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AFFINE BRAID GROUP ACTIONS ON DERIVED
CATEGORIES OF SPRINGER RESOLUTIONS

BY RoMAN BEZRUKAVNIKOV AND SimoN RICHE

ABSTRACT. — In this paper we construct and study an action of the affine braid group associated
with a semi-simple algebraic group on derived categories of coherent sheaves on various varieties re-
lated to the Springer resolution of the nilpotent cone. In particular, we describe explicitly the action
of the Artin braid group. This action is a “categorical version” of Kazhdan-Lusztig-Ginzburg’s con-
struction of the affine Hecke algebra, and is used in particular by the first author and I. Mirkovic¢ in the
course of the proof of Lusztig’s conjectures on equivariant K -theory of Springer fibers.

RESUME. — Dans cet article nous construisons et étudions une action du groupe de tresses affine
associé a un groupe algébrique semi-simple sur les catégories dérivées de faisceaux cohérents sur
diverses variétés liées a la résolution de Springer du cone nilpotent. En particulier, nous décrivons
explicitement 1’action du groupe de tresses d’Artin. Cette action est une « version catégorique » de
la construction géométrique de I'algébre de Hecke affine due a Kazhdan-Lusztig et Ginzburg, et est
utilisée par le premier auteur et I. Mirkovi¢ au cours de la preuve des conjectures de Lusztig sur la
K -théorie équivariante des fibres de Springer.

Introduction

0.1. — The goal of this paper is to introduce an action of the affine braid group on the derived
category of coherent sheaves on the Springer resolution (and some related varieties) and
prove some of its properties.

The most direct way to motivate this construction is via the well-known heuristics of
Springer correspondence theory. Let g be a semi-simple Lie algebra over C,Vletm: g — g
be the Grothendieck-Springer map and 7’ : N =N C g be the Springer map; here /" is the
nilpotent cone and W is the cotangent bundle to the flag variety. Let g,e; C g be the subset of
regular elements and §reg = 7' (greg). Then 7[5, is a ramified Galois covering with Galois
group W, the Weyl group of g. Thus W acts on g, by deck transformations. Although the

(O In the body of the paper we work over a finite localization of Z or over a field of arbitrary characteristic rather
than over C. Such details are ignored in the introduction.
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536 R. BEZRUKAVNIKOV AND S. RICHE

action does not extend to an action on g, it still induces various interesting structures on
the Springer resolution . The most well-known example is the Springer action of W on
(co)homology of a fiber of 7/, called a Springer fiber. The procedure of passing from the
action of W on g,.g to the Springer action can be performed using different tools, such as
minimal (Goresky-MacPherson) extension of a perverse sheaf (see [47] for the original idea
of this construction, and [40] for a detailed treatment and further references), nearby cycles
(see [31]), or degeneration of the correspondence cycle (see [28, 22]).

The main result of this paper can also be viewed as a realization of that general idea.
Namely, we show that a “degeneration” of the action of W on g,e, provides an action of the
corresponding Artin braid group B on the derived categories of coherent sheaves @bCOh(jfl7 ),
@bCoh(ﬁ). More precisely, we consider the closure Z,, of the graph of the action of w € W
on greg. Using this as a correspondence we get a functor @bCoh(ﬁ) — @bCoh(ﬁ); we then
prove that there exists an action of B on @bCoh(ﬁ) where a minimal length representative
T, € Bofw € W acts by the resulting functor. It also induces a compatible action

on @bCoh(}l?).

The fact that functors admitting such a simple description give an action of the braid
group is perhaps surprising; it implies that the closures of the graphs are Cohen-Macaulay.

Furthermore, the categories in question carry an obvious action of the weight lattice X
of G which is identified with the Picard group of the flag variety; here an element A € X acts
by twist by the corresponding line bundle. We prove that this action of X together with the
above action of B generate an action of the extended affine braid group® Bg.

In fact we construct a structure stronger than just an action of B,g on the two derived
categories of coherent sheaves; namely, we show the existence of a (weak) geometric action
of this group. Informally, this means that the action of elements of the group come from
“integral kernels,” i.e. complexes of sheaves on the square of the space, and relations of the
group come from isomorphisms between convolutions of the kernels. Formal definition of
this convolution requires basic formalism of differential graded schemes. On the other hand,
this geometric action induces a usual action on the derived categories of varieties obtained
from A , g by base change. In the simplest case of base change to the transversal slice to
a subregular nilpotent orbit we recover the action of B,g on the derived category of the
minimal resolution of a Kleinian singularity considered e.g. in [57, 17].

Here the term “weak” indicates that our kernels satisfy the relations in B,g only up to
isomorphism. There is a stronger notion of group action on a category (see [24]) in which
some compatibility conditions are imposed on these isomorphisms. We do not consider such
anotion in this paper. Let us mention however that it follows from our results that the action
of the Artin braid group B can be endowed with such a structure, see Remark 2.2.2(4).

@ In the standard terminology (see [15]) this is the extended affine braid group of the Langlands dual group LG.
In fact, this may be viewed as the simplest manifestation of the relation of our B,g-action to Langlands duality
mentioned below.
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AFFINE BRAID GROUP ACTIONS 537

0.2. — We now list some contexts where the action of B,g appears and plays an essential role
(see [9] for a complementary discussion).

The work [11] uses the geometric theory of representations of semi-simple Lie algebras
in positive characteristic developed in [13, 12] to deduce Lusztig’s conjectures on numerical
properties of such representations (see [48, 49]). It uses the action considered in this paper,
which is related to the action of B,g on the derived category of modular representations by
intertwining functors (or shuffling functors, or Radon transforms, in a different terminology).
In fact, [11] and the present paper are logically interdependent. This application was our
main motivation for considering this action over a localization of Z. The action studied in
this paper (and in particular its version for certain differential graded schemes) also plays a
technical role in the study of Koszul duality for representations of semi-simple Lie algebras
in positive characteristic (see [55]).

The induced action of B,g on the Grothendieck group of C*-equivariant coherent sheaves
factors through an action of the affine Hecke algebra, i.e. the action of simple reflections
satisfies a certain quadratic relation. A weak form of the categorical counterpart of the
quadratic relation is used in [11]; a more comprehensive development of the idea that our
action induces an action of the “categorical affine Hecke algebra” is the subject of [25].

In fact, in view of the work of Lusztig and Ginzburg, the monoidal category
PP Con®* (g xg g) (or the N -version; the monoidal structure on these categories is
defined below) can be considered as a categorification of the affine Hecke algebra; see [10]
and announcement in [9] for an equivalence between this categorification and another one
coming from perverse sheaves on the affine flag variety of the dual group. Such an equiv-
alence, inspired by the ideas of local geometric Langlands duality theory, also implies the
existence of the B,g-action constructed in this paper (at least over C).

Another approach to the construction of the B-action (over C) relates it to the well-known
action of B on the category of D-modules on the flag variety by Radon transforms (see
e.g. [5]). Passing from D-modules to coherent sheaves on the cotangent bundle is achieved
by means of the Hodge D-modules formalism. We plan to develop this approach in a future
publication.

Finally, we would like to mention that in the 77 -version of the construction, (inverses
of) simple generators act by reflection at a spherical functor in the sense of [2, 56] (see
Remark 1.6.2), and that in the particular case of groups of type A the action (in its non-
geometric form, and over C rather than a localization of Z) has been constructed in [45] and
more recently, as a part of a more general picture, in [21].

0.3. Contents of the paper

In Section | we prove that there exists an action of Bug on 9°Coh(g) and @bCoh(a// )
where generators associated with simple reflections in W and elements of X act as stated
above. This result was already proved under stronger assumptions and by less satisfactory
methods in [54]. We also extend this result to the schemes over a finite localization of Z.

In Section 2 we prove that, if p is bigger than the Coxeter number of G, the action of
the element T;, € B (w € W) is the convolution with kernel @)z . This proof is based on
representation theory of semi-simple Lie algebras in positive characteristic. We also extend
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538 R. BEZRUKAVNIKOV AND S. RICHE

this result to the schemes over a finite localization of Z, and (as an immediate consequence)
over an algebraically closed field of characteristic zero.

In Section 3 we prove generalities on dg-schemes, extending results of [55, §1]. (Here, we
concentrate on quasi-coherent sheaves.) In particular, we prove a projection formula and a
(non-flat) base change theorem in this context.

In Section 4 we use the results of Section 3 to show that the action of B,g induces actions
on categories of coherent sheaves on various (dg-)varieties related to /" and g, in particular
inverse images of Slodowy slices under the Springer resolution.

Finally, in Section 5 we prove some equivariant analogues of the results of Section 4 which
are needed in [11].
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1. Existence of the action

1.1. Notation

Let Gz be a split connected, simply-connected, semi-simple algebraic group over Z.
Let T, C Bz C Gz be a maximal torus and a Borel subgroup in Gz. Let t; C by C gz be
their respective Lie algebras. Let also Uy, be the unipotent radical of Bz, and ny be its Lie
algebra. Let & be the root system of (Gz,T%), and ®* be the positive roots, chosen as the
roots of gz /bz. Let 3 be the associated system of simple roots. Let also X := X*(77) be the
weight lattice. We let g7, be the coadjoint representation of G'z.

Let W be the Weyl group of @, and let .¥ = {s,, @ € X} be the set of Coxeter generators
associated with ¥ (called simple reflections). Let WS := W x ZR be the affine Weyl group,
and Wog := W x X be the extended affine Weyl group. Let B C ]B%Sf‘fx C Ba.g be the braid
groups associated with W C WS C Wag (see e.g. [12, §2.1.1] or [54, §1.1]). Note that W
and W5* are Coxeter groups, but not W in general. For s, ¢ € .7, let us denote by n ; the
order of st in W. Recall (see [14] or [50, §3.3]) that B,¢ has a presentation with generators
{Ts, s € &} and {0,, = € X} and the following relations:

(i) TsTy--- =T, Ts - -+ (ns, elements on each side);
(ii)
(iii) 750, = 0, T, if s(z) = x;
(iv)

iv) 0, =Ts0,_oTs ifs=s,ands(z)=z—a.

0.0y = Opry;

Relations of type (i) are called finite braid relations.
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AFFINE BRAID GROUP ACTIONS 539

Recall that there exists a natural section Wog < B.g of the projection B,g — Wy,
denoted by w — T, (see [12, §2.1.2], [14]). We denote by .%,¢ the set of simple affine
reflections, i.e. the natural set of Coxeter generators of Wg{m (which contains .¥), and by X.¢
the set of affine simple roots. By definition, X,¢ is in bijection with .%,¢ via a map denoted
by @ — s,. We denote by ¢ the length function on W5%, and extend it naturally to Wg.
Note that B is generated by the elements T (s € %), BS2* is generated by the elements 7
(s € Sugr), and B,g is generated by the elements T (s € Fg)and T, (w € Q1= {w € Wag |

L(w) = 0}).

In this paper we study an action® of the group B,g on certain derived categories of
coherent sheaves. Let us introduce the varieties we will consider.

Let R be any (commutative) algebra. We replace the index Z by R in all the notations
introduced above to denote the base change to R. Let Br := Gr/Bg be the flag variety.
Let A g := T* Bg be its cotangent bundle. We have the more concrete description

N =Grx"% (gr/br)" = {(X,9Bxr) € gk x& Br | Xjg0, = 0}.
Let also gr be the Grothendieck resolution, defined as
gr = Gr x"7 (gr/ng)" = {(X,9Br) € 9% Xr Br | X|gn; = 0}.

There is a natural inclusion ¢ : /'g < gg, and a natural morphism gg — g} induced by
the projection on the first summand.

The varieties g and 77 r are endowed with an action of Gg X g (Gm)r, Where Gg acts
by the natural (diagonal) action, and (G, ) g acts via

t-(X,9Br) = (°X,gBg).
We will also consider the diagonal action of Gg Xg (G )r ON gr X g gr and 77 R XR 77 R-
For any R-scheme X endowed with an action of (G ) g, we denote by
(1) : P*CohCm)r(X) — 9P Con®m)r(X)

the shift functor, i.e. the tensor product with the tautological (G, ) g-module associated with
the natural identification (Gm)r = GL(1, R). We denote by (j) the j-th power of (1).

If X € X, we denote by 04, (A) the line bundle on B naturally associated with A. If
X — B is a variety over B, we denote by O x (\) the inverse image of O, ()).

For any R-scheme X, we denote by AX C X xp X the diagonal copy of X.

3 Asin [13, 9, 54], here we consider the weak notion: an action of a group I' on a category @ is a group morphism

stronger structure.
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1.2. Convolution

Let R be a finite localization of Z or a field, let X be a regular scheme of finite type over R,
and let py,p2 : X xg X — X be the projections on the first and on the second component.
We define the full subcategory

DoropCoh(X x g X) € DPCoh(X x i X)
as follows: an object of 2°Coh(X x r X) belongs to @%ROPCoh(X x g X) if it is isomorphic
to the direct image of an object of @bCoh(Y) for a closed subscheme Y C X x g X such that

the restrictions of p; and p to Y are proper. Any & € @?,ROPCoh(X x r X) gives rise to a
functor

M = R(p2)*(géX><RX (pl)*/”%).
Let p1,2,p2,3,01,3 : X xgp X xg X — X xp X be the natural projections. The category
@%ROPCOh(X x r X) is endowed with a convolution product, defined by

Ixg:= R(p1,3)*((p172)*géXXRXXRX (Pz,s)*g)-

With these definitions, for &, § € @%ROP Coh(X x r X) we have a natural isomorphism (see
e.g. [54, Lemma 1.2.1] or [36])

P { PP Coh(X) — 9P Coh(X)
7

FloF! = Y.

One can define similarly convolution functors for equivariant coherent sheaves. We will
use the same notation in this setting also.

The convolution formalism is compatible with base change: if R’ is an R-algebra,
and if X’ = X Xgpec(r) Spec(R’), then the (derived) pull-back under the morphism
X' xp X' — X xp X is monoidal, and the (derived) pull-back under the morphism
X’ — X is compatible with the actions.

1.3. Statement
Let R be a finite localization of Z. For s € ., we denote by
Zs,R

the closure of the inverse image of the Gr-orbit of (Br/Bg, sBr/Br) € Br Xr Br (for
the diagonal action) under the morphism gg X g%, Or — ORr XR Or — Br xXr Br.Itis
a reduced closed subscheme of gr x o gr. We also define the following closed subscheme
of (N'r Xr 8R): .

Zig=2ZsrN(NRrXROR)
(Note that here we consider the scheme-theoretic intersection.) It is easy to prove (see e.g.
Lemma 2.12.1 below for a more general claim in the case of a field) that Z{  is in fact a

S
closed subscheme of V' X g3 N R.
The main result of this section is the following.

THEOREM 1.3.1. — There exists an action b — Jy, respectively b +— J;, of Bag on the
category @bCoh(EZ), respectively @bCoh(W 7), such that

0 Oy _
1. Fors e, Jr,, respectively I , is isomorphic to FEZZS’Z, respectively F7~V s
° A
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. . . N . Op, (@)
2. Forz € X, Jy_, respectively J), , is isomorphic to FEZAQZ(z), respectively F/~VMZ
x Vi 7

equivalently to the functor of tensoring with the line bundle Og, (x), respectively @77/2(37).

, or

Moreover, these two actions are compatible (in the obvious sense) with the inverse and direct
image functors

%

9P Coh (W z) 9P Coh(gz).

Li*
In fact, we will also prove an equivariant analogue of this result:

THEOREM 1.3.2. — There exists an action b — J;°, respectively b — J;°%, of Bag on the
category P’ Coh?*z(Cm)z (9z), respectively @bCthZXZ(G‘")Z(WZ), such that

. o . 0z, ,(1) , 0z (1)
1. Fors e .7, I3, respectively 3329, is isomorphic to Fﬁf 2T respectively F/T S
¢ s Z Ny

. .. . Ong . Op, (@)
2. Forz € X, Jp4, respectively J;°%, is isomorphic to FEZABZ(I), respectively F/~VM z
T T Y A

equivalently to the functor of tensoring with the line bundle Oy, (x), respectively @77/2(37).

, or

Moreover, these two actions are compatible (in the obvious sense ) with the inverse and direct
image functors

.

@bCOthxz(Gm)Z(ﬁZ) PP ConC2*=(Cmz (g ).

Li*

1.4. Preliminary results

Let R be a finite localization of Z, and let A be a finitely generated R-algebra, which is flat
over R. We denote by Mod(A) the category of A-modules, and by Mod8 (A) the subcategory
of finitely generated modules. For any prime p € Z which is not invertible in R, consider the
specialization A, := A ®g F, and the extension of scalars Az := A®r F, = A, @5, F,.
For any object M of 9"Mod(A) we set

M, := M®gF, in 9"Mod(4,),
My := M®gF, in 9"Mod(Ap).

LEMMA 1.4.1. — Let M € 9"Mod'8(A).

1. If My = 0 for any prime p € Z not invertible in R, then M = 0.
2. If My is concentrated in degree O for any prime p not invertible in R, then M is concentrated
in degree 0, and is flat over R.

Proof. — First, one can clearly replace My by M), in these properties.

The ring R has global dimension 1, hence any object of @bMod(R) is isomorphic to the
direct sum of its (shifted) cohomology objects. Hence it is enough to prove the following
properties for a finitely generated A-module M:

(%) if M @ F, = 0 for any p, then M = 0;
(%) if Tor™ (M, F,) = 0 for any p, then M is flat over R.
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Let us first prove (x). It is enough to prove that for any maximal ideal 9t C A, the local-
ization Mgy, is zero. Then, by Nakayama’s lemma, it is enough to prove that Moy /90t - Moy =
M/9 - M = 0. However, by the general form of the Nullstellensatz ([26, Theorem 4.19]),
A/Mis afield extension of R/p-R = T, for some prime p not invertible in R. Hence M /9N M
is a quotient of M ®p I, hence is indeed zero.

Property (#x) implies that multiplication by p is injective on M for any p. Hence M is
torsion-free over R, hence flat. O

LEMMA 1.4.2. — Let k be an algebraically closed field.

We have

k if i = 0;
0ifi+#0.

Proof. — Letr : gy — Py be the natural projection. Then we have r. 0 = Sy (M),

Ril—‘(ﬁka @Ek)Gm = {

where M is the dual to the sheaf of sections of gi. The action of Gy, on By is triviél; the
Gm-equivariant structure on S " (M) is given by the grading such that J/ is in degree —2.

Hence the claim follows from the similar result for %, which is well-known (see e.g. [19,
Theorem 3.1.1]). O

PrOPOSITION 1.4.3. — Let R be any finite localization of Z.
Let M € PPCoh®r*rCm)r(Fr x o GR). Assume that for any prime p not invertible in R
there is an isomorphism
L o=
MR IFP = QAEFP
in ©*Coh% 7)oy (G x— e ). Then th ists an i hi
» " Fp » (87, ¥, 9%, )- Then there exists an isomorphism
M = @AER
in @bCOhGRXR(Gm)R(ER XR :gVR)

Proof. — By Lemma 1.4.1(2), M is concentrated in degree 0, i.e. is an equivariant coherent
sheaf, and is flat over R. Consider the object

M := RU(gr Xr gr, M) Em)r

in 9*Mod(R). Here, (—)(@=)= is the functor of (Gy)g-fixed points. Note that this func-
tor is exact by [39, Lemma 1.4.3.(b)], and commutes with specialization by [39, Equa-
tion 1.2.11.(10)]. As g is proper over g}, the object R['(gr X r gr, M) is an object of the
category 9"Mod™®(Sg(gr ® gr)), hence M is in fact in the subcategory 2°Mod™(R). For
any p not invertible in R we have

~ ~ ~ Gm)s
Mg = RI'(gp, ¥, 95, Wlﬁp)( %

~ Gem)=
RF(gFP’ @aﬁp )( )JFp s

1%

where the first isomorphism follows from the base change theorem (see e.g. [46, §3.10]).
By Lemma 1.4.2, this object is concentrated in degree 0. Hence, by Lemma 1.4.1(2), M is
concentrated in degree 0, i.e. is a finitely generated R-module.

