξj(f

−j
ς (y))χ1(x)χj(y)

)
.

Now, our definitions ensure that

ξj(f
−j
ς (y)) 6= 0 =⇒ χj(y)χ1(f(y)) = χj+1(f(y)) ,

and
ψj(f

−j
ς (y))

(
1− ξj(f−jς (y))

)
6= 0 =⇒ χj(y) = 1 .

Finally, the sums over inverse branches coincide: Distinguish between zero level — where it
is obvious — and other levels — where the last sum (f(y) = x) over two inverse branches
has at most one nonzero contribution by the support properties of theψk and ξk. This proves
(78). In particular, if L̂(φ̂) = φ̂ then L(Π(φ̂)) = Π(φ̂).

Our main result on the spectral properties of L̂ follows:

P 4.10 (Essential spectral radius of L̂). – Let f be an S-unimodal
(λc, H0)-Collet-Eckmann map satisfying the Benedicks-Carleson condition (3) for G = 8, with
a non-preperiodic critical point. Let λ satisfy (70). Then the operator L̂ is bounded on B, with
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spectral radius equal to 1. The dual of L̂ fixes the measure ν defined after (73). Let ρ satisfy
(26) and let σ > 1 be the constant from Lemma 3.1, and set

(79) Θ0 := min(
λ

1/2
c

e4γλ
, λ , σ , ρ) > 1 .

The essential spectral radius of L̂ on B is bounded by Θ−1
0 .

Proof. – Let c(δ) be the constant from Lemma 3.1.

For ψ̂ ∈ B, our assumptions on the ξj ensure that ( L̂(ψ̂))k ∈ W 1
1 for all k ≥ 1,

with ( L̂(ψ̂))k supported in the desired interval, and that ( L̂(ψ̂))0 is supported in the desired
interval.

Note that for any interval U (not necessarily containing the support of ψj), using the
Sobolev embedding again,

(80) sup
U
|ψj | ≤ min(C‖ψ′j‖L1 ,

∫
U

|ψ′j | dx+ |U |−1

∫
U

|ψj | dx) .

Since ξ` is unimodal if it is not ≡ 1, for each ` ≥ 1 there exist v` > u` in B` so that, setting
J` = {x ∈ supp(ψj) | x ≤ u`} ∪ {x ∈ supp(ψ`) | x ≥ v`},∫

B`

|ξ′`ψ`| dx =

∫
x≤u`

ξ′`|ψ`| dx−
∫
x≥v`

ξ′`|ψ`| dx ≤ (ξ`(u`) + ξ`(v`)) sup
J`

|ψ`|(81)

≤ 2 sup
J`

|ψ`|

(this can be viewed as the analogue of the “2 sup sup” boundary term in [15]). Therefore, for
all k ≥ 1, using also (80),

‖( L̂(ψ̂))′k‖L1 ≤ 3C

λ
‖ψ′k−1‖L1 .(82)

More generally, for 1 ≤ n ≤ k,

‖( L̂
n
(ψ̂))′k‖L1 ≤ 3Cn

λn
‖ψ′k−n‖L1 .(83)

If |ψk(y)| > 0 then |f j(y) − cj | ≤ e−β1j for all j ≤ k. If ξk(f
−(k+1)
± (x)) < 1 then

|x − ck+1| ≥ e−β2(k+1). Thus, changing variables in the integrals, using (81) for the terms
involving ξ′k for k ≥ 0, and recalling (36) from Lemma 3.4, as well as (66) and (67) from
Lemma 4.1, we see that ( L̂(ψ̂))0 belongs to W 1

1 and

‖( L̂(ψ̂))′0‖L1 ≤ Cc(δ)−1(‖ψ′0‖L1 + ‖ψ0‖L1 + sup |ψ0|)(84)

+
∑

k≥H(δ)

λke2γk

|(fk+1)′(c1)|1/2
(‖ψ′k‖L1 + sup |ψk|+ ‖ψk‖L1) .

In view of (70) and (80), we have proved that L̂ is bounded on B. (The claim on the spectral
radius will be proved below.)

Observe that
∑
k

∫
Bk
|ψ̂(x, k)|w(x, k) dx is finite if ψ̂ ∈ B (just recall that

|Bk| ≤ 2e−β1k ≤ 2e−3γk/2 and use the bound λ < e3γ/2 from (70)). So ν is an ele-

ment of the dual of B. The fact that L̂
∗
(ν) = ν can easily be proved using the change of
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variables formula. Indeed,∫
L̂(ψ̂) dν =

∫
B0

L̂(ψ̂)(y, 0) dy +
∑
k≥0

∫
Bk+1

L̂(ψ̂)(y, k + 1)w(y, k + 1) dy(85)

=
∑

j≥0,ς∈{+,−}

∫
λj

|(f j+1)′f
−(j+1)
ς (y)|

ψj(f
−(j+1)
ς (y))(1− ξj)(f−(j+1)

ς (y)) dy

+
∑
k≥0

∫
1

λ
ψk(x)ξk(x)w(x, k + 1) dx

=
∑
j≥0

∫
ψj(x) (1− ξj)(x)w(x, j) dx+

∑
k≥0

∫
ψk(x)ξk(x)w(x, k) dx .

Note for further use that L̂
∗
(ν) = ν implies

(86) ν(| L̂
N

(ψ̂)|) ≤ ν( L̂
N

(|ψ̂|)) = ν(|ψ̂|) .

We next estimate the spectral and essential spectral radii of L̂ on B. Using (81) and the
overlap control of fuzzy intervals, it is not very difficult (see Appendix B) to adapt the proof
of [15, Sublemma] to show inductively that for any Θ < Θ0, there existsC, and for all n there
exists C(n), so that

(87) ‖( L̂
n
(ψ̂))′0(x)‖L1(I) ≤ CΘ−n‖ψ̂‖B + C(n)‖ψ̂‖BL

1 .

Recalling (83), and using (86), up to slightly decreasing Θ, one then finds C ′ so that for all
n ≥ 1 (see the proof of [15, Variation Lemma])

(88) ‖ L̂
n
(ψ̂)‖B ≤ C ′Θ−n‖ψ̂‖B + C ′‖ψ̂‖BL

1 .

Since (71) implies that the length of the support of ψk is (much) smaller than λ−2k, we find
‖ψ̂‖BL

1 ≤ ‖ψ̂‖BL
1 + Cλ−M‖ψ̂‖

BW
1
1

for all M ≥ 1 (we used again the Sobolev embedding
to estimate the supremum by theW 1

1 norm). The bound (88) implies that the spectral radius
of L̂ on B is at most one, and thus equal to one.

Finally, since Rellich–Kondrachov implies that BW
1
1 is compactly included in BL

1

(the
total length of the tower is bounded, even up to λk-expansion at level k), the Lasota-Yorke
estimate (88) together with Hennion’s theorem [24] give the claimed bound on essential

spectral radius of L̂ on B = BW
1
1 . This ends the proof of Proposition 4.10.

We next state further spectral properties of L̂.

P 4.11 (Maximal eigenvalue of L̂). – Let f be an S-unimodal (λc, H0)-Col-
let-Eckmann map satisfying the Benedicks-Carleson condition (3) for G = 8, with a non-
preperiodic critical point.

The maximal eigenvalue 1 is a simple eigenvalue of L̂, for a nonnegative eigenvector φ̂. If
ν(φ̂) = 1, then φ := Π(φ̂) is the density of the unique absolutely continuous f -invariant
probability measure. Finally, if f is C4 and the Benedicks-Carleson condition (3) holds for
G = 14, then one can choose the parameter λ so that φ̂0 ∈W 2

1 .
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Note that supk ‖φ̂‖W 2
1

=∞, since otherwise supk ‖φ̂k‖C1 <∞ so that

sup |φ̂k| < C|supp(φ̂k)|, which is impossible since sup |φ̂k| = λ−k|φ̂0(c)| 6= 0.

Proof. – By Proposition 4.10, the essential spectral radius of L̂ on B is strictly smaller
than one and the spectral radius is equal to 1. The fact that 1 is a simple eigenvalue for a
nonnegative eigenvector then follows from standard arguments (see, e.g., [15, Corollaries
1, 2] or [59, Propositions 5.13, 5.14]). The normalization ν(φ̂) = 1 implies that

∫
I
φdx =∫

I
Π(φ̂) dx = 1. Recalling (78), we get that L(Π(φ̂)) = φ so that Π(φ̂) ∈ L1 is indeed the

invariant density of f (which is known to be unique and ergodic).
It only remains to show that, under a stronger Benedicks-Carleson condition, φ̂0 ∈ W 2

1

if f is C4. For this, take ψ̂ so that ψ̂k = 0 for all k ≥ 1 and ψ̂0 is C∞, of Lebesgue average 1

(we can even take ψ̂0 constant in a neighborhood of [c2, c1]), and use that L̂
n
(ψ̂) converges

to φ̂ in the BW
1
1 norm (exponentially fast) as n→∞. We claim that ‖( L̂

n
(ψ̂))0‖W 3

1
≤ C for

all n, up to a suitable modification of the conditions on λ in (70). Adapting the proof of (60),

one shows supx∈fk(Ik)

∣∣∣∣∂3
x

1

|(fk)′(f−k± (x))|

∣∣∣∣ ≤ C e7γk

|(fk−1)′(c1)|1/2 . Then, in view of (3) for G = 14,

one can exploit (in addition to the properties already used in the proof of the Lasota-Yorke
estimates for the W 1

1 norm in Proposition 4.10) the conditions on ξ′′k , ξ′′′k in (75) to adapt
(152) in Appendix B (noting also that ψ̂|ω = 0 if the interval ω is in some level Ek with
k > 0). Note that (81) is not needed, since we only look at the component of L̂

n
(ψ̂) at level 0.

Details are straightforward and left to the reader. (We do not claim that the factor G = 14 in
(3) is optimal. In any case, we shall need to work with the stronger TSR condition soon.) To
conclude, use that if a sequence converging to φ̂0 in W 1

1 (I) has bounded W 3
1 (I) norms then

φ̂0 ∈W 2
1 (I) by Rellich-Kondrakov.

4.2. Truncated transfer operators L̂M

We introduce for each M ≥ 0 the truncation operator T M defined by

T M (ψ̂)k =

{
ψk k ≤M
0 k > M .

(89)

Clearly, ‖ T M‖BW
r
1
≤ 1 for all integers r ≥ 0 and ‖ T M‖BL

1 ≤ 1. We consider the operator
defined by

L̂M = T M L̂ T M .

