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MONODROMY AND TOPOLOGICAL
CLASSIFICATION OF GERMS

OF HOLOMORPHIC FOLIATIONS

ʙʏ D��ɪ� MARÍN �ɴ� J��ɴ-Fʀ�ɴ��ɪ� MATTEI

Aʙ��ʀ���. – We give a complete topological classification of germs of holomorphic foliations
in the plane under rather generic conditions. The key point is the introduction of a new topological
invariant called monodromy representation. This monodromy contains all the relevant dynamical
information, in particular the projective holonomy representations whose topological invariance was
conjectured in the eighties by Cerveau and Sad and is proved here under mild hypotheses.

R�����. – Nous donnons une classification topologique complète des germes de feuilletages ho-
lomorphes dans le plan, sous des conditions de type plutôt générique. Le point-clé est l’introduction
d’un nouvel invariant topologique appelé représentation de monodromie. Cette monodromie contient
toutes les informations dynamiques pertinentes, en particulier les représentations d’holonomie projec-
tive dont l’invariance topologique a été conjecturée dans les années quatre-vingt par Cerveau et Sad et
est prouvée ici sous des hypothèses faibles.

1. Introduction

The objective of this paper is to provide a complete topological classification of germs of
singular non-dicritical holomorphic foliations F at (0, 0) ∈ C2 under very generic condi-
tions. To do this we introduce a new topological invariant which is a representation of the
fundamental group of the complement of the separatrix curve into a suitable automorphism
group. We shall call this representation the monodromy of the foliation germ.

In fact, the motivation of this work was the following conjecture of D. Cerveau and P. Sad
in 1986, cf. [3, page 246]. Consider two germs of foliations defined by germs of differential
holomorphic 1-forms ω and ω

� at (0, 0) ∈ C2.

C�ɴ�����ʀ� 1.1 (Cerveau-Sad). – If ω and ω
�

are topologically conjugate and if ω is a

generalized curve, then their respective projective holonomy representations are conjugate.

The first author was partially supported by the projects MTM2007-65122 and MTM2008-02294 of the Minis-
terio de Educación y Ciencia de España / FEDER.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/03/© 2012 Société Mathématique de France. Tous droits réservés



406 D. MARÍN AND J.-F. MATTEI

It was given in two forms, each of them with natural generic hypothesis concerning
the germ of the foliation F along the exceptional divisor E F := E

−1
F (0) of the reduction

E F : BF → C2 of the singularity of F , cf. [18, 12]. The weak form (named Conjecture A)
assumes that the separatrix curve is the union of smooth and transverse branches. In partic-
ular, E F corresponds to a single blow-up. The strong form (named Conjecture B) only asks
that the reduced foliation F = E

∗
F ( F ) on BF does not have any saddle-node singularity.

Conjecture A was established by one of us in [8]. We give here an affirmative answer
to Conjecture B. More precisely, Theorem I below gives a list of topological invariants
containing the projective holonomy representations. In turn Theorem II gives a complete
topological classification.

It is worthwhile to stress here that through the whole paper all the topological conjuga-
tions between foliations that we consider are supposed to preserve the orientations of the
ambient space and also the leaves orientations.

As in the situation considered by D. Cerveau and P. Sad, we restrict our attention to
a reasonable class of foliations that are going to be called Generic General Type. Let F
be a non-dicritical foliation, i.e., having a finite number n of irreducible analytic germ
curves S1, . . . , Sn invariant by F , which are called separatrices. Here it is worth to recall
the celebrated Separatrix Theorem of [2] asserting that n > 0. In the sequel we will call
S F :=

�n
i=1 Si the separatrix curve of F . Following [9] we say that the foliation F is of

General Type if all the singularities of F which are not linearizable are resonant, more
precisely:

(GT) for each singularity of F there are local holomorphic coordinates (u, v) such that F is

locally defined by a holomorphic 1-form of one of the two following types:

(i) λ1udv + λ2vdu, with λ1λ2 �= 0 and λ1/λ2 /∈ Q<0 (linearizable singularity),

(ii) (λ1u + · · · )dv + (λ2v + · · · )du, with λ1, λ2 ∈ N∗ (resonant saddle).

To introduce the additional genericity condition (G) we recall first that a singularity of F is
of nodal type if it can be locally written as

(λ1u + · · · )dv + (λ2v + · · · )du,

with λ1λ2 �= 0 and λ1/λ2 ∈ R<0 \ Q<0. Such singularities are always linearizable and
consequently the only local analytical invariant of a node is its Camacho-Sad index−λ1/λ2.
The topological specificity of a nodal singularity s is the existence, in any small neighborhood
of s, of a saturated closed set whose complement is an open disconnected neighborhood of
the two punctured local separatrices of the node. We call nodal separator such a saturated
closed set. We denote by Node( F ) the set of nodal singularities of F . With this notation the
genericity condition can be stated as follows:

(G) The closure of each connected component of E F \ (Node( F ) ∩ Sing( E F )) contains an

irreducible component of the exceptional divisor E F having a non solvable holonomy

group.

Notice that when Node( F ) = ∅, the genericity condition (G) only asks for a single irre-
ducible component of E F having a non solvable holonomy group. In the space of coefficients
of the germ of holomorphic 1-form defining the foliation this condition is generic in the sense
of the Krull topology, cf. [6].
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MONODROMY AND TOPOLOGICAL CLASSIFICATION 407

A foliation satisfying Conditions (G) and (GT) above will be called Generic General Type.
For such a foliation F , if Node( F ) = ∅ Theorem I below provides a list of topological
invariants. In the case that Node( F ) �= ∅ we must restrict the class of topological conju-
gations in order to keep their invariance. In fact, the first version [11] of this work dealt only
with Generic General Type foliations F satisfying the additional requirement Node( F ) = ∅.
Here this hypothesis is eliminated by modifying slightly the statements and the proofs given
in [11]. In practice, this is done by adding a prefix “ N -” to some notions whose new meaning
is made precise when they appear for the first time. We recommend the reader to ignore all
the prefix “ N -” in a first reading.

Definitions for the nodal case

– A nodal separatrix of F is a separatrix whose strict transform by the reduction map E F
meets the exceptional divisor at a nodal singular point of F .

– An N -separator of F is the union of a system of nodal separators, one for each
point in Node( F ) ∩ Sing( E F ) jointly with some tubular neighborhoods of the strict
transforms of the nodal separatrices of F . An N -separator of F is the image by E F of
an N -separator of F . If Node( F ) = ∅, an N -separator is the empty set.

– An N -topological conjugation between two foliation germs F and F � is a germ of
homeomorphism h preserving the orientation of the ambient space as well as the
orientation of the leaves, which is a topological conjugation between F and F �, such
that for each nodal separatrix Sj of F , h(Sj) is a nodal separatrix of F � and the
Camacho-Sad indices of F and F � along the strict transforms of Sj and h(Sj) coincide.

– An N -transversely holomorphic conjugation between F and F � (resp. F and F �) is an
N -topologically conjugation between these foliations, which is transversely holomor-
phic on the complementary of some N -separator of F (resp. F ).

Clearly the notions of N -topological conjugation and N -transversely holomorphic conju-
gation coincide with the usual notions of topological conjugation and transversely holomor-
phic conjugation, when Node( F ) = ∅. In Section 7.2, cf. Remark 7.2.1, we shall prove that:

– Any topological conjugation which is transversely holomorphic in a neighborhood of each

nodal separatrix minus the origin is an N -topological conjugation.

In particular, any transversely holomorphic conjugation is an N -topological conjugation(1).
In order to assure the transverse holomorphy of a conjugation we shall use a generalized
form of the following theorem of J. Rebelo [16]:

Tʜ��ʀ�� 1.2 (Transverse Rigidity Theorem). – Every topological conjugation between

two germs of non-dicritical holomorphic foliations satisfying the genericity condition (G) and

having singularities, after reduction, of type (λ1u + · · · )dv + (λ2v + · · · )du with λ1λ2 �= 0,

λ1/λ2 /∈ R<0, is transversely conformal.

(1) Added in proof: R. Rosas has shown in a recent preprint [17] that every topological conjugation is an N -topo-
logical conjugation.
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408 D. MARÍN AND J.-F. MATTEI

In fact the proof provided in [16] shows that if we allow nodal singularities then each
connected component of E F \ (Node( F ) ∩ Sing( E F )) possesses an open neighborhood W

such that the restriction of the topological conjugation to E F (W ) \ {0} is transversely
conformal. The extended version of the Transverse Rigidity Theorem asserts:

(TRT) For any orientation preserving topological conjugation Φ between two germs of non-

dicritical generalized curves satisfying condition (G) we have that Φ is an N -topological

conjugation if and only if Φ is an N -transversely holomorphic conjugation.

Tʜ��ʀ�� 1.3 (Theorem I). – For every non-dicritical Generic General Type foliation F ,

the analytic type of the projective holonomy representation of each irreducible component of

the exceptional divisor E F is a topological invariant when Node( F ) = ∅. More generally, the

semilocal data S L( F ) constituted by

– the topological type of the embedding of the total separatrix curve S F of F into (C2
, 0),

– the collection of local analytic types [ F s]
hol

of the reduced foliation F at each singular

point s ∈ Sing( F ), codifying in particular the Camacho-Sad index CS( F , D, s) of F at

every singular point s along each irreducible component D of E F containing s,

– the analytic type of the holonomy representation H F , D of each irreducible component D

of E F ,

is an N -topological invariant (2) of the germ of F at 0 ∈ C2
.

Notice that the Camacho-Sad index CS( F , D, s) determines the analytic type of F at s

when s is not a resonant singularity after the assumption (GT). On the other hand, the
genericity condition (G) is strictly necessary in Theorem I. Indeed, inside the family of
homeomorphisms Ψ(x, y) = (x|x|a, y|y|b) there is a topological conjugation between any
pair of linear hyperbolic singularities having different Camacho-Sad indices.