For any prime p not invertible in R we have

M®RF;0 = Fp,
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by the computation above and Lemma 1.4.2. Using the classical description of finitely gen-
erated modules over a principal ideal domain, it follows that M = R. Hence we also have

L(§r X R §r, M)Sr*n(Em)n = R,

Let ¢ be the inverse image of 1 € R under such an isomorphism,; it is uniquely defined up
to an invertible scalar in R. We will consider ¢ as a (Gr X r (Gm) r)-equivariant morphism
E @ﬁRXRER — M.

Let 4 be the cocone of ¢, so that we have a distinguished triangle

] +1
Jd - @ERXRER - M —.

For any p not invertible in R, © é) R Fp and 7I/l<§) R Fp are both concentrated in

9RXROR
degree 0, and ¢ ® g F,, is surjective. It follows that ./ & r [, is also concentrated in degree 0.
By Lemma 1.4.1(2), we deduce that . is concentrated in degree 0, i.e. that ¢ is surjective. It
follows that

M = Ox
for some Gr X g (Gm) g-stable closed subscheme X C gr X g gr.

For any p not invertible in R we have X Xgpec(r) Spec(F,) = AEFP. In particular,
this fiber product is reduced. As moreover X is flat over R, the arguments of [19, Proof of
Proposition 1.6.5] imply that X itself is reduced.

Let Y be the restriction of X to (gr X rgr) ~ (Agr). For any p not invertible in R we have
By ® rF, = 0.By Lemma 1.4.1(1) we deduce that Y is empty. As X is reduced, it follows that
X isincluded in Agg, i.e. that ¢ factors through a (Gr x g (Gm) r)-equivariant morphism

'(/1 : @AER - @X-
Let 4 be the cone of +. Then for any p not invertible in R we have J & rF, = 0. By
Lemma 1.4.1(1) again we deduce that 4 = 0, i.e. that ¢ is an isomorphism. O

1.5. Reduction to the case of an algebraically closed field of positive characteristic

To prove Theorem 1.3.1, it is easier to replace R by an algebraically closed field of positive
characteristic. In this subsection we explain how to justify this reduction.

Let s € .. Then the subscheme Z,  C g7 x 79z can be described explicitly (see [54, §1.4]).
Let P, 7 C Gy be the minimal parabolic subgroup of Gz containing By, associated with s,
and let P, ;, = Gz/Ps 7 be the associated partial flag variety. Then Z, 7 is a vector bundle
over Bz, x P By, of rank rkz(bz) — 1. (Note that in [54] we work over an algebraically closed
field; the case of Z is similar. Also, if s = s, for a € ¥, the scheme Z, is denoted by S, in
[54].) In particular, Z; 7 is a smooth scheme, flat over Z. And, for any algebraically closed
field k, the reduction Z, i := Z, 7 X spec(z) Spec(k) is also smooth, and is also the closure of
the inverse image in gy X gz gk of the orbit of (By/Bx, sBx/Bk) € Bk xx Bk-

LEMMA 1.5.1. — There exist isomorphisms in 9°Coh®2*=(Cm)z (g, », §,):

@ZS,Z(_p7p - a) * QZS,Z = @AEZ<_2>7
QZS,Z * @Zs,z(_pv p— a) @A§z<_2>

IR
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Proof. — Let M := Oz, ,(—p,p — &) x Oz, ,(2). By Proposition 1.10.3 below, for any p
we have a (GE X, (Gm)ﬁp)-equivariant isomorphism

M b, Fp = @Aﬁﬁp'

By Proposition 1.4.3, we deduce that # = 05z, in D°Coh®*=(Cm)z (g, x; §;). The second
isomorphism can be proved similarly. O

Proof of Theorems 1.3.1 and 1.3.2. — Consider first the case of gz. What we have to prove
is that the kernels )z, , (s € ) and O3, () (z € X) satisty the relations of the affine braid
group B,g given in §1.1 in the monoidal category (@%ROPCthZXZ(Gm)Z@Z X7 97),%).
Using Lemma 1.5.1, one can rewrite these relations as stating that certain objects of
PP ConC»*2(Cmlz (g, x, §,) are isomorphic to Oag,- By Proposition 1.4.3, it is enough
to prove the isomorphisms after applying the derived specialization (— (}LQZ F,). In this set-
ting, relation (i) is proved in Corollary 1.12.4, and the other relations are proved in the end
of §1.10.

The case of 7 1s similar. The compatibility of the actions with the functor Ri, easily
follows from the definitions and the projection formula. The compatibility with Li* follows
by adjunction. O

1.6. Statement for an algebraically closed field

From now on and until the end of the section we fix an algebraically closed field k of
characteristic p > 0. All the schemes we will consider will be over k. In particular, we will
consider the specialization of all the varieties defined over Z above. For simplicity we drop
the index “k.” In particular we have the variety Z, defined in §1.5. We set

Z; = ZsN (_,7‘\// X E) = Z;,Z X Spec(Z) Spec(k)

This is a closed subscheme of A x .

In the end of this section we will prove the following result, which is a version of Theo-
rems 1.3.1 and 1.3.2 over k. Note that the case p = 0 is not excluded, though it is not needed
to prove Theorems 1.3.1 and 1.3.2.

THEOREM 1.6.1. — There exists an action b — Jy, respectively b — J;, of Bag on the
category D" Coh(g), respectively D°Coh(N), such that

0z
1. Fors € &, Jr,, respectively J7. , is isomorphic to FEQZS , respectively FjT/Zs ;

(€ )

. .. . = R 0~
2. For x € X, Jg_, respectively le’ is isomorphic to Z*"EOAg , respectively FnyA/L (= L or

equivalently to the functor of tensoring with the line bundle O5(x), respectively 05 ().

Moreover, these two actions are compatible (in the obvious sense ) with the inverse and direct
image functors

T

2 Coh () 2" Coh(g).

Li*

Similar results hold for the categories 9°Coh®*®m (§), 9P Coh&*Cm (77 ).
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This theorem was announced by the first author in [9]. It was proved, in the case G has no
component of type Go (with some restriction on p), by the second author in [54]. The proof
in this paper is new and avoids any assumption on p or case-by-case analysis.

The proof of the theorem is given in §1.10 and Corollary 1.12.4. It is based on a different
interpretation of the scheme Z,, see Remark 1.8.5.

REMARK 1.6.2. — Let s € ., and consider the associated parabolic flag variety P
(see §1.5). Set Ay := T*(P,), and let Dy := N5 xgp, B. We have a closed embedding
is : Dy < A (where D, is a divisor) and a projection p, : Dy — A5, which is a P!-bundle.
It follows from [2, Example 3] that the functor

R(is). L(ps)* : D°Coh(H ) — PP Coh(A)
is a spherical functor of dimension 2. Hence this is also the case for the functor
M 07(~p) ®g.. R(is)L(ps)" (M)

(see [2, Proposition 2.(2)]). It is not hard to see, using the exact sequences of [54, Lemma 6.1.1],
that the corresponding twist functor defined in [2] (see also [56]) is isomorphic to the action
of (Ts)~" constructed here. Since the element T, for an affine simple root ap € Sg .

is conjugate to T for some s € . (see [11, Lemma 2.1.1]), we see that in the N -version of
our action all inverses of Coxeter generators of BSS* act by reflection at a spherical functor.

1.7. More notation

For each positive root «, there are subgroups U, U_,, of G naturally attached to o and
—a. We choose isomorphisms of algebraic groups u, : k = U, and u_, : k = U_, such
that for allt € T we have t - uy(z) - t71 = up(a(t)z) and t - u_q(z) -t~ = u_,(a(t) ~tz),
and such that these morphisms extend to a morphism of algebraic groups ¥, : SL(2,k) — G

such that
1z 10
o = Ua\T), e =u (), zek,
(1) i (1) o

We define the elements
ea = d(ua)o(1), e_o:=du_a)o(1), hg:=lea,e_a] =d(a")i(1).
We let

ng = @ k-eq.
a€edt
Then n. is the Lie algebra of the unipotent radical of the Borel subgroup of G opposite to B
with respect to T'. We also let p € X be the half sum of positive roots.
If P is a parabolic subgroup of G and V is any finite dimensional P-module, there exists
a natural vector bundle £¢,p(V) on G/ P associated with V' (see [39, §1.5.8]). If X — G /P
is a variety over G/ P, we denote by £ x (V') the inverse image of £¢,p(V).
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1.8. Regular elements in g*

In this subsection we prove some elementary facts about the coadjoint action of G in g*.
If p is not too small, then g* is isomorphic to g as a G-module, and all the results we need are
well known (see e.g. [40]). However, these facts have to be checked directly (without using g)
if we want to relax the assumptions on p. Some of these facts are proved in [61, §5], using the
same arguments as those of [40] and some results of [41].

Let £ € (g/n)*. The restriction morphism (g/n)* — (b/n)* is B-equivariant, and the
B-action on (b/n)* is trivial. It follows that the centralizer Z5(£) has dimension at least the
rank r of G. The same is true a fortiori for Z¢(§). By [41, Lemma 3.3] we have g* = G- (g/n)*.
Hence for all § € g* we have dim(Z¢(§)) > r. We denote by gy, the set of regular elements
in g*, i.e. the set of £ € g* such that dim(Z¢(€)) = rk(G). By standard arguments, this set is
open in g* (see e.g. [35, §1.4]).

LemMA 1.8.1. — Let § € g%, and assume that §ngn+ = 0. Then § is regular if and only if
foralla € ®, £(hy,) # 0.

Proof. — This follows from [41, Lemma 3.1(i), (ii), (iv)]. O

Let g¥, C g* be the set of regular semi-simple elements, i.e. of £ € g* such that there exists
g € G such that g - £ satisfies the conditions of Lemma 1.8.1. By [41, Theorem 4(vi)], under
our hypotheses this set is non-empty and open in g*. By Lemma 1.8.1 it is contained in g7,

REMARK 1.8.2. — If G = SL(2,k) and p = 2, then the set of regular semi-simple
elements of g is empty, whereas g}, # @.

Let us denote by (g/n)%, respectively (g/(n@n™))% the intersection g, N (g/n)*, respec-
tively gi N (g/(n @ nt))*.

LeEmMA 1.8.3. — The action morphism induces an isomorphism of varieties
U x (g/(n®n™))f = (g/n).

Proof. — Let us first show that this morphism is surjective. Let £ € (g/n)},. We have
dim(Zp(€)) > r, hence Zg(§)° = Zp(€)°, hence in particular Zg(€)° C B. As £ is regular
semi-simple, Z¢(€)° is a maximal torus. Hence there exists b € B such that Zg(b - £)° =
b-Zg(€)° - b1 = T. Then T stabilizes b - £, hence b - £ € (g/(n@® nT))*. Writing b = tu for
somet € T,u e U,wehaveu- €& € (g/(n®n'h))k.

Now we prove that the morphism is injective. For u € U and € € (g/(n @ n™))* we have
u-£—€ € (g/b)*. Hence, using the decomposition (g/n)* = (g/(n®n™))*®(g/b)*, it follows
that £ is uniquely determined by u - £. Then if £ is regular semi-simple and u; - & = ug - &
we have (u1)lus € Zg(€) C Ng(Zg(€)°). By Lemma 1.8.1 we have Zg(€)° = T, hence
(u1)"tug € Ng(T) N U, which implies u; = us.

Then one can prove that the inverse bijection (g/n)f — U x (g/(n®n™))¥ is a morphism
exactly as in [40, §13.3]. O

Let g,s be the inverse image of g}, under the natural morphism 7 : g — g*. Using [61,
Lemma 5.4, Lemma 5.5(iii)], one obtains the following (see also [40, §13.4]).
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COROLLARY 1.8.4. — There exists a free action of W on the variety s, such that the
restriction mys : Grs — @i of T is a principal W-bundle.

REMARK 1.8.5. — Lets € .. Using the action of Corollary 1.8.4, one can give a different
interpretation of the variety Zs: it is the closure of the graph of the action of s on g,s. Indeed,
Z clearly contains this closure, and both schemes are reduced, irreducible and of the same
dimension.

1.9. Action of W on g,

Consider the morphism 7 : g — g*. Let now g.g be the inverse image of 9y under 7. In
this subsection we prove that the action of W on g, (see Corollary 1.8.4) extends to greg-

LEMMA 1.9.1. — Let § € (g/n)1eq, and a € X. Then either §(ha) or €(eq) is non-zero.

Proof. — Let P, be the minimal standard parabolic subgroup of G attached to «, and
let p,, be its Lie algebra. Assume &(h,) = £(e,) = 0. Consider the restriction morphism

(8/(n @ kho Bkea))™ 5 (pa/(n @ khy ©kea))*.

There are natural P,-actions on both spaces, and this morphism is P,-equivariant. More-
over, the P,-action on (po/(n & khy @ key))* is trivial. Hence ¢(P, - §) = q(£), and
dim(P, - &) < #(®1) — 1. It follows that dim(G - £) < #P — 2, hence ¢ is not regular.  [J

PROPOSITION 1.9.2. — There exists an action of W on the variety greg, Whose restriction
10 @5 is the action of Corollary 1.8 .4.

Proof. — Lets € ., and let Z:°¢ be the restriction of Z; to Efeg. Consider the projection
on the first component p; : Z:°¢ — g,c.. This morphism is proper, birational, with normal
image. Moreover, it follows easily from the explicit description of Z, in [54] and Lemma 1.9.1
that it is bijective (see e.g. Lemma 2.9.1 below). Hence it is an isomorphism of varieties.
Similarly, the projection on the second component py : ZI%® — g,e, is an isomorphism.
Let us denote by fs : greg — Greg the isomorphism given by the composition of py with the
inverse of p;. We claim that the assignment

s = fs

extends to an action of the group W on the variety greg.

First, for any s € .7, by symmetry of Z, under the exchange of the two copies of g, fs is
an involution. Hence we only have to check that these morphisms satisfy the braid relations.
However, these morphisms stabilize the dense open subset grs C greg, and their restrictions
satisfy the braid relations by Corollary 1.8.4. Hence the braid relations are satisfied on the
whole of gyeg. This finishes the proof. O

REMARK 1.9.3. — Assume that p is odd and a good prime for G, and that g admits a
G-invariant non-degenerate bilinear form. Then one can give a different proof* of Propo-
sition 1.9.2 as follows. By [20, Corollary 3.4], the restriction of the coadjoint quotient
g° — g"/G to g}, is a smooth morphism. Then, the arguments of [29, Remark 4.2.4(1)]

® This proof was explained to us by V. Ginzburg.
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prove that the natural morphism greg — Oreg X¢=/w t* i an isomorphism. There exists a
natural action of W on gy., X ¢« t*, which induces the desired action on gre.

The precise description of gre; Will not be important for us. The only property that we
need is the following.

PROPOSITION 1.9.4. — The codimension of § \ @reg in § is at least 2.

Proof. — By G-equivariance, it is sufficient to prove that the codimension of
(8/n)" \ (9/n)5eg In (g/n)* is at least 2.
First, we have

(1.9.5) (a/n)fs = (8/(n@n™)); + (a/b)".

Indeed, the inclusion C follows from Lemma 1.8.3. Now if £ is in the right-hand side, by the

arguments of [41, §3.8] there exists u € U such thatu-£ € (g/(n®nt))k,. Hence € € (g/n)k.
By (1.9.5) and Lemma 1.8.1, the irreducible components of the complement of (g/n)¥,

in (g/n)* are the subspaces

Co={E€(g/n)" |&(ha) =0}

for o € . To prove the proposition, it is sufficient to prove that (g/n)

*

reg Intersects any C,.

By [62, §4.1], there is only a finite number of G-orbits in the “dual nilpotent cone”
N = G - (g/b)*. Hence there exist regular nilpotent elements in g*, which implies that
(8/b)req # 9. Moreover, elements of (g/b);,, are obviously in C,N(g/n);., for any a, which
finishes the proof. O

1.10. Kernels associated with simple reflections

Fix a € X, and let s = s,. Consider the minimal standard parabolic subgroup P;
associated with «, and the corresponding partial flag variety $; = G/P;. Let p, be the Lie
algebra of P,, and p™! its nilpotent radical. Consider the variety

gs = G ><PS (g/pnil)* = {(X,gPs) S g* X @S | Xlg,p?il = 0}

There is a natural morphism 7, : § — g,, and we consider the (scheme-theoretic) fiber
product g xg, @. It is reduced, and has two irreducible components, Z, and Z; = Ag (see
[54, §1.4]). Recall that there exist exact sequences of G X Gp,-equivariant coherent sheaves
ongxg
(1.10.1) Opg(—2) — @EXESE — Oz.;
(1.10.2) Oz.(=p,p—a) = Ogx; 5 > Oag
see [54, Corollary 5.3.2]. Let us observe that for both sequences the surjection is induced
by restriction of functions, and that the second sequence is induced by the natural exact
sequence of sheaves on B x B

Opx, s(—pp—a) = Ogy, g - Org.

These exact sequences allow to give a simpler proof of statement (2) of the following
proposition, which was proved by explicit computation in [54, Proposition 1.5.2].
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ProrosiTiON 1.10.3. — 1. There exist isomorphisms
~ -~ >~ ~ ~ ~ -~ & ~ -~
Oaxs,5* Uz, = Uaxg 5 02 % Vx5 = Uiy 3

in the category DopopCoh®*C= (g x §).
2. Thekernel Oz (1) is invertible, with inverse 0z (—p, p—a){(1). In other words, there exist
isomorphisms in Db opCoh® %= (§ x §):

Oz,(=p,p—a)x Oz, = Op5(=2), Oz, %0z, (=p,p—a) = Oxrz(-2).

Proof. — (1) We only prove the first isomorphism, the second one can be treated similarly.
Arguments similar to those of [54, Proposition 5.2.2] show that there is an isomorphism

Ogx;.5% 0z, = L(Id x 75)* o R(Id x 7). 0z,

Now the morphism

Idx7,:Zs — gxgs
is proper, has normal image (indeed, this image coincides with the graph g x5, gs of 7,
hence is isomorphic to g), and is birational when considered as a morphism from Z; to this
image. Hence, by Zariski’s Main Theorem, (Id x 75). 0z, = @EX —n Moreover, by the same
arguments as in [54, Proposition 2.4.1], R (Id x 7). 0z, = 0 for i > 1. To finish the proof,
we only have to prove that

L(Id x %s)*gaxﬁsas = @EXESE'
The isomorphism in cohomological degree 0 is the definition of the fiber product. The higher
vanishing can be proved as follows: decompose the morphism 74 as 74 = p o j, where

j 18 — 8s Xp, Bis the natural embedding, and p : g, x», B — g, is the projection.
Then we have

(1.10.4) L(Id x %S)*@EXESES =~ L(Id x j)*gﬁxgs(ﬁsms ®)

L
= U555 O5x 3.0, D) Yoxs, @50, 9)-

Now g x g is defined locally by one equation in g x (gs X ¢, B), hence locally 5 has a free
O5x 5. x ,. #)-resolution with only two terms of rank 1, and as differential the multiplication
by this equation. As gxg, (gs X », B) is an integral scheme not contained in g x g, the equation
is not a zero divisor in @Exas (§ex 0, B) hence the right hand side of (1.10.4) is concentrated
in degree 0.