Using the results of Keller and Liverani [29], we shall prove the following lemma:

L 4.12 (Spectrum of the truncated operators). – Let f be an S-unimodal
(λc, H0)-Collet-Eckmann map satisfying the Benedicks-Carleson condition (3) for G = 8, with
a non-preperiodic critical point. Recall Θ0 from (79).

The essential spectral radius of L̂M acting on B is not larger than Θ−1
0 < 1.

In addition, there exists M0 ≥ 1 so that for all M ≥ M0 the operator L̂M has a real
nonnegative maximal eigenfunction φ̂M , for an eigenvalue κM > Θ−1

0 , the dual operator of L̂M
has a nonnegative maximal eigenfunction νM , and, setting

(90) τM = e3γM |(fM )′(c1)|−1/2 < 1 ,
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for any η < 1 there exists C > 0 so that, normalizing by ν(1) = νM (1) and
∫
φ̂M dνM = 1,

we have

(91) ‖φ̂− φ̂M‖BL
1 ≤ CτηM , ‖ν − νM‖( BW

1
1 )∗
≤ CτηM , |κM − 1| ≤ CτηM .

If f is C4 and the Benedicks-Carleson condition (3) holds for G = 14, we may choose λ > 1 so
that supM ‖φ̂M,0‖W 2

1
<∞.

Proof. – The claim about the essential spectral radius can be obtained by going over the
proof of Proposition 4.10 and checking that it applies to L̂M , and that the constants are
uniform in M . The reader is invited to do this, and to check that we have the following
uniform Lasota-Yorke estimates for L̂ and L̂M : There exists C ≥ 1 so that for all N and
all M

(92) max(‖ L̂
N

(ψ̂)‖
BW

1
1
, ‖ L̂

N

M (ψ̂)‖
BW

1
1

) ≤ CΘ−N‖ψ̂‖
BW

1
1

+ C‖ψ̂‖BL
1 ,

and (recall (86) and note that ν(| L̂
N

M (ψ̂)|) ≤ ν( L̂
N

M (|ψ̂|)) ≤ ν( L̂
N

(|ψ̂|)) = ν(|ψ|))

‖ L̂
N
‖BL

1 ≤ 1 , ‖( L̂M )N‖BL
1 ≤ 1 , ∀M ,∀N .

Finally, there exists C so that for all large enough M

‖( L̂ − L̂M )(ψ̂)‖BL
1 ≤ CτM‖ψ̂‖BW

1
1
.

The last inequality is an easy consequence of

‖ (id− T M )ψ̂‖BL
1 ≤ CτM‖ψ̂‖BW

1
1
,

which follows from Lemma 4.1 and Proposition 3.7, since | supψk| ≤ C‖ψ′k‖L1 . The bounds
(91) for η ∈ (0, 1) then follow from [29, Theorem 1, Corollary 1].

It follows from what has been done up to now and [29] that supM ‖φ̂M‖BW
1
1
<∞. For the

last claim of Lemma 4.12, we proceed like in the analogous statement of Proposition 4.11,
and get uniform bounds in M .

5. Topological invariance and uniformity of constants for various recurrence conditions

It is well-known [40] that the Collet-Eckmann property is an invariant of topological con-
jugacy, and the fact that λc(ft) can be estimated uniformly in t for a smooth deformation ft
of f0 is explained, e.g., in [11, Appendix]. Our argument requires more: We need a Benedicks-
Carleson condition (3) for G = 8 or G = 14 and uniform estimates on the constants

(93) λc(ft) , H0(ft) , γ(ft) , and also σ(ft) , C1(ft) , c(δ, ft) , ρ(ft)

(recall Lemma 3.1), as t varies. The constant σ(ft) is bounded away from 1 uniformly in
small t, by the proof of [36, Theorem III.3.3], in particular the choice of m and λ there, and
noting that all ft have only repelling periodic orbits and are S-unimodal. However, if ft is
a smooth deformation of a Benedicks-Carleson S-unimodal map, we do not know how to
estimate γ(ft) in general.

Lemma 5.8, the main result of this section, is proved in Subsection 5.1: It says that all
constants in (93) are uniform, for deformations ft which satisfy the TSR condition (5). In
Subsection 5.2, we exploit a consequence of this uniformity which will play an important
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part in the proof of Theorem 2.13: If ft is a deformation, one can use the same lower part of
the tower for all operators L̂t with |t| ≤ t0, up to some level depending on t0.

In order to apply directly the results of Nowicki [38], we shall assume that f is symmetric,
i.e.,

(94) f(x) = f(−x) .

5.1. Uniformity of constants

Recall that our definition of S-unimodal includes the condition f ′′(c) 6= 0, that is, all our
S-unimodal maps are quadratic. Let Rf (x) be the function from (4) in the definition of the
TSR condition.

P 5.1 (Uniform Collet-Eckmann condition [32]). – Let f0 be a C3 S-uni-
modal map satisfying the topological slow recurrence condition (5). Then there exist λc > 1,
κ > 0, K > 0, and ε > 0 such that for every S-unimodal map f in the topological class of f0

such that |f − f0|C3 < ε, we have

(95) Rf (f j(c)) ≥ −κ ln |f j(c)− c| , ∀j ≥ 0 ,

and

(96) |(f j)′(f(c))| ≥ Kλjc , ∀j ≥ 0 .

Proof. – Except for the explicit statement on the dependence of κ, (95) is Lemma 2 in
[32]. We say that f ∈ V (D,L, θ) if

Df = max
x∈I
|f ′(x)| < D , Lf = sup

x∈I

|f(x)− f(c)|
|x− c|2

< L , θf = sup
f(x)=f(y)

|x− c|
|y − c|

< θ .

For ε small enough, we have f ∈ V (D,L, θ), with D = 2Dg0 , L = 2Lf0 and θ = 2θf0 .
The proof of Lemma 2 relies on Sublemmas 2.1 and 2.2 in [32]. The constantsC and κ in [32,
Sublemma 2.1] depend only on D, L and θ. The constant Nε in [32, Sublemma 2.2] depends
only on the topological class of f . In the proof of Lemma 2 in [32], since f has a unique
critical point we can take δ0 = |I| and N0 = 1 in (5) and (6) of [32]. Moreover, we can find
ε > 0 such that

inf
|f−f0|C3<ε

min{|f i(c)− c| s.t. 0 < i ≤ max{N0, Nε}} > 0 .

This shows (95).
Except for the explicit statement on the dependence of K and λc, (96) is Corollary 5.1 in

[32]. The proof of this result relies on (95) above, and on Lemmas 3, 4, 5 and Sublemma 5.1
in [32]. The estimates obtained in Lemma 3 depend only on the topological class of f .
Given T > 0, we can find ε > 0 such that

inf
|f−f0|C3<ε

min{|x− y| s.t. x 6= y, x, y ∈ {f i(c)}i≤T ∪ {z : f i(z) = c}i≤T } > 0 ,

so we can see from the proof of [32, Lemma 4] that there exists γ(T ) that satisfies the estimates
obtained in Lemma 4 for every S-unimodal map f in the topological class of f0 satisfying
|f − f0|C3 < ε. Sublemma 5.1 in [32] follows directly from Lemmas 3 and 4 for every
f satisfying the same conditions, with the same constants η and γ. Finally the proof of
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the estimates in Lemma 5 in [32] depends only on the topological class of f , estimates in
Sublemma 2.2, (95) above and D.

P 5.2 (Uniform Benedicks-Carleson type conditions)
Let f0 be an S-unimodal map satisfying the topological slow recurrence condition (5). Then

for every γ > 0 there exist H0 > 0 and ε > 0 such that for every S-unimodal map f in the
topological class of f0 such that |f − f0|C3 < ε, we have

|fk(c)− c| ≥ e−γk , ∀k ≥ H0 .

Proof. – Let κ and ε be as in Proposition 5.1. By (5) we can choose m0 such that

lim sup
n→∞

1

n

∑
1≤j≤n

Rf0 (fj0 (c))≥m0

Rf0(f j0 (c)) < κγ/2,

so for n0 large enough
1

n

∑
1≤j≤n

Rf0 (fj0 (c))≥m0

Rf0(f j0 (c)) < κγ , ∀n ≥ n0 .

Consequently, we have the same estimate for every map f topologically conjugate to f0, that
is

1

n

∑
1≤j≤n

Rf (fj(c))≥m0

Rf (f j(c)) < κγ , ∀n ≥ n0 .

In particular, if Rf (fk(c)) ≥ m0 and k ≥ n0, we have

Rf (fk(c))

k
< κγ ,

so by (95) we obtain

− ln |fk(c)− c|
k

< γ ,

so |fk(c) − c| ≥ e−γk. Since c is not periodic for f0, we can find η, ε > 0 such that for
each S-unimodal map f such that |f − f0|C3 < ε and for every x ∈ (c − η, c + η) we have
|f i(x)− c| > 0 for 1 ≤ i ≤ 2m0. In particular, dist (Ωf , c) > η, where

Ωf = {x ∈ I : Rf (x) < m0} .

Let H0 > n0 be large enough such that η > e−γH0 . Then |fk(c) − c| ≥ e−γk for every
k ≥ H0.

We are going to use some results by Nowicki [38]. An interval [a1, a2] is a nice interval if
c ∈ (a1, a2) and f j(ai) 6∈ (a1, a2), for every j ≥ 1 and i = 1, 2. We say that an interval (c, b)

is a ∗(n) interval if fn is a diffeomorphism on (c, b) and fn(b) = c.

P 5.3 (Lemma 9 and Proposition 11 in [38]). – Let (c, b) be an ∗(n) interval
of a symmetric S-unimodal map f satisfying (96). Then |fn(c)−fn(b)| > |c−b|. Furthermore

|fn(c)− fn(b)| ≥ K1λ
n/4
c |c− b| ,

where K1 = (Km/4M)1/2, where K is as in (96), and m and M satisfy m|x− c| ≤ |f ′(x)| ≤
M |x− c|.
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P 5.4 (Proposition 13 in [38]). – Let f be a symmetric S-unimodal map
satisfying (96). Let b ∈ [−1, 1] be such that fn(b) = c. Then

|(fn)′(b)| ≥ ρn ,

for every (19)

(97) ρ ≤ min(inf
n

inf
(c,b) an ∗(n) interval

∣∣∣∣fn(c)− fn(b)

c− b

∣∣∣∣1/n, |f ′(−1)|1/2) .

(The right-hand side above is > 1 by Proposition 5.3.)