Theorem I asserts that S L( F ) is a topological invariant for the class of Generic General
Type foliations with Node( F ) = ∅. In fact, the equality S L( F ) = S L( F �) needs to be
specified because the index sets of the families can be different for F and F �. In order to do
this, we recall that a topological conjugation between F and F � as above transforms S F into
S F � and induces a unique homeomorphism

Ψ
�
: E F → E F � , Ψ

�
(Sing( F )) = Sing( F �)

between the exceptional divisors up to isotopy. This is a consequence of the following result
proved in a previous work [10].

Tʜ��ʀ�� 1.4 (Marking Theorem). – Let S and S
�

be two germs of analytic curves at the

origin in C2
and let h : (C2

, 0)
∼−→(C2

, 0) be a germ of homeomorphism such that h(S) = S
�
.

If ES and ES� denote the minimal reduction of singularities of S and S
�
, then there is a germ

of homeomorphism h1 : (C2
, 0)

∼−→(C2
, 0) such that:

(i) h1(S) = S
�
and the restrictions of h and h1 to the complements of S and S

�
are homotopic,

(2) Added in proof: By applying the previously cited preprint of R. Rosas [17], Theorem I can be rephrased as
“ S L( F ) is a topological invariant”.
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(ii) E
−1
S� ◦h1 ◦ES extends to a homeomorphism from a neighborhood of DS := E

−1
S (S) onto

a neighborhood of E
−1
S� (S

�
), being holomorphic over an open neighborhood of Sing(DS)

and compatible with the Hopf fibrations outside another open neighborhood of Sing(DS).

The topological invariance of S L( F ) induced by the conjugation Ψ between F and F � means
that for each irreducible component D of E F and each singular point s ∈ Sing( F ), the
following conditions hold:

a) CS( F �,Ψ�
(D),Ψ

�
(s)) = CS( F , D, s)) and [ F �Ψ�(s)]

hol
= [ F s]

hol,
b) there exists a germ of biholomorphism ψ between two germs (∆, m) and (∆

�
, m

�
) of

transverse analytic curves to F and F � through points m ∈ D\Sing( F ) and m
�
:= Ψ

�
(m)

respectively, such that the following diagram is commutative:

(1)

π1(D \ Sing( F ), m)
H F

D ✲ Diff(∆, m)

�

π1(D
� \ Sing( F �), m

�
)

Ψ
�
∗

❄ H F �
D� ✲ Diff(∆

�
, m

�
)

ψ∗

❄

with ψ∗(ϕ) := ψ ◦ ϕ ◦ ψ
−1 and Ψ

�
∗(γ̇) := Ψ

� ◦ γ̇.

Notice that S L( F ) is a “semi-local” invariant in the sense that it only contains informa-
tion along the irreducible components of E F , but it does not provide any information about
the combinatorial gluing of these data. Thus, it cannot be reasonably a complete invariant
of F . To remedy for this situation, the idea is to consider the separatrix curve S F as the “orga-
nization center” of the topology of F as was conjectured by René Thom in the seventies.
The incompressibility of the leaves inside the complement of S F proved in [9] plays a major
role here and it indicates that the fundamental group of the complement of S F “controls”
the topology of the leaves of F . It also suggests the possibility to replace the usual notion
of “holonomy” by that of “monodromy”. The “holonomy” consists of the pseudo-group of
local automorphisms of the ambient space coming from the ambiguity of the (multivalued)
first integrals of F . The “monodromy” reports the automorphisms of the set of (multival-
ued) first integrals coming from the ambiguity of the ambient space. We precise this notion
in a general setting:

D��ɪɴɪ�ɪ�ɴ 1.5. – Let G be a differentiable foliation on a manifold M and consider the

universal covering q : �M → M of M . We denote by �G the lift of G in �M and by �M/�G the space

of leaves of �G. Then the monodromy of G is the morphism

M
G
M : Aut(�M, q) → Aut(�M/�G) ,

sending an element ϕ of the group of deck transformations of q to the automorphism of �M/�G
obtained by factorizing ϕ, i.e.,M

G
M (ϕ) ◦ τ = τ ◦ ϕ, where τ : �M → �M/�G denotes the natural

quotient map.
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410 D. MARÍN AND J.-F. MATTEI

For instance, if (M, G) is a foliated bundle over B with simply connected fibre F then
�M = �B×F , �M/�G = F and the monodromyM G

M can be identified with the global holonomy
representation π1(M) → Aut(F ).

In [9] we have constructed a fundamental system (Uα)α of neighborhoods of S F in a Mil-
nor ball such that the space of leaves of the universal covering �U∗α → U

∗
α of U

∗
α := Uα \ S F

is a (in general non Hausdorff) holomorphic manifold. Thus, the monodromy of the global
foliation F |U∗α is a representation of π1(U

∗
α) to the group of holomorphic automorphisms

of the leaf space �Q
F
Uα

of �U∗α. However, this monodromy representation depends on the
choice of the open set where is defined the chosen representative of the germ F . This notion
of monodromy admits a reformulation in term of germs by considering the category of

pro-objects, cf. Section 3.1. This allows us to introduce the notion of monodromy of a germ

of foliation in Definition 3.4.1. Roughly speaking, the image of a deck transformation g

of the universal covering �U∗α → U
∗
α by the monodromy representation of F is given by

taking the germ over all the open sets Uα of the mappping from �Q
F
Uα

to itself defined by
�Lα �→ g(�Lα). The interest of this notion lies in the fact that it takes into account simulta-
neously the “transverse structure” of the foliation and the topology of the complement of
their separatrix curves.

We must also consider the quite technical but highly relevant notions of geometric conjuga-

tion of monodromies (Definition 3.4.3) preserving the Camacho-Sad indices (Definition 3.5.5)
and realizable over transversals (Definition 3.6.1), which allows us to compare in a precise
way the monodromies of two germs of foliations. We refer the reader to Section 3 to have
precise definitions of these technical notions. Using them, the statement of the main result
of this paper is the following:

Tʜ��ʀ�� 1.6 (Theorem II). – If F and F � are Generic General Type foliations, then the

following properties are equivalent:

1. there exists an N -topological conjugation between the germs F and F �,
2. there exists an N -transversely holomorphic conjugation between the foliations F and F �,

which is defined on open neighborhoods of the exceptional divisors,

3. there exists a geometric N -conjugation of the monodromies of the germs F and F �,
preserving the Camacho-Sad indices, which is realizable over N -collections of transversals

Σ and Σ
�

of F and F �.

If Node( F ) = ∅ then an N -collection of transversals of F consists in a single germ
of regular holomorphic curve transverse to any separatrix of F , at a regular point. When
Node( F ) �= ∅ we must precise the location of the connected components of an N -collection
of transversals of F by using the following theorem of [15, Corollary 4.1] generalizing the
main result of [2]:

Tʜ��ʀ�� 1.7 (Strong Camacho-Sad Separatrix Theorem). – Each connected compo-

nent of E F \(Node( F )∩Sing( E F )) contains a singular point of F lying on the strict transform

of a separatrix of F whose Camacho-Sad index has positive real part.
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MONODROMY AND TOPOLOGICAL CLASSIFICATION 411

In particular, for each connected component C of E F \(Node( F )∩Sing( E F )) exists a (not
necessarily unique) non-nodal separatrix of F whose strict transform meets C. We define an
N -collection of transversals of F as a collection Σ = {(Σ1, p1), . . . , (Σm, pm)} where each
(Σi, pi) is the germ at pi ∈ S F \ {0} of a regular curve Σi transverse to F and the whole
collection fulfills the following property:

(σ) for each connected component C of E F \ (Node( F ) ∩ Sing( E F )) there exists a germ

(Σi, pi) of Σ with pi belonging to a non-nodal separatrix of F whose strict transform

meets C.

In fact, Theorems I and II are easy consequences of Theorems 5.0.1 and 5.0.2 that are
going to be proved in Sections 7 and 8. They are more general than Theorems I and II because
the genericity hypothesis (G) is replaced by weaker but more technical conditions. Notice
also that Corollary 5.0.4 is of interest even in the case F = F �. If, in addition, we assume
that Node( F ) = ∅ then it implies the following result concerning the automorphism group
Aut0( F ) of orientations preserving homeomorphisms germs conjugating F to itself.

C�ʀ�ʟʟ�ʀʏ 1.8. – If F is a Generic General Type foliation with Node( F ) = ∅, then for

each h ∈ Aut0( F ) there exists a homeomorphism h1 ∈ Aut0( F ) satisfying for S = S
�
= S F

the properties (i) and (ii) of Marking Theorem.

2. Preliminary notions

Through all the paper we will use the following notations:

Br = {(x, y) ∈ C2
, |x|2 + |y|2 ≤ r}, Dr = {z ∈ C, |z| ≤ r} ,

and if B ⊂ A, B
� ⊂ A

�, f : (A, B) → (A
�
, B

�
) will denote the germ of a map f1 defined on

a neighborhood of B in A into A
�, such that f1(B) ⊂ B

�.
In this section S ⊂ C2 denotes a holomorphic curve with an isolated singularity at

the origin 0 = (0, 0) of C2 and B := Br0 is a closed Milnor ball for S, i.e., each sphere
∂Br, 0 < r ≤ r0, is transverse to S, cf. [13]. We denote by ES : BS → B the minimal

desingularization map of S such that the total divisor DS := E
−1
S (S) has normal crossings.

We denote by ES := E
−1
S (0) the exceptional divisor and by S := DS \ ES the strict transform

of S. We will also use the following conventions along all the paper: for A ⊂ B and for
A ⊂ BS we put

(2) A
∗

:= A \ S and A∗ := A \ DS .