(2) Again, we only prove the first isomorphism. Consider the exact sequence (1.10.2), and
convolve it with @ on the right; we obtain a distinguished triangle in DbpopCoh®*%m (g x §):

@Zs(_p7p_a)*gzs - @EXESE*QZS — @AE* @Zs +_1>

By (1), the middle term is isomorphic to @), 5, and the term on the right hand side is
isomorphic to @z_. Moreover, the morphism on the right identifies with the restriction of
functions Oz, . 5 — 0z,. Hence this triangle can be identified with the one associated with
the exact sequence (1.10.1). In particular we obtain the expected isomorphism. O

REMARK 1.10.5. — We have remarked above that Z; is a smooth variety. Statement (2)
implies that its canonical sheaf is Oz, (—p, p — @) (see [306]).
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To prove Theorem 1.6.1 for g, we have to check that the kernels )z, (s € ) and O5(x)
(z € X) satisfy the relations of the presentation of B,g given in §1.1 in the monoidal category
@%RQPCthXGm (g x @), up to isomorphism. It is explained in [54, §1.6] that relations (ii)
and (iii) are trivial, and that relations (iv) follow easily from Proposition 1.10.3(2). In the rest
of this section we give a proof of relations (i) (finite braid relations), inspired by the methods
of [8]. It is explained in [54, §4] how to deduce the theorem for 9V from the case of g. Note
in particular that if s = s, (o« € X), the inverse of §)z: (1) for the convolution product is
Oz (—p, p— )(1). The compatibility of the actions with the functor Ri, easily follows from
the definition and the projection formula. The compatibility with Li* follows by adjunction.

1.11. Line bundles on g

Let us begin with some generalities on line bundles on g. First, the following lemma
immediately follows from [39, I1.8.5(1)].

LemMA 1.11.1. — Let X € X, such that X — p is dominant. Then Og()) is an ample line
bundle on g.

Next, let XT C X be the set of dominant weights. Consider the X-graded G x G,-equiv-
ariant algebra
r'@) = @ @ 0:(0)
AeX+
There is a natural functor

. { QCoh® (@ —  Mod7**~(F@),
M = Dexr T'(@ M@0, O5(N))
where Mod$ %= (I'(g)) is the category of X-graded G x G ,-equivariant modules over I'(g).
We let Tor$ %= (T(g)) € Mod$*®=(I'(g)) be the subcategory of objects which are direct
limits of objects M such that there exists u € X such that the A\-component of M is zero for
any A € u+X*. As the morphism g — g* is projective and using Lemma 1.11.1, we have the

following version of Serre’s theorem. (To prove this result, one can e.g. adapt the arguments
of the proof of [4, Theorem 1.3].)

PropoOSITION 1.11.2. — The composition
QCoh ™ (§) - Mod™ = (I(§)) — Modg™ = (I(g))/ Tor{*“=(T'(g))
is an equivalence of abelian categories.

If A is any subset of X, we denote by 94 the smallest strictly full thick triangulated
subcategory of 9°Coh®*®= (§) containing the line bundles O5(\) for A € A and stable under
the functors (j) for j € Z. We denote by conv(\) the intersection of X with the convex hull
of W - X, and by conv®()) the complement of W - X in conv ().

In the next lemma we will also use the following notation. If 4 is a triangulated category,
and ./ C 4 is a full thick triangulated subcategory, for M, N € & we write M = N mod &/

if the images of M and N in the quotient category %/« (in the sense of Verdier) are iso-
morphic.

LEMMA 1.11.3. — Leta € X, and s = s,,.
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1. Forany X € X, the functors FEOZS, FEOZS(_p’p_a) preserve the subcategory Deony(»)-
2. Let A € X such that (\,a") = 0. Then we have

By (0500) = 050, By (05(0) = O5(0)(-2).

§
3. Let A € X such that (\, ") < 0. Then

0 ~
5 (05(N) = O5(sA) (—2) mod Deonyo(n)-
4. Let X € X such that (\,a") > 0. Then
FJ2Crm0(02(0) = O(s) mod Deonyo(n)-
Proof. — Recall the notation for P,, $#; := G/Ps, gs (see §1.10). The variety g, is
endowed with a natural G x Gy,-action, such that the morphism 7, : g — gs is

G x Gm-equivariant. Using exact sequences (1.10.1) and (1.10.2) and [54, Proposition 5.2.2],
for any & in 9°Coh®*Cm (g) there exist distinguished triangles

(1.11.4) F(~2) = L(F.)" o R(7.).T — F*(7) 5
(1.11.5) FJ2Crm(g) o L(7) o R(F).T — F 5.

Let j : g — gs X, B be the natural inclusion. There exists an exact sequence
(1.11.6) @gsstg(—a)(—m — @gsstg - ]*@a
(Indeed, (g/n)* C (g/p2il)* is defined by one equation, of weight (—a, —2) for B x G,,.) Let

alsop : gs X, B — g be the projection. Then 7y = p o j.

Using triangles (1.11.4)and (1.11.5), to prove (1) it is sufficient to prove that forany A € X,
L(7s)* o R(Ts)«Og(A) is in Deony(n)- The case (A, a") = 0 is trivial: in this case we have
L(7s)* o R(Ts)« O5(N) = O5(X) ® O5(X\)(—2) by the projection formula. Here we have used

the well-known isomorphism
R(?NTS)* @5 =~ @Es (&) @§S<—2>.

The property (2) also follows, using triangles (1.11.4) and (1.11.5).

Now, assume that (A\,a"V) > 0. Tensoring (1.11.6) by O

3.x 5. 8(A) we obtain an exact
sequence

O, %y, 8(A —a)(=2) = Bg,x, 4(A) = j.O5(N).
Then, applying the functor Rp, and using [39, §1.5.19, Proposition 11.5.2.(c)] we obtain a
distinguished triangle

25, (Indg (A - @)
(Observe that here (A — a,
La(Indh: (A — @))(—2) — L5(IndE (V) — L(7Fs)* o R(7s). 05(\) = .

Now it is well known (see again [39, Proposition I1.5.2.(c)]) that the P;-module Indgs (M) has
weights A, A\ — «, ..., sA. Hence fg(lndgs()\)) has a filtration with subquotients £5(\),
O3(A — ), ..., O(s)). Similarly, Z’E(Indgs (A — a)) has a filtration with subquotients
O5(A—a), ..., Oz(sA + a). This proves (1) in this case, and also (4).

(~2) = L5, (Indg (V) — RE).05(0) .
> —1.) Applying the functor L(7s)* we obtain a triangle

)
)
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Now assume (), a") < 0. Using similar arguments, there exists a distinguished triangle
L(7s)* o R(7s)« 05(\) — L5(R'Indp (A — a))(=2) — Lz(R'Indf (V).

Moreover, £5(R'Ind}; (V) has a filtration with subquotients Oz(sA — ), ..., O5(\ + a),
and £5(R'Indf’ (A — a)) has a filtration with subquotients O5(s)), ..., O5()). As above,
this proves (1) in this case, and (3). O

REmMARK 1.11.7. — 1. Thecase (2) of the proposition is not needed for our arguments.
We only include it for completeness.

2. Tt follows from the proof of the proposition that if (A, ") = 1, then the isomorphism
of (4) can be lifted to an isomorphism in 2°Coh®*®=(g). Similarly, if (A, V) = —1,
the isomorphism of (3) can be lifted to an isomorphism in 2°Coh®*®m (g).

3.If (\,a¥) ¢ {-1,0,1}, we do not have an explicit description of the objects
FEOZS (05(N)) or FEOZS(_p’p_a)(@E()\)) as in (2). The proof of the proposition gives a
recipe for computing their class in equivariant K-theory, however. The answer can be
given in terms of Demazure-Lusztig operators as in [22, Theorem 7.2.16]. (See §2.13
below for more details in this direction.)

The following lemma is a generalization of [8, Lemma 5] (where it is assumed that p = 0).
The proof is similar.

LEmMa 1.11.8. — Let \,p € X.
We have Extyy o 1.c 5 (05(A), Og(1)) = 0 unless A — p € ZsoRT.

Similarly, for any i € Z we have Ext'@bcohgmm@(@a(k), O5(u)(i)) = 0 unless
A—p e ZZORJ’_.

Proof. — We give a proof only in the first case. Recall that 2°Coh® (g) is equivalent to the
full subcategory of @bQCth (g) whose objects have coherent cohomology (see [3, Corol-

lary 2.11]). Hence we can replace 9" Coh® (g) by 9°QCoh®(§) in the statement. Moreover,
for any ¢ € Z there is a natural isomorphism

(1.11.9) Extinqeono ) (PN Og(1) = H' (R(I) (O5(1 = X)),

where I'? denotes the functor which sends a G-equivariant quasi-coherent sheaf & to the
G-invariants in its global sections, and R(I'?) is its derived functor.

Recall also that, by definition, we have g = G' xZ (g/n)*. Hence the restriction functor
I — T|{13x(g/n)+ induces an equivalence of categories

QCoh(g) = QCoh” ((g/n)*)

(see e.g. [18, §2]). Moreover, the following diagram commutes, where I'Z is defined as I'“
above:

QCoh®(g)
J/l \
QCoh® ((g/n)*) —== Vect(k).
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It follows, using isomorphism (1.11.9), that for any i € Z we have
(1.11.10) Extinqeonc ) (D5 O5(1) = H (R(P)(Og/m)- @1 kp(p — X))
The functor I'Z is the composition of the functor

I((g/n)*,—) : QCoh” ((g/n)*) = Mod” (S(g/n)),

which is an equivalence of categories because (g/n)* is affine, and the B-fixed points functor
I : Mod®(S(g/n)) — Vect(k). (Here, S(g/n) is the symmetric algebra of the vector space
g/n.) Hence, using isomorphism (1.11.10) we deduce that for any ¢ € Z we have

(1.11.11) Extiqoone @ (05(A), O5(1) = H (R(IP)(S(g/n) @ kp(u— ).

Now IZ is the composition of the forgetful functor For : Mod®(S(g/n)) — Rep(B) and
the B-fixed points functor JZ : Rep(B) — Vect(k). Of course the functor For is exact, and
in the category Mod® (S(g/n)) there are enough objects of the form Indﬁ} (M) 2 Meyk[B],
for M a S(g/n)-module, whose images under For are acyclic for the functor JZ. Hence for
any i € Z we have

(L1112)  BExthgemeq (0500, O5(w) = H* (R(I)(S(g/n) @k kp(u — V),

where for simplicity we have omitted the functor For.

Finally, as B = T x U, the functor J? is the composition of the U-fixed points functor
JU, followed by the T-fixed points functor J7 (which is exact). Hence RJZ = JT o RJY,
and we only have to prove that

(1.11.13) JT(R(JY)(S(g/n) @ kg(v))) =0

unless v is a sum of negative roots. But R(JY)(S(g/n) ®x kp(v)) can be computed by the
Hochschild complex C(U, S(g/n) ®k kp(v)) (see [39, 1.4.16]). And the T-weights of this
complex are all in Z>oR™ (because all weights of S(g/n) and of k[U] are in Z>oR™). Then
(1.11.13) easily follows. O

1.12. Braid relations

PROPOSITION 1.12.1. — Let o, 8 € 3, and s = sq, t = sg. For any dominant weight \ we
have an isomorphism

0z, (—p,p—a) Oz, (—p,p—PB)
By 0 o Byt o (05()
~ 0 t(_p7p_ﬁ) 0 5(7 5 70‘)
i o Fg 7 o (05(N)

in P’ Coh®*Cm (9), where the number of functors appearing on each side is ns .

Proof. — To fix notation, let us assume that « and 8 generate a sub-system of type As.
(The proof is similar in the other cases.) By Proposition 1.10.3(2) we have an isomorphism
of functors

02.\~1 ~ 0z, (—pp—a)
(F7) = F (2)

)
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and similarly for 8. Hence proving the proposition is equivalent to proving that
(1.12.2) E, := F_g?zs o FE@‘zt o FEOZS o Faozt (=p.p—B)
o F@Zs (=p,p—a) o FEOZt (=p,p—B) ( @E()\))

g
is isomorphic to &5(A)(—6). First, it follows from Lemma 1.11.3 that
(1.12.3) By = 05(\)(—6) mod Deonyo(r)-

Consider the subcategory @;HVO( N C P’ CohC*Cm (g) whose objects M satisfy the

condition Hom(N, M) = 0 for all N in Deopnyo(n). By Lemma 1.11.8, O5()) is in @imvom.

Hence, as all the functors involved preserve the subcategory @Clonv(,( ») (because their inverse

preserves Deonvo(n) by Lemma 1.11.3), also E} is in the subcategory @CLOHVO( »)- By definition
of the Verdier quotient, it follows from (1.12.3) that E\ = 05()\)(—6) in PPCoh®*Cm (), as
claimed. O

Before the next corollary we introduce some notation. If A is a dominant weight, we write
that a property is true for A > 0 if there exists a positive integer NV such that the property is
true for any weight A such that (A, «¥) > N for any positive root a.

COROLLARY 1.12.4. — The kernels Oz, s € ., satisfy the finite braid relations in the
monoidal category @%ROPCthXG“‘ (g x @). More precisely, for s,t € & there exists a
canonical isomorphism

Op. %0z, % = 0z,%0z %+,

in P*Coh&*Cm (g x §), where the number of terms on each side is n ;.

Proof. — To fix notation, let us assume that s and ¢ generate a subgroup of W of type As.
(The other cases are similar.) The kernel @)z, is invertible (see Proposition 1.10.3(2)), with
inverse

(0z,)7" = RHomy, (02, 05.3) ®p,, , Pswzldim(g)].
The same is true for ¢ instead of s. Hence we only have to prove that

Oz, % Oz, % 0z, x (0z,) " % (0z,) " *(0z,)"" = O

For simplicity, let us denote by K ; the object on the left hand side of this equation.

First, let j : greg X Greg < @ X g be the inclusion. We claim that there exists a canonical
isomorphism
(1.12.5) J*Ksp = OG-
Indeed, the functor j* is monoidal. And there exist isomorphisms
j* st >~ @deg
(Oz:°%, U510 x1es) @0

Greg X Breg

§*(02.)7" = RHomy.

Greg X Oreg

Pawy,. [dim(g)],

where as above Z1° = Z; N (Greg X Greg). For simplicity, we denote the right hand side of the
second line by (@) ez )~'. The same formulas also hold for ¢ instead of s. Now there exists a
canonical isomorphism

(1126) @Z;e€ * @Z:eg * @Z;eg =~ @Ztreg * @Z;eg * QZtreg7
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because each side is canonically isomorphic to functions on the graph of the action of
sts = tst. (Here we use Proposition 1.9.2.) By standard adjunction properties for Fourier-
Mukai kernels we have

Hom@bcohcx@m (aregxareg)(@Z;eg * @Ztreg * @Z;eg7 @Ztreg * @deg * QZtreg)

-1
=~ HOm@bCOthGm (Eregxareg)(gzgeg * tareg * ngeg * (@Z:eg) , @Z;eg * ngeg)

~

~ -k
& ... = HOm@bCOthGm (aregxareg) (] ‘%s,ta @Aﬁreg)'
Hence (1.12.6) induces a canonical morphism

JKsp — U5

Greg?
which also is an isomorphism.

To prove the isomorphism of the corollary it is sufficient, using Lemma 1.11.1 and Propo-
sition 1.11.2, to prove that for A, u > 0 we have R7°T'(g x g, Ks.+(\, 1)) = 0 (this implies
that K, ; is concentrated in degree 0, i.e. is a sheaf), and that there exist canonical isomor-
phisms

I(gxg, Ksu(Ap) = I'(gx 9, Oag(A p),
compatible with the natural action of T'(g x g).
The object K, ; is the kernel associated with the functor

Fy; = EOZS o FEQZt o FEQZS o .g.gzt)_l o (FEOZS)_1 o (F;Zt)_l.

We have seen in Proposition 1.12.1 that F\ , fixes any line bundle O3(\) with A € X*. More-
over, for any A, 4 we have, by the projection formula, RT'(g, F-;Cs’t(@a()\)) ®p, O5(n)) =
RT(g x g, Kst(A, ). It follows, using [34, Theorem IIL.5.2], that for A, > 0 we have
R79(g x g, s+(\, 1)) = 0 and, moreover, there is an isomorphism

F(ﬁ X E, jcs,t(Avﬂ)) = F(§7 @E()‘+ .u)) = F(E X ’gva @AE(AJJ'))

It remains to show that these isomorphisms can be chosen in a canonical way, so that they
are compatible with the action of I'(g x g). We claim that the restriction morphisms induced

by j*:
I'(gx g Kep(Ap) = L(Greg X Greg; 3" Kot(X, 1)),
I'(gx 8, Oag(\ 1)) — T(Breg X reg Oag,e, (A 1))
are isomorphisms. Indeed, the first morphism coincides (via the projection formula) with the

restriction morphism

L@, By (05(0) ©0; O5(1) = T(Gress Fo " (05, (V) @0,

Greg

Ogees (1)

induced by the inverse image under the inclusion g,eg < g. As the sheaf Fgc “(O5(V) @9, O5(w)
is a line bundle, and the complement of g,e, in g has codimension at least 2 (see Proposi-
tion 1.9.4), the latter morphism is an isomorphism. The arguments for the second morphism
are similar.

It follows that there exists a unique isomorphism

F(a X aa j{s,t()‘ay‘)) = F(E X 55 QAE()‘HU‘))
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which is compatible with our canonical isomorphism (1.12.5). With this choice, the compat-
ibility with the action of the algebra

I‘(E X E) = @ F(Ereg X Erega @Eregxﬁreg ()‘aﬂ))
A,peX+

is clear. O

This corollary finishes the proof of Theorem 1.6.1.

2. Description of the kernels

2.1. Statement

Let R = Z[7;], where h is the Coxeter number of Gz. For any w € W, we define
Zw,R

as the closure in g x rg g of the inverse image under the morphism gr X4+ gr — grXRGR —
Br x r Br of the G g-orbit of (Br/Br,w *Br/Br) € Br X r Br (for the diagonal action).
Itis a reduced closed subscheme of gr X4z gr.

We also set
Z 5 = Zwr N (V& XrEr)-
(Note that here we take the scheme-theoretic intersection.) It is easy to see that Zq’ﬂ’ g isin fact
a closed subscheme of 773 XR 773. (See Lemma 2.12.1 below in the case of a field.)

The main result of this section is the following.

THEOREM 2.1.1. — Let R = Z[;5].
Letw € W, and let w = s; - - - s, be a reduced expression (where s; € ). There exists
an isomorphism in D°Coh®**2(Cm)r (F 0 x o §r), respectively in D' CohCr*REmIR (97 5 o A p):
stl,R Xk @an’R o QZW,R’

A ~
respectively @Zél,R* *@Zén,a ~ Oz, -

Let again w € W, and let w = s7 - - - 5, be a reduced expression (where s; € .¥). Then by
definition T, = T, - - - T, . Theorem 2.1.1 allows to give an explicit description of the action
of T,, on 9’Coh(§r) or P’Coh(H g) obtained from the action of Theorem 1.3.1 by base

. 2 ~ .
change to R. Namely, T, acts via the functor FERZ“”R on @bCoh(g r), and via the functor
(P —
F-"*" on 9°Coh(A g).
NRr

As for Theorem 1.3.1, the proof of Theorem 2.1.1 is based on the reduction to the case of
an algebraically closed field of positive characteristic, which will be treated using Represen-
tation Theory. We first treat this case. The proof of Theorem 2.1.1 for gg is given in §2.11.
The case of A R is treated in §2.12.
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2.2. Kernels for the finite braid group: case of a field

From now on and until §2.11, we fix an algebraically closed field k of characteristic p > h.
We use the same notation as in Section |, and we drop the index “k” for simplicity.