P 5.5. – Let f0 be an S-unimodal map satisfying the topological slow recur-
rence condition (5). Then for every β ∈ (0, 1) there exist ε, δ > 0 and K̃ > 0 with the fol-
lowing property: Let f be a symmetric S-unimodal map in the topological class of f0 such that
|f −f0|C3 < ε, let [−q, q] ⊂ [−δ, δ] be a nice interval for f , and let x ∈ [−1, 1]\ [−q, q] be such
that fn(x) ∈ [−q, q] for some n ≥ 1. Define

n0(x) = min{n ≥ 1 s.t. fn(x) ∈ [−q, q]} .

Then there exist intervals In0(x) ⊂ Jn0(x), with x ∈ In0(x), such that

1. For every y ∈ In0(x) we have n0(y) = n0(x) and fn0(x)In0(x) = [−q, q].
2. The map fn0(x) : Jn0(x) → fn0(x)Jn0(x) is a diffeomorphism, and each connected

component of fn0(x)Jn0(x) \ {c} is larger than K̃qβ .

Proof. – The existence of In0(x) satisfying Claim 1 follows from the fact that [−q, q] is a
nice interval. Let [a, b] = Jn0(x) ⊃ In0(x) be the largest interval such that fn0(x) is a diffeo-
morphism on (a, b). In particular there are na, nb < n0(x) such that
fna(a) ∈ {1,−1, c} and fnb(b) ∈ {1,−1, c}. Suppose fnb(b) = c. We are going to
show that |fn0(x)b − c| ≥ K̃qβ . The proof of the analogous statement for a is similar. By
Claim 1 there is d ∈ In0(x) such that fn0(x)(d) = c and, moreover, fnb(d) 6∈ [−q, q], so
either [−q, c] ⊂ [fnb(d), c] = fnb [d, b] or [c, q] ⊂ [c, fnb(d)] = fnb [b, d]. Since (fnb(d), c) is
a ∗(n0(x)− nb) interval [38], by Proposition 5.3 and Proposition 5.1, we have
(98)
|fn0(x)(b)− c| = |fn0(x)−nb(c)− c| ≥ K1λ

(n0(x)−nb)/4
c |c− fnb(d)| ≥ K1λ

(n0(x)−nb)/4
c q ,

where K1 is uniform on a C3 neighborhood of f0. Choose

0 < γ <
β lnλc

4(1− β)
.

Reducing this neighborhood, if necessary, we have by Proposition 5.2 that

(99) |fn0(x)(b)− c| = |fn0(x)−nb(c)− c| ≥ Ke−γ(n0(x)−nb) .

We have two cases. If n0(x) − nb > −4(1 − β) ln q/ lnλc then, by (98), we easily obtain
|fn0(x)(b)− c| ≥ K1q

β . Otherwise n0(x)− nb ≤ −4(1− β) ln q/ lnλc, so by (99), we get

|fn0(x)(b)− c| = |fn0(x)−nb(c)− c| ≥ Ke−γ(n0(x)−nb) ≥ Ke−
β lnλc
4(1−β)

(n0(x)−nb) ≥ Kqβ .

(19) Note that ρ is called λT in [38].
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Choose K̃ = min(K,K1). If |fnb(b)| = 1, then fn0(x)(b) = −1. Choose δ such that
δ−β ≥ K̃. Then

|fn0(x)(b)− c| = 1 ≥ K̃δβ ≥ K̃qβ .

C 5.6 (Uniformity of C1 and ρ). – Let f0 be a symmetric S-unimodal map sat-
isfying the topological slow recurrence condition (5). There exist ρ > 1 and ε > 0 with the
following property: For every C1 ∈ (0, 1) there exists δ > 0 so that, for every symmetric S-uni-
modal map f in the topological class of f0 such that |f − f0|C3 < ε, and for every nice interval
[−q, q] of f such that q < δ, if x 6∈ [−q, q] and n ≥ 1 is the first entrance time of x in [−q, q],
then

|(fn)′(x)| ≥ C1ρ
n .

Proof. – By Proposition 5.1, we can find ε0 > 0 and ρ > 1 such that Proposition 5.4 holds
for every f such that |f−f0|C3 < ε0, with f in the topological class of f0. Take β = 1/2, and
let ε < ε0, δ be as in Proposition 5.5. Reducing δ if necessary, we have that if q < δ then each
connected component of fn(Jn(x)) \ [−q, q] is far larger than q. In particular by the Koebe
lemma

(fn)′(z)

(fn)′(w)
< C−1

1 , ∀z, w ∈ In(x) .

But there exists b ∈ In(x) such that fn(b) = c, so (fn)′(b) ≥ ρn. We conclude that
|(fn)′(x)| ≥ C1ρ

n.

Finally, we shall need the following result:

C 5.7 (Uniformity of c(δ) and σ). – Let f0 be a symmetric S-unimodal map
satisfying the topological slow recurrence condition (5). There exists (20) σ > 1 such that for
every δ > 0 there exist c(δ) > 0 and ε > 0 with the following property: For every symmetric
S-unimodal map f in the topological class of f0 such that |f − f0|C3 < ε, if |f i(x)| > δ

for 0 ≤ i < n then
|(fn)′(x)| ≥ c(δ)σn .

Proof. – By Proposition 5.1, we can find ε0 > 0 and ρ > 1 such that Proposition 5.4
holds for every f such that |f − f0|C3 < ε0, with f in the topological class of f0. Using the
same argument as in Proposition 3.9 in [37], we can show that for every periodic point q such
that fn(q) = q we have |(fn)′(q)| ≥ ρn. Note that since c is recurrent by f0, there exists a
sequence of periodic points for f0 converging to c. So given δ > 0 there exists a periodic
point p for f0 such that |p| < δ. Let n0 be the prime period of p. There exists ε1 < ε0 such
that every map f such that |f − f0|C3 < ε1 has an analytic continuation pf for p such that
|pf | < δ and

ηper = inf
|f−f0|C3<ε1

|pf | > 0 .

Without loss of generality, we can assume that |f i(pf )| ≥ |pf | for every i. So [−pf , pf ] is a
nice interval. Let x 6∈ [−δ, δ] be such that |f i(x)| > δ for 0 ≤ i < n. If fn(x) ∈ [−pf , pf ] we
can use Corollary 5.6 to conclude that |(fn)′(x)| ≥ C1ρ

n. So assume that fn(x) 6∈ [−pf , pf ].
Let (a, b) be the largest interval such that x ∈ (a, b) and f i(y) 6∈ [−pf , pf ] for every

(20) The analogue of σ is called λM in [37].
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0 ≤ i ≤ n and y ∈ (a, b). In particular, fn is a diffeomorphism on (a, b), and there exist
na, nb ≤ n such that |fna(a)|, |fnb(b)| ∈ {|pf |, 1}. Without loss of generality, we can assume
that |f i(a)|, |f j(b)| 6∈ {|pf |, 1} for every i < na, j < nb. If fna(a) ∈ {−1, 1}, then indeed
a ∈ {−1, 1}, so |(fn)′(a)| = |f ′(−1)|n. We have a similar statement for b. Otherwise either
fna(a) (respectively fnb(b)) or−fna(a) (respectively−fnb(b)) is a periodic point with period
n0. Then na and nb are the first entry times of a and b in [−pf , pf ]. By Corollary 5.6, we have

|(fna)′(a)| ≥ C1ρ
na and |(fnb)′(b)| ≥ C1ρ

nb .

Since pf is a periodic point of period n0, |(fn0)′(pf )| ≥ ρn0 and f is symmetric and
quadratic, we have

|(fn−na)′(fna(a))| ≥ ρn−na−n0 min{|f ′(f i(pf ))|, 0 ≤ i < n0}n0

≥ Cn0 |pf |n0ρn−na−n0 ,

so
|(fn)′(a)| ≥ Cn0 |pf |n0ρn−n0 ≥ Cn0ηn0

perρ
−n0ρn = c(δ)ρn .

We can obtain similarly |(fn)′(b)| ≥ c(δ)ρn. In any case

min(|(fn)′(a)|, |(fn)′(b)|) ≥ min(1, c(δ)) ·min(ρ, |f ′(−1)|)n .

By the minimum principle

|(fn)′(x)| ≥ min(1, c(δ)) ·min(ρ, |f ′(−1)|)n .

So choose σ = min(ρ, |f ′(−1)|) > 1.

Summarizing the results of this section, we have proved:

L 5.8 (Uniformity of constants in topological classes of TSR maps)
If f0 is a symmetric S-unimodal (λc(f0), H0(f0))-Collet-Eckmann map satisfying topolog-

ical slow recurrence (5), then for every C1 ∈ (0, 1) there exists λc ∈ (1, λc(f0)) so that for any
γ ∈ (0, log(λc)/14) there exists H0 > H0(f0) so that for each ρ ∈ (1, λ

1/2
c ), there exist σ > 1

and δ0 > 0 so that for every δ ∈ (0, δ0) there exist c(δ) = cf (δ) > 0 and ε > 0 so that the
following holds for each symmetric S-unimodal map f topologically conjugated to f0 and so
that |f − f0|C3 < ε:

The map f is (λc, H0)-Collet-Eckmann and satisfies (3) with G = 14 for the above given
values of γ, λc, and H0. For any y ∈ I, if j ≥ 0 is minimal satisfying |f j(y)| ≤ δ, then

(100) |(f j)′(y)| ≥ C1ρ
j ,

for any x ∈ I, if j ≥ 1 is such that |fk(x)| > δ for all 0 ≤ k < j, then

(101) |(f i)′(x)| ≥ c(δ)σi , ∀0 ≤ i ≤ j .

Comparing the above result to Lemma 3.1 we emphasize that we do not claim that λc
can be taken arbitrarily close to λc(f0) or H0 close to H0(f0), where λc(f0), H0(f0) are the
best possible constants for f0. So the conclusion of Lemma 5.8 cannot be viewed strictly as
a Benedicks-Carleson condition. (This is mostly because of the infimum in the right-hand
side of (97) from Proposition 5.4.) However, this does not matter since we are assuming
the much stronger TSR assumption in any case (see also (109) below), which implies that
we can take γ arbitrarily close to 0 after λc has been fixed. The advantage of the notation
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introduced in Lemma 5.8 is that we can use the estimates from Sections 3 and 4 directly, with
the same notation for the constants, for deformations of maps f0 satisfying the assumptions
of Lemma 5.8.

Finally, we give a long postponed proof:

Proof of Lemma 2.12. – We may assume that the critical point is not preperiodic. (If it is,
the proof is much easier.)

The proof of Proposition 3.9 shows that for each fixed s the supremum supx |αs(x)|may
be estimated in terms of cfs(δ)

−1, sup |vs|, LipXs, (1 − σ(fs)
−1)−1, (1 − (ρ(fs))

−1)−1, in
the notation of Lemma 3.1. By Lemma 5.8, this implies (13).