2.1. Incompressibility of the leaves

Let F be a singular non-dicritical holomorphic foliation defined in a neighborhood of B,
having 0 as the unique singularity and S as the separatrix curve in B, i.e., S is invariant
by F and every analytic invariant curve passing through 0 is contained in S. Denote by
E F : BF → B the minimal reduction of singularities map of F and by F = E

∗
F F the

reduced foliation over BF . The hypothesis (GT) on F implies that F does not have any
saddle-node singularity, so that F is a generalized curve and consequently BF = BS and
ES = E F , cf. [1].
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412 D. MARÍN AND J.-F. MATTEI

Now we fix an N -collection of holomorphic transversal curves Σ ⊂ B (i.e., satisfying
Condition (σ) given in the introduction). The saturation of a small transversal to one of the
separatrices of a non-nodal (GT)-singularity s jointly with the two local separatrices of s, is
a neighborhood of s. Consequently the following property holds:

a) there exists an N -separator N of F , such that for any open neighborhood W of S in B,

the closure of

Sat F (E
−1
S (Σ), E

−1
S (W ) \ N)

is a neighborhood of DS \ Node( F ), in E
−1
S (W \ N),

where Sat F (A, B) denotes the union of all the leaves of F |B meeting A and it is called the

saturation of A in B by F .
We say that an open neighborhood U of S in B is ( F ,Σ)-admissible, if for each leaf L of

the regular foliation F |U∗ , the following properties hold:

b) L is incompressible in U
∗
, i.e., the inclusion L ⊂ U

∗
induces a monomorphism

π1(L, p) �→ π1(U
∗
, p), p ∈ L; in addition the map π1(U

∗
, p) → π1(B∗, p) induced

by the inclusion U
∗ ⊂ B∗ is an isomorphism;

c) every path in L whose ends are in Σ
∗

and which is homotopic in U
∗

to a path contained

in Σ
∗
, is a null homotopic loop in L.

Notice that an admissible open set U ⊂ B is not necessarily saturated in B. We denote
by U F ,Σ the collection of connected open neighborhoods of S which are ( F ,Σ)-admissible.
Property c) above will play a key role in this work. In fact, it is equivalent to the foliated

1-connexity of Σ ∩ U
∗ in U

∗. This notion introduced in [9] plays a major role in the proof
of the main result of [9, Theorem 6.1.1] which can be stated as follows:

Tʜ��ʀ�� 2.1.1. – If F is a foliation of General Type, then U F ,Σ is a fundamental system

of neighborhoods of S in the closed Milnor ball B.

2.2. Leaf spaces

We fix once for all a universal covering q : �B∗ → B∗ of B∗ and for every subset A ⊂ B we
will denote

(3) �A∗ := q
−1

(A
∗
) and qA := q| �A∗ : �A∗ −→ A

∗
.

If U ∈ U F ,Σ then qU is a universal covering of U
∗. The group Γ := Autq(

�B∗) of deck trans-
formations of the covering q can be identified with the group ΓU of deck transformations of
the covering qU by the restriction map g �→ g|�U∗ . Hence, we can also identify Γ with

(4) Γ∞ := lim←−U∈ U F ,Σ
ΓU .

On �B∗ we consider the regular foliation �F , pull-back of F by q. For U ∈ U F ,Σ, we denote
by �F U its restriction to �U∗ and for an arbitrary subset W of U , we denote by

(5) �Q
F
W :=

�
�W ∗

�
�F W

�
, �W : �W ∗ → �Q

F
W ⊂ �Q

F
U ,

the leaf space of the restriction �F W of �F U to �W ∗, endowed with the quotient topology and

the quotient map �W . It turns out that if W is saturated in U then the natural map �Q
F
W �→ �Q

F
U
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MONODROMY AND TOPOLOGICAL CLASSIFICATION 413

is a topological embedding, i.e., a homeomorphism onto its image, and we may consider �Q
F
W

as a subset of �Q
F
U .

Properties a), b) and c) satisfied by the open sets of U F ,Σ can be understood as geometric
properties of the foliation �F U with respect to the transverse section �Σ∗U := �Σ∗ ∩ �U∗, cf. [9,
§6.2]:

– every leaf of �F U is simply connected;

– the intersection of every leaf of �F U with each connected component of �Σ∗U is either empty

or consists in a single point;

– the restriction of �U to each connected component of �Σ∗U , is a topological embedding.

Let N be an N -separator of F satisfying Property a) of the previous section. The inverse
maps of the �U ’s restrictions to the connected components of �Σ∗U form a holomorphic

atlas on �Q
F
U\N , defining a structure of one dimensional complex manifold (non necessarily

Hausdorff) over it. It is easy to check that this structure extends to a unique structure of

complex manifold over �Q
F
U , such that:

– for every holomorphic map g : D1 → �U∗, the composition

�U ◦ g : D1 → �Q
F
U

is also holomorphic.

It is clear that each element g of ΓU preserves the foliation �F U and factorizes by an

element g
�
U of the analytic automorphism group AutAn(�Q

F
U ). In [9] we have defined the

monodromy of F U as the morphism

(6) M
F
U : ΓU −→ AutAn(�Q

F
U ) , g �→ g

�
U .

This representation of ΓU is clearly an analytic invariant of the foliation F U by biholomor-
phisms preserving the open set U . In order to obtain an analytic invariant of the germ of F
at 0, or along S, we need to “germify” this notion. This will be done in the following section.

3. Monodromy of a germ of foliation

3.1. Germification

The set U F ,Σ is cofiltered by the partial order

U � V :⇐⇒ U ⊃ V.

The maps

(7) ρUV : �Q
F
V −→ �Q

F
U , V ⊂ U, U, V ∈ U F , Σ ,

sending each leaf L of �F V into the unique leaf of �F U containing L, are open and holomor-
phic. They form a projective or inverse system of complex manifolds

�Q
F
∞ :=

��
�Q

F
U

�

U∈U F ,Σ

, (ρUV )
U,V∈U F ,Σ, U�V

�
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called the leaf pro-space of �F . It is an object in the category An←− of pro-objects associated to
the category An of (non necessarily Hausdorff) complex manifolds and holomorphic maps.
We recall that the objets of An←− are the projective families of complex manifolds; on the other
hand, if A andB are cofiltered sets and

M = ((Mα)α∈A, (ζαα�)α≥α�) and M
�
=

�
(M

�
β)β∈B, (ζ

�
ββ�)β≥β�

�

are two objects of An←− then the set of An←−-morphisms of M into M
� is by definition

(8) HomAn←−
(M, M

�
) := lim←−β∈B lim−→α∈A O(Mα, M

�
β) ,

where O(Mα, M
�
β) denotes the set of holomorphic maps of Mα into M

�
β . For further details,

see [4].

3.2. Pro-germs at infinity

Let M be a complex submanifold of �B∗ such that q(M) ∩ S �= ∅. The projective system

(M,∞) :=

�
(M ∩ �U∗)U∈U F ,Σ

, (ιUV )U,V ∈U F ,Σ, V⊂U

�
,

formed by the inclusion maps ιUV of M ∩ �V ∗ into M ∩ �U∗ is a pro-object in An←−. Let T be a
complex manifold. Every element g of the set

O((M,∞), T ) := lim−→U∈U F ,Σ
O(M ∩ �U∗, T )

will be called germ at infinity of M into T and denoted by g : (M,∞) → T . Identify-
ing T to the constant projective system, O((M,∞), T ) can be naturally identified with
HomAn←−

((M,∞), T ).

R���ʀ� 3.2.1. – Endowing M with the induced topology of �B∗, the pre-sheaf
W �→ O((W,∞), T ) is not a sheaf and two different germs at infinity f, g ∈ O((M,∞), T )

can coincide as elements of O((M ∩Vj ,∞), over the intersection of M with each open set of
a covering (Vj)j∈J . In particular, if M has infinitely many connected components M

α, each
of them satisfying q(Mα) ∩ S �= ∅, then the restriction map O(M,∞) →

�
α O(M

α
,∞) is

never surjective.

Assume now that T is contained in �B∗. Each element f of the set

HomAn←−
((M,∞), (T,∞))

is called pro-germ at infinity of M into T and it shall be denoted by f : (M,∞) → (T,∞).
Thus, f is a family of germs at infinity

f = (fV )V ∈ U F , Σ
∈

�

V ∈U F ,Σ

O((M,∞), T ∩ �V ∗) ,

such that ςV W ◦ fW = fV , W ⊂ V , where ςWV denotes the inclusion map of T ∩ �W ∗ into
T ∩ �V ∗. The same notions in the category Top of topological spaces and continuous maps
define the set of continuous pro-germs at infinity

HomTop
←−−

((M,∞), (T,∞)) .
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Notice that the group of pro-germs at infinity of deck transformations of the covering can
be canonically identified with the group Γ∞ defined by (4):

Γ∞ �
�

ϕ ∈ AutAn←−
(�B∗,∞) | q∞ ◦ ϕ = q∞

�
,

where q∞ : (�B∗,∞) → B denotes the germ at infinity of the covering map q.

3.3. Canonical pro-germs

For every U ∈ U F ,Σ we denote by

τM,U : (M,∞) → �Q
F
U

the germ at infinity of the quotient map �U → �Q
F
U restricted to M ∩ �U∗. The element

τM := (τM,U)U∈U F , Σ
∈ HomAn←−

((M,∞), �Q
F
∞) ⊂

�

U∈U F ,Σ

O((M,∞), �Q
F
U )

will be called the canonical pro-morphism associated to M . Next proposition follows easily
from the geometric properties of the foliation �F U relatively to �Σ∗U stated in Section 2.1.

Pʀ����ɪ�ɪ�ɴ 3.3.1. – If M is a connected component of �Σ∗ then τM is a monomorphism

in the category An←−.

3.4. Monodromy of a germ

Let g be an element of Γ∞ and consider U, V ∈ U F , Σ with V ⊂ U . With the notations
(6) and (7) we have the following commutation relations:

g
�
U ◦ ρUV = ρUV ◦ g

�
V ∈ O(�Q

F
V , �Q

F
U ) .