For w € W, we denote by X% C 8 x B the G-orbit of (B/B,wB/B) for the diagonal
action (a Schubert cell), and by X,, its closure (a Schubert variety). We denote by

Zy CgXxg
the closure of the inverse image of %2,,1 under the morphism g xg- g — g x g - B x B.
This is a reduced closed subscheme of g x 4« g. Note that it is not clear at this point that Z,,, is
isomorphic to Zy, r X gpec(r) SPec(k) (because the latter scheme is a priori not reduced). This
will follow from our results (see Remark 2.11.1 below). The fiber of Z,, over (B/B,w~'B/B)
is
(g/(n+w™t-n))".

In particular, by G-equivariance the restriction of Z,, to the inverse image of X2 _, is a vector
bundle over X% _,, of rank dim(b) — £(w).

For w € W, we define

Z:5% C Greg X Breg

to be the graph of the action of w provided by Proposition 1.9.2. Then one easily checks that
Z3%8 = Zy N (Greg X Breg) and that Z,,, is the closure of Z[%&.

We also set

Z! = ZyN (N x ).

Itis easy to check that Z!, isin fact a closed subscheme of N XN (see Lemma 2.12.1 below).

The version over k of Theorem 2.1.1 is the following.

THEOREM 2.2.1. — Assume p > h.
Letw € W, and let w = sy---5s, be a reduced expression (s; € ). There is an
isomorphism in D°Coh®*®m (§ x §), respectively in D°Coh®*Cm (A" x A):
@Zsl * Kk @an >~ @Zw7
respectively @Z§1 x-k Oz = Og .

Moreover, Z.,, respectively Z! , is Cohen-Macaulay with dualizing sheaf

Oz., (=p,p—an)*---x 0z, (—p,p— 1),
respectively Oz, (—p,p—om)*---x Oz, (—p,p— o),

where s; = so, (o; € ¥). In particular, these objects are also concentrated in degree 0, i.e. are
coherent sheaves.

REMARK 2.2.2. — 1. Probably, the restriction on the characteristic is not necessary.
For instance, it follows from [54] that the theorem is true for all p if w is an element of
a parabolic subgroup of W of type A; x Aj or A, and for p # 2 if w is an element of a
parabolic subgroup of W of type Bs. To obtain a weaker restriction on p in the general
case, it would certainly be necessary to understand better the geometric properties of
the varieties Z,,. For instance, it is proved in [54] that Z,, is normal if p and w are as
above. We do not know if this property is true in general.
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2. The case p = 0 is excluded from Theorem 2.2.1. However, it follows from Theo-
rem 2.1.1 that Theorem 2.2.1 is also true in this case (by compatibility of convolution
with change of scalars; note that Z,, x g Q is reduced by [19, Proposition 1.6.5]). One
can also prove Theorem 2.2.1 over C directly, using Saito’s theory of mixed Hodge
modules. This will be the subject of a future publication.

3. As in the proof of Corollary 1.12.4, once we have proved the theorem, one can check
using restriction to geg that the isomorphisms

0z

can be chosen in a canonical way.
4. It follows from the theorem that for any v, w € W such that £(vw) = ¢(v) +£(w), there
exists an isomorphism

1*...*@an =~ @Z«LM @Zgl*-.'*@Zén = @Zq’u

s

Oz,%0z, = Oz
Again by the same arguments as in the proof of Corollary 1.12.4, this isomorphism
can be chosen canonically. With this choice, one easily checks that the condition of [24,
Theorem 1.5] holds. Hence the restriction of our action to the Artin braid group B can
be “lifted” to an action in the strong sense of [24]. We do not know if this property holds
for the whole of B,g in general. It holds if p = 0, as proved (by completely different
methods) in [25].

vw *

We first concentrate on the case of d. The proof of Theorem 2.2.1 in this case is given in
§2.10. The case of A is treated in §2.12.

Let again w € W, and let w = s;---s, be a reduced expression (s; € .¥). For
i = 1,...,n, let a; € 3 be the simple root attached to the simple reflection s;. Then we
define

Ky = Oz, %---x0g,,
VARE

0z, (=p,p = an)x---x 0z, (=p,p — 1),

considered as objects in @bCoh(ﬁ x g). By Corollary 1.12.4, these objects do not depend on
the choice of the reduced expression (up to isomorphism). We will sometimes use the fact that
%, has a canonical lift to an object of 9”Coh®*®= (g x §). (This is also the case for A,
but we will not use it.)

By definition we have isomorphisms of functors Jr, = Fgcm and Jp-1 = F;C 5
Moreover, we have
(2.2.3) K, = RHomy_,(Kw, Og)[dim(g)]

(see [36, Proposition 5.9] for details). Let § be the automorphism of g x g which exchanges
the two factors. Then we have

(2.2.4) F Ky 2 Koyr, &KL =KD

The proof of Theorem 2.2.1 is based on Representation Theory, and more precisely on
localization theory for Lie algebras in positive characteristic, as studied in [13, 12, 11]. Hence
sometimes we will rather consider X, and KX L as sheaves on g(") x g, where () denotes the

Frobenius twist, i.e. we will twist the structures as sheaves of k-vector spaces. For simplicity
we do not indicate this in the notation.
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2.3. More notation

Recall that if X is a scheme, and Y C X a closed subscheme, one says that an ) x-module
S is supported on Y if S| x _y = 0. We write Cohy (X) for the full subcategory of Coh(X)
whose objects are supported on Y.

We denote by b the universal Cartan subalgebra of g. It is canonically isomorphic
to bg/[bg, bo] for any Lie algebra by of a Borel subgroup of G. In particular, b identifies
naturally with t via the morphism t = b/n 2 .

For s = s, (a0 € X), we denote by sl(2, s) the subalgebra of g generated by h,,, e, and
e_q. It is isomorphic to s((2, k).

The extended affine Weyl group W,g naturally acts on X. We will also consider the
“twisted” action defined by

wel := wA+p)—p
for w € Wag, A € X, where p is the half sum of the positive roots.

Recall that an element x € g* is said to be nilpotent if it is conjugate to an element
of (g/b)".

Let 3 be the center of g, the enveloping algebra of g. The subalgebra of G-invariants
3uc := (Ug)® is central in %g. This is the “Harish-Chandra part” of the center, isomorphic
to S(t)(W:*), the algebra of W-invariants in the symmetric algebra of t, for the dot-action.
The center 3 also has another part, the “Frobenius part” 3g., which is generated as an algebra
by the elements X? — X for X e g. It is isomorphic to S(g(")), the functions on the
Frobenius twist g*(!) of g*. Under our assumption p > h, there is an isomorphism (see [41]
or [53]):

31HC ®3pn3uc IFr — 3
Hence a character of 3 is given by a “compatible pair” (v, x) € t* x g*(1). In this paper we
only consider the case where  is nilpotent, and v is integral, i.e. in the image of the natural
map X — t*. (Such a pair is always “compatible.”) If A € X, we still denote by ) its image
in t*. If A € X, we denote by Modﬁi’x)(%g) the category of finitely generated %g-modules
on which 3 acts with generalized character (A, x). Similarly, we denote by Modgg(%g) the
category of finitely generated %g-modules on which 3yc acts with generalized character A.

The translation functors for %g-modules are defined e.g. in [13, §6.1]. More precisely,
for A\, € X and x € g*("), the functor

T} : Mod( . ,(%g) — Mod % (%g)

sends the module M to
pr, (M & V(p—N)),
where V(u — ) is the standard (induced) G-module with extremal weight u — A (i.e. with
highest weight the dominant W-conjugate of u — ), and pr,, is the functor which sends a
locally finite 3gc-module to its generalized eigenspace associated with p.
We will also consider the baby Verma modules, as defined e.g. in [13, §3.1.4]. Namely, let by
be the Lie algebra of a Borel subgroup of G. Let x € g*(!) be such that Xjp = 0, and

let A € X. Then the associated baby Verma module My, . is by definition the %g-module
Megx;n = (%E)x @ (Ubo) k.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



560 R. BEZRUKAVNIKOV AND S. RICHE

Here (Ug), := (Ug) ®3,, ky, (Ubg), is the subalgebra generated by the image of by, and A
defines a character of (%by), via the morphism

bo — bo/[bo, bo] 2 h =t 5 k.

Finally, we will need the functors Tensh of [12, §2.1.3]. Consider the sheaf of algebras %)
on B defined as follows (see [13, §3.1.3]). Let p : G/U — G/ B be the natural quotient; it is
a torsor for the abelian group B/U (acting via multiplication on the right). Then

D = p(Day)?'?,
where D¢,y is the sheaf of crystalline differential operators on G /U (see[13,§1.2]). The sheaf
of algebras 9 can be naturally considered as a sheaf of algebras on the scheme g(*) x PREON

where the morphism g — b* sends (X, gB) to X|g.s € (g-b/[g-b,g-b])* = b*, and the
morphism h* — h*(Y) is the Artin-Schreier map defined by the algebra morphism

S(™) —  S(h)
X e pM — xp — Xl

Moreover, it is an Azumaya algebra on this scheme.
For x € g*(!), we denote by %;1) the inverse image of x under the natural morphism

g — g*(M) endowed with the reduced subscheme structure. We denote by Mod®(%) the
category of quasi-coherent, locally finitely generated ?-modules (equivalently, either on B
orong® x p= ™). Forv € X (considered as a linear formont = h)and x € g*() we denote

by Mod; (9), respectively Mody, ,,(9P), the full subcategory of Mod®(%) whose objects are

—~ (1) ~ . ; ~
supported on A~ " x {v} € g x;.q) h*, respectively on Z%;l) x {v} € g™ xy.q h*. Then
for A\, u € X we consider the equivalence of categories

{Modf/\’x)(i)) —  Mod{, (D)

g = Og(p— ) ®p, 7.

B
Tens)y :

2.4. Reminder on localization in positive characteristic

Recall that a weight A € X is called regular if, for any root o, (A + p,a") ¢ pZ, i.e. if Ais
not on any reflection hyperplane of WS (for the dot-action). Under our assumption p > h,

0 € Xis regular; in particular, regular weights exist. By [13, Theorem 5.3.1] we have:

THEOREM 2.4.1. — Let A € X be regular, and let x € g*(") be nilpotent. There exists an
equivalence of triangulated categories

@bCOh%S) GWY) = @bModaX) (Ug).

Let us recall briefly how this equivalence can be constructed. We use the notation of
[13]. Consider the sheaf of algebras D (see §2.3). If A € X is regular, the global sections
functor RT : 9"Mod5 (D) — @bModf\g(ﬂg) is an equivalence of categories. Its inverse

is the localization functor #. These functors restrict to equivalences between the categories

D"Mods, (%) and D"Mod(s, , (%g).

Next, the Azumaya algebra 9 splits on the formal neighborhood of %5;1) x {A}
in g» Xp«1y h*. Hence, the choice of a splitting bundle on this formal neighborhood
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yields an equivalence of categories Cohg;l) <[} (3 x p=» b*) = Mod(, ,, (@) Finally, the
projection g!) x b — g induces an isomorphism between the formal neighborhoods
of Qf;l) x {A} in g xg.q) b* and of Q?;l) in g (see [12, §1.5.3.c]). This isomorphism
induces an equivalence Coh ), ¢, (8W xg.y b*) = Coh 0 (31). Combining these three
equivalences yields the equivalence of Theorem 2.4.1.

We choose the normalization of the splitting bundles as in [12, §1.3.5]. We denote
by J»,y) the splitting bundle associated with A, and by

Yo + D' Cohyan (@) = D'Mod(§ ) (Ug)

the associated equivalence.

2.5. Reminder on [12] and [54]
Let us recall the representation-theoretic interpretation of the braid group action in
positive characteristic.

Let us fix a character A € X in the fundamental alcove (i.e. such that for all « € & we
have 0 < (A + p,a") < p), and some x € g*() nilpotent. There is a natural right action of
the group W,g on the set W, o A, defined by

(wed)xv:=wvel

forv,w € W,g.
For a € ¥,4, let u, € X be a weight on the a-wall of the fundamental alcove, and on no
other wall. Then, for s = s, we define the functor

Iz, := Cone(Id — T,l\a oT{"): @bMOdigA x)

(Here the morphism of functors is induced by adjunction.) This functor is well defined,® and
does not depend on the choice of y,, see [12, Corollary 2.2.7]. Also, for w € Q, we put

Iy, = TY* . D"Modf | (Ug) — D"Mod(§ ) (%g).

(Ug) — D°Mod(§ , (g)-

(Observe that A and w e X have the same image in t*/(W, e).)

Letw € Wyg,and u € Wyog @ X\. Write w = 81 -+ - s,w, Where s; € g, w € , and
(w) = n. Recall ([12, §2.1.3]) that one says that w increases p if for each ¢ = 1,...,n,
wk(s1-+-8i-1) < px(s1---s;) for the standard order on X.

The following theorem follows from [12, Theorem 2.1.4].

THEOREM 2.5.1. — 1. The assignment Tg — I, (s € San), T, — I, extends to a
right action of the group B.g on @bModﬁi o(Ug).

() Recall that if o7, Z are abelian categories, F, G : &/ — 9 are exact functors and ¢ : F' — G is a morphism of
functors, the functor

() — e
X +— Cone(FX 20, GX)

descends to derived categories. The resulting functor is denoted by Cone(F — G).
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2. Forb € B,g, we denote by

I, : D"Modf | (%g) — D"Mod(§  (Ug)

the action of b. Then for i € Wog X and w € W,g such that w increases u, there is an
isomorphism of functors

fm wrw fﬁ

olr, = Tens),

REMARK 2.5.2. — The right action of Theorem 2.5.1 is related to the (left) action of [12,
Theorem 2.1.4] as follows: our functor I is the action of =1 in [12], where we used the
identification of the local braid group with B,g given by the choice of \.

We point out a correction in the proof of [12, Theorem 2.1.4]: in [12, Proposition 2.2.8],
the functor I}, should be replaced by I’a, and the functor Tensu P should be added in the
right hand side. Similar corrections should be made in [12, §2.3. 1].7 Proposition 2.2.8 and the
argument of [12, §2.3.1] follow directly from [12, Lemma 2.2.3] which is stated correctly. With
this correction in place, the action of [12] sends a simple generator T to what is presently

denoted by Iil.

Let us recall that property (2) implies the following description of the action of (lifts of)
dominants weights (see [12, Proposition 2.3.3]).

COROLLARY 2.5.3. — For v € X dominant and for & in @bCoh(Bm(ﬁ(l)), there is an
X
isomorphism

Iz, o Y00 () = 1009 @0, G50 (v))

which is functorial in .

Now we consider the Bernstein presentation of B.g (see §1.1). The relations in this pre-
sentation are symmetric. Hence there is a natural anti-automorphism ¢ : B,g — B.g which
is the identity on the generators T (s € .%) and 6, (z € X). The following theorem is a cor-
rected version of [54, Theorem 5.4.1]. (The same proof as in [54] works, taking into account
the corrections to [12] given above.) It provides a link between the geometric braid group
action of Theorem 1.6.1 and the representation-theoretic braid group action constructed in

[12].

THEOREM 2.5.4. — For any b € B,g the following diagram:

Jy

@bCoh%S>(§(1)) @bCoh[BS)(ﬁ(l))

Y(xx) J/Z II/V(A,X)

I, )
@bMod%\,X)(fug) @bMod%\VX)(‘L[g)

is commutative up to an isomorphism of functors.
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REMARK 2.5.5. — The same formalism also applies to formal completions. For simplic-
ity, here we assume that x = 0. For A\ € X regular, by [13, Theorem 5.4.1] there is an equiv-
alence of categories

5y : 2°Con(BM) = BPMod™ ((%g)Y)
between the derived category @bModfg((‘ng)X) of finitely generated modules over the com-
pletion (‘ng)X of g at the central character (), Q\and the derived category @bCoh(@(l))
of coherent sheaves on the formal neighborhood BY of the zero section B in g™ There

exist a geometric action of B,g on @bCoh(@(l) ) and a representation-theoretic action
on 9"Mod®®((%g)™), and a statement similar to Theorem 2.5.4 also holds in this context.

2.6. The kernels are sheaves

From now on and until §2.9, we fix some w € W.

For A € X regular, recall the splitting bundle 5 o) for the Azumaya algebra 9 on the
formal neighborhood of B x {\} in g x p- b* (see §2.4). Here, for simplicity, we write
My for My, 0y. We will rather consider iy as a vector bundle on the formal neighborhood
BY of g1 in g, see §2.4. Recall that there /ezists a Gy, -equivariant vector bundle M,
on g such that /1, is the restriction of My to 3", i.e. the completion of M, for the /-adic
topology, where 4 is the sheaf of ideals of the closed subscheme B g (see [11]or [35,
§9.4]). A

Recall also that the restriction @I\ of the sheaﬁgf algebras 9 to the formal neighborhood
of 3 x {2} ing® xy.q) b*, identified with 3 is isomorphic to 6nd@i@ (). Hence

~3
(9")°PP isisomorphic to Sndg (Mmy), where 2t is the vector bundle dual to . Observe
B
finally that iy is the restriction of MY := %omgﬁ(l) (M., O5)) to B,
Let p1, pg : g x g — g be the projections. Then
(26.1) Pi(Ho) @9, K, @9, P(My-10)

—
~w—1

~0 o0
is naturally a ¥ X (9 )°PP-module. (Here, the tensor products can be replaced by
derived tensor products without any change.) As a shealf, it is the restriction of

Pi(Mo) ®p,_,, , KL, @0, L PHMY 140)

to the formal neighborhood of the zero section in g(*) x g(1). Taking the derived global
sections of (2.6.1), we obtain an object in the derived category of (%g®, %g®~"*°)-bimodules.

Moreover, here we have %g® ™" *0 = ‘Léga. Our first observation is the following.

LeEmMMA 2.6.2. — There is an isomorphism in the derived category of %ga-bimodules

RD(p} (o) @9, K}, @0 P(Mi-100)) = (Ug)°-
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Proof. — As above, let 4 be the sheaf of ideals of the closed subscheme B g™, and
let n € Z~¢. By the projection formula, and then the definition of Fourier-Mukai transform
we have

* L L * n 4
RL(p(Mo) @9 __ . K}, B, P (Myy-100/ 9" M-100))

L L * mn
= RTo(Modo,,, (R0 (KL &0, 93 (Hh-100/ 7" M 100))))
~ L §* KT, n
= RFO(%O@OE(I) FE(I) (/(1/57\1/,71.0%/ jl/l,\u/)fl.o)).
Now by isomorphisms (2.2.4) and Theorem 2.5.4 the latter object is isomorphic to
IT—1 o RFO(/’%O ®0~(1) (mx,fl.o/ﬂnﬂ/lel.o)).
w g

(Observe that L(T;_ll) = T, ') The element w increases the weight w=' e 0, and
(w™! @ 0) * w = 0. Hence by Theorem 2.5.1(2) we have an isomorphism of functors

(2.6.3) P oly, = Tens’ . o0 £7 .
Taking inverses on both sides, we obtain
I-10Rlg & RIy-1400 Tensf)”_l'o.
Moreover, by definition Og(w™" @ 0) ®¢, Mo = M,,-140 (see [12, §1.3.5]). Hence we obtain
finally
RI(p} (o) S, K1y @0, 3 (M-100/" Myy100))

= RrwfloO(mw*IOO é?)ﬁ(l) (mm_loo/jnmq\j)—loo))'

Then, taking the inverse limit over n and using [32, Theorem 4.1.5] applied to the projective
morphisms g — g*™M) and (gM)2 — (g*(1))? we obtain

RF(pT(ﬂ/ZO) ®0(3ﬁ)2 jCL ®0(B/(\1)2 p;(mq\i/ﬁloo)) = Rr(mw—loo ®g.

o)

mq\:ﬁloo)'

The latter object is isomorphic to

—
~w~—le0

RO(D" ™) = g0 = g

(For the first isomorphism we have used [13, Proposition 3.4.1 and §5.4].) One easily checks
that all our isomorphisms are compatible with the %g°-bimodule structures. O

COROLLARY 2.6.4. — The object ﬂ(:ru has cohomology only in non-positive degrees.
Proof. — Tt is sufficient to prove the same property for the object
p)lk (MO) ®Q(E(1))2 j{ju ®Q(E(1))2 p; (leloo)'
Moreover, this object is in the essential image of the forgetful functor
P’ Coh®= (g1 x ) — D Coh(™ x g»).