Next, applying Lemma 2.10 to each fs, we get

lim
t→0

ck,s+t − ck,s
t

= αs(hs(ck)) = αs(ck,s) .

In other words, t 7→ ht(ck) is differentiable on [−ε, ε] (with ε independent of k), with
derivative αs(ck,s).

Then, for each k ≥ 1 and each |t| < ε the mean value theorem gives s with |s| ≤ |t| so
that

ck,t − ck
t

=
ht(ck)− h0(ck)

t
= αs(ck,s) .

5.2. Transfer operators L̂t, L̂t,M for a (TSR) smooth deformation ft

If ft is a C1 one-parameter family of S-unimodal symmetric Collet-Eckmann maps ft,
with a non preperiodic critical point, Lemma 5.8 implies that all ft satisfy estimates for
uniform parameters λc and H0, and satisfy the Benedicks-Carleson condition (3) for γ > 0

and G = 14. We can associate a tower f̂t : Ît → Ît to each ft, choosing small δt and
intervals Bk,t by using the parameters λc, H0, γ as in Subsection 3.1, replacing ck by ck,t.

Then, we can define spaces BW
1
1

t , and an operator L̂t in Subsection 4.1, replacing fk by fkt
and ck by ck,t in (71) and the definition of ξk,t. We summarize first the results which follow
from applying Proposition 4.10 and Proposition 4.11 to each ft, in order to fix notation (note
however that we shall modify slightly the lower parts of the tower maps f̂t in Proposition 5.9):
There is Θ0 > 1 so that each operator L̂t has essential spectral radius bounded by Θ−1

0

on Bt = BW
1
1

t . Outside of a disc of radius θt < 1 the spectrum of L̂t on Bt consists in a
simple eigenvalue at 1, with a nonnegative eigenfunction φ̂t, so that (φ̂t)0 belongs to W 2

1 .
Define Πt : Bt → L1(I) by

Πt(ψ̂)(x) =
∑

k≥0,ς∈{+,−}

λk

|(fkt )′(f−kt,ς (x))|
ψk(f−kt,ς (x))χk,t(x) ,(102)

where χk,t is defined like χk (see Proposition 2.7), replacing fk by fkt and ck by ck,t. The
fixed point of the dual of L̂t is the nonnegative measure ν on Ît, absolutely continuous with
respect to Lebesgue on Ît whose density is w(x, k). If we normalize by requiring ν(φ̂t) = 1,
the invariant density of ft is just φt = Πt(φ̂t). Lemma 4.12 also holds for L̂t,M , using the
weak norm ‖ · ‖BL

1 . This gives φ̂t,M , νt,M = νM , and κt,M . If σ(ft), C1(ft) and c(δ, ft)
from Lemma 3.1 applied to ft are uniform in t, then all objects constructed are uniform in t
(including the W 2

1 norms of (φ̂t)0 and (φ̂t,M )0 for r ∈ (1, 2)).
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There is of course some flexibility in choosing the intervalsBk,t and the functions ξk,t. It is
tempting, in order to get conjugated tower dynamics f̂t : Ît → Ît, to chooseBk,t = ht(Bk,0)

and ξk,t = ξk,0 ◦ h−1
t , where the homeomorphisms ht are given by Lemma 2.11. Then, in

order to prove Theorem 2.13 on linear response, one would need additional information
on the ht (for example, but not only, the fact that ∂tht(x) = α(x) at all points x). We
shall work instead with truncated operators Lt,M , disregarding the top part of the tower via
Lemma 4.12, and artificially forcing the lower parts of the towers associated to the various ft
to coincide. This is possible in view of the following consequence of Lemmas 2.10 and 2.12:

P 5.9 (Controlling the truncated tower). – Let ft be a C1 deformation
of S-unimodal maps ft satisfying the Benedicks-Carleson condition (3) for G = 14 and
γ0 = γ. Let f̂0 : Î → Î be a tower associated to f0 as in Section 3.1, for some δ > 0 and
3γ0/2 < β1 < β2 < 2γ0. Let αs be the solution of the TCE (7) for fs and vs = ∂tft|t=s, with
αs(c) = 0, given by (21) Theorem 2.4. Fix

3γ0

2
< β̃1 < β1 < β2 < β̃2 < 2γ0 .

Then, for any M ≥ 1, and for any t so that

(103) sup
|s|≤t
|αs(ck)||t| < min((e−β̃1k − e−β1k), (e−β2k − e−β̃2k)) , 1 ≤ k ≤M ,

one can construct the tower maps f̂t : Ît → Ît, the Banach spaces BW
1
1

t , BL
1

, and the transfer
operators L̂t, using parameters δt > 0, intervals Bk,t admissible for β̃1, and β̃2, and smooth
cutoff functions ξk,t in such a way as to ensure

δt = δ , ξk,t = ξk , ∀k ≤M ,

and, in addition, so that all results of Section 4 hold for L̂t.

If f0 enjoys TSR then, up to taking smaller ε, Lemma 2.12 implies that

sup
|x|≤δ,|s|≤ε

|αs(x)||ε| <∞ ,

so that we can exploit the above proposition.

Proof of Proposition 5.9. – Recall ht as given by (12) and recall Lemma 2.10. By the proof
of Lemma 2.12, we have

|ak − ht(ck)| ≤ |ak − ck|+ |ht(ck)− h0(ck)|

≤ e−β1k + sup
|s|≤|t|

|αs(ck)||t| ,

and

|ak − ht(ck)| ≥ |ak − ck| − |ht(ck)− h0(ck)|

≥ e−β2k − sup
|s|≤|t|

|αs(ck)||t| .

The claim of Proposition 5.9 follows.

(21) Recall Remark 2.9.
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6. Proof of linear response

In this section, we prove Theorem 2.13. Let ft satisfy the assumptions of the theorem.
We suppose in addition that the critical point is not preperiodic (the proof is much easier if
it is). Applying Lemma 5.8, we fix ε > 0 and constants γ, λc, σ, C1, ρ, δ, and c(δ) and we
choose 3γ/2 < β1 < β2 < 2γ. By Lemma 5.8, we may assume that the Benedicks-Carleson
condition (3) holds for G = 14, and in some places in the proof below we may require a
stronger upper bound on γ.

Constructing a tower, Banach space, and transfer operator for each ft as in Section 4,
the invariant density of ft can be written as φt = Πt(φ̂t), where Πt was defined in (102),

and where φ̂t is the nonnegative and normalized fixed point of L̂t on BW
1
1

t given by Proposi-
tion 4.11 applied to ft. It will be convenient to work with truncated transfer operators L̂t,M ,
recalling Subsection 4.2, in particular Lemma 4.12, which gives φ̂t,M . We shall in fact require
the lower part of the towers of ft for small enough t, up to M = M(t) as given by Proposi-
tion 5.9 to coincide with that of f0.

When the meaning is clear, we shall remove 0 from the notation, writing, e.g., Π, φ̂, and
φ̂M , instead of Π0, φ̂0, and φ̂0,M .

We start with the decomposition

(104) φt − φ = Πt(φ̂t − φ̂t,M ) + Π(φ̂M − φ̂) + Πt(φ̂t,M )−Π(φ̂M ) .

Note that if fk|[c,y] is injective then

(105)
∫ fk(y)

ck

|ψk(f−k+ (z))|
|(fk)′(f−k+ (z))|

dz =

∫ y

c

|ψk(x)| dx .

Lemma 4.12 implies that, for large enough M (uniformly in t)

‖Πt(φ̂t − φ̂t,M )‖L1(I) ≤ C‖φ̂t − φ̂t,M‖BL
1 ≤ CτηM ,∀|t| < ε .(106)

Fix ζ > 0, then (106) implies

max(‖Πt(φ̂t − φ̂t,M )‖L1(I),‖Π(φ̂− φ̂M )‖L1(I)) ≤ C|t|1+ζ ,

∀t so that (τηM )
1

1+ζ < |t| < ε .(107)

It is now sufficient to estimate the third term in the right-hand side of (104) for t and
M = M(t) satisfying (107).

For this, in order to apply Proposition 5.9, and noting that the right-hand side of (103) is
≥ Ce−2γM , we want t and M to satisfy

(108) sup
k,|s|<ε

|αs(ck)||t| < Ce−2γM .

(Recall that supk,|s|<ε |αs(ck)| ≤ L by Lemma 2.12.) In several places below we shall require
a stronger version of (108), of the form

(109) |t| < e−ΓγM ,
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where Γ > 2 is large (but uniformly bounded over the argument). Since τM < λ
−M/2
c e3Mγ

(recalling Lemma 4.12) and λ < eγ (by (70)), we see that (107) and (109) are compatible if
ε is small enough and

(110)
1

2
lnλc > γ

(1 + Γ(1 + ζ)

η
+ 3
)
.

By our TSR assumption and Lemma 5.8, we may indeed require that γ is small enough for
the above Benedicks-Carleson condition to hold, even if Γ > 2 is large.

We shall call pairs (M, t) so that |t| < ε and (107) and (109) hold admissible pairs. In the
remainder of this section, (M, t) will always be an admissible pair, and we shall work with
the towers and operators given by Proposition 5.9 for a given such pair.

The key decomposition for an admissible pair is then

Πt(φ̂t,M )−Π(φ̂M ) = Πt(φ̂t,M − φ̂M ) + Πt(φ̂M )−Π(φ̂M ) .(111)

Before we start with the proof, let us briefly sketch it: The term φ̂t,M − φ̂M , will be
handled using spectral perturbation-type methods. This is the content of Steps 1 and 2 below,
the outcome of which are claims (127), (131), and (133). (Horizontality is used here to get
uniform estimates, in view of Proposition 5.9 but also, e.g., in Lemma 6.1.)

The other term requires the analysis of Πt−Π0. This will produce derivatives of the spikes,
i.e., of functions of the type (x − ck)−1/2 (recall the definition of Πt, and see Lemma 4.1).
Since ∂t(x−ht(ck))−1/2 is not integrable, this will require working with

∫
A(Πtφ̂t−Π0φ̂t) dx,

with A a C1 function and integrating by parts, as well as using again horizontality. We
perform this analysis in Step 3 of the proof, which yields (150).

Step 1: The first term of (111): perturbation theory via resolvents

(Recall that (M, t) is an admissible pair.) In order to get a formula for the limit as t→ 0 (in
a suitable norm) of the first term of (111) divided by t, we shall first analyze (φ̂t,M − φ̂M )/t,
and then see how Πt enters in the picture.