Hence, by denoting O(�Q
F
∞, �Q

F
U ) := lim−→V ∈U F , Σ

O(�Q
F
V , �Q

F
U ), the elements

g
�
U∞ := lim−→V (g

�
U ◦ ρUV ) ∈ O(�Q

F
∞, �Q

F
U )

form a projective family. The An←−-endomorphism

g
�
:= (g

�
U∞)U∈U F , Σ

∈ EndAn←−
(�Q

F
∞) ⊂

�

U∈U F , Σ

O(�Q
F
∞, �Q

F
U ) ,

is invertible and its inverse is (g
−1

)
�. More generally, we have the following covariance

relations:

(g ◦ h)
�
= g

� ◦ h
�
, g, h ∈ Γ∞ .

D��ɪɴɪ�ɪ�ɴ 3.4.1. – The morphism of groups

M
F
S : Γ∞ −→ AutAn←−

(�Q
F
∞) , g �→M F

S (g) := g
�

is called the monodromy of the germ of F along S.
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We now fix once for all a second curve S
� ⊂ C2 with an isolated singularity at the origin

as well as a closed Milnor ball B� for S
�. We denote by ES� : B�S� → B�, DS� , ES� , S�, the

minimal desingularization map, the total transform, the exceptional divisor and the strict
transform of S

� respectively. In order to avoid any ambiguity with the notation (2), we set

(9) A
�

:= A \ S
�
, A�

:= A \ DS� , for A ⊂ B� and A ⊂ B�S� .

We also fix a singular non-dicritical holomorphic foliation F � of General Type defined in a
neighborhood of B� having S

� as total separatrix curve. Let Σ
� ⊂ B� be an N -collection of

transversals of F �, we denote by U F �,Σ� the set of open neighborhoods of S
� in B� which are

( F �,Σ�)-admissible and we fix a universal covering q
�
: �B�� → B��. For A ⊂ B�, we put

(10) �A�
:= q

�−1
(A

�
) , and q

�
A := q

�
| �A� : �A� → A

�
.

As in (4), we identify the projective limit of the groups Γ
�
U of deck transformations of the

covering q
�
U� with the group of pro-automorphisms at infinity of B� preserving the germ at

infinity q
�
∞ of q

�:

Γ
�
∞ := lim←−U∈U F �,Σ�Γ

�
U �

�
ϕ ∈ AutAn←−

( �B��,∞) | q
�
∞ ◦ ϕ = q

�
∞

�
.

When Node( F ) �= ∅, we also need to consider a mixed class of pro-germs:

D��ɪɴɪ�ɪ�ɴ 3.4.2. – An N -analytic pro-germ is an element of

Hom N −An←−
(�Q

F
∞, �Q

F �

∞ ) ⊂ HomTop
←−−

(�Q
F
∞, �Q

F �

∞ )

consisting in a collection f = (fU �)
�
U of germs which can be represented by continuous maps

f
U �

: �Q
F
U → �Q

F �

U � , U ∈ U F ,Σ, U
� ∈ U F �,Σ� , for which there are N -separators N and N

�
of F

and F �, such that f
U �

(�Q
F
U∩N ) ⊂ �Q

F
U �∩N � and f

U �
is holomorphic in �Q

F
U\N , cf. (5).

The usual notion of conjugation of group representations induces the notion of con-

jugation (resp. N -conjugation) between the monodromies M F
S and M F �

S� as a pair (g, h)

where g : Γ∞
∼−→Γ

�
∞ is an isomorphism of groups and h ∈ IsomAn←−

(�Q
F
∞, �Q

F �

∞ ) (resp.

h ∈ Isom N −An←−
(�Q

F
∞, �Q

F �

∞ )) satisfying the commutation relation h∗ ◦M F
S =M F �

S� ◦ g where

h∗ : AutAn←−
(�Q

F
∞)

∼−→ AutAn←−
(�Q

F �

∞ )(11)

ϕ �→ h ◦ ϕ ◦ h
−1

.

This notion of conjugation is algebraic and does not take into account the many topological
information contained in the monodromy morphisms. Then we introduce the following more
specific notion:

D��ɪɴɪ�ɪ�ɴ 3.4.3. – A geometric conjugation (resp. geometric N -conjugation) between

the monodromiesM F
S andM F �

S� , is a conjugation (resp. N -conjugation) (g, h) such that there

are a homeomorphism germ g not necessarily foliated from (B, S) into (B�, S�) preserving the

orientations of B, B� and S, S
�
and a pro-germ at infinity �g from (�B∗,∞) into (�B��,∞) lifting g,

i.e., q
�
∞ ◦ �g = g ◦ q∞, such that g equals the conjugation morphism defined by �g:

(12) g = �g∗ : Γ∞ → Γ
�
∞ , ϕ �→ �g ◦ ϕ ◦ �g−1

.
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We then have the following commutative diagram:

Γ∞
M F

S ��

g=�g∗

��

�

AutAn←−
(�Q

F
∞)

h∗
��

Γ
�
∞

M F �
S� �� AutAn←−

(�Q
F �

∞ )

,

and we will say that the triple (g, �g, h) represents geometrically the ( N -)conjugation (g, h).

R���ʀ� 3.4.4. – Let Θt : U
∼−→Θt(U), U ⊂ B, be a S-isotopy, i.e., a continuous family

of homeomorphisms depending on a parameter t ∈ [0, 1] such that for each t ∈ [0, 1],
Θt(U) is an open neighborhood of S in B, Θt(S) = S, Θt(p) = p for all p ∈ U ∩ ∂B
and Θ0 = idU . We denote by �Θt the open embedding of �U∗ into �B∗ lifting Θt, such that
�Θt(�p) = �p if q(�p) ∈ ∂B. It depends continuously on t, and �Θ0 = id�U∗ . Since the induced
maps (�g ◦ �Θt)∗ : Γ∞ → Γ

�
∞ depend continuously on t, they are constant and consequently if

(g, �g, h) is a geometric representation of an ( N -)conjugation (g, h), then (g ◦ Θ1, �g ◦ �Θ1, h)

is also a geometric representation of (g, h). In the same way, if Θ
�
t : U

� ∼−→Θ
�
t(U

�
), U

� ∈ B�,
t ∈ [0, 1], is a S

�-isotopy, then (Θ
�
1 ◦ g, �Θ�1 ◦ �g, h) is also a geometric representation of (g, h).

3.5. Marking a germ of curve

In [10] we have introduced the notion of marking of a germ of curve (S
�
, 0) by another

germ of curve (S, 0) as a fundamental equivalence class of germs of homeomorphisms
of (C2

, 0) conjugating (S, 0) to (S
�
, 0). From Proposition 2.8 of [10] it follows that two

homeomorphic germs φ0 and φ1 are fundamentally equivalent if and only if one of the
following equivalent properties is satisfied:

1. there exist ε > 0 and a homotopy Φ ∈ C0
(B∗ε × [0, 1], B��) such that Φ(·, 0) and Φ(·, 1) are

representatives of the restrictions to the complement of S of the germs φ0 and φ1 respectively;

2. there exist representatives φ
0
, φ

1
of the germs φ0 and φ1 on a small ball Bε such that for

all p ∈ B∗ε there is a path α contained in B�� with endpoints φ
0
(p) and φ

1
(p) such that the

morphism α∗ : γ̇ �→ α̇
−1

∨γ̇∨α̇ makes commutative the following diagram:

π1(B∗ε, p)

φ
0∗ ��

φ
1∗

��

π1(B��, φ0
(p))

α∗

��
π1(B��, φ1

(p)).

R���ʀ� 3.5.1. – The morphism g of a geometric ( N -)conjugation (g, h) between the
monodromiesM F

S andM F �
S� determines a marking of (S

�
, 0) by (S, 0), that we will denote

again by g.
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In [10] we have seen that every marking can be represented by a homeomorphism having
good regularity properties. In order to precise these properties we need to consider some
auxiliary geometric data. For each irreducible components D of DS and D

� of DS� we fix
germs of submersions

πD : (BS , D) → D and πD� : (BS� , D) → D
�

whose respective restrictions to D and D
� are the identity. They will be called the Hopf

fibrations of D and D
�. For each singular point s ∈ Sing(DS) and s

� ∈ Sing(DS�), we
fix holomorphic charts (xs, ys) : W s

∼−→D2
1, (xs� , ys�) : W s�

∼−→D2
1, with disjoint domains

and such that the local equations of DS and DS� are monomial in these coordinates. The
collections

(13) L := ((πD)D, (xs, ys)s) , L � := ((πD�)D� , (xs� , ys�)s�)

will be called local data for S and S
�.

D��ɪɴɪ�ɪ�ɴ 3.5.2. – A germ of homeomorphism g from (B, S) into (B�, S�) will be called

excellent (resp. N -excellent) with respect to the local data L and L � (resp. and a foliation

F with separatrix set S F = S), if it admits a homeomorphic lifting G from (BS , DS) into

(B�S� , DS�) satisfying the following conditions:

1. G(DS) = DS� and G(DS ∩ W s) = DS� ∩ W �
G(s), s ∈ Sing(DS),

2. G is holomorphic in a neighborhood of Sing(DS)

(resp. Sing(DS) \ (Node( F ) ∩ Sing( ES))),

3. the restriction of G to a neighborhood of the adherence of

DS \
�

s∈Sing( DS)

W s

commutes with the Hopf fibrations, i.e., πG(D) ◦G = G ◦ πD,

Once we fix the local data L and L � we can precise the Marking Theorem stated in the
introduction, in the following way.

Tʜ��ʀ�� 3.5.3 ([10]). – Every marking of S
�

by S possesses an excellent representative

with respect to the local data L and L �.

C�ʀ�ʟʟ�ʀʏ 3.5.4. – Every geometric ( N -)conjugation between the monodromies M F
S

andM F �
S� can be geometrically represented by a triple (g, �g, h), where g is excellent with respect

to the local data L and L �.