Hence it is sufficient to show that its restriction to the formal neighborhood of the zero-
section, namely

pik(m()) ®o 2 jCIu Qo 2 p;(/(%:f,—l.o),
3(1) 3(1)
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has the same property. Now recall that the derived global sections functor RI's is an equiv-

~0 ~w~1e0
alence of categories between the derived categories of coherent 9 X (9 )°PP-modules
and of finitely generated (%g)°-bimodules, with inverse the localization functor L (see[13,

—

~0 ~w~le0
Theorem 5.4.1]and Remark 2.5.5). Hence we have isomorphisms of 9 X (% )°PP-mod-

ules
pi(Mo) @9, KL, @9, P5(My-140)
3(1) 3(1)
=~ #50 RI5(pi(Mo) D0 52 K1, ®0 2 P5(My-140)) = P5((Ug)°)

(where the second isomorphism follows from Lemma 2.6.2), and the object on the right hand
side is concentrated in non-positive degrees since 5 is right-exact. O

Now we consider the kernel &,,. We consider the couple (—2p,0) as a Harish-Chandra
character for the Lie algebra g x g.

LEMMA 2.6.5. — The object
RF(_pro)((ﬂ/lfgp X /740) ®E(1)x§(1) j(w)

is concentrated in degree 0.

Proof. — By the projection formula, and Theorem 2.5.4 (see also Remark 2.5.5) we have

RP(—QP,O)((m—Zp X 7%0) ®‘g‘(1)><§(1) j(w) = RF()(/(I/Z() ®§(1) Fgf{j (ﬂ/l_gp))
I, , o RTo(Mo @z M—2p).

IR

(Here we use «(T,) = T,,-1.) Now by [12, Lemma 3.0.6 and its proof], we have an isomor-
phism M _», = U . Hence we obtain

-5 _
RF(_QPVO)((ﬂ/l_ngﬂ/lo) ®§(1)X§(1) jfw) = ]:wa1 ORP(@ ) = Iwal(?/lgO).

The object on the left hand side of these isomorphisms has, by definition, only cohomology in

non-negative degrees. On the other hand, again by definition, the functor Iz _, stabilizes the

subcategory @b’SOModfg(‘llga). (Tt suffices to prove this statement when £(w) = 1, in which
case it is trivial.) Hence the object on the right hand side has cohomology only in non positive
degrees. As these objects are isomorphic, they have to be concentrated in degree 0. O
A proof similar to that of Corollary 2.6.4 gives the following result.
COROLLARY 2.6.6. — The object K, has only cohomology in non-positive degrees.

We can finally prove:

PROPOSITION 2.6.7. — The objects K, and K, are concentrated in degree 0.
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Proof. — Recall the following well-known fact, if X is a smooth k-variety and & a coher-
ent sheaf on X:

(#) 6:51?%){(9’, Ox) =0 for i < codimx (Supp(Y)),

where Supp (&) is the support of &.

By Corollary 2.6.6, %, has cohomology only in non-positive degrees. Moreover, by
definition Supp(K,) = Z,, hence codim(Supp(K,,)) = dim(g). Hence, using (#), it
follows that

Rﬂomﬁ)ﬁ(l) %5 (‘%wv Q’g‘(l) X'g'(l))
has cohomology only in degrees > dim(g). Using (2.2.3) we deduce that X' L has cohomology
only in non-negative degrees. Then, by Corollary 2.6.4, %L is concentrated in degree 0.
The same arguments apply to K . O

2.7. Two preliminary lemmas

Now we want to prove that the sheaf X, is generated by its global sections. For this we
need two lemmas: one on the representation-theoretic side, and one on the geometric side.

Let us fix A € X in the fundamental alcove. Its differential induces a linear form on b, via
the natural isomorphism t — b/n = h. Recall the definition of baby Verma modules, §2.3.
As usual, we let wg € W be the longest element. We will use only the special case A = 0,
x = 0 of the next lemma (which we state in full generality for completeness).

LEMMA 2.7.1. — Let by C g be the Lie algebra of a Borel subgroup, and x € g*(V) be such
that Xjp = 0. For any nonzero submodule N C My, ..,0(x) We have Ty PN # 0.

Proof. — This claim is obviously independent of the choice of by (because the action
of G on Borel subgroups is transitive), hence we can assume by = b. It follows from [38,
Proposition B.3] that Mg ., (») is a submodule of T2 (M, ). (Beware that Jantzen uses
positive Borel subalgebras to define baby Verma modules, while here b is the negative Borel
subalgebra.) Hence there is a nonzero morphism N — T2 »(Mp y.p)- By adjunction, we have
an isomorphism

Homg (N, T2, (Me,y.p)) = Homg(T5 "(N), Mo y;p)-
Hence the right hand side is nonzero, which implies T, *N # 0. O

In the next lemma, we consider X, as a sheafon'g x g. Weletpy : g x g — g be the
projection on the second component.

LeEmMA 2.7.2. — For any w € W we have an isomorphism
R(ps2) K = O
in 9" Coh®*Cm (§). In particular,
RI(g x g, Kw) = I'(g, O5) = S(g) ®sm)w S(h)

as (G x G )-equivariant algebras.
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Proof. — Let us begin with the first statement. By definition of convolution functors,
R(p2)s Ky = F-gC (). By definition again, the functor F-gC * is the composition of functors
of the form FEOZS for s € .. Hence it is sufficient to prove that FEOZS (05) = R(p2)+ 0z, is
isomorphic to 3. However, the morphism p, : Z, — g is proper, birational, and has normal
image. Hence (p2). 0z, = 0 by Zariski’s Main Theorem. And the vanishing of R*(ps). 0z,
for ¢ > 0 can be proved exactly as in [54, Proposition 3.4.1].

The second statement follows from the obvious isomorphism RI'(g x g, —) = RI'(g,—) o
R(p2)+, and the isomorphisms

P 0 ifi#0
R'T(g, U5) = { -
S(g) ®s(pyw S(h) if i =0
(see [13, Proof of Proposition 3.4.1] and references therein). O

REMARK 2.7.3. — In other words, the first statement in Lemma 2.7.2 is that we have an
isomorphism

Ir,(05) = 05
for any w € W. See also [1 1, Lemma 1.3.4(c)].

2.8. The sheaf K, is globally generated

In the proof of the following proposition, we will consider localization functors for both
groups G and G x G, and always for the case x = 0. For simplicity and to avoid confusion,
we write 'yf, respectively Pyg\xlf)", for y(x,0y» respectively y((x,0),(u,0))- In the second functor,

A, 1€ X, so that the pair (A, 1) defines a character of the maximal torus 7' x T' C G x G.

We use similar notation for the functors ¢, W(Cf\xlf; (see Remark 2.5.5).

PROPOSITION 2.8.1. — The sheaf X, is generated by its global sections.
Proof. — Itisenough to prove the following property: (1) For any Borel subalgebras by, b
of g, and any nonzero morphism of ©3¢1) g -modules X', — Of(0,6,),(0,65)}» the morphism
r@(l) x g, Ko) — k

obtained by taking global sections is also nonzero.

Indeed, assume that property (1) is satisfied, and that &, is not globally generated. Let &
be the cokernel of the natural morphism

F(E(l) x g, Ky) ®x Oz 5500 — K-

By assumption, & # 0. The sheaf X, is Gy,-equivariant, hence the same is true for &. It
follows that there exist Borel subalgebras by, bs of g such that the fiber of & at the point
((0,61), (0,b2)) € gV x g is nonzero. By Nakayama’s lemma (and adjunction), it follows
that there exists a nonzero morphism & — O (g p,),(0,6,)}- Consider the composition

(2.8.2) Kw = T = 0(0,61),0,62)}>

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



568 R. BEZRUKAVNIKOV AND S. RICHE

which is also nonzero. By property (1), the morphism obtained by taking global sections is
nonzero. In other words, there exists a morphism @E“) xgm — K whose composition with
(2.8.2) is nonzero. This is absurd since this morphism can be factored through a morphism

Oz g — TEY x gV, Ky) @k Oz 500 = K — 7,
which is zero by definition of &.

So, let us now prove (). The idea of the proof is to translate this property in representa-
tion-theoretic terms; then it easily follows from Lemma 2.7.1. Consider a nonzero morphism

(2.8.3) Kw = 01(0,61),(0,62)}-

Restricting this morphism to the formal neighborhood of the zero section of g(*) x g(*), and
applying the equivalence ﬁ(G_égO), we obtain a nonzero morphism

(2.8.4) RL (_2p,0)(M—2p W Mp) @) g Kw) — ’Y(G_Xgio)(@{(O,hl),(O,bz)})'
By definition (and using the Kiinneth formula),

Vo0 (010,61),0,61) = 12 (D10,81)3) @k 16 (Og0,6201)-

And, by [13, Proposition 3.1.4], we have isomorphisms

S0 (D100,8)}) = Ms,,00)s 76 (D10,82)3) = Mibs,0:2)-
(Here we consider the baby Verma modules for the Lie algebra g.)

Let g : g x g — g*M x g be the natural morphism, and let § be the induced
morphism on the formal neighborhoods of the zero sections. Let also 7, respectively €, be
the inclusion of the formal neighborhood of the zero section in g x g!), respectively
g x g sothatgon=€oq.

By Lemma 2.6.5, the object on the left hand side of morphism (2.8.4) is concentrated in

degree 0. Then, by Lemma 2.7.1, the morphism obtained by applying the functor T((:Qpp’ 3)

to this morphism is nonzero. (Observe that T((:zp[’)?g) = T((qu’;:((:;;)’?g) = T(((; 5»),0).) On the
other hand, by [12, Lemma 2.2.5], the morphism obtained by applying 7P o (2.8.4)

. . (_2P70)
is a morphism
A0 R@s o™ Kuw) — A5% (RaxOg(0,61),0,601)-
There are isomorphisms R(q)« o n*K, = €* o Rq.K., (see [32, Theorem 4.1.5]) and
Rq.0{(0,61),(0,62)} = 010,(0,65)}- It follows that the morphism
(2.8.5) R(p2)sKw — Of(62,00}
obtained by applying the functor R(ps). to (2.8.3) is nonzero. Here, ps : g x gt — gt
is the projection on the second factor.

By Lemma 2.7.2, we have an isomorphism R(pz).X., = ©za. Hence the mor-
phism obtained by applying RT'(g("), —) to the morphism (2.8.5) is nonzero. But, as
RI(g® x g, —) = RT(gM, -) o R(ps)., the latter morphism is obtained by taking
global sections of (2.8.3). This finishes the proof. O

Let us remark that, using similar arguments, one can prove the following fact (which will
not be used in this paper).
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PROPOSITION 2.8.6. — Let A € X be in the fundamental alcove. Let & be an object
of Coh®= (W), and let T be its restriction to the formal neighborhood of the zero section
BV FO, ~

Assume that the object Yy,ex(F) is concentrated in degree 0. Then & is generated by its
global sections.

2.9. Irreducibility of a fibre product

The main result of this subsection is Proposition 2.9.4. Before we can prove it, we need
several easy preliminary results.

The following fact follows from the explicit description of Z; in [54]. We denote as above
by p; and p, the projectionsg x g — .

LEMMA 2.9.1. — Let s € . The fiber of the projection p; : Zs — g, respectively
p2: Zs — g, over (X, gB) is one point if X|g.q1(2,5) # 0, and is isomorphic to P! otherwise.

We denote by F; the closed subvariety of codimension 2 of g defined by
Fy = {(X, gB) € ﬁ | X‘g.s[(g’s) = 0}.
Recall that there is a natural morphism
vig—bh"
sending (X, gB) to the restriction X ,.5, considered as a linear form on (g - b)/(g - n) = b.
Then for any w € W the image of Z,, under v x v : gxg — b* x h* is the graph Graph(w, h*)
of the action of w on h*. Indeed the inverse image of Graph(w, h*) under (v x v) contains

Z'8 hence also Z,,; it follows that (v x v)(Z,,) C Graph(w, h*); we conclude using the fact
the morphism p; : Z,, — g is proper and birational, hence surjective.

LEMMA 2.9.2. — Letw € W, and letv € W such thatv < w. Let V be the fiber of Z,, over
(B/B,v='B/B) € B x B (a closed subvariety of (g/n)*). Then v(V x {B/B}) is included
in the space of fixed points of v—'w on b*.

Proof. — Let X € V. By definition, v(X,v"'B/B) = v-v(X, B/B). On the other hand,
as(X,B/B,v"'B/B) € Z,, by the remarks above we have v(X,v~'B/B) = w-v(X, B/B).
We deduce that v - v(X, B/B) = w - v(X, B/B), which gives the result. O

Recall the remarks of §2.2. We set d := dim(g).

COROLLARY 2.9.3. — Letw € W and s € . such that ws > w. Then
dim((Fs x ) N Zy) < d —2.

Proof. — For simplicity, let us denote the variety ((Fis x §) N Z.,)_, by Y,5. (We will use
this notation only in this proof.) First, Y7 is included strictly in Z,,, hence has dimension
lower than d — 1. Assume that it has dimension d — 1. By G-equivariance, and as G has

only finitely many orbits on $ x %, there exists u < w such that the restriction (Y;3)xo__

has dimension d — 1. Moreover, u # w as the restriction of Y5 to X% _, has dimension
dim(g)—2. (This follows from our assumption ws > w or, equivalently, w(a) > 0 for s = s,,
a € X.) By G-equivariance again, the fiber of Y2 over (B/B,u~!B/B) has dimension
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d—1—dim(X?_,) = d — 1 — £(u) — dim(%). On the other hand, this fiber is included
in the fiber of (g X 4+ g) N (Fs x §) over (B/B,u™'B/B), which is itself included in

V:={X €¢" | Xjnyu-1.n = 0and X (h,) = 0}.

The subspace V has dimension d — 1 — £4(u) — dim(98). Hence the fiber of Y3 over
(B/B,u~'B/B) equals V. In particular, the fiber of Z,, over (B/B,u~'B/B) contains V.
Now we derive a contradiction. By definition we have

v(V x{B/B}) ={X € (b/n)" | X(hs) = 0},

ie.v(V x {B/B}) C b* is the reflection hyperplane of s. By Lemma 2.9.2, this subspace is
included in the fixed points of v~ !w. Hence either u~'w = s, or u~'w = 1. This is absurd
since u < w < ws. O

Letw € W and s € .. Consider the scheme Z, x5 Z,,, where the morphism Z, — g
(respectively Z,, — @) is induced by the second (respectively the first) projection.

PROPOSITION 2.9.4. — Letw € W and s € ./ such that ws > w. The scheme Z x5 Z,,
is irreducible, of dimension dim(g).

Proof. — The scheme Z, x5 Z, is the scheme-theoretic intersection of the subvarieties
(Zs x g) and (g x Z,,) of g2. Each of these subvarieties has dimension 2 dim(g). As g has
a finite covering by open subsets isomorphic to A94™(®) the dimension of each irreducible
component of Z, xg Z, is at least dim(g) (see [34, Proposition 1.7.1]).

We have (Z, Xg Zw) N (Greg)® = Z1% x5, Zi8, hence this intersection is irreducible
(because it is isomorphic to gz ). Hence any irreducible component of Z, x5 Z,, is either the
closure of Z{*8 x3  Z.8, or is included in (g ~ Oreg)®. Assume that there is a component
Y included in (§ \ @reg)?. By the arguments above, dim(Y) > dim(g). Consider the image
Y’ of Y under the projection pa3 : Zs X3 Zy — Z,. Then Y is strictly included in Z,,
hence has dimension lower than dim(g) — 1. As the fibers of p3 3 have dimension at most 1
(see Lemma 2.9.1), we have dim(Y’) = dim(g) — 1, dim(Y") = dim(g), and all the fibers of
the restriction (p2,3)|y have dimension exactly 1. It follows that Y’ C (F x g) N Z,,. This is
absurd, since dim((Fs x g) N Z,,) < dim(g) — 2 by Corollary 2.9.3. O

2.10. End of the proof of Theorem 2.2.1 (case of g)

We can finally finish the proof of Theorem 2.2.1 in the case of g.

Proof of Theorem 2.2.1. — We prove the theorem by induction on the Bruhat order. First,
the statement is clear by definition if ¢(w) is 0 or 1. Now assume it is known for w, and
let s € . be a simple reflection such that ws > w. We only have to prove that X ,,s = 0z, .
as (G x Gp,)-equivariant sheaves. Indeed, once we know this isomorphism, the fact that
%Ls is a sheaf implies that Z,,; is Cohen-Macaulay, and that %Ls is its dualizing sheaf (see
Equation (2.2.3)).

By definition of convolution, and the induction hypothesis,

j(ws = jcw*QZs = R(p1,3)*(@ZSXE(§’E3 @ExZw)~

By induction hypothesis, g x Z,, is a Cohen-Macaulay scheme. Moreover, Z, x g is defined
locally in g3 by a regular sequence of length dim(g). (This is a general fact for smooth
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subvarieties of smooth varieties, and it is checked explicitly in this case in [54].) We have
proved in Proposition 2.9.4 that (Z, xg)N(gx Zy) = Zs x5 Zy has dimension dim(g). Using
a Koszul complex ([51, (18.D) Theorem 43]) and [51, (16.B) Theorem 31], the derived tensor
product O .5 égﬁg Ogx z,, is concentrated in degree 0. Hence it equals 0z, » 32, - Moreover,
Zs Xg Zy 1s Cohen-Macaulay (see [51, (16.A) Theorem 30]). By Proposition 2.9.4 it is also
irreducible, and it is smooth on an open subscheme (e.g. the intersection with Efeg). Hence
it is reduced (see [51, p. 125]). It follows that p; 3 induces a birational and proper (hence
surjective) morphism py 3 : Zs X3 Zy — Zys, and that we have

(2.10.1) Kuws =2 (01,3)x02,x;2.,-

(Recall that K, is a sheaf by Proposition 2.6.7.)
On the other hand, let

F:8x8 7§ — (8" g /w b)
be the natural morphism. By Proposition 2.8.1, K, is globally generated. Hence the adjunc-

tion morphism f* f, K ,s — K s is surjective. Using also Lemma 2.7.2, it follows that there
exists a natural surjective (G X G, )-equivariant morphism

@EXE - jcws-

In other words, K . is the structure sheaf of a closed subscheme of g x g. By Equa-
tion (2.10.1), this subscheme is reduced, and coincides with Z,,s. This finishes the proof. [

2.11. Proof of Theorem 2.1.1 for g

We come back to the setting of Theorem 2.1.1. In particular, let R = Z[%], letw e W,
and let w = s; - - - s, be a reduced expression.
Consider the object
Kwr = Oz, px-x0z, .

of PPCohGr*r(Em)r (6r X R 9R)- Note that for every prime p > h, X R é)R F,, is the object
“Kw” of §2.2 for the field k = Fp. Hence, by Lemma 1.4.1(2) and Proposition 2.6.7, X, r
is a coherent sheaf, which is flat over R.

Let M := RI(gr Xgr 9r, Kw r). By Lemma 1.4.1(2) again and Lemma 2.7.2, M is
concentrated in degree 0. By the same arguments as in the proof of Proposition 1.4.3, we

have M (©m)r = R Hence also
F(ER XRER, %w7R)GRXR(Gm)R ~ R.