Since νM (φ̂M ) = 1, we have

φ̂t,Mνt,M (φ̂M )− φ̂M = φ̂t,M − φ̂M + φ̂t,M (νt,M (φ̂M )− νM (φ̂M )) .

Now, Lemma 4.12 applied to f and ft implies that

|νt,M (φ̂M )− νM (φ̂M )| ≤ 2 max(‖νt,M − νt‖( BW
1
1 )∗

, ‖νM − ν‖( BW
1
1 )∗)‖φ̂M‖BW

1
1

≤ CτηM‖φ̂M‖BW
1
1
.

Our choices imply that CτηM = O(|t|1+ζ) while ‖φ̂M‖BW
1
1

is uniformly bounded, e.g., by the

proof of Lemma 4.12. Therefore, to study φ̂t,M − φ̂M , it suffices to estimate φ̂t,Mνt,M (φ̂M )− φ̂M ,
that we shall express as a difference of spectral projectors.

Next, set

Q̂t,M = Q̂t,M (z) = z − L̂t,M , Q̂M = Q̂M (z) = z − L̂M ,

recall PM from the proof of Lemma 4.12, and denote by

Pt,M (ψ̂) = φ̂t,Mνt,M (ψ̂) ,
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the spectral projector corresponding to the maximal eigenvalue of L̂t,M . Using

Q̂
−1

t,M − Q̂
−1

M = Q̂
−1

t,M ( L̂t,M − L̂M ) Q̂
−1

M , and Q−1
M (φ̂M ) =

φ̂M
z − κM

,

we rewrite φ̂t,Mνt,M (φ̂M )− φ̂M = (Pt,M − PM )(φ̂M ) as follows:

φ̂t,Mνt,M (φ̂M )− φ̂M = − 1

2iπ

∮ Q̂
−1

t,M (z)

z − κM
( L̂t,M − L̂M )(φ̂M ) dz(112)

= (κM − L̂t,M )−1(id− Pt,M )( L̂t,M − L̂M )(φ̂M ) ,

where the contour is a circle centered at 1, outside of the disc of radius max(θ0, θt) (using the
notation from Subsection 5.2).

We are going to use again the arguments in [29]. By uniformity of the constants
in Lemma 5.8, the Lasota-Yorke estimates (22) in the proofs of Proposition 4.10 and
Lemma 4.12 say that there exist ε > 0 and C ≥ 1 so that, for all |t| ≤ ε, all M , all j,

‖ L̂
j

t,M (ψ̂)‖BL
1 ≤ C‖ψ̂‖BL

1 , ‖ L̂
j

t,M (ψ̂)‖
BW

1
1
≤ CΘ−j‖ψ̂‖

BW
1
1

+ C‖ψ̂‖BL
1 ,(113)

‖ L̂
j

M (ψ̂)‖BL
1 ≤ C‖ψ̂‖BL

1 , ‖ L̂
j

M (ψ̂)‖
BW

1
1
≤ CΘ−j‖ψ̂‖

BW
1
1

+ C‖ψ̂‖BL
1 .(114)

In Step 2 we shall find C̃ ≥ 1 and η̃ > 0 so that for each admissible pair (M, t)

(115) ‖ L̂t,M (ψ̂)− L̂M (ψ̂)‖BL
1 ≤ C̃|t|η̃‖ψ̂‖B , ∀ψ̂ ∈ B .

We are not exactly in the setting of [29], since we have a “moving target” L̂M(t) as t → 0.
However, since the right-hand side of (115) does not depend on M , setting

N t,M := (κM − L̂t,M )−1(id− Pt,M )− (κM − L̂M )−1(id− PM ) ,

then (113)–(114) and (115) imply, by a small modification of the proofs of [29, Theorem 1,
Corollary 1], that there exist Ĉ ≥ 1 and η̂ > 0 so that for all admissible pairs (M, t)

(116) ||N t,M‖BW
1
1
≤ Ĉ , ‖N t,M (ψ̂)‖BL

1 ≤ Ĉ|t|η̃η̂‖ψ̂‖
BW

1
1
.

In Step 2, we shall show that there exist C > 0 and DM ∈ B = BW
1
1 with∫

I

DM,0 dx = 0 , DM,k = 0 ,∀k ≥ 1 , and ‖DM‖B ≤ C ,

and ζ̃ > 0, so that for all admissible pairs (M, t)

(117) ‖ L̂t,M (φ̂M )− L̂M (φ̂M )− tDM‖B ≤ C|t|1+ζ̃ .

Writing
(κM − L̂t,M )−1(id− Pt,M ) = N t,M + (κM − L̂M )−1(id− PM ) ,

we see that (117) together with (125) and (112) imply

φ̂t,M − φ̂M = [ N t,M + (κM − L̂M )−1(id− PM )](tDM +OB(|t|1+ζ̃))

= tN t,M ( DM ) + t(κM − L̂M )−1(id− PM )( DM ) + ∆O
BW

1
1

(|t|1+ζ̃) .(118)

(22) We use that the constant cft (δ) associated to ft by Lemma 5.8 does not depend on t and that infδ≥δ0 c(δ) > 0

for any δ0 > 0.
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Note for further use (in (130) below) that, since ‖ψ̂‖C0 := supk sup |ψk| ≤ C‖ψ̂‖W 1
1

, the
bound (118) with the first inequality in (116) imply

(119) ‖φ̂t,M − φ̂M‖C0 = O(t) , as t→ 0, uniformly in admissible pairs (M, t).

Recalling from (18) the definition of Ŷ , we shall see in Step 2 that the following expression

defines an element of BW
1
1

(120) D = −( T 0( L̂(Ŷ φ̂))′ ,

and that, in addition limM→∞ ‖D− DM‖W 1
1

= 0. More precisely, there is ζ ′ > 0 so that for
admissible pairs (M, t)→ (∞, 0)

(121) ‖D − DM‖W 1
1

= ‖D0 − DM,0‖W 1
1 (I) = O(|t|ζ

′
) .

Note that Dk = 0 for k ≥ 1, and that
∫

D0 dx = 0, so that ν( D) = 0. Similarly, ν( DM ) = 0.

Therefore, by the spectral properties of L̂ on BW
1
1 from Propositions 4.10 and 4.11, we have

that
(id− L̂)−1( D) ∈ BW

1
1 , (id− L̂)−1( DM ) ∈ BW

1
1 .

Now, by the Lasota-Yorke estimates in the beginning of the proof of Lemma 4.12, the first
claim of [29, Theorem 1] gives an integer M0 and a small disc B around 1 so that

(122) sup
M≥M0

sup
z/∈B
‖z − L̂M‖−1

BW
1
1
<∞ ,

while, letting PM (ψ̂) = φ̂MνM (ψ̂) be the spectral projector corresponding to the maximal
eigenvalue of L̂M , and setting

(123) N M := (κM − L̂M )−1(id− PM )− (id− L̂0)−1(id− φ̂ν(·)),

the second claim of [29, Theorem 1] with the first lines of [10, Appendix B] give

(124) ‖N M (ψ̂)‖BL
1 ≤ ĈτηM‖ψ̂‖BW

1
1
,

and

∆ := ‖(κM − L̂M )−1(id− PM )‖
BW

1
1
<∞ .(125)

The estimate (124) and our condition (107) on M then give

(126) ‖N M (ψ̂)‖BL
1 ≤ Ĉ|t|1+ζ‖ψ̂‖

BW
1
1
.

In particular, since ‖DM‖B ≤ C, we get limt→0 ‖N M ( DM )‖BL
1 = 0, exponentially in M .

Therefore, recalling that ν( D) = ν( DM ) = 0, and using (121), there exists ζ ′′ > 0 so that for
admissible (M, t)→ (∞, 0),∥∥(κM − L̂M )−1(id− PM )( DM )− (id− L̂)−1( D)

∥∥
BL

1

≤ ‖N M ( DM )‖BL
1 + ‖(id− L̂)−1( D − DM )‖

BW
1
1

= O(|t|ζ
′′
) .

We may now conclude the first part of Step 1: Dividing (118) by t, letting t→ 0, and applying
the second bound of (116) gives ζ̂ > 0 so that (using again ν( D) = 0)

(127)
∥∥1

t
(φ̂t,M(t) − φ̂M(t))− (id− L̂)−1( D)

∥∥
BL

1 = O(|t|ζ̂) as t→ 0.
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It remains to assess the effect of composition by Πt in the first term of (111) divided by t.
We claim that (127) implies

(128) lim
t→0
‖1

t
Πt[φ̂t,M − φ̂M ]−Π0((id− L̂)−1( D))‖L1(I) = 0 .

To prove (128), we start from the decomposition

(129)
1

t
Πt(φ̂t,M − φ̂M ) =

1

t
Π0(φ̂t,M − φ̂M ) +

1

t
(Πt −Π0)(φ̂t,M − φ̂M ) .

Note that (105) implies ‖Π0 T M (ψ̂)‖L1 ≤ C‖ψ̂‖BL
1 . Therefore, since ν( D) = 0, (127) takes

care of the first term in (129), and it suffices to show that the second term in (129) tends to
zero in L1(I) as t→ 0.

Recall that Lemma 5.8 allows us to take a larger value of Γ in (109) if necessary. Estimate
(141) in Step 3 implies

‖(Πt −Π0)(ψ̂)‖L1(I) ≤ C
√
t‖ψ̂‖C0 .

Therefore, by (119), we have

(130) ‖(Πt −Π0)(φ̂t,M − φ̂M )‖L1 ≤ C
√
t‖φ̂t,M − φ̂M‖C0 = o(t) ,

proving (128).

Finally, (128) immediately implies that

(131) lim
t→0

1

t

∫
AΠt[φ̂t,M − φ̂M ] dx = −

∫
AΠ0((id− L̂)−1[ T 0( L̂(Ŷ φ̂))′]) dx .

In other words,

(132) lim
t→0

1

t

∫
(A−A ◦ f)Πt[φ̂t,M − φ̂M ] dx = −

∫
A( T 0( L̂(Ŷ φ̂)))′ dx ,

where we used (78). If A is C1, we can integrate by parts, and we find

(133) lim
t→0

1

t

∫
(A−A ◦ f)Πt[φ̂t,M − φ̂M ] dx =

∫
A′ T 0( L̂(Ŷ φ̂)) dx .

Step 2: The first term of (111): Computing lim 1
t ( L̂t,M − L̂M )(φ̂M ).