D��ɪɴɪ�ɪ�ɴ 3.5.5. – We say that a geometric ( N -)conjugation (g, h) between the

monodromies of two foliation germs F and F � preserves the Camacho-Sad indices if once we

represent it geometrically by a triple (g, �g, h) with g an excellent homeomorphism germ, then

its lifting G : (BS , DS) → (B�S� , DS�) satisfies CS( F , D, s) = CS( F �, G(D), G(s)) for every

irreducible component D of DS and every singular point s ∈ D of F .
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We will see in Section 7.3 that an ( N -)conjugation (g, h) between the monodromies of F
and F � preserves the Camacho-Sad indices if and only if there is a representative g of the
marking determined by g (cf. Remark 3.5.1) such that for each irreducible component S̆ of S

we have the equality CS( F , S̆, s̆) = CS( F �, ˘S�, s̆�) where S̆ and ˘S� denote respectively the
strict transforms of S̆ and S̆

� and s̆ and s̆
� are their corresponding attaching points in the

exceptional divisors.

3.6. Realizations of conjugations

Consider subsets V ⊂ B and V
� ⊂ B� such that V ∗ ∩ S and V �� ∩ S

� are non-empty.
We denote by Γ�V ∗,∞ (resp. Γ

�
�V ��,∞), the group of germs at infinity ϕ of deck transfor-

mations of the (possibly non-connected) covering (�V ∗,∞) (resp. (�V ��,∞)), i.e., satisfying
q∞ ◦ ϕ = q∞ (resp. q� ◦ϕ = q

�
∞). Clearly, the restriction maps define group monomorphisms

ι : Γ∞ �→ Γ�V ∗,∞ and ι
�
: Γ

�
∞ �→ Γ

�
�V ��,∞.

D��ɪɴɪ�ɪ�ɴ 3.6.1. – A geometric conjugation (resp. geometric N -conjugation) (g, h)

between the monodromiesM F
S andM F �

S� is called realizable over the germs (V, S) and (V
�
, S
�
)

if there exist a germ of homeomorphism ψ from (V, S) into (V
�
, S
�
), and a continuous pro-germ

at infinity

�ψ ∈ HomTop
←−−

((�V ∗,∞), (�V ��,∞))

lifting ψ, i.e., q
�
∞ ◦ �ψ = ψ ◦ q∞, such that the following diagrams commute:

(�)

(�V ∗,∞)
�ψ−→ (�V ��,∞)

τ �V ∗ ↓ � ↓ τ �V ��

�Q
F
∞

h−→ �Q
F �

∞

, (��)

Γ∞
ι

�→ Γ�V ∗,∞

g ↓ � ↓ �ψ∗

Γ
�
∞

ι�

�→ Γ
�
�V ��,∞

where τ �V ∗ and τ �V �� are the canonical pro-germs defined in Section 3.3 and �ψ∗ is the conjugation

morphism ϕ �→ �ψ ◦ ϕ ◦ �ψ−1
. We will say then that the triple (ψ, �ψ, h) is a realization of (g, h)

over the germs of V and V
�
.

R���ʀ� 3.6.2. – If g : (B, S) → (B�, S�) is an ( N -)transversely holomorphic conju-
gation between F and F �, then every lifting �g : (�B∗,∞) → (�B��,∞) of g determines a

( N -)An←−-isomorphism h from �Q
F
∞ onto �Q

F �

∞ . The pair (�g∗, h) constituted by the conjuga-
tion isomorphism (12) is a geometric ( N -)conjugation between the monodromies of these
germs of foliations and (g, �g, h) is a geometric realization of this conjugation over (B, S) and
(B�, S�).

R���ʀ� 3.6.3. – If W is a submanifold of V such that W ∗∩S �= ∅, then the restriction
(ψ|W , �ψ|�W∗ , h) of a realization (ψ, �ψ, h) of (g, h) over V and V

�, is a realization of (g, h) over
W and ψ(W ).

An S-isotopy Θt : U → Θt(U), U ⊂ B, in the sense of Remark 3.4.4 will be called
F -isotopy, if for all p ∈ U the path [0, 1] � t �→ Θt(p) is contained in a leaf of F . We have
the following invariance property:
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Pʀ����ɪ�ɪ�ɴ 3.6.4. – Let Θt : U → Θt(U) (resp. Θ
�
t : U

� → Θ
�
t(U

�
)), t ∈ [0, 1], be a

F -isotopy (resp. F �-isotopy), defined in an open neighborhood U ⊃ S of B (resp. U
� ⊃ S

�

of B�) and let (g, �g, h) be a realization of a geometric ( N -)conjugation (g, h) between the

monodromies of F and F �, over subsets V and V
�

of B∗ and B��. Then (Θ
�
1 ◦ g ◦ Θ

−1
1 , �Θ�1 ◦

�g ◦ �Θ−1
1 , h) is a realization of (g, h) over Θ1(V ) and Θ

�−1
1 (V

�
), where the lifting �Θt and �Θ�t are

defined as in Remark 3.4.4.

Proof. – The idea is quite simple: on one hand Θ̃t preserves the leaves of �F and conse-
quently the corresponding diagram (�) is commutative; on the other hand, Remark 3.4.4
implies the equality (Θ̃

�
1 ◦ g̃ ◦ Θ̃

−1
1 )∗ = g̃∗ and therefore the diagram (��) is also commu-

tative. We leave the details of the proof to the reader.

4. Monodromy and projective holonomy

4.1. Holonomy representation of a JSJ block

First of all, we recall some classical notions which will be used in the sequel. For a
curve D, the valence of an irreducible component D of D is the number v(D) of irreducible
components of D other than D meeting D. We call dead branch of the exceptional divisor ES

any maximal connected union of components of ES having valence two in DS , except for
one of them which has valence one in DS . Every dead branch M has a single attaching point

belonging to a unique component of ES having valence at least three.
Let F : B → C (resp. F

�
: B� → C) be a reduced equation of the separatrix curve S

(resp. S
�), and consider L, L � two local data as in (13). For ε > 0 small enough, the

composition of these equations by the reduction morphisms ES and ES� define the real
smooth hypersurfaces {|F ◦ ES | = ε} and {|F � ◦ ES� | = ε}. These hypersurfaces bound
the Milnor tubes of DS and DS� ,

(14) T ε := {|F ◦ ES | ≤ ε} ⊂ BS , T �ε := {|F � ◦ ES� | ≤ ε} ⊂ BS� ,

and they are transverse to the hypersurfaces {|xs| = 1}, {|ys| = 1} and {|xs� | = 1},
{|ys� | = 1}, for all s ∈ Sing(DS), s

� ∈ Sing(DS�), as well as to the spheres E
−1
S (∂B) and

E
−1
S� (∂B�). We extend for subset of these Milnor tubes, the convenient notation introduced

in (2).

C�ɴ��ɴ�ɪ�ɴ� 4.1.1. – For A ⊂ T ε and A� ⊂ T ε� , we set

�A
∗

:= q
−1

(ES(A)) ,
�A�� := q

�−1
(ES�(A�)) ,

and we consider the following universal coverings:

q := E
−1
S ◦ q|�T ∗ε

: �T
∗
ε −→ T ∗ε , q

�
:= E

−1
S� ◦ q

�
|�T ��

ε�
: �T

�
�
ε� −→ T ��ε� .

Given a germ of homeomorphism φS : (A, DS) → (A�, DS�) and a pro-germ at infinity
�φ∞ : (�A

∗
,∞) → (

�A��,∞) lifting φS , we will say that the triple (φS , �φ∞, h) carries out

over A and A� a geometric conjugation (resp. a geometric N -conjugation) (g, h), if the triple
(φ

�
S , �φ∞, h), with φ

�
S := ES� ◦φS ◦ES

−1
| A∗ , is a realization of the geometric conjugation (resp.

geometric N -conjugation) (g, h) over ES(A) and ES�(A�).
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Let D be an irreducible component of DS having valence v = v(D) ≥ 3. If D has
v − r attaching points belonging to dead branches, we numerate the points s1, . . . , sv

of Sing(DS)∩D in such a way that {sj | j > r} is the set of attaching points of the adjacent
dead branches to D. We also set

(15) D
�
:= D \ ∪r

j=1{|xsj | < 1} , D
◦

:= D \ ∪v
j=1{|xsj | < 1} .

We assume that for j = 1, . . . , v, ysj = 0 is a local reduced equation of D.

D��ɪɴɪ�ɪ�ɴ 4.1.2. – We define the Jaco-Shalen-Johannson block (JSJ for short) BD(ε)

of T ε associated to D as the adherence of the connected component of T ε \ ∪r
j=1{|xsj | = 1}

which contains D
�
.

We fix ε > 0 small enough and we denote BD(ε) and T ε simply by BD and T . Then the
following properties hold, cf. [9]:

– T is a deformation retract of BS , and for 0 < ε
� ≤ ε, BD(ε

�
) and T ε� are deformation

retracts of BD and T respectively;
– B

∗
D is incompressible in T ∗, hence it is so in E

−1
S (B∗);

– a presentation of the fundamental group of B
∗
D by generators and relations can be

obtained in the following way. We consider loops γ1, . . . , γv in BD ∩ π
−1
D (D

◦
) having

the same origin m and such that the projections πD ◦ γj are the boundaries of closed

conformal disks V j ⊂ D satisfying
◦
V j ∩ Sing(DS) = V j ∩ Sing(DS) = {sj}; then we

consider a loop c in the fiber ∆ := π
−1
D (m0), m0 := πD(m), with the same origin m

and having rotation index one with respect to the point m0. Then we have

π1(B
∗
D, m) = �ċ, γ̇1, . . . γ̇v | [γ̇j , ċ] = 1, γ̇

pk

k = ċ
qk � j=1,...,v

k=r+1,...,v
,

where gcd(pk, qk) = 1 and − qk

pk
is the Camacho-Sad index of F along D at the point

sk;
– the germ of F at each point s = sr+1, . . . , sv possesses a holomorphic first integral

that can be written as x
pk
s y

qk
s A(xs, ys), A(0, 0) �= 0.