Let ¢ be the inverse image of 1 € R under such an isomorphism; it is uniquely defined up
to an invertible scalar in R. We will consider ¢ as a Gg X g (Gm)g-equivariant morphism
O3 x ngn — Kw- By the same arguments as in the proof of Proposition 1.4.3, ¢ is surjective.
In other words, we have an isomorphism fx, — X, for some (Gr xg (Gm)r)-stable
closed subscheme X,, C gr xXgr gr. Again by the same arguments as in the proof of
Proposition 1.4.3, X, is reduced, and its restriction to (§r Xr 9r) \ Zu,r is empty. (Here
we use that Z,, g Xspec(r) Spec(Fp) and the scheme Z,, defined in §2.2 for k = F,, have the
same underlying topological space.) Hence X,, is a reduced closed subscheme of Z,, g.

On the other hand, let U, be the inverse image under the projection gg Xz gr — Br Xr Br
of the Ggr-orbit of (Br/Br,w 'Br/Br) € Br xr Br, and let Z7, r be the intersection
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of U,, with gr X g= @r (so that, by definition, Z, r is the closure of Z}; p). Itis easy to check

(using the fact that the Bott-Samelson resolution associated with the reduced expression

w~! = s, --- 51 is an isomorphism over the inverse image of the orbit of w~?!) that we have

Kuw,rlu, = Oz .
Hence X, NU, = Z, g, which implies that X,, contains Z,, r. We deduce that X, = Z,, g,

which finishes the proof of Theorem 2.1.1 in the case of gg.

REMARK 2.11.1. — Let k be an algebraically closed field of characteristic p > h. As we
have observed in the proof above, X, r é) r k is the object “K,,” of §2.2 for the field k (by
compatibility of convolution with change of scalars). On the other hand, the isomorphism
Kuw,r = Oz, , implies that X', r ®r k = QZw,RxSpeC<R)Spec(k)~ We deduce that

Zw,R X Spec(R) Spec(k) &= Zwa

where “Z,,” is the scheme defined in §2.2 for the field k. In other words, Z, g X spec(r)SPeEC(K)
is reduced.

2.12. Geometric action for 77 and 77 R

In this subsection we prove Theorems 2.1.1 and 2.2.1 in the case of . For simplicity, we
only treat the case of a field; the case of R is similar. Hence we fix again an algebraically closed
field k of characteristic p > h.

Let w € W. Recall the scheme Z, defined in §2.2. As Z,, is Cohen-Macaulay (by
Theorem 2.2.1), and dim(Z;,)) < dim(N x4 ) = dim(g) — dim(t), one easily checks
that Z! is Cohen-Macaulay, and that

L
@Z{u = @Zw g2 @ﬁ”xﬁ

(see §2.10 for a similar argument).
LEMMA 2.12.1. — Z!, is a closed subscheme 0f77 x .

Proof. — Itissufficient to prove that the morphism S(h) — ©z: induced by the morphism
Zy =X g -0
is zero. But this morphism coincides with
Z, = FxFg b S0
(see the remarks before Lemma 2.9.2). Hence indeed it is zero, by definition of Z/,. O

It follows in particular from this lemma that £)z, can be considered as a coherent sheaf

on A x 4. Now an easy argument, similar to that of [54, Corollary 4.3], proves the isomor-
phism of Theorem 2.2.1. The description of the dualizing sheaf for Z! can be proved using
an analogue of Formula (2.2.3) for A
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2.13. Application to K -theory

In [54, §§6.1, 6.2], we have explained how the braid group action of Theorem 1.6.1,
for k = C, is related to the K-theoretic description of the affine Hecke algebra, and
Springer’s geometric construction of the representations of W. In this subsection and the
next one we explain some consequences of Theorem 2.2.1 in this context. (Recall that, by
Remark 2.2.2(2), Theorem 2.2.1 is also true for k = C.)

For the moment, consider an arbitrary algebraically closed field k, and the fiber product
Z = g Xg g
LemMA 2.13.1. — The scheme Z is reduced.

Proof. — 1t is well known that Z has dimension d := dim(g) (see e.g. [40, §10]), and is
defined by d equations in the smooth variety g x g. Hence it is Cohen-Macaulay (see [51,
(16.A) Theorem 30 and (16.B) Theorem 31]). Moreover, it is smooth on the inverse image
of gf, C g*, which is dense. One concludes using [51, p. 125]. O

REMARK 2.13.2. — One can interpret the schemes Z,, from yet another point of view
using this definition: they are the irreducible components of the variety Z (see e.g. [40, §10]).

On the other hand, the scheme-theoretic fiber product N x 9+ 9V is not reduced in general.

(For example, it is not reduced for G = SL(2, k) if char(k) = 2.) We set
Z' = (N Xgx N )red-

Now for simplicity we specialize to the case k = C. First, recall the algebra isomorphism
(2.13.3) Hag = KO (2)
due to Kazhdan-Lusztig and Ginzburg. Here G x C* acts on Z’ via (g, t) - (X, g1B, 92 B) :=
(t™%9- X,991B, gg2B),

Hag = Zv,v Y[Bag] / (Ts + v 1)(Ts —v), s € .7)
is the (extended) affine Hecke algebra, and we consider Lusztig’s isomorphism defined in [48,
Theorem 8.6] (and not Ginzburg’s isomorphism, defined in [22], which is slightly different).
In order to follow Lusztig’s conventions, we consider the algebra structure on the right-hand
side of (2.1 3‘3)1"}1@} is induced by the analogue of the convolution product on the category
@bCohg,X(CX (N xN) defined in §1.2, but where the role of the two copies of A/ is exchanged.
By [54, §6.1], this isomorphism sends T to (—v™") - [0z].

One can check that restriction with supports associated with the embedding N x g gxg
induces an algebra isomorphism K¢*C*(Z) = KG*C"(Z7'), see e.g., [52]. Composing it
with (2.13.3) we obtain an algebra isomorphism
(2.13.4) Hog = K (2),

which sends T to (—v~1) - [0z,].
Theorem 2.2.1 implies the following.

PROPOSITION 2.13.5. — Let w € W. Under isomorphism (2.13.4), respectively isomor-
phism (2.13.3), T, € Hag is sent to (—v=1)W) [0 ], respectively to (—v=)")- [0, N
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In particular, this result gives a geometric description of two standard bases of the affine
Hecke algebra, given by {T,,0,, | w € W, x € X} and {0, T, | w € W, z € X}. Namely, these
bases are given by the classes of some shifts of the following (G x C*)-equivariant coherent
sheaves on Z:

Oz, _,(0,z), respectively Oz _, (x,0).

2.14. Application to homology

Let L(Z’) be the quotient of the (non equivariant) K-theory K(Z’) (considered as the
Grothendieck group of the category 7’ Cohy: (ﬁ? x N )) by the subgroup generated by classes
of sheaves whose support has dimension strictly smaller than dim(Z”). Then the convolution
product on K (Z') induces a product on L(Z’), see e.g. [28, §5.1]. (Here we follow the same
conventions on products as in §2.13.) The Z-module L(Z’) has a natural basis consisting
of classes of structure sheaves of irreducible components of Z’. Hence the morphism which
assigns to the class [fy], where Y is an irreducible component of Z, its cycle class [Y] (see
[27,§19.1]) is an isomorphism

Qe L(Z) S HE(Z)),

top

where J¢ E,RS(Z ") is the rational top Borel-Moore homology of the variety Z’. The resulting

convolution product on J¢ E)AS(Z ") can be described directly in terms of homological opera-
tions as in [22, §3.4], see [28, §5.1].

By [28, Proposition 5.3] (see also [43, §5.5]), there exists an algebra isomorphism
QW] = Q®&z L(Z").
Composing with ¢ we obtain an algebra isomorphism

(2.14.1) QW] = #EM(z").

top

(See also [22, §3.4] for a direct construction of this isomorphism). The isomorphism (2.14.1)
can be described as follows (see [28, Section 6] or [43]). For w € W, consider the regular holo-
nomic system 9, on B corresponding to the Verma module with highest weight —w(p) — p
under Beilinson-Bernstein’s equivalence (see [43, §2] for details). The holonomic system 91,
is B-equivariant, hence induces a G-equivariant regular holonomic system ﬁw on B x B.
Then isomorphism (2.14.1) sends w to the characteristic cycle Ch(ﬁw) of ﬁw. By [54,§6.2],
the image of s € .7 is also the cycle class [Z}] = ¢([0)z/]) of Z.

Now Theorem 2.2.1 (in the case of N ) implies the following.

ProPoOSITION 2.14.2. — Let w € W. Under isomorphism (2.14.1), w € W is sent

0[O0z _]) € j{BM(Z’), In particular we have an equality Ch(9,) = 1([0z _]).

top

REMARK 2.14.3. — As pointed out to us by V. Ginzburg, one can also derive the equality

Ch(9M,) = L([@Z;_l]) from [28, Equation (6.2.3)].

Proposition 2.14.2 can be used to check that Z/ is not reduced in general. Recall that the
irreducible components of the Steinberg variety Z’ are the closures of the conormal bundles
to the G-orbits on B x B (see [28, 22] or [43, §4.1]). For y € W, let us denote by

Y, = T3 (B x B)
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the corresponding component, endowed with the reduced subscheme structure. It can be
easily checked that the reduced subscheme associated with Z}, is

(quu)red = U Y.
y<w~—1
(Here, < is the Bruhat order.) However, the multiplicity of Y,, in Z;, can be more than 1, which
will prove that Z/ is not reduced in these cases.

Indeed, for w € W, in addition to 2, defined above, consider the regular holonomic
system £, on B which corresponds to the simple %g-module with highest weight —w(p) — p
under Beilinson-Bernstein’s equivalence (see again [43, §2] for details). By Proposition 2.14.2,
the multiplicity of Yy, in Z,, is the coeflicient of the cycle [T7;, 5, 5 ( )] in the decomposition of

the characteristic cycle Ch(9,,-1) as a sum of elements [T}, / 5(DB)], z € W. To prove that
one of these coefficients is greater than 1, it is sufficient to prove that one of the coefficients of
the decomposition of Ch(91,,-1) as a sum of elements Ch(£,) is greater than 1. However,
the latter coefficients are given by values at 1 of Kazhdan-Lusztig polynomials, which are
related to singularities of Schubert varieties.

For example, consider the group G = SL(4). Let s1, so, s3 be the standard generators of
the Weyl group W, and let w = s2518352, y = s2. Then P, ,,(¢) = 1+¢, hence the coefficient
of Ch(£,,w) in the decomposition of Ch(M,,,,) is 2. It follows that the multiplicity of Y,
in Z ZIJ . is at least® 2, hence that Z z// i is not reduced.

—1q

3. Generalities on dg-schemes

In the next two sections, we develop a general framework to define group actions on
derived categories of coherent (dg-)sheaves on (dg-)schemes. We will use this framework to
extend the action of Theorem 1.6.1 to other related categories.

First, in this section we extend the formalism of dg-schemes of [55, §1] to a setting more
adapted to quasi-coherent dg-sheaves. Then we extend the base change theorem and the
projection formula to this setting.

In this section and the next one, a scheme is always assumed to be separated and noethe-
rian of finite Krull dimension. It follows that the morphisms of schemes are always quasi-
compact and separated.

3.1. Definitions
Recall the following definitions ([23, §2.2], [55, §1.8]).

DEerFINITION 3.1.1. — 1. A dg-scheme is a pair (X, &) where (X, Ox) is a scheme
(with the conventions stated above), and # is a quasi-coherent, non-positively graded,
graded-commutative sheaf of @)x-dg-algebras on X.

2. A morphism of dg-schemes f : (X, 8@x) — (Y, @y) is the data of a morphism of
schemes fy : X — Y, and a morphism of sheaves of dg-algebras (fy)* @y — CGx.

(© In fact, it is checked in [42] that if n < 7, for the group G = SL(n) we have Ch(£,) = [TgyB/B(%j)] fory e W.
Hence here the multiplicity is exactly 2.
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Let us fix a dg-scheme (X, &). Remark that, as the image of Ox in & is in degree 0, it
is killed by the differential dy; of @. It follows that dy; is @) x-linear. The same applies to all
sheaves of #Z-dg-modules.

We denote by G(X, &) the category of all sheaves of @-dg-modules, and by §°(X, &)
the full subcategory of dg-modules whose cohomology sheaves are quasi-coherent over Oy .
We denote by D(X, @) and 99°(X, &) the corresponding derived categories. Note that
PD¥(X, @) is equivalent to the full subcategory of D(X, &) whose objects are in §4°(X, @).
The category D(X, @) is triangulated in a natural way. It is not clear from the definition that
PD¥(X, @) is a triangulated subcategory; we will eventually prove that this is the case under
our hypotheses (see Proposition 3.3.2).

We denote by QCoh(X, &) the category of sheaves of #%-dg-modules which are quasi-
coherent over Ox, and by PQCoh(X, &) the corresponding derived category.

Recall the following definition (see [59, Definition 1.1], [55, Definition 1.3.1]).

DEFINITION 3.1.2. — An object & of G(X, &) (respectively GQCoh(X, &)) is said to be
K-injective if for any acyclic object & in (X, &) (respectively 6QCoh (X, £)), the complex
of abelian groups Homg( 4, &) is acyclic.

Let us consider @x as a sheaf of dg-algebras concentrated in degree 0, with trivial dif-
ferential. We have defined the categories € (X, Ox), 69°(X, Ox), €QCoh(X, Ox) and the
corresponding derived categories. Recall that the forgetful functor

For?* : §QCoh(X, Ox) — €(X, Ox)
has a right adjoint

QY* 1 6(X, 0x) — 6QCoh(X, Ox),
called the quasi-coherator (see[7, p. 187, Lemme 3.2]). As G (X, O x ) has enough K-injectives
(see [59, Theorem 4.5]), QY* admits a right derived functor

RQY* : D(X, 0x) — DQCoh(X, Ox).

The functor QY% sends K-injective objects of €(X,@x) to K-injective objects of
6QCoh(X, Ox) (because it has an exact left adjoint functor). One easily deduces that
RQPx is right adjoint to the forgetful functor For”* : 9QCoh(X, Ox) — D(X,Ox). The
functor Q¥* also induces a functor

QY : €(X, @) — €QCoh(X, 1),
which is right adjoint to
For? : QCoh(X, @) — G(X, &).

Under our hypotheses (X, @) has enough K-injectives (see [55, Theorem 1.3.6]), hence Q%
has a right-derived functor RQ %, which is right adjoint to For? : PDQCoh(X, &) — D(X, G)
(for the same reasons as above).

ProrosiTION 3.1.3. — 1. The functors
For?* : PQCoh(X, Ox) — D(X, Ox),
RQY* : 9%°(X, Ox) — DQCoh(X, Ox)
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are quasi-inverse equivalences of categories.
2. DU(X, Ox) is a triangulated subcategory of D(X, Ox).

Proof. — Statement (1)is provedin[7, p. 191, Proposition 3.7] (see also [ 1, Proposition 1.3]
for a more general version).

Let us prove (2). Let
be a distinguished triangle in (X, Ox), and assume that &, & have quasi-coherent coho-
mology. By (1) there exist 7', &’ in PQCoh(X, Ox), and a morphism f’ : &' — & such
that # = For? (7"), § = For”* (&), f = For”* (f'). By usual properties of triangulated
categories, one can complete the morphism f’ to a distinguished triangle

g’f—/>g’—>ﬂ’+—1>

in 9QCoh(X, Ox). Then, again by usual properties of triangulated categories, there exists
an isomorphism For?* (#') =~ # in D(X, Ox). It follows that # has quasi-coherent
cohomology. O

3.2. K-flats and inverse image

Let (X, @x) be a dg-scheme. As @x is graded-commutative, we have an equivalence
between left and right &x-dg-modules (see [60]). In particular we can take tensor products of
two left ¥y -dg-modules, and we still obtain a left ¥y -dg-module. Also, this tensor product
is commutative.

Recall the definition of a K-flat object (see [59, Definition 5.1], [55, Definition 1.3.1]).

DEFINITION 3.2.1. — An object & of G(X, Gx) is said to be K-flat if for any acyclic
object J in G(X, &x), the dg-module ¥ ®¢, G is acyclic.

Under our hypotheses, every quasi-coherent @)x-module is the quotient of a quasi-
coherent flat @)x-module. (This can be deduced from [I, Proposition 1.1] and its proof.)
Statement (1) of the following proposition is proved in [55, Theorem 1.3.3]; statement (2)
can be proved similarly using this remark.

ProPOSITION 3.2.2. — 1. Forany & in G(X, Gx) there exist a K-flat Gx-dg-module

P and a quasi-isomorphism P = 7.
2. Forany & in ©QCoh (X, Gx) there exist a quasi-coherent G x-dg-module P such that

For % (P) is K-flat in the category G(X, Gx), and a quasi-isomorphism & &, g,

It follows from this proposition that if f : (X, @x) — (Y, @y) is a morphism of
dg-schemes, the left derived functors

Lf*: DY, Gy) — DX, tx),
Lf:. : DQCoh(Y, @y) — DQCoh(X, tix)
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in (X, @), then For(¢) is weakly K-injective in (X, Ox). (This follows from [59, Propo-
sition 5.15(b)] applied to the natural morphism of dg-ringed spaces (X, @) — (X, Ox).)
Hence it is enough to prove that weakly K-injective objects of (X, Ox) are split on the
right for the functor Q9*. And for this, using the existence of right K-injective (in partic-
ular, weakly K-injective) resolutions (see [59, Theorem 4.5)), it is enough to prove that if ¢
is weakly K-injective and acyclic, then Q?x () is acyclic.

So, let 4 be such an object. By Proposition 3.2.2, there exists an object & of EQCoh(X, Ox)
such that For”* (#) is K-flat in ©(X, x), and a quasi-isomorphism # <% Q0% (). Let
us denote by # (X, Ox), respectively # QCoh(X, Ox ), the homotopy category associated
with &(X, Ox), respectively §QCoh (X, fx). By adjunction, there is an isomorphism

HomﬂQcoh(x,Qx) (2, QOX (J)) = Homﬂ(X,QX) (FOTOX («7))’/)-

The complex of abelian groups Homy),, (For?* (#), 4) is acyclic by [59, Proposition 5.20].
Taking the 0-th cohomology of this complex, we deduce Homy(x, ¢, ) (For Ox (), 4) =0,
hence  Homyqcon(x,0x) (% QY%(4))=0. In vparticular, the quasi-isomorphism

P — QY% () is homotopic to zero, which implies that Q?x (/) is acyclic. O
PROPOSITION 3.3.2. — 1. The subcategory D (X, @) is a triangulated subcategory
of D(X, G).

2. The functors
For? : DQCoh(X, @) — 9%(X, 4),
RQ?: 9°°(X, @) — PQCoh(X, t)

are quasi-inverse equivalences of triangulated categories.
3. There are enough K-injectives in the category QCoh(X, &).

Proof. — (1) This is an easy consequence of Proposition 3.1.3(2).

(2) We have already seen that these functors are adjoint. Hence there are natural adjunc-
tion morphisms For? o RQ? - IdandId — RQ%o For?. By Lemma 3.3.1, the following
diagram commutes:

a

(X, 4) DQCoh(X, €)
For?
For \L J/For
RQ7x
(X, Ox) DQCoh(X, Dx).

Forfx

Hence it follows from Proposition 3.1.3 that for every & in PQCoh(X, &) and & in 9%°(X, @)
the induced morphisms For? o RQ%Y) — Gand F — RQ%o For?(&) are isomorphisms.
Statement (2) follows.