In this step, we prove (115), (117), and (120), (121), for admissible pairs (M, t). The fol-
lowing estimates will play a crucial part in the argument (their proof is given in Appendix C,
it uses the fact that t 7→ ft ∈ C3 is a C2 map):

L 6.1 (Taylor series for f−k± (x)− f−kt,±(x)). – Let ft satisfy the assumptions of
Theorem 2.13. Recall the functions Yk,t from (17), the maps f−kt,± from (1), and the smooth
cutoff functions ξk from Definition 4.7. Then there is C > 0 so that for any k ≥ H0 and any
|s| ≤ ε, if (108) holds, then

(134) sup
y∈Ĩk

|Yk,s(y)|
|(fks )′(y)|

≤ C e2γk

|(fk−1
s )′(c1,s)|1/2

.
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In addition, for all k ≥ 1, we have

sup
x∈fks (Ĩk)

∣∣∣∣∂x( Yk,s(f−ks,±(x))

(fks )′(f−ks,±(x))

)∣∣∣∣ ≤ C e3γk

|(fk−1
s )′(c1,s)|1/2

,(135)

sup
x∈fks (Ĩk)

∣∣∣∣∂2
x

( Yk,s(f−ks,±(x))

(fks )′(f−ks,±(x))

)∣∣∣∣ ≤ C e6γk

|(fk−1
s )′(c1,s)|1/2

.(136)

Finally, for all k ≤M and all x ∈ fks (Ĩk)∣∣∣∣f−k± (x)− f−kt,±(x)− t
Yk(f−k± (x))

(fk)′(f−k± (x))

∣∣∣∣ ≤ C|t|2e4γk ,(137)

and, for the same k and x∣∣∣∣ 1

(fkt )′(f−k± (x))
− 1

(fk)′(f−kt,±(x))
− t
(

Yk(f−k± (x))

(fk)′(f−k± (x))

)′∣∣∣∣ ≤ C|t|2e7γk .(138)

We first prove (115). If j > M then L̂t,M (ψ̂)(x, j) = L̂M (ψ̂)(x, j) = 0. If 1 ≤ j ≤ M ,
since ξj = ξj,t (recall the construction in Proposition 5.9),

L̂t,M (ψ̂)(x, j)− L̂M (ψ̂)(x, j) = 0 .

Therefore, we need only worry about j = 0.

Recall the Definition (76) of L̂t,M (ψ̂)(x, 0). The Definition (18) of Ŷs (the shift in indices
there mirrors that in (76)) together with (162) and (165) from the proof of Lemma 6.1 imply
the following: Assume that ϕ isC1 and supported in Ĩk. Then there exists s(t) ∈ [0, t] so that∣∣∣∣ ϕ(f−k+ (x))

|(fk)′(f−k+ (x))|
−

ϕ(f−kt,+(x))

|(fkt )′(f−kt,+(x))|

∣∣∣∣
≤ |t||ϕ(f−ks,+(x))|

∣∣∣∣( Yk,s(f−ks,+(x))

(fks )′(f−ks,+(x))

)′∣∣∣∣+ |t|
|ϕ′(f−ks,+(x))|
|(fks )′(f−ks,+(x))|

∣∣∣∣ Yk,s(f−ks,+(x))

(fks )′(f−ks,+(x))

∣∣∣∣ .
Of course, the branch f−k− is handled similarly. Recall that C∞ is dense in W 1

1 . There-
fore, summing over the inverse branches, and taking into account the contribution of
(1 − ξk)(f−kt,+(x)) − (1 − ξk)(f−k+ (x)) via (75) or (81) (our assumptions imply that each ψ′k
and ξ′k vanishes at the boundary of its support), and averaging, we get C > 0 so that for any
ψ̂ ∈ B and any admissible pair (M, t), using (134) and (135) from Lemma 6.1 and the upper
bound (70) on λ

(139) ‖ L̂t,M (ψ̂)− L̂M (ψ̂)‖BL
1 ≤ C|t|e5γMλ2M‖ψ̂‖

BW
1
1
≤ C|t|e7γM‖ψ̂‖

BW
1
1
.

In view of (109), this proves (115).

Next, we show (117). Note that

ϕ(f−k+ (x))

(
Yk(f−k+ (x))

(fk)′(f−k+ (x))

)′
+

ϕ′(f−k+ (x))

(fk)′(f−k+ (x))

Yk(f−k+ (x))

(fk)′(f−k+ (x))

=

(
ϕ(f−k+ (x))Yk(f−k+ (x))

(fk)′(f−k+ (x))

)′
,
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and set (recall that (φ̂M )′0 ∈W 1
1 )

DM := −( T 0( L̂M (Ŷ φ̂M )))′ ∈ B .

Clearly ν( DM ) = 0, integrating by parts. Since Lemma 4.12 implies that φ̂M is an eigenvector
of L̂M for an eigenvalue κM close to 1 (so that the λk factor can be replaced by κkM , which is
strictly smaller than Ce2γk by our choices), we get, using (134) and (135) from Lemma 6.1,
as well as Lemma 4.1, supM ‖DM‖BL

1 < ∞. Up to increasing Γ in (109), (135) and (136)
imply that supM ‖DM‖BW

1
1
<∞.

Using again that (φ̂M )′0 ∈ W 1
1 , we may write the average of the t-Taylor series of order

two of

φ̂M,k−1(f−k+ (x))

|(fk)′(f−k+ (x))|
−
φ̂M,k−1(f−kt,+(x))

|(fkt )′(f−kt,+(x))|
,

and of its x-derivative. By (136), (137), and (138), this gives

(140) ‖ L̂t,M (φ̂M )− L̂M (φ̂M )− tDM‖B ≤ Ce11γM |t|1+ζ .

Since we can take Γ in (109) as large as necessary, this establishes (117).

Set D = − T 0( L̂(Ŷ φ̂))′. Clearly, ν( D) = 0, integrating by parts. The estimates we proved

imply that ‖D0 − DM,0‖W 1
1
→ 0, exponentially fast as M → ∞, and that D ∈ BW

1
1 . This

shows (120) and (121).

Step 3: The second term of (111): Estimating 1
t (Πt −Π0)(φ̂M ) ∈ (C1(I))∗

In this step, the points are not necessarily falling from the tower, so that the analogues of
the derivatives in Lemma 6.1 have nonintegrable spikes. Therefore, as already mentioned, we
shall not only require horizontality, but we shall also need to perform integration by parts,
using that the observable A is C1.

As before, the index k ranges between 1 and M , where (M, t) is an admissible pair. We
focus on the branch f−k+ , the other one is handled in a similar way.

Note for further use that, recalling Proposition 5.9, Lemma 4.1 implies that there exists
C so that for any admissible pair (M, t) and any 1 ≤ k ≤M

Ψk,t := sup
z∈[ck,ck,t]

∫ z

ck

λk

|(fk)′(f−k+ (x))|
dx ≤

∫ ck,t

ck

C√
x− ck

dx ≤ CL|t|1/2 .(141)

(We used (14) to get |ck,t − ck| = |ht(ck)− h0(ck)| ≤ L|t|.) In particular,

(142) |f−k+ (ck,t)− f−k+ (ck)| ≤ Ψk,t ≤ C|t|1/2 .

Assume to fix ideas that ck > ck,t, with ck and ck,t local maxima for fk and fkt ,
respectively (the other possibilities are treated similarly and left to the reader).
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We first study the points in fk(supp(φM,k)) for which f−k+ (x) exists but not f−kt,+(x), i.e.,
the interval [ck,t, ck]. This gives the following contribution:

−
∫ ck

ck,t

A(x)
λk

|(fk)′(f−k+ (x))|
φM,k(f−k+ (x)) dx(143)

=

∫ c0

f−k+ (ck,t)

[(A(fk(y))−A(ck)) +A(ck)]λkφM,k(y) dy

=

∫ c0

f−k+ (ck,t)

A′(zk,t(y))(ck − fk(y))λkφM,k(y) dy

+A(ck)

∫ c0

f−k+ (ck,t)

λkφM,k(y) dy ,(144)

where zk,t(y) ∈ [ck,t, ck], and we used that f−k+ is orientation reversing. Now

|
∫ c0

f−k+ (ck,t)

A′(zk,t(y))(ck − fk(y))λkφM,k(y) dy|

≤ sup |A′||ck − ck,t|
∫ ck

ck,t

λk

|(fk)′(f−k+ (x))|
φM,k(f−k+ (x)) dx

≤ C sup |A′||ck − ck,t|
√
ck − ck,t

≤ C sup |A′| sup
s
|αs(ck)|3/2|t|3/2 ,

where we used Lemma 2.12 together with (141). Since there are M terms and since
limt→0M

√
|t| = 0 for admissible pairs (M, t), the relevant contribution of (143) is fully

contained in the last line (144) of (143). (We shall see in a moment that (144) cancels out
exactly with another term.)

Second, we need to consider

−
∫ ck,t

−1

λkA(x)
( φM,k(f−k+ (x))

|(fk)′(f−k+ (x))|
−

φM,k(f−kt,+(x))

|(fkt )′(f−kt,+(x))|
)
dx(145)

= −
∫ ck,t

−1

λkA′(x)[φ̃M,k(f−k+ (x))− φ̃M,k(f−kt,+(x))] dx(146)

+ λk[A(x)(φ̃M,k(f−k+ (x))− φ̃M,k(f−kt,+(x)))]|ck,t−1 ,(147)

where φ̃′M,k = φM,k, φ̃M,k(−1) = 0, and we used that (fk)′(f−k+ (x)) < 0 when integrating

by parts. One term in (147) vanishes because of the support of φ̃M,k. The other term is

(148) λkA(ck,t)(φ̃M,k(f−k+ (ck,t))− φ̃M,k(f−kt,+(ck,t))) .

Since A(ck,t) = A(ck) + A′(zk,t)(ck,t − ck) for zk,t ∈ [ck,t, ck], and since f−kt,+(ck,t) = c0,
(148) can be written as

λkA(ck)(φ̃M,k(f−k+ (ck,t))− φ̃M,k(c0)) +Hk,t ,

with |Hk,t| ≤ C|t|3/2, uniformly in k ≤M for admissible pairs (M, t) (recall (14) and (142)).
Summing over 1 ≤ k ≤M and dividing by t, we have proved that, as t→ 0, the contributions
from (148) cancel out exactly with the singular terms from line (144). (Recall that (M, t) are
admissible, in particular (109) holds.)
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The other term, (146), is

−
∫ ck,t

−1

λkA′(x)[φ̃M,k(f−k+ (x))− φ̃M,k(f−kt,+(x))] dx

= −
∫ ck,t

−1

λkA′(x)φM,k(f−ku(t,x),+(x))[f−k+ (x)− f−kt,+(x)] dx ,(149)

for u = u(t, x) ∈ [0, t]. To finish, we shall next prove that the sum over 1 ≤ k ≤ M of (149)
divided by t converges as t→ 0 and (M, t) is an admissible pair.