Since H D(γ̇) is the map sending a point p of ∆ to the end of the path having origin p and
lifting γ

−1 in the leaf of F passing through p, the kernel of the holonomy representation of F
along D

◦,

(16) H D : π1(D
◦
, m0) = Zγ̇r+1 ∗ · · · ∗ Zγ̇v −→ Diff(∆, m0) ,

contains the normal subgroup generated by the elements γ̇
pk

k , for k = r + 1, . . . , v. The
morphism H D factorizes through a morphism H orb

D defined on the quotient group

π
orb
1 (D

�
, m0) := π1(D

◦
, m0)/ � γ̇

pr+1

r+1 , . . . , γ̇
pv
v � .

The morphism πD∗ from π1(BD ∩ π
−1
D (D

◦
), m) onto π1(D

◦
, m0) induced by the fibration

πD, determines a morphism π
orb
D∗ which enters in the following exact sequence

(17) 1 −→ π1(∆
∗
, m) = Zċ −→ π1(B

∗
D, m)

πorb
D∗−→ π

orb
1 (D

�
, m0) −→ 1 .
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D��ɪɴɪ�ɪ�ɴ 4.1.3. – We call the morphism H BD := H orb
D ◦ π

orb
D∗ ,

H BD : π1(B
∗
D, m) −→ Diff(∆, m0) , γ̇ �→ H BD (γ̇) = H D(πD ◦ γ̇),

the holonomy representation of F along BD realized on the transverse section ∆.

4.2. Extended holonomy and monodromy

With Conventions 4.1.1 and the precedent notations, we denote by (�∆∗α
)α∈π0(�∆∗) and

( �B∗βD )β∈π0( �B∗
D) the collection of connected components of �∆∗ (resp. of �B∗D). Thanks to the

incompressibility of B
∗
D in E

−1
S (B∗), the restriction of q to each connected component �B∗βD

is a universal covering of B
∗
D. Thus, once we fix a point m ∈ B

∗
D and �m ∈ q

−1
(m) ∩ �B∗βD ,

the group Γ∞ can be canonically identified with π1( T ∗, m) � π1(B∗, m) and the subgroup
Γ∞(β) consisting of the elements ϕ in Γ∞ preserving B

∗β
D , can be identified with π1(B

∗
D, m).

If �m belongs to �∆∗α ⊂ �B∗βD then we have the following exact sequence of groups:

1 −→ Γ∞(β, α) −→ Γ∞(β)
σ−→ π

orb
1 (D

�
, m0) −→ 1 ,

with Γ∞(β, α) � π1(∆
∗
, m) denoting the subgroup consisting of those ϕ ∈ Γ∞(β) which

preserve �∆∗α and σ is the well-defined morphism determined by

σ(ϕ) := π
orb
D (q ◦ µϕ) , ϕ ∈ Γ

β
∞ ,

where µϕ is a path in �B∗βD whose endpoints are �m and ϕ(�m). Notice that Γ∞(β, α) is a
normal subgroup in Γ∞(β), because π1(∆

∗
, m) is the center of π1(B

∗β
D ); this means that each

ϕ ∈ Γ∞(β, α) preserves every component �∆∗α� ⊂ B
∗β
D .

Pʀ����ɪ�ɪ�ɴ 4.2.1. – If �∆∗α
and �∆∗α�

are contained in the same connected component

�B∗βD , then there is a unique pro-germ hα�α : (�∆∗α
,∞) → (�∆∗α�

,∞) commuting with the

canonical pro-germs, i.e., τ�∆∗α� ◦ hα�α = τ�∆∗α .

Proof. – For all Ŭ ∈ U F ,Σ put U := E
−1
S (Ŭ) and denote by W

α�

U the �F -saturation
of �∆∗α� ∩ �U∗ inside �B∗βD ∩ �U∗. The map

hU : O
α�α
U := W

α�

U ∩ �∆∗α → �∆∗α�

obtained by following the leaves of �F |W α�
U

is defined without ambiguity because every leaf

meets each transversal �∆∗α and �∆∗α� in at most one point, cf. Section 2.2. We will see that
Oα�α

U always contains a non-empty open set of type �V ∗∩ �∆∗α, with V := E
−1
S (V̆ ), V̆ ∈ U F ,Σ.

In order to conclude, it suffices to put

hα�α := ( lim−→V̆ hV U )Ŭ∈U F ,Σ
, with hV U := hU | �V ∗∩ �∆∗α

: �V ∗ ∩ �∆∗α → �∆∗α�
.

Consider ϕ ∈ Γ∞(β, α) and choose V̆ ∈ U F ,Σ, V̆ ⊂ Ŭ , small enough so that all p ∈ V ∩∆
∗

be the origin of a path γp ending in ∆
∗, which is contained in a leaf of the restriction of F

to B
∗
D∩U ∩π

−1
D (D

◦
), and such that the homotopy class of πD ◦γp in π

orb
1 (D

�
, m0) coincides

with σ(ϕ). The lift µ�p of γp in �B∗βD , passing through an arbitrary point �p of q
−1

(p) ∩ �∆∗α,

is contained in a leaf of �F . We will see that its endpoint, which coincides with hU (�p), always
belongs to �∆∗α� ; then the inclusion Oα�α

U ⊃ �V ∗ ∩ �∆∗α will follow.
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We consider a path ξ in �∆∗ having origin µ�p(1) and endpoint in q
−1

(m), as well as a path
δ having origin in q

−1
(m) and endpoint �p. The homotopy class ζ̇ ∈ π1(B

∗
D, m) of the loop

ζ := q ◦ (δ ∨ µ�p ∨ ξ) satisfies:

π
orb
D∗ (ζ̇) = πD ◦ γp = σ(ϕ) ,

where πD ◦ γp denotes the class of πD ◦ γp in π
orb
1 (D

�
, m0). Let µϕ be a path in �B∗β joining

�m to ϕ(�m). Thanks to (17), the homotopy class of the loop q ◦µϕ in π1(B
∗
D, m) differs from

ζ̇ in an element of π1(∆
∗
, m); therefore the paths δ ∨ µ�p ∨ ξ and µϕ have their endpoints on

the same connected component of �∆∗; the same property holds for µ�p and µϕ.

For three components �∆∗α, �∆∗α� , �∆∗α�� contained in �B∗βD , we clearly have the relation

hα��α� ◦ hα�α = hα��α .

On the other hand, the above constructions are “compatible” with the action of Γ∞(β),
because Γ∞ preserves �F . More precisely, with the above notations, if ϕ ∈ Γ∞(β) then the
paths ϕ ◦ µ�p and µϕ(�p) coincide. Thus, denoting also by ϕ : π0(

�∆∗
)
∼−→π0(

�∆∗
) the bijection

induced by a deck transformation ϕ, we have that

ϕ ◦ hα�α ◦ ϕ
−1

= hϕ(α�)ϕ(α) .

We easily deduce that the map

�H
α

D : Γ∞(β) −→ Aut(�∆∗α
, ∞) , ϕ �→ hαϕ(α) ◦ ϕ = h

−1
ϕ(α)α ◦ ϕ ,

is a morphism of groups. In the case that E F consists in a single blow-up this morphism was
considered already in [14] where it was called extended holonomy. We adopt their definition
in the general context.

D��ɪɴɪ�ɪ�ɴ 4.2.2. – We will call �H
α

D, the extended holonomy morphism of D over �∆∗α
.

In order to justify this definition we note that if µ̇ ∈ π1(B
∗
D, m) and ϕ ∈ Γ∞(β) satisfy

π
orb
D ∗(µ̇) = σ(ϕ), then �H

α

D(ϕ) is the lifting of the holonomy diffeomorphism H BD (µ̇) on the
connected component �∆∗α, considered as a universal covering of ∆

∗. We finally obtain the
following commutative diagram:

(�)ϕ

(∆, m0)
✛✛ q

∞
(�∆∗α

,∞) ⊂
τ�∆∗α ✲ �Q

F
∞

(∆, m0)

H BD (µ̇)

❄
✛✛ q

∞
(�∆∗α

,∞)

�H
α

D(ϕ)

❄
⊂

τ�∆∗α ✲ �Q
F
∞

M F
S (ϕ)

❄
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



424 D. MARÍN AND J.-F. MATTEI

4.3. Relationship between holonomy and monodromy conjugations

We fix a geometric ( N -)conjugation (g, h) between the monodromies M F
S and M F �

S� of
the General Type foliations F and F �. Thanks to Corollary 3.5.4, there exists a geometric
representation (g, �g, h) of (g, h), cf. Definition 3.4.3, where g : (B, S) → (B�, S�) is the germ
of an excellent homeomorphism and G : (BS , DS) → (B�S� , DS�) is its lifting to the total
spaces of their reductions of singularities. Let (∆, m0), m0 /∈ Sing(DS), be a fibre of the
Hopf fibration of an irreducible component D of DS , such that (∆

�
, m

�
0) := (G(∆), G(m0))

is also a fibre of the Hopf fibration associated to the component D
�

:= G(D) of DS� .
Finally, we will identify ∆ and ∆

� with their images ES(∆) and ES�(∆
�
) by the reduction

of singularities maps.

Tʜ��ʀ�� 4.3.1. – If there is a realization (ψ, �ψ, h) of (g, h) over ∆ and ∆
�
, then ψ and the

restriction G|D : D
∼−→D

�
conjugate the holonomy representations associated to the irreducible

components D and D
�
, i.e., the following diagram is commutative:

π1(D
◦
, m0)

H D ✲ Diff(∆, m0)

�

π1(D
�◦

, m0)

G∗

❄ H D� ✲ Diff(∆
�
, m

�
0)

ψ∗

❄

where ψ∗(ϕ) := ψ ◦ ϕ ◦ ψ
−1

and G∗ is induced by the restriction of G to D
◦
.