(3) We have seen in §3.1 that Q% sends K-injectives to K-injectives, and that there are
enough K-injectives in the category &(X, &). Let & be an object of FQCoh(X, &), and
let 4 be a K-injective resolution of For?() in ©(X, ). Then in PQCoh(X, t7) we have
J =~ RQ% o For(7) = Q%(4). Moreover, as the dg-module Q%() is K-injective, we can

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



580 R. BEZRUKAVNIKOV AND S. RICHE

represent this isomorphism as a quasi-isomorphism & g, Q%) in €QCoh(X, ). This
proves (3). O

REMARK 3.3.3. — It follows from Proposition 3.3.2(2) and diagram (3.2.3) that we have
L (DY, Gy)) C D*(X, bx).

It follows from statement (3) of Proposition 3.3.2 and the existence of K-injective reso-
lutions in G(X, @x) thatif f : (X, @x) — (Y, @y) is a morphism of dg-schemes, we can
consider the right derived functors

Rf* . @(X, ﬁx) — @(K ﬁy),
Rf3: PQCoh(X, tGx) — DQCoh(Y, Gy ).
(Note that, by [34, Proposition I1.5.8(c)], under our assumptions the direct image of
a quasi-coherent @)x-module is a quasi-coherent @)y-module.) As usual, we denote
by fo : (X,0x) — (Y, 0y) the associated morphism of ordinary schemes. We also
have the associated derived functors
R(fO)* : @(X7 @X) - @(K @Y)7
R(f0)2° : DQCoh(X, Ox) — DQCoh(Y, Oy ).

LeEMMA 3.3.4. — 1. We have R(fo)«(D* (X, Ox)) C DU (Y, Oy).
2. The following diagram commutes.
R(fo)¥°
PQCoh(X, Ox) PDQCoh(Y, Oy)
Forx 1/ J/For‘)y
R(fo)«

DY, Oy).

DX, Ox)

Proof. — (1) is proved in [33, Proposition I1.2.1]. (See [46, Proposition 3.9.2] for a proof
under less restrictive hypotheses.) Let us deduce (2). By Proposition 3.3.2(2), it is enough to
prove that

R(f0)% o RQY* =2 RQYY o R(fy)s.
It is known that

(3.3.5) (f0)i°0 Q"% 2 Q" o (fo).

(see [7, p. 188, Lemma 3.4]). Moreover, Q”* sends K-injectives to K-injectives, and (fo).

sends K-injectives to weakly K-injectives (see [59, Proposition 5.15]), which are split on the

right for Q?¥ (see the proof of Lemma 3.3.1). Hence the result follows from isomorphism

(3.3.5). O
Now we deduce analogues of these properties for &Z-dg-modules.

PROPOSITION 3.3.6. — 1. We have R(f).(D%(X, tx)) C DY(Y, Gy).
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2. The following diagram commutes:

RfY°

PDQCoh(X, Gx) PDQCoh(Y, Gy )

For fx ‘/ J/ For %y

D(X, tix) Sk DY, Gy).

3. The following diagram also commutes:

RfY°

DQCoh(X, fx)

Forxl/

PDQCoh(X, Ox)

DQCoh(Y, Gy)

J/Fory

PDQCoh(Y, Oy ).

R(fo)3°

Proof. — Recall that the following diagram commutes:

Rf.

DX, lx) DY, Gy)
(337) Forx \L \LFOFY
DX, 0x) — gy, 0y),

see [55, Corollary 1.5.3]. Then (1) follows from Lemma 3.3.4(1).

Statement (2) can be proved similarly to Lemma 3.3.4(2). For this we use the fact that
a weakly K-injective &y -dg-module is also weakly K-injective as an @y -dg-module (see
[59, Proposition 5.15(b)]) hence it is split on the right for the functor Q” (see the proof of
Lemma 3.3.1), which implies that it is also split on the right for the functor Q% .

Finally, consider the diagram of (3). By definition there is a natural morphism of functors
Fory o Rfl° — R(fy)i o Forx. The fact that it is an isomorphism follows from diagram
(3.3.7), statement (2), and Lemma 3.3.4(2). O

Because of these compatibility results, we will not write the supscript “qc¢” if no confusion
can arise.

COROLLARY 3.3.8. — Let f : (X,8x) — (Y,Gy)andg : (Y,Gy) — (Z,8z) be
morphisms of dg-schemes. Then we have isomorphisms

R(go f)« 2 Rg.o Rf. and R(go f)¥ = Rgl° o Rf}°.

Proof. — The first isomorphism is proved in [55, Corollary 1.5.3]. The second one follows,
using Proposition 3.3.6(2). O
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3.4. Adjunction
ProrosiTION 3.4.1. — 1. The functors
Lf* : @(Y, ﬁy) — @(X, ﬁx),
Rf.: DX, Gx) — DY, Gy)
are adjoint.
2. Similarly, the functors
Lfs. : DQCoh(Y, ty) — DQCoh(X, ix),
Rf: DQCoh(X, tx) — DQCoh(Y, ty)
are adjoint.

Proof. — These results follow from general properties of derived functors, see [44,
Lemma 13.6]. But they can also be proved directly, as follows. First, (1) is proved (by direct
methods) in [55, Theorem 1.6.2]. Let us deduce (2). Let & be an object of DQCoh(Y, @y ),
and @ an object of PQCoh (X, &x). First we have:

Homgqcon(x, ax) (Lfqc T §) = Hom@(XﬁX)(ForgX oLfe., For x 9)
= HOmQ)(X’gX)(Lf* o FOI'ﬁY g, FOI‘ﬁX ?)

Here the first isomorphism follows from Proposition 3.3.2(2), and the second one from
diagram (3.2.3). Hence, by (1) we have

Hom gqcon(x, ax) (LT, §) = Homgy, gy (For™ 7, Rf, o For* g).
Then, using Proposition 3.3.6(2) and again Proposition 3.3.2(2), we deduce
Hom gqcon(x, ax) (Lfie T, §) = Homgy, gy (For ™ 7, For™ o Rfg)
2 Homgpqcon(y,ay) (Y RFXG).

These isomorphisms are functorial. O

3.5. Projection formula

In this subsection we generalize the classical projection formula (see [33, Proposi-
tion I1.5.6]) to dg-schemes.

LemMma 3.5.1. — 1. The functors R(fo)« and R f. commute with filtered direct limits.
2. For Fin D(X,0x) and G in D (X, Ox) we have a functorial isomorphism
R(f0)«(9 ®py L(f0)*G) = (R(f0)-9) ®p, G-

Proof. — (1) The case of R(fy). can be proved as in [55, Corollary 1.7.5]. (In loc. cit.,
“direct sum” can be replaced by “filtered direct limit” without any trouble.) Then the case
of Rf, follows, using diagram (3.3.7).

Assertion (2) is proved in [46, Proposition 3.9.4]. O

PROPOSITION 3.5.2 (Projection formula). — For & € D(X, lx) and G € DC(Y, Gy)
we have a functorial isomorphism

Rf(T ®ax LF*Y) = (Rf.T)Gay G.
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Proof. — By the same arguments as in [33, Proposition I1.5.6] or in [46, §3.4.6], there is a
morphism of functors

(RfT)Say § — RE(T Gay LF*Y).

We want to prove that it is an isomorphism. First we can assume that ¢ is the image of
an object of GQCoh(Y, &y ) (see Proposition 3.3.2(2)). Then, by the proof of Proposi-
tion 3.2.2(2), ¢ is quasi-isomorphic to the direct limit of some @y -dg-modules %, such
that, for any p, #, has a finite filtration with subquotients of the form @y ®g, &, with
Y, in €QCoh(Y, Oy), K-flat in €(Y, )y). Hence, by Lemma 3.5.1(1), we can assume that
g =ty ®p, G, forsucha §,. Then & is K-flat, we have in D(X, Ox)

Lf*g = f°G = tx @9y (f0)" Yo,
and the Ox-dg-module (fo)* ¥, is K-flat. Hence

T &ay LFG = T @, (f0)"Gy = T &oy (f6)" G
Similarly we have
(Rf*g)é%gyﬁ = (Rf*g)égy gO'

Hence the result follows from Lemma 3.5.1(2) and the compatibility between Rf, and
R(fo)«, see diagram (3.3.7). O

3.6. Quasi-isomorphisms

PrROPOSITION 3.6.1. — Let f : (X,€x) — (Y, 8y) be a morphism of dg-schemes
such that fq is a closed embedding, and the induced morphism Gy — (fo)«8x is a quasi-
isomorphism of dg-algebras. Then the functors

Rf.: DX, tx) — DY, Gy),
Lf*: DY, Gy) — D(X, tx)

are quasi-inverse equivalences of triangulated categories. They induce equivalences of triangu-
lated categories

@qC(X, ﬂx) = @qc(}/, ﬁy), @QCOh(X, ﬁx) = @QCoh(Y, ﬁy)

Proof. — One can factor f as the composition
(X, x) 5 (Y, (fo). ) 2 (Y, iy).

Hence, using Corollaries 3.3.8 and 3.2 .4, it is sufficient to prove the result for f; and fo. The
case of fy is treated in [55, Proposition 1.5.6]. (The proof is similar to the usual case of a
dg-algebra, see [6].) And for f;, the (non-derived) functors (f1). and (f;)* are already (exact)
equivalences. O
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3.7. Derived fiber product and base change

In this subsection we generalize the usual flat base change theorem ([33, Proposi-
tion I1.5.12], [46, Theorem 3.10.3]) to dg-schemes. One of the main advantages of con-
sidering dg-schemes is that, in this generality, one can replace fiber products by derived fiber
products, and then get rid of the flatness (or “independence”) assumption.

First, a morphism of dg-schemes f : (X, @x) — (Y, Gy) is said to be smooth if the
underlying morphism of schemes f, : X — Y is smooth, and @Zx is K-flat over (fo)* &y .

Letnow X = (X, €x),Y = (Y, y),Z = (Z, &z) be dg-schemes and let f : X — Z,
g : Y — Z be morphisms. As in the case of ordinary schemes ([34, p. 87]), one can easily
define the fiber product dg-scheme

X x VA Y.
(If X9, Yy and Z; are affine, the fiber product is given by the tensor product of dg-algebras.)
Assume now that the morphisms fy : Xg — Zg and g : Yo — Zp are quasi-projective!”.
Then one can factor these morphisms as compositions

xix Lz, vy&vy 27,
where fi; and g; are quasi-isomorphic closed embeddings (i.e. satisfy the assumptions of

Proposition 3.6.1), and f2 and go are smooth. (See [23, Theorem 2.7.6] for the existence of
such factorizations.) Then one can “define” the dg-scheme

X %z Y
as X' xz Y, or equivalently X xz Y’, or equivalently X’ xz Y’. More precisely, this
dg-scheme is defined only “up to quasi-isomorphism.” However, the categories D(X Qz Y)

and 2QCoh(X Xz Y) are well defined, thanks to Proposition 3.6.1. These are the only
objects we are going to use. To give a more precise definition of X Qz Y, one would have
to consider a “derived category of dg-schemes” as in [23, §2.2]; we will not do this here.

There are natural projections p; : X Qz Y - X, pp : X Qz Y — Y, represented by
the morphisms of dg-schemes X xz Y’ — X, X’ xz Y — Y. Note that the following
diagram commutes, where 7 : X xz Y’ — X’ xz Y’ is the morphism induced by f;, and
P} X' xz Y — X' is induced by gs:

Ri,

@(X Xz Y,) @(X’ Xz Y/)
R(Fl)*‘/ lR(p’l)*
@(X) R(f1)« @(X')

(see Corollary 3.3.8). As R(f1). and Ri, are equivalences of categories with respective
inverses L(f1)* and Li* (by Proposition 3.6.1), we also have R(p1). = L(f1)* o R(p} )« o Li*.
Similar results apply for the inverse image functors, and for Y instead of X. It follows from
these remarks that, even if p; and ps are “not well defined” as morphisms of dg-schemes
(because their source is not well defined), the associated direct and inverse image functors

(M More generally, for the definition of the derived fiber product one only has to assume that fo factors through

a closed embedding Xo < X where the morphism X — Zg is smooth, and similarly for g. In the proof of
Proposition 3.7.1, we will also need the assumption that fo is of finite type.
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are well defined (i.e. are compatible with the natural equivalences between the categories of
dg-sheaves associated with the different realizations of X X z Y as a dg-scheme).

ProposiTION 3.7.1 (Base change theorem). — Consider the diagram

XX Y -2-Y
Plt l/g
x_—' .7

Then for F in DQCoh(X) we have a functorial isomorphism
Lg*oRf. & = R(pa)xo L(p)* 7.

Proof. — As usual, there is a morphism of functors from the left hand side to the right
hand side of the isomorphism we are trying to prove. (See [46, Proposition 3.7.2] for the
similar statement for ordinary schemes.) What we have to show is that it is an isomorphism.

Using resolutions as above, one can assume that f and g are smooth. In this case, X Qz Y
is simply X xz Y. Let g : (Y, (g0)* &z) — (Z,8z),p1: (X xzY,(p10)" x) — (X, lix)
andps : (X xzY, (p1,0)*@x) — (Y, (9o0)* &z) be the natural morphisms of dg-ringed spaces.
By definition, and the ordinary flat base change theorem ([33, Proposition I1.5.12] or [46,
Proposition 3.9.5]) we have

Lg*oRf, T = Gy ®(g0)* iz (@)*oRf. F
Gy ®(go)- 1, R(P2)+ 0 (P1)" 7.
On the other hand, by definition of the fiber product we have

1%

lxxzy = (p1,0) X O(pyo)*(fo)+ 1z (P2,0)" Gy
Hence, by the projection formula (Proposition 3.5.2),
R(p2)s o L(p1)" S = R(p2)«(lxx,v R(pyo)tix (P1) )
by ®(go)-t1, R(P2)x 0 (P1)" .
This concludes the proof. O

Il

3.8. Compatibility of projection and base change

To finish this section, we observe that one can prove some compatibility result for the
isomorphisms of Propositions 3.5.2 and 3.7.1. This is similar to [46, Proposition 3.7.3], and
left to the interested reader.

4. Convolution and geometric actions

In this section we present the formalism of functors on derived categories of coher-
ent sheaves arising from “integral kernels.” We fix two dg-schemes X = (X, @x) and
Y = (Y, @y), and consider a morphism of dg-schemes f : X — 7Y such that f; is
quasi-projective.
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4.1. Convolution
In this subsection we will consider the category
Kxy = DQCoh(X Xy X).
An important particular case is when X = X and Y = Y are ordinary schemes, such that
@.1.1) Torly ™ (Ox, Ox) = 0.
Then the dg-scheme X Qy X “is” the ordinary scheme X Xy X, and X x y = PQCoh(X xy X).

PROPOSITION 4.1.2. — There is a natural convolution product on Xx y, which endows this
category with a monoidal structure.

Sketch of proof. — We only give the definition of the product. Its main properties are
easy to check using the projection formula (Proposition 3.5.2), the base change theorem
(Proposition 3.7.1) and their compatibility (§3.8). A similar construction has been considered
in [52] in a special case.

For simplicity, using the constructions of §3.7, one can assume that the morphism
X — Y is smooth, so that all the derived fiber products become ordinary fiber products. For
(4,7) € {(1,2),(1,3),(2,3)}, we denote by ¢; ; : Xo Xy, Xo Xy, Xo — Xo Xy, Xo the
projection on the i-th and j-th factors, and by Z; ; the following dg-scheme:

Z;; = (Xo Xy, Xo Xy, Xo, (i,5)" OxxvX)-

There is a natural morphism of dg-schemes p; ; : Z; ; — X xvy X, and associated functors
R(p; ;)«» L(pi;)*. (In the general case, when X — Y is not assumed to be smooth, the
dg-scheme Z; ; can be defined as the derived fiber product

(XxyX) X _n (X0 Xy, Xo Xy, Xo),

0Xyy<Xo0

where the morphism X QYD Xo QYO Xy — Xo Qyo X is the derived version of ¢; ;.)

Let also g2 : Xo Xy, X0 Xy, Xo — Xo be the projection on the second factor, and consider
the sheaf of dg-algebras ¢ &x on Xy Xy, Xo Xy, Xo. There is a natural bifunctor

(_ ® _) . { g(ch()h(zlﬂ) X gQCOh(ZQ,?,) - gQCOh(ZLg)
’ ' (7,.9) — g@@ﬁx g.

(Here we forget about the action of the middle copy of @x on & ®g: ¢, §.) This bifunctor
has a derived bifunctor between the corresponding derived categories, which we denote
by (—éQ—). It can be computed using K-flat resolutions.

Then the convolution product can be defined as follows for &, & in X'x v

T+Y = R(p13)s (L(p12)"Y @2 L(p23)" 7).

As explained above, the basic properties of this product can be proved by copying the usual
proofs for schemes. In particular, the unit object for this product is the direct image of the
structure sheaf under the diagonal embedding A : X — X QY X. O
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REMARK 4.1.3. — Suppose that X and Y are ordinary schemes, which satisfy the Tor
vanishing assumption (4.1.1). Then the assertion of Proposition 4.1.2 does not involve
dg-schemes. However, its proof (the construction of the monoidal structure on X x y)
makes use of the triple product X Qy X Qy X, which reduces to an ordinary scheme only
under a stronger Tor vanishing assumption, which does not hold in the examples of interest
to us.

4.2. Action by convolution

Our main interest in the category X'x y comes from the following result.

ProprosITION 4.2.1. — 1. The category DQCoh(X) carries a natural convolution
action of the monoidal category Xx .

2. Assume that X and Y are ordinary schemes, that f is proper, and that X is a regu-
lar noetherian scheme. Let jc;;’};, C Kx,y be the full subcategory which consists of
complexes with a finite number of nonzero cohomology sheaves, each of which is a coherent
sheaf on
X xy X. Then 763?1} is a monoidal subcategory, and its action preserves the full
subcategory D°Coh(X) c DQCoh(X).

Sketch of proof. — We only give the definition of the convolution action, leaving the
details to the interested reader. By definition there are morphisms of dg-schemes

p1,p2 : X QY X — X. For & in X'x vy, the associated functor is given by:

PQCoh(X) — PQCoh(X)
g = R(pa). (7 @L?’Xf;yx L(p1)*G),

L
where ® g
X

stands for the (derived) tensor product over ﬁXR . O
Xy

Xy X

REMARK 4.2.2. — We will mainly apply Proposition 4.2.1 in the situation of (2).
Notice that this action factors through another monoidal category which is simpler
to define, namely the category @bCthXY x(X x X) which is the full subcategory
in @bCoh(X x X)) consisting of complexes set-theoretically supported on X xy X; more
precisely, the action of statement (2) is the composition of the action of the monoidal cat-
egory D’ Cohx x, x (X x X) on 9°Coh(X) and the functor of “direct image under closed
embedding” jc;?}; — 9’Cohxx, x(X x X). The motivation for introducing the more

Py

complicated category K x y is the base change construction of Proposition 4.2.3 below.

ProOPOSITION 4.2.3. — Let Y' — Y be a morphism of dg-schemes, whose underlying
morphism of schemes is quasi-projective, and set X' := X QY Y’
1. The pull-back functor Xx v — Kx: v+ is monoidal.
2. The pull-back functor PQCoh(X) — DQCoh(X') is compatible with the actions
of Xx v, where the action on DQCoh(X') is the composition of the action of Kx: v+
given by Proposition 4.2.1(1) and the monoidal functor of (1).
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Proof. — Observe that there is a natural quasi-isomorphism of dg-schemes
qis 3
X' %y X' =2 (X %y X) %y Y

Similarly, let Z; ;, (i,7) € {(1,2),(2,3),(1,3)}, be defined as in the proof of Proposi-
tion 4.1.2, and let Z; ; be the dg-scheme defined similarly for X', Y" instead of X, Y. Then

we have
i

e}
7]

’ B ’
Zi,j Zi,j XyY .