Recalling Definition (17) of Yk,s, the proof of Lemma 6.1 (in particular (162)) implies that
there is s = s(t, x) ∈ [0, t] so that

f−kt,+(x)− f−k+ (x) = −t
Yk,s(f

−k
s,+(x))

(fks )′(f−ks,+(x))
= −t

k∑
j=1

Xs(f
j
s (f−ks,+(x)))

(f js )′(f−ks,+(x))
.

Since X is C1, and since bounded distortion holds for points which climb (Lemma 3.3), we
find (recall (46) in the proof of Proposition 3.9)∣∣∣∣ k∑

j=1

Xs(f
j−k
s,+ (x))

(f js )′(f−ks,+(x))
− 1

f ′s(f
−k
s,+(x))

k∑
j=1

Xs(f
j−1
s,+ (c1,s))

(f j−1
s )′(c1,s)

∣∣∣∣
≤ Ce2γk|(fk−1

s )′(c1,s)|−1/2 .

Then, using horizontality, we find

k∑
j=1

Xs(f
j−1
s,+ (c1,s))

(f j−1
s )′(c1,s)

= − 1

(fks )′(c1,s)

∞∑
`=k

Xs(f
`
s(c1,s))

(f `−ks )′(ck+1,s)
.

The proof of Proposition 3.9 implies that the above expression is bounded, uniformly in
k ≤ M and admissible pairs (M, t). (Here we use the uniform bounds from Lemma 5.8.)
Finally, recalling the properties of the support of φM,k

|
∫ ck,t

ck−e−β1k

1

|(f ′s)(f−ks,+(x))|
dx| ≤ C

∫ ck,t

ck−Ce−β1k

1√
|x− ck,s|

dx

= C
√
|x− ck,s||

ck,t
ck−Ce−β1k

.

Summarizing, we have proved that (149) divided by t satisfies (recall also Lemma 2.10 and
(108))

|1
t

∫ ck,t

−1

λkA′(x)φM,k(f−ku(t,x),+(x))[f−k+ (x)− f−kt,+(x)] dx|

= |
∫ ck,t

−1

λkA′(x)φM,k(f−ku(t,x),+(x))
Yk,s(f

−k
s,+(x))

(fks )′(f−ks,+(x))
dx|

≤ Cκ−kM sup |A′| sup |φM,0|e−β1k/2 .

The bound in the third line above is summable over k ≥ 1, uniformly in M .
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Since it is easy to check for each fixed k that

lim
t→0

∫ ck,t

−1

λkA′(x)φM,k(f−ku(t,x),+(x))
Yk,s(f

−k
s,+(x))

(fks )′(f−ks,+(x))
dx

=

∫ ck

−1

λkA′(x)φk(f−k+ (x))
Yk(f−k+ (x))

(fk)′(f−k+ (x)
dx ,

we have proved that

lim
t→0

1

t

∫
I

A(x)
(
Πt(φM )−Π(φM )

)
(x) dx

= −
∞∑
k=1

∑
ς∈{+,−}

±
∫ ck

−1

λkA′(x)φk(f−k+ (x))
Yk(f−kς (x))

(fk)′(f−kς (x)
dx

= −
∞∑
k=1

∑
ς∈{+,−}

∫ ck−1

−1

A′(f(y))
λk−1

|(fk−1)′(f
−(k−1)
ς (y)|

λ(φk · Yk)(f−(k−1)
ς (y)) dy .

(The sign in the second line above comes from in (145), that is, it is the sign of
(fk−1)′(f

−(k−1)
ς (x).) The fixed point property of φ̂ implies λφk+1 = φkξk. Therefore,

setting ξ̂ = (ξk), and recalling the shift in indices in the Definition (18) of Ŷ , we have

lim
t→0

1

t

∫
I

A(x)
(
Πt(φ̂M )−Π(φ̂M )

)
(x) dx = −

∫
I

(A′ ◦ f) ·Π(ξ̂Ŷ φ̂) dy

= −λ
∫
I

A′ · (Π ◦ (id− T 0) ◦ L̂)(Ŷ φ̂) dy ,(150)

where we used (78). This ends Step 3 and the proof of Theorem 2.13.

Appendix A

Relating the conjugacies ht with the infinitesimal conjugacy α

We show here that α deserves to be called an infinitesimal conjugacy.

Proof of Proposition 2.15. – Let αt : [−1, 1] → R be the unique continuous solution for
the TCE

vt = αt ◦ ft − f ′t · αt.
Since the family {αt}|t|<ε is equicontinuous and the solutions are unique, it is easy to see

that (t, x) → αt(x) is a continuous and bounded function in (−ε, ε) × [−1, 1]. Note that
αt(−1) = αt(1) = 0 for every t since ft(±1) = −1 for all t. For each x0 ∈ [−1, 1] and
t0 ∈ (−ε, ε), the Peano theorem ensures that the ODE

(151) ∂us(t0, x0)|t=s = αt(ut(t0, x0)) , ut0(t0, x0) = x0

admits a C1 solution ut(t0, x0). It is not difficult to see that this solution is defined for every
t ∈ (−ε, ε). Since ft is a deformation, there exists a unique conjugacy ht such that

ft ◦ ht = ht ◦ f0 .

If xt0 is an eventually periodic point for ft0 , since all periodic points are hyperbolic there
exists an analytic continuation xt for x0. Then xt = ht(x0). An easy calculation shows that
ut(t0, x0) = ht(x0) is a solution of the above ODE.
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Claim: If wt is a solution of the ODE ∂twt = αt(wt) and wt0 = ht0(x0) for some t0 and
eventually periodic point x0 then wt = ht(x0) for every t. Indeed, denote wnt = fnt (wt).
Note that the TCE implies that wnt and fnt (ht(x0)) are also solutions of the ODE above.
Since αt(x) is a bounded function

|wnt − fnt (ht(x0))| ≤ |wnt − wnt0 |+ |f
n
t0(ht0(x0))− fnt (ht(x0))| ≤ 2 sup

(t,x)

|αt(x)||t− t0| .

So if t is sufficiently close to t0 then

|fnt (wt)− fnt (ht(x0))| < δ

for every n. If δ is small enough, since the orbit of ht(x0) by ft eventually lands on a repelling
periodic point, it follows that wt = ht(x0) for t close enough to t0. This argument implies
that

{t : wt = ht(x0)}
is an open set in (−ε, ε). Since it is obviously a closed set, it follows that wt = ht(x0) for
every t. This finishes the proof of the claim.

In particular this claim implies the uniqueness of the solution of the ODE when x0 is an
eventually periodic point.

Now let x be a point that is not eventually periodic for f0. We can find sequences pn, qn
of eventually periodic points for f0 such that

pn < x < qn

and limn pn = limn qn = x. Let wt be a solution for ∂twt = αt(wt) such that w0 = x. The
claim above implies that

ht(pn) < wt < ht(qn)

for every n. Since ht is continuous we get limn ht(pn) = limn ht(qn) = ht(x), so ht(x) = wt,
for every t.

Appendix B

The Lasota-Yorke bound [15, Sublemma] for Sobolev norms and probabilistic operators

We adapt the argument of [15, Sublemma] (see also [59, Lemma 5.5]) to complete the proof
of Proposition 4.10, by showing that there exists C, and for all n there is C(n), so that

‖( L̂
n
(ψ̂))′0‖L1(I) ≤ CΘ−n0 ‖ψ̂‖B + C(n)‖ψ̂‖BL

1 .

Keeping in mind (83) and (84), as well as the properties of the supports of the ξj and ψj , (67),
(66), (80), (81), and the conditions (70) on λ, one first obtains the following analogue of [15,
(4.14)–(4.15)] or [59, (5.25)–(5.26)]: There is a constant C and for each n a constant C(n) so
that for each interval A ⊂ E0∫

A

|( L̂
n
(ψ̂))′0(x)| dx ≤ CΘ−n

c(δ)

(∑
ω∈Ω0

∫
ω

|ψ̂′(x)| dx+ ‖ψ̂‖
BW

1
1

)

+
C(n)

c(δ)
‖ψ̂‖BL

1 + C

n−1∑
`=H(δ)

Θ−`

c(δ)

∑
ω′∈Ω`

∫
ω′
|( L̂

n−`
(ψ̂))′(x)| dx ,(152)
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while if the intervalA ⊂ (−δ, δ), we get a stronger estimate (by Lemma 3.5) where all factors
c(δ) in the right-hand side above may be replaced by 1.

In (152), the intervals ω in Ω0 are either inverse images ofA inE0 through branches of our
probabilistic version of f̂n which always stay in E0, or inverse image of A in Ek, k(ω) ≥ 0,
through branches of the probabilistic f̂n which start fromEk, climb toEk+n−j , for n−j−1

iterations with 0 ≤ j ≤ n − 1, then drop to level E0 and stay there for the last j iterations.
(The detailed analysis is slightly different depending on whether k(ω) > N or≤ N , for some
N to be chosen much larger than n, in order to avoid dividing by small lengths |U | in (80), see
[15] or [59] for details.) The intervals ω ∈ Ω0 in Ek for k ≥ 0 which will drop from Ek+n−j
for k + n− j ≥ H(δ) have intersection multiplicity at most k + n− j by Remark 4.9. Since
the corresponding k + n − j factor is killed by an exponential ρ−(k+n−j) factor implicit in
(152) (see [15, Sublemma]), we may in fact glue overlapping intervals together up to taking
a slightly smaller Θ > 1. The intervals ω ∈ Ω0 whose orbits never leave E0 are disjoint
by construction. Each of them meets at most one of the (just grouped) intervals which go
through Ek+n−j , and we can glue them together at the cost of replacing C by C +C = 2C.

The intervals ω′ ∈ Ω` in (152) are inverse images of A in E0 via the branches of
our probabilistic version of f̂ ` which climb the tower up to some level k = k(ω′) with
H(δ) ≤ k < ` < n < N , fall to level E0, and then stay in E0 for the remaining ` − k − 1

iterations. Remark 4.9 about the maximum overlap of fuzzy monotonicity intervals Ĩk
ensures that the intersection multiplicity of the intervals in Ω` dropping from level k ≥ H(δ)

is at most k ≤ `. Since `Θ−` may be replaced by Θ−` for ` ≥ H(δ), up to taking a slightly
smaller Θ, we may regroup overlapping intervals in Ω`.