Proof. – Consider γ̇ ∈ π1(D
◦
, m0), µ̇ ∈ π1(

�B∗D, m) and ϕ ∈ Γ∞(β) such that
π

orb
D ∗(µ̇) = σ(ϕ) = γ̇ and therefore H BD (µ̇) = H D(γ̇). Consider also the diagram of

Figure 1. Both frontal sides (behind and ahead) are constituted by the commutative dia-
grams (�)ϕ and (�)g(ϕ); both lateral sides are constituted by the commutative diagram
(�) and that one expressing that �ψ lifts ψ; the commutativity of the bottom horizontal
diagram, h ◦M F

S (ϕ) = M F �
S� (g(ϕ)) ◦ h, follows from the fact that (g, h∗) is a conjugation

between M F
S and M F �

S� . Since the canonical pro-germs τ�∆∗α and τ�∆�∗α� are monomor-
phisms, cf. Proposition 3.3.1, the median horizontal diagram is also commutative, i.e.,
�ψ ◦ �H

α

D(ϕ) = �H
α�

D� ◦ �ψ. Finally, the commutativity of the top horizontal diagram,

ψ ◦ H D(γ̇) = H D�(G∗(γ̇)) ◦ ψ ,

follows from the fact that the pro-germs q
∞

and q
�
∞

are epimorphisms.

5. Statements and proofs of Theorems I and II

We keep the notations introduced in the precedent sections about the germs of foliations
F et F �, in particular (2), (3), (9) and (10). We shall introduce here two statements that imply
Theorems I and II in the introduction.
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(∆
∗
, m0)

H D(γ̇) ✲ (∆
∗
, m0)

(∆
��

, m
�
0)

H D�(G∗(γ̇)) ✲

ψ

✲
q
∞

✻✻

(∆
��

, m
�
0)

ψ

✲

(�∆∗α
,∞)

q
∞

✻✻

�H
α

D(ϕ) ✲ (�∆∗α
,∞)

(�∆��α�
,∞)

q
�
∞

✻✻

�H
α�

D�(g(ϕ))✲

�ψ
✲

∩

(�∆��α�
,∞)

q
�
∞

✻✻

�ψ
✲

�Q
F
∞

τ�∆∗α

❄

∩

M F
S (ϕ) ✲ �Q

F
∞

τ�∆∗α

❄

�Q
F �

∞

τ�∆��α�

❄

∩

M F �
S� (g(ϕ)) ✲

h

✲

�Q
F �

∞

τ�∆��α�

❄

∩

h
✲

Fɪɢ�ʀ� 1. Diagram concerning the conjugation between the holonomies and monodromies.

Tʜ��ʀ�� 5.0.1 (Theorem of invariance). – Assume that F and F � are of General Type

and they are conjugate by a germ of transversely holomorphic (resp. N -transversely holo-

morphic) homeomorphism Ψ : (C2
, 0)

∼−→(C2
, 0). Consider a germ g : (C2

, 0)
∼−→(C2

, 0)

of excellent homeomorphism fundamentally equivalent to Ψ, cf. Section 3.5, and denote

by G : (BS , DS) → (B�S� , DS�) its lifting. Then,

1. for each irreducible component D of DS and for each singular point s ∈ Sing( F ) ∩D, we

have equality of Camacho-Sad indices:

(18) CS( F , D, s) = CS( F �, G(D), G(s));

2. there is a geometric conjugation (resp. a geometric N -conjugation) (g, h) between the mon-

odromiesM F
S andM F �

S� realizable over some N -collections of transversals (i.e., satisfying

Condition (σ) in the introduction) of F and F �, such that Ψ is a representative of the mark-

ing determined by g.

The following theorem can be considered as a sort of converse of the precedent result.
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Tʜ��ʀ�� 5.0.2 (Theorem of classification). – Let (g, h) be a geometric N -conjugation

between the monodromies M F
S and M F �

S� of two General Type foliations, which possesses a

realization (ψ, �ψ, h) over N -collections of transversals Σ and Σ
�

of F and F �. Denoting

by (g, �g, h) a geometric representation of (g, h), assume that the following conditions hold:

1. for each connected component Σ̆ of Σ intersecting an irreducible component S̆ of S we have

ψ(Σ̆) ∩ g(S̆) �= ∅,

2. along each irreducible component S̆ of S, we have coincidence of Camacho-Sad indices:

CS( F , S̆, s̆) = CS( F �, ˘S�, s̆�), where S̆ (resp. S̆
�
) denotes the strict transform of S̆ (resp.

g(S̆)), and s̆ ∈ Sing( F ) (resp. s̆
� ∈ Sing( F �)) are their attaching points in the exceptional

divisors.

Then there exists a homeomorphism Ψ defined on an open neighborhood U of S onto an open

neighborhood U
�

of S
�

and there is a lift �Ψ : �U∗ ∼−→�U �� of Ψ, such that:

(a) Ψ(Σ∩U) ⊂ Σ
� ∩U

�
, the germ of Ψ|Σ∩U at the finite set Σ∩S equals ψ and the germ at

infinity of �Ψ|�Σ∩�U coincides with �ψ,

(b) Ψ is N -excellent, conjugates F |U to F �|U � and it is N -transversely holomorphic,

(c) denoting by ΨS the germ of Ψ along S and by �Ψ∞ the pro-germ at infinity of �Ψ, then

(ΨS , �Ψ∞, h) is a realization of (g, h) over the complement of some N -separators of F
and F �.

In fact we will prove in Section 7.3 that Condition (2) in Classification Theorem 5.0.2
is equivalent to Assertion (1) in Invariance Theorem 5.0.1. The relationship between these
two results and Theorems I and II in the introduction come from the following property of
transversal rigidity.

D��ɪɴɪ�ɪ�ɴ 5.0.3. – We say that the germ of F at (0, 0) is transversely rigid (resp.

N -transversely rigid), if every germ of homeomorphism preserving the orientations of (C2
, 0)

and those of the leaves, and conjugating F to a General Type foliation, is necessarily transversely

(resp. N -transversely) holomorphic.

After the extended version (TRT) of the Transverse Rigidity Theorem of J. Rebelo [16]
stated in the introduction, the hypothesis (G) on F implies the N -transverse rigidity of F .
As we have already pointed out in the introduction, the genericity of this property in the sense
of the Krull topology was proved in [6]. We remark that there are other interesting, although
more particular, situations inducing also the transverse rigidity of the foliation, cf. [7].

C�ʀ�ʟʟ�ʀʏ 5.0.4. – Let F and F � be two germs of General Type N -transversely rigid

foliations which are conjugated by a germ of orientations preserving homeomorphism Ψ0. Then

there is a germ of N -excellent homeomorphism Ψ conjugating F and F �. In particular, denoting

by Ψ
�

: DS
∼−→DS� the restriction to the total divisors of the lifting of Ψ over the reduction of

singularities, the following properties hold:

(a) for each s ∈ Sing( F ), the germs of F at s and that of F � at Ψ
�
(s) are holomorphically

equivalent;

(b) for each irreducible component D of DS , the holonomy representations H D and H Ψ�(D)

defined in (16) are holomorphically conjugate via Ψ
�
.
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In addition, if Node( F ) = ∅ then Ψ is fundamentally equivalent to Ψ0, cf. Section 3.5.

Assertion (b) in Corollary 5.0.4 means that if ∆ and ∆
�
:= Ψ(∆) are holomorphic curves

transverse to D and D
�
:= Ψ

�
(D) at the points m ∈ D \ Sing( F ) and m

�
:= Ψ

�
(m), then

the diagram (1) in the introduction commutes taking ψ = Ψ|∆.

Proof. – We can apply first Theorem of Invariance 5.0.1, because Ψ is N -transversely
holomorphic; then we apply Classification Theorem 5.0.2.

Notice that this corollary is a more precise statement of Theorem I. On the other hand,
thanks to the transverse rigidity theorem, Theorem II follows from the invariance and classi-
fication theorems below, using the additional generic hypothesis (G) considered in the intro-
duction.

6. Peripheral structure of a germ of curve

Before proving Theorems 5.0.1 and 5.0.2, we shall examine some auxiliary topological
notions that we will need in the sequel. In fact, this section deals uniquely with curves and
there is no foliation there.

6.1. Peripheral groups

Following the previously introduced notations (2), (9), (14) and Conventions 4.1.1, let
S̆ be an irreducible component of S ⊂ B. We consider a tubular neighborhood WS̆ of
S̆
◦

:= S̆ \ {0} in B \ {0}. The pair (WS̆ , S̆
◦
) is homeomorphic to (S̆

◦ × D1, S̆
◦ × {0}).

Let s ∈ Sing(DS) be the attaching point of the strict transform S̆ of S̆. Up to permutation
of the coordinates (xs, ys) of the local datum fixed in (13), we assume that xs = 0 is a local
reduced equation of S̆. We choose ε > 0 small enough so that W ∗

S̆ := E
−1
S (W

∗
S̆
) retracts

over the 2-torus {|xs| = ε, |ys| = 1}.

Pʀ����ɪ�ɪ�ɴ 6.1.1. – W
∗
S̆

is incompressible in B∗.

Proof. – It suffices to show the incompressibility of the torus

{|xs| = ε, |ys| = 1}

inside B∗S . This can be done by using Van Kampen’s Theorem, see for instance the construc-
tion of an open neighborhood of DS by “boundary assembly” made in [9].

Consider the loops m (resp. p) in W ∗
s , having the same origin, defined by (xs, ys)◦m(t) =

(εe
2iπt

, 1) (resp. (xs, ys) ◦ p(t) = (ε, e
2iπt

)). At the point c̆ := ES(m(0)), the homotopy
classes mc̆ (resp. pc̆ ∈ π1(WS̆ , c̆)) of the loops ES ◦ m (resp. ES ◦ p), allow to decompose
π1(W

∗
S̆
, c̆) = Zmc̆ ⊕ Zpc̆. The abelianity of this group implies that the isomorphism from

π1(W
∗
S̆
, c1) onto π1(W

∗
S̆
, c2), induced by a path joining the points c1 and c2 inside W

∗
S̆

,
does not depend on the particular choice of this path. Thus, the direct sum decomposition
of π1(Ws̆, c̆) is canonical, i.e., it can be unambiguously defined for every base point in W

∗
S̆

:

P S̆, c := π1(W
∗
S̆
, c) = Zmc ⊕ Zpc ⊂ π1(B∗, c) , c ∈ W

∗
S̆

.
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D��ɪɴɪ�ɪ�ɴ 6.1.2. – We will callmc the meridian, pc the parallel and P S̆, c the peripheral
subgroup associated to the component S̆ at the point c.