Using these remarks, the proposition follows from the base change theorem. Indeed, the
following diagram is cartesian (in the derived sense):

1%

!
Z1,3 —Z3

p'l’sl \LPI,:&

X' %y X' X%y X.
Applying Proposition 3.7.1 and the compatibility of the tensor product with inverse images,
one obtains (1). Statement (2) can be proved similarly. O

REMARK 4.2.4. — In most examples relevant for us X, Y and Y’ will be ordinary
schemes, and we will have Torgoof Y () 10ys, (n')"10x) = 0 for the morphisms
m:Y -Y,f X Y 7 : X — X,sothat X’is also an ordinary scheme. More-
over, X will be regular, and f : X — Y will be proper, so that we are in the situation of
Proposition 4.2.1(2).

4.3. Geometric actions

Motivated by the constructions of §§4.1, 4.2, we introduce the following notion.

DErFINITION 4.3.1. — A (weak) geometric action of a group I" on a dg-scheme X over Y
is a homomorphism from I to the group of isomorphism classes of invertible objects in the
monoidal category Xx,y.

Under the assumptions of Proposition 4.2.1(2), a weak geometric action is called finite if
its image is contained in KX’ 3?1}

According to Proposition 4.2.3, a weak geometric action induces a usual weak action of T'
by auto-equivalences of PQCoh(X') for any X’ as in that proposition.

REMARK 4.3.2. — The above constructions certainly admit a variant when an algebraic
group G acts on X, Y and we work with categories of equivariant sheaves, or perhaps more
generally for stacks. Our elementary approach of Section 3 is not adapted to these settings,
however. (See Section 5 below for some partial results in this direction.)

Now we come back to the setting of Theorem 1.3.1. Using the terminology introduced
above, Theorem 1.3.1 and Theorem 1.6.1 give statement (1) of the following theorem. State-
ment (2) follows from Proposition 4.2.3. (The compatibility for the direct image functor fol-
lows from the compatibility for the inverse image functor by adjunction.)

THEOREM 4.3.3. — Let R be either 7 or an algebraically closed field.
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1. There exists a natural finite geometric action of the group B.g on gr (respectively N Rr)
over gp.

2. For any morphism of dg-schemes X — g} whose underlying morphism of schemes is
quasi-projective, there exist actions of B.g on the categories DQCoh(gr QBE X) and
@QCoh(% R Qg;{ X). Moreover, the direct and inverse image functors

*

~ Lp ~ R
PDQCoh(gr) R<:> DQCoh(gr X gz X)

Px

~ R ~ . . Lo ar
Jor the projectionp : gr X g+ X — gr commute with these actions, and similarly for ' g.

REMARK 4.3.4. — Note that the existence of the action for /" cannot be obtained from
that for g using Proposmon 4.2.3. Indeed the fiber product g x g« A "isnot reduced in general,
hence not isomorphic to N . Here V' =G - (g/b)* C g* is the “dual nilpotent cone.”

4.4. Examples

Now we get back to the notation of Sections | and 2. For simplicity we assume that k
is of characteristic 0. In particular, in this case there exists an isomorphism of G-modules
g = g*, which identifies the “dual nilpotent cone” /" of Remark 4.3.4 with the usual
nilpotent cone /.

Consider a nilpotent element xy € g*. Let S be the corresponding Slodowy slice (see
[58, 30]; here we follow the notation of [30, §1.2]). We also consider the (scheme theoretic)
fiber product

;2 = Xgr S
By [30, Proposition 2.1.2], this scheme is a smooth variety, of dimension 2 dim(%8) — dim(G - x)
(i.e. twice the dimension of the associated Springer fiber).

LemMaA 4.4.1. — The dg-scheme
X %ge S
is concentrated in degree 0, i.e. is quasi-isomorphic to the variety ;f

Proof. — This follows from a simple dimension-counting: one observes that the codimen-
sion of A x g= Sin N is dim(G - x), which is exactly the codimension of S in g*. The result
follows, using a Koszul complex argument. (See §2.10 for similar arguments.) O

Using this lemma and Theorem 4.3.3, one deduces the following.

COROLLARY 4.4.2. — There exists a natural finite geometric action of B.g on J over S.
Moreover, the inverse and direct image functors

P Coh () ——= 9"Coh()

are compatible with this action and the one given by Theorem 1.6.1.
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Assume now that G is simple, and that x is subregular. Then, according to Brieskorn and

Slodowy,
Snwv

is a Kleinian singularity, and ;3 is its minimal resolution (see [58]). In this case, the braid
group action of Corollary 4.4.2 is related to spherical twists and mirror symmetry, and has
been extensively studied by several mathematicians (see [57, 17, 37, 16]). In particular, it is
proved in [16] (extending results of [57]) that, if G is simply laced, the restriction of the action
on (J to B is faithful. It follows easily that the actions on 9” Coh(ﬂ/ ) and 9"Coh(g) are also
faithful. Similarly, in [37] it is proved that if G'is of type A, then the restriction of the action
on J to BSGe* is faithful. Again, it follows that the actions on PP Coh(ﬂf ) and 9”Coh(g) are
also faithful.

5. Equivariant version

We were not able to extend the theory of dg-sheaves on dg-schemes to the equivariant
setting, i.e. to the situation where the dg-scheme is endowed with an action of an algebraic
group, and we consider dg-sheaves which are equivariant for this action. In this section
we provide direct arguments to prove an extension of Theorem 1.3.2 in the spirit of Theo-
rem 4.3.3. This statement is used in [1 1].

This section is independent of Sections 2, 3 and 4. In particular, the assumptions on
schemes in Sections 3 and 4 are not in order anymore. We use the general theory of
unbounded derived categories of equivariant quasi-coherent sheaves over schemes as
developped e.g. in [60, §1.5].

5.1. Statement

In this section we let R be either Z, or an algebraically closed field. For simplicity, we write
x for X g, and ® for ®p.

As in §1.1, we consider the varieties g%, N R, 9r over R. Let § be an algebraic group
over R with a fixed homomorphism to Gg X (Gm) r. We denote by BEy, respectively @i?'g,
the category of affine noetherian schemes S endowed with a @-action and an equivariant
morphism to g7 such that the natural morphism of dg-schemes

~ R ~ . Sy R -~
S Xgr @r — S Xgz, @R, respectively S Xgx N'p — S Xgx Vg,
is a quasi-isomorphism. Morphisms are assumed to be equivariant and over g. For such an

S, weset S =S X g% R, respectively S =9 X g3, WR

THEOREM 5.1.1. — For any S in BECy, respectively @E?'ﬁ, there exists an action of B.g on
the category P°Coh? (§ ), respectively D°Coh? (8), such that for any G-equivariant morphism
S1 — So, the action commutes (up to isomorphism) with the direct and inverse image functors

PPCoh?(S,) —= 9" Coh¥(S,),
respectively

9PCoh?(S}) —= 9" Coh¥(5}).
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These actions are also compatible with the change of equivariance functors (for a group
. /
morphism § — G over Gg X (Gm)r).

The proof of Theorem 5.1.1 will be completed in §5.4. We give the details only in the case
of gr; the case of 77 R 1s similar.

For S'in BEy, we write S = Spec(Ag), where Ag is a §-equivariant Sp(gr)-algebra. If
f 8 — g%, is the structure morphism, we denote by f: S — dgr the morphism obtained by
base change.

5.2. Quasi-isomorphisms of equivariant dg-schemes

As explained above, it is not obvious how to develop a general theory of equivariant
dg-schemes. However, part of the theory is easy to adapt. (See also [52, Section 1] for such
results.)

Let X := (X, €7), where X is a scheme and @ is a graded-commutative, non-positively
graded, quasi-coherent sheaf of @)x-dg-algebras. We assume furthermore that an algebraic
group H acts on X, that & is H-equivariant, and that the multiplication and differential are
equivariant. We call such objects H-equivariant dg-schemes. We assume furthermore that
every H-equivariant quasi-coherent sheaf on X is a quotient of an H-equivariant quasi-
coherent sheaf which is flat as an @)x-module. (See [60, Remark 1.5.4] for comments on this
assumption.)

We denote by 6QCoh” (X) the category of H-equivariant, quasi-coherent sheaves
of @-dg-modules on X, and by PQCoh” (X) the associated derived category. It follows
easily, as in [55, Theorem 1.3.3], that there are enough objects in the category QCoh” (X)
which are K-flat as ©-dg-modules. Then one can adapt the proof of [6, Theorem 10.12.5.1]
to prove the following.

PROPOSITION 5.2.1. — Let (X, &) and (X, &') be two H-equivariant dg-schemes over the
same ordinary H-scheme X which satisfies the assumption above, and let ¢ : G4 — @ be an
H-equivariant quasi-isomorphism of dg-algebras. Then the extension and restriction functors
induce equivalences of categories

DQCoh™ (X, G) = PQCoh™ (X, @).

5.3. Definition of the kernels
From now on, for any S in 86y we fix a F-equivariant graded-commutative
S(gr)-dg-algebra Dg which is K-flat as an Sg(gg)-dg-module, and a quasi-isomorphism

of G-equivariant Sg(gr)-dg-algebras Dg s, Ag. (For existence, see the arguments of [23,
Proof of Theorem 2.6.1].)

Fix some S as above, and denote by f : § — g}, the associated morphism. By assumption,
the derived tensor product

L
O5r ®s(ar) As

is concentrated in degree 0. Hence the morphism of dg-algebras

O5r ®s(gr) Ds = U5, ®s(gn) As
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is a quasi-isomorphism. The morphism f R gr is affine, hence the functor ﬁ is
exact, and identifies the category Coh?(S) with the category of G-equivariant coherent
f«BOg-modules on gr. Moreover, there is an isomorphism

fo05 = O, ®s(gn) As-

We deduce from these remarks, using Proposition 5.2.1, that there is a natural equivalence
of categories

(5.3.1) DQCohY(S) = DQCohY (§r, O, @s(gn) Ds)-

Similar remarks apply to the schemes S x gRr, R X S, 8% 8. (For the latter scheme, one
uses the dg-algebra Dg ® Dg, with multiplication defined by (d; ® d2) - (d] ® d}) =
(—1)l=lld1l(dy d} @ dady).)

Recall that, for any te€ .”, we have defined the kernel @)z, , in the category
Coh®#*(Cm)r (g, x §r). Consider the object

L(f x 1dg,,)* 0z, , in D°Coh¥(S x §r).

LEMMA 5.3.2. — Forany S in BGy, there exists an object ﬂCtS in P°Coh¥ (S x §) and an
isomorphism
R(Idg x f).% = L(f x 1d3)* 0z, ,
in 9°Coh? (§ X g). Moreover, these objects can be chosen in such a way that:

1. the objects X f are compatible (up to isomorphism) with change of equivariance functors;
2. if g : 81 — Sy is a morphism in the category BE y, with morphism g : S1 — S, obtained
by change change, there is an isomorphism

(5.3.3) R(ldg, x §). K" = L(g x Idg, )" K;>
in @bCOhﬁ(gl X §2)

Proof. — By the variant of equivalence (5.3.1) for S x 9r, we have an equivalence of
categories

@QCOhg(g X aR) = @QCOhﬁ (ER x ER’ @ERXER ®S(gr)®S(ar) (DS & S(QR)))
Under this equivalence, the object L(]ch x Idg)* @z, , corresponds to
O2.r ®s@m)@S(ar) (Ds @ S(gr))-

To prove the first assertion of the lemma, using the variant of equivalence (5.3.1) for
S x S, it is enough to check that this dg-module can be endowed with the structure of an
O3 x5 ®s(gr)@Sar) (Ds ® Dg)-dg-module. However, by definition Z; g is a subscheme
of gr x o gr. Hence it suffices to extend the action of Dg to an action of Dg ® Dg via the
multiplication map Dg ® Dg — Dg.

Let us consider a morphism S; — S in B €'y, associated with an algebra morphism
Ay — A;. Here, for simplicity, we write A; for Ag, and A, for Ag,. Similarly, we write Dy
and D, for Dg, and Dg,. Then A; is a D1 ®g(q,) D2-dg-algebra. Hence one can choose
a Dy ®g(g,) D2-dg-algebra D; which is graded-commutative and K-flat as a D; ®s(gr)
D,-dg-module (hence also automatically as a S(gr)-dg-module), and a quasi-isomorphism
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D, s, A;. Then, we have a quasi-isomorphism D, s, D1, and a dg-algebra morphism

Dy — D;. As above, we have equivalences of categories

DQCohY (§r X §r, Dgnxin @s(an)es(an) (D1 ® D1))
> DQCoh” (Gr X 8, Og,xdn Os(an)@s(er) (D1 @ D))
=~ 9)QCoh?(S; x Sy).

In the first category, the object j(f ! defined above corresponds to the dg-module

@Zt,R ®S(gr)®S(gR) (51 ® S(gr)),

endowed with a D; ® D;-action which factors through the multiplication map. Similarly,
there is an equivalence

DQCohY(S; x S5) = DQCohY (Gr X Fr, Ognxin ©s(an)@S(en) (D1 ® D2)).

Under this equivalence and the preceding one, the functor R(Id 3, % 9)+ 1s simply a restriction
of scalars functor induced by the dg-algebra morphism Dy — D;. One can describe similarly
the functor L(g x Idg,)* as an extension of scalars functor, and then isomorphism (5.3.3) is
clear.

The change of equivariance can be treated similarly. O

The object thS defined in Lemma 5.3.2 will be the kernel for the action of T;. However,
as S is not a regular scheme in general, it is not obvious that the associated convolution
functor restricts to an endo-functor of %°Coh?(S). This will be proved in the following
proposition. Here, we extend the notation of §1.2 and set, for any H-scheme X and any &
in 2QCoh™ (X x X),

F7 . { ?DQCoh™ (X) — PQCoh (X)
X H — R(p2)« (7 Gxxx L(p1)* ).

PrOPOSITION 5.3.4. — 1. Lett € L and S in @E?ﬁ. Let f : S — g% be the structure

morphism, and f: S - R the morphism obtained by base change. Then the following
diagram commutes:

PQCoh?(§) — " _ 9qCoh? (5x)
F;;S \L I/F;Zt,R
P9QCoh?(§) — " 9QCoh? (x).

S ~
2. The functor th stabilizes the subcategory PP ConY (S).
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Proof. — (1) This follows easily from the projection formula and our definition of %f .
Indeed, for # an object of DQCoh?(S), we have isomorphisms

R(F)FLT () = R(F)ROS)(KF bg,5 LY )
R(g2). R(Idg x J). (K5 &5, 5 L(pd)"H)
R(g2)«R(Idg x f).(K; &g, 5 L(1dg x )" L(qr)* ).

Here, q1 : S x gr — Sand ¢s : S x §r — gr are the projections. Now, by the projection
formula, we obtain

R(P)FLT () = Riga).((R(dg x ). KE) Bz, Llar) ).

IR

IR

IR

By the definition of % (see Lemma 5.3.2), we have R(Idg x ks = L(f x Id;,)* 0z, -
Hence, using again the projection formula,

n j(ts ] ra ra * L *
R(f)«Fg* (#) = R(p5™)«R(f x Idg) (L(f x 1dg)* Oz, »)®5, 5, L(a01)"H)
R(p8")+ (02,0 Ogxan BT X 1), L(1)"#).
Now it is clear that R(f x Idg).L(q1)*H = L(p?R)*R(f)*j‘[. This concludes the proof.

2) Fix some # in 9°Coh?(S). First, we claim that A7 Q%gng(p*f)*ﬂ is in
2°QCohY(S x 5). As f is an affine morphism it is enough to prove that the object

R(f X f)* (Kf égxg L(p‘?)*ﬂ) is bounded. However, by the computations in the proof of
(1) we have

IR

IR

R(f % )o(#7 &5, 5 LT H) 2 0z, 1 Oy L0S) R
Hence the claim follows from the fact that gr x gg is regular.
Then, one can easily check that the object X f & Gx 3 L(p§ )*J isin factin ©°Coh?(Sx S).
The result follows, using the property that the projection Supp(%;9 ) — S is proper. O

5.4. Proof of Theorem 5.1.1

Now we can prove Theorem 5.1.1. In this subsection, we denote by the same symbol “x”
the convolution functors

PQCohY (S x §) x DQCoh?(S x §) — DQCoh?(S x S),
PQCoh?(S x Fr) x DQCohY(S x §) — DQCohY(S x §r),
DQCoh? (Fr x §r) X DQCohY (S x §r) — DQCohY (S x §r)

defined as in §1.2.

Foranyt € .7, the action of the generator T; € B,g on the category 9°Coh? (§ ) is defined
as the functor . N N

FZ* : 9°Coh?(S) — 9"Coh?(8)

(see Proposition 5.3.4(2)). Through the composition S - gr — Br, we can consider Sasa
scheme over B g, hence we have line bundles O)5(z) for any z € X. We define the action of 6,
as the functor
F259 9P Coh(8) — 9P Con?(8).
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Note that this functor is just the twist by the line bundle )z(z). Hence the claims of Propo-
sition 5.3.4 are also true for the kernel ) , 5(z).

To prove that these functors associated with the generators induce an action of B,g, one
easily checks that it is enough to prove the following claims (see §1.10):

1. If t = s,, there are isomorphisms
K x K (=p,p—a) = K (—pp—a)xKS = 0,5
in 2QCoh?(S x 3).

2. The kernels j(f (t € &) satisfy the finite braid relations in the monoidal category
(DPQCohY (S x §),*).

We will only give the proof of the second claim; the first one can be obtained similarly.
Our proof is copied from [54, §4]. To fix notations, we take r,t € . whose braid relation
is T, 3T, = T,T,T;. (The other cases are similar.) We have to prove that there is an
isomorphism

KE x K x K 2 K KE KD
or equivalently using claim (1) that there is an isomorphism
S4l) K (=pp— ) x K7 (—p,p = B) % K} (=p,p— @) % Ky % K} KT = 0,5,
where t = sq, 7 = 53. As fis an affine morphism, it is enough to prove that
(R % J)e (K7 (=pp = @) % KZ (=p,p = B) % K (—p,p = ) % KT 5 KF 5 KT)) =0

if 4 > 0 and that there is an isomorphism of (Idgz x f). 03, g-modules
HO(R(Udg % F)e(K (—pp — ) % KS (=p, p = B) % K (=pp — @)+ KE 5 KT 5 £7))

For any U in QCoh? (S x S) and /' in DQCoh? (§r x §r) we have isomorphisms
9]

ry * M = R(Idg x f)u, M x Oy = L(f x 1dg)*

where I‘(fN) is the graph of f (See [54, Lemma 1.2.3] for the first isomorphism, and the proof
of [54, Corollary 4.3] for the second one.) In particular, using Lemma 5.3.2, for any u = s,
(v € X) we obtain isomorphisms

Ory* Ko = Oz, Orpy,
Orpy * Ka(=psp =) = Oz, (=p,p =) * Op -
Hence, convolving the left hand side of (5.4.1) on the left with @r( 7 we obtain
(02, n(=p,p— @) % Oz, 1 (=p,p = B) * Oz, n(=p,p — @) % Oz, 5 % 0z, 5 % Oz, ) * Op 5
Now we have proved in Corollary 1.12.4 that there is an isomorphism
Oz r(=pp =) x Oz, 1 (=p,p = B) *x Oz, n(=p,p = @) x Oz, % Oz,  * Oz, 5 = Oy

in 9"Coh®r*(Em)r (gL x §r). The result follows.
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Compatibility with direct images can be proved as in Proposition 5.3.4(1), using Equa-
tion (5.3.3). Then, compatibility with inverse images follows by adjunction. Finally, compat-
ibility with change of scalars functors is clear by construction and Lemma 5.3.2.
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