If Ω` is empty for ` ≥ 1, we are done. Otherwise, to perform the inductive step, let
us rename Ω` = Ω1

` for ` ≥ 0. Exploiting Lemma 3.5 to see that we get at most one
factor c(δ)−1, we can then inductively conclude the argument, just like in [15, Sublemma]
(see also [59, Lemma 5.5]). The only difference with respect to the analysis in [15] is that the
intervals of Ω2

0 (after regrouping, which may be done as above) may overlap with those of Ω1
0.

More generally, the intervals of Ωm+1
0 may intersect those of ∪mi=1Ωi0. Since there are at most

n/H(δ) inductive steps, the overlap factor n/H(δ) is negligible in front of CΘ−n.

Appendix C

Proof of Lemma 6.1 on Taylor expansions

As usual, we consider f−k+ , the other branch is similar. The assumptions imply that
∂tft|t=s = Xs ◦ fs, where Xs ◦ fs is C2 and horizontal for fs.

We prove (134) and (135)–(136) for s = 0, the general case then follows from Lemma 5.8,
using that for allH0 ≤ k ≤M so that (108) holds, we may take ξk,t = ξk by Proposition 5.9.

By horizontality, the estimate (46) in the proof of Proposition 3.9 (using the notation
wk(y) introduced there) gives C > 0 so that for any k ≥ H0

(153) sup
y∈Ik

|Yk(y)|
|(fk)′(y)|

=

∣∣∣∣ sup
y∈Ik

k∑
j=1

X(f j(y))

(f j)′(y)

∣∣∣∣ = sup
y∈Ik
|wk(y)| ≤ C e2γk

|(fk−1)′(c1)|1/2
,

proving (134).
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For the claim (135) on the derivative, note that

(154) ∂x
Yk(f−k+ (x))

(fk)′(f−k+ (x))
=

1

(fk)′(f−k+ (x))
∂y

Yk(y)

(fk)′(y)
,

with

∂y
Yk(y)

(fk)′(y)
=

k∑
j=1

∂y
X(f j(y))

(f j)′(y)

=

k∑
j=1

X ′(f j(y))−
k∑
j=1

X(f j(y))

j−1∑
`=0

f ′′(f `(y))

(f j−`)′(f `(y))f ′(f `(y))
.(155)

We shall use the estimates in the proof of Lemma 4.1: For y ∈ Ik, the bound (64) says
that |(fk−m)′(fm(y))| ≥ Ce−γm, for 1 ≤ m ≤ k − 1, the bound (65) says that |(fm)′(y)| ≥
C2e

−γk|(fm−1)′(c1)||(fk−1)′(c1)|−1/2 for 1 ≤ m ≤ k, while (63) gives |f ′(f `(y))| ≥ Ce−γ`

for 1 ≤ ` ≤ k. (These bounds do not use horizontality.)

The second term in the right-hand side of (155) can be decomposed as

−
k∑
j=1

X(f j(y))

j−1∑
`=0

f ′′(f `(y))

(f j−`)′(f `(y))f ′(f `(y))
(156)

= −f
′′(y)

f ′(y)

k∑
j=1

X(f j(y))

(f j)′(y)
−
k−1∑
`=1

f ′′(f `(y))

f ′(f `(y))

k∑
j=`+1

X(f j(y))

(f j−`)′(f `(y))
.

By (65) for m = 1, combined with (134) (which holds by horizontality), we find∣∣∣∣∣∣f
′′(y)

f ′(y)

k∑
j=1

X(f j(y))

(f j)′(y)

∣∣∣∣∣∣ ≤ Ce3γk .

The second term in the right-hand side of (156) does not require horizontality, only (64) and
(63), which give

(157)
k−1∑
`=1

|f ′′(f `(y))|
|f ′(f `(y))|

k∑
j=`+1

|X(f j(y))|
|(f j−`)′(f `(y))|

≤ Ce2γk .

Remembering (154), and using again (65) (for m = k), we have proved (135).

The proof of (136) is similar. We start by noting that ∂2
x

Yk(f−k+ (x))

(fk)′(f−k+ (x))
=

(158) ∂x
1

(fk)′(f−k+ (x))
∂y

Yk(y)

(fk)′(y)
+

1

((fk)′(f−k+ (x))2
∂2
y

Yk(y)

(fk)′(y)
,
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where ∂2
y

Yk(y)
(fk)′(y)

=

k∑
j=1

X ′′(f j(y))(f j)′(y)−
k∑
j=1

X ′(f j(y))

j−1∑
`=0

f ′′(f `(y))(f `)′(y)

f ′(f `(y))
(159)

−
k∑
j=1

X(f j(y))

[j−1∑
`=0

f ′′′(f `(y))(f `)′(y)

(f j−`)′(f `(y))f ′(f `(y))
− f ′′(f `(y))2(f `)′(y)

(f j−`)′(f `(y))(f ′(f `(y)))2
(160)

− f ′′(f `(y))

f ′(f `(y))

j−`−1∑
i=0

f ′′(f i(y))

(f j−`−i)′(f `+i(y))f ′(f `+i(y))

]
.(161)

The first term in (158) is bounded by e5γk|(fk−1)′(c1)|−1/2 by the proof of (135) and
(59) from Lemma 4.1. The first term in (159) is bounded by C|(fk−1)′(c1)|1/2, in view of
Lemma 3.3 and Lemma 3.4. Hence, dividing by ((fk)′(f−k+ (x))2, and using Lemma 3.4, the
contribution of this term is bounded by Ce2γk|(fk−1)′(c1)|−1/2.

Using again the same observations, we find that the second term in (159) is bounded
by Ce3γk. Dividing by ((fk)′(f−k+ (x))2, we get a contribution bounded by Ce5γk|(fk−1)′(c1)|−1.

For (160), one must distinguish between the terms for ` = 0, for which horizontality gives
a bound Ce4γk|(fk−1)′(c1)|1/2 (note the factor (f ′(y))2 in the denominator), and the terms
where ` ≥ 1, for which a straightforward estimate, using the remarks above (and in particular
Lemma 3.3), gives an upper bound of the form Ce3γk. Dividing by ((fk)′(f−k+ (x))2, we get
a contribution bounded by Ce5γk|(fk−1)′(c1)|−1/2.

For (161), if ` = 0 and i = 0, horizontality gives a bound Ce4γk|(fk−1)′(c1)|1/2, while
if i + ` ≥ 1, we get a bound Ce4γk. Dividing by ((fk)′(f−k+ (x))2, we get a contribution
≤ Ce6γk|(fk−1)′(c1)|−1/2. This ends the proof of (136).

In view of the more complicated estimates to follow, we notice the following pattern: The
dangerous factors in the above estimates are powers of f ′(y) in the denominator and factors
(f `)′(y) for large ` in the numerator. The “white knight” available to fight them is a power
of (fk)′(y) in the denominator. An additional such power appears each time we differentiate
with respect to x. The terms for which the power of f ′(y) in the denominator exceeds that
of (fk)′(y) in the numerator can be handled by horizontality. The price to be paid for the
control is a power of eγk.

We turn to (137) and (138). If (x, t) 7→ Φt(x) ∈ I is a C1 map on I × [−ε, ε] so that
x 7→ Φt(x) is invertible, then we have

(162) ∂tΦ
−1
t (x)|t=s = − (∂tΦt|t=s) ◦ Φ−1

s (x)

(∂xΦs) ◦ Φ−1
s (x)

,
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and

∂2
ttΦ
−1
t (x)|t=s = ∂t

(∂tΦt) ◦ Φ−1
t (x)

(∂xΦt) ◦ Φ−1
t (x)

|t=s

(163)

=
1

(∂xΦs) ◦ Φ−1
s (x)

·
(
∂2
ttΦt|t=s ◦ Φ−1

s (x) + ∂2
xtΦt|t=s ◦ Φ−1

s (x) · ∂tΦ−1
t (x)|t=s

)
− (∂tΦt|t=s) ◦ Φ−1

s (x)

(∂xΦs) ◦ Φ−1
s (x)

(∂2
txΦs|t=s) ◦ Φ−1

s (x) + (∂2
xxΦs) ◦ Φ−1

s (x) · ∂tΦ−1
t (x)|t=s

(∂xΦs) ◦ Φ−1
s (x)

.

Since t 7→ ft ∈ C2(I) isC2, we may apply the above to Φt(x) = fkt (x) restricted to a suitable
domain. The right-hand side of (162) is just Yk,s(f−ks,+(x))/(fks )′(f−ks,+(x)). Then, a Taylor
series of order 2 gives

f−k+ (x)− f−kt,+(x) = t
Yk(f−k+ (x))

(fk)′(f−k+ (x))
+ t2Fk(x, s) ,(164)

where x is as in (137) and s ∈ [0, t]. In order to estimate Fk(x, s), we look at the various
terms in (163). The (identical) factors ∂tΦ−1

t and (∂tΦt/∂xΦt)◦Φ−1
t can be bounded by (134).

Since ∂2
xtΦt|t=0 = ∂yYk, the two terms containing this expression can be controlled, when

divided by (∂xΦt) ◦ Φ−1
t , respectively by e−2γk|(fk)′(c1)|1/2, by using the ideas to bound

(155). Analyzing the term containing ∂2
xxΦt is of the same type as (but simpler than) what

we did for ∂2
yyYk, and the available factor |(fk)′(c1)|−1 gives the right control. The only new

expression is

∂2
ttΦt|t=s(x) = Zk,s(x) := ∂tYk,t(x)|t=s = lim

t→s

Yk,t(x)− Yk,s(x)

t− s
.

This involves functions such as f ′, f ′′, f ′′, Xs, and X ′s, but also ∂tXt. The dominant term
contains a factor |(fk)′(y), which can be controlled by (∂xΦs) ◦ Φ−1

s in the denominator.
Finally, using

(165)
1

(fkt )′(f−k+ (x))
− 1

(fk)′(f−kt,+(x))
= (f−kt,+(x)− f−k+ (x))′ ,

we find

1

(fkt )′(f−k+ (x))
− 1

(fk)′(f−kt,+(x))
= t

(
Yk(f−k+ (x))

(fk)′(f−k+ (x))

)′
+ t2Gk(x, s) ,(166)

for x as in (138) and s ∈ [0, t]. The new derivatives appearing in Gk are ∂3
xxxΦ, ∂3

txxΦ and
∂3
ttxΦ (but not ∂3

tttΦ, which is a priori undefined). The claimed estimates on sup |Gk| can
be obtained by horizontality, similarly to those for Fk, using now the x-derivative of (163)
and exploiting in addition to the previous remarks the bound (136). The cancellation pattern
described above emerges again. The computations are straightforward and left to the reader.
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