The following geometric property states that this decomposition is “intrinsic”, see [5, 10].

Pʀ����ɪ�ɪ�ɴ 6.1.3. – The subgroup P S̆, c coincides with its normalizer inside π1(B∗, c),
i.e.,

�
ζ ∈ π1(B∗, c) and ζ P S̆, c ζ

−1 ⊂ π1(W
∗
S̆
, c)

�
⇒ ζ ∈ P S̆, c.

We immediately deduce:

C�ʀ�ʟʟ�ʀʏ 6.1.4. – The direct sum decomposition

P = ZmP ⊕ ZpP , mP := ζ mc ζ
−1

, pP := ζ pc ζ
−1

,

of every subgroup P = ζ P S̆,c ζ
−1

, ζ ∈ π1(B∗, c) conjugated to P S̆,c is intrinsic, i.e., it does

not depend on ζ ∈ π1(B∗, c).

6.2. Conjugation of peripheral structures

We will see that the canonical meridians and parallels introduced in Definition 6.1.2,
associated to the irreducible components of S, are topological invariants.

Tʜ��ʀ�� 6.2.1. – Let U be an open neighborhood of S in B and let Φ be a homeomorphism

from U onto a neighborhood U
�

of 0 in B�, such that Φ(S) = S
� ∩U

�
. Then for each irreducible

component S̆ of S and for all point c in a tubular neighborhood of S̆ \ {0} inside B, the

isomorphism Φ∗ from π1(B∗, c) onto π1(B�∗, c�) induced by Φ, sends respectively the meridian

mc and the parallel pc associated to S̆ to the meridianm�c� and the parallel p�c� associated to the

component Φ(S̆), at the point c
�
:= Φ(c).

Proof. – First we note that Φ∗ induces an isomorphism from the peripheral group P S̆, c

of S̆, onto the peripheral group P �S̆�, c� of S̆
�

:= Φ(S̆). Indeed, we can consider a tubular
neighborhood W of S̆ and two tubular neighborhoods W

� and W
�� of S̆

� \ {0} in B�, as well
as a ball B�� ⊂ B� centered at the origin, such that W

��∩B�� ⊂ Φ(W ) ⊂ W
�. These inclusions

induce two Z-linear morphisms at the fundamental group level,

Z2 � P �S̆�, c� → Φ∗(P S̆, c) → P �S̆�, c� � Z2
,

whose composition is an isomorphism. Hence

(19) Φ∗(P S̆, c) = P �S̆�, c� .

The Marking Theorem 3.5.3 provides the existence of an excellent homeomorphism g fun-
damentally equivalent to Φ. We can assume that W

�� ∩ B�� ⊂ g(W ) ⊂ W
� and g induces an

isomorphism g∗ from P S̆,c onto P S̆�,g(c). Clearly g∗(mc) = m�g(c) and g∗(pc) = p�g(c), because
the lifting E

�
S�
−1 ◦ g ◦ ES extends to the exceptional divisor. The fundamental equivalence

between g and Ψ implies the existence of an element ζ of π1(B�∗, c�) such that

(20) Iζ ◦ Φ∗ = κ ◦ g∗ : π1(B∗, c�) −→ π1(B∗, c�) ,

where Iζ denotes the interior automorphism of π1(B∗, c�) determined by ζ and κ is the
canonical isomorphism from π1(B∗, g(c)) onto π1(B∗, c�), determined by an arbitrary path
in W

� joining g(c) to c
�. The relations (19) and (20) give the equality ζ P �S̆�, c�ζ

−1
= P �S̆�, c� . By
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applying Proposition 6.1.3 we obtain that ζ belongs to P S̆�, c� . The restriction of Iζ to P S̆�, c�

is the identity because this group is abelian. By restricting (20) to P S̆, c we obtain the relation
Φ∗ = κ ◦ g∗. Hence

Φ∗(mc) = κ(g∗(mc)) = κ(m
�
g(c)) = m

�
c� ;

and analogously Φ∗(pc) = p�c� .

7. Proof of Invariance Theorem 5.0.1

7.1. Proof of Assertion (2)

By Proposition 3.6.4, we can compose Ψ on the left by a germ of homeomophism
Θ1 : (B�, S�) ∼−→(B�, S�) which is F �-isotopic to the identity. Let Σ and Σ

� be N -collections
of transversals of F and F � respectively, such that for each connected component Σ̆ of Σ

intersecting an irreducible component S̆ of S we have that Ψ(Σ̆) and g(Σ̆) meet the same
irreducible component S̆

� of S
�. We can construct an F �-isotopy Θ1 such that Θ1(Ψ(Σ̆))

and Σ̆
� define the same germ at Σ̆

� ∩ S̆
�. Assertion (2) of Theorem 5.0.1 follows directly from

Remarks 3.6.2 and 3.6.3.

7.2. Invariance of the Camacho-Sad indices associated to the separatrix curve

We will prove the equality (18) when s is the attaching point of the strict transform S̆
of an irreducible component S̆ of S. Following the notations of Section 6.1 we denote by
ρ : W s → S̆∩ W s the disk fibration such that ys◦ρ = ys, by γn the loop contained in xs = 0,
such that ys◦γn(t) := e

2iπnt, 0 ≤ t ≤ 1, by q the point having coordinates (0, 1/2) and finally
by T the transverse section ρ

−1
(q).

Consider a sequence (qn)n∈N of points in T tending to q, such that the loop γn lifts, via ρ,
to a path Γn contained in a leaf of F . We can see that such a sequence always exists and that

(21) CS( F , S̆, s) = lim
n→∞

1

2iπn

�

Γn

dxs

xs
.

Fix a real number θn ∈] − π, π] different from the arguments of qn and that of Γn(1) and
choose a path ξn in

T ∩ {arg(xs) �= θn , 0 < |xn| < 1/n} ,

having endpoints qn and Γn(1). Since the real part of 1
2iπn

�
ξn

dxs
xs

is bounded, the real part
of the Camacho-Sad index (21) is given by

Re(CS( F , S̆, s)) = lim
n→∞

In

n
, where In :=

1

2iπ

�

Γn∨ ξn

dxs

xs
.

Using the peripheral structure of P S̆, cn
given in Corollary 6.1.4, the homotopy class of the

loop Γn∨ξn in π1(B∗, cn), cn := ES(qn) can be decomposed as

Γn∨ξn = Inmcn + npcn .

If αn is an arbitrary path in T \ {q} with endpoints q0 and qn then the homotopy class of
the loop λn := αn∨Γn∨ξn∨α

−1
n in π1(B∗, c0) is

λn = Inmc0 + npc0 .
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Fix now the same data at the attaching point s
�

:= G(s) of the strict transform S̆
�

of
S̆
�

:= Ψ(S). We denote by (xs� , ys�) : W �
s�

∼−→D2
1 the local coordinates at s

� determined
by the local datum L �, by ρ

�
: W �

s� →
˘S� ∩ W �

s� the disk fibration defined by ys� ◦ ρ
�
= ys� ,

and by q
� ∈ S̆ the point having coordinates (0, 1/2). We also set T

�
:= ρ

�−1
(q
�
). It is easy to

see that, after composing it by a homeomorphism F �-isotopic to the identity, Ψ satisfies the
following properties:

– Ψ(V ) ⊂ V
�, where V is the image by ES of a tubular neighborhood of the circle

{xs = 0, |ys| = 1} inside {|xs| ≤ 1, |ys| = 1} and V
� is the image by ES� of the

torus {|x�s� | ≤ 1, |ys� | = 1};
– Ψ|V conjugates the fibrations, i.e., E

�
S� ◦ ρ

� ◦ E
−1
S� ◦Ψ|V = Ψ ◦ ES ◦ ρ ◦ E

−1
S .

As in (21) we have the following equality:

CS( F �, S̆
�
, s
�
) = lim

n→∞

1

2iπn

�

Ψ◦Γn

dx
�
s�

x
�
s�

.

The variation of the argument of x
�
s� ◦Ψ ◦ ξn is bounded because the restriction of Ψ to T is

holomorphic (recall that Ψ is transversely holomorphic on V ). Thus,

(22) Re(CS( F �, S̆
�
, s
�
)) = lim

n→∞

Jn

n
, Jn :=

1

2iπ

�

Ψ◦(Γn∨ ξn)

dx
�
s�

x
�
s�

.

Clearly the homotopy class of Ψ ◦ λn in π1(B∗,Ψ(q0)) is

Jnm
�
Ψ(c0) + np

�
Ψ(c0) = Ψ∗(Inmc0 + npc0) .

Theorem 6.2.1 provides the equality In = Jn. Thanks to (22), CS( F , S̆, s) and CS( F �, S̆
�
, s
�
)

have the same real part. Hence, they coincide because on the other hand, their difference is an
integer number. Indeed, the exponential of each of them is the linear part of the holonomies
of S̆ and S̆

�, which are analytically conjugated by the biholomorphism Ψ|T .

R���ʀ� 7.2.1. – Notice that the above proof only uses the transverse holomorphy of Ψ

on a neighborhood V of the strict transform of each punctured separatrix of F . Hence we
deduce that any topological conjugation which is transversely holomorphic in a neighbor-
hood of each punctured nodal separatrix is an N -topological conjugation.

7.3. Invariance of all the Camacho-Sad indices

The proof is based in the Camacho-Sad index formula, which claims that the auto-
intersection number of an irreducible component D of the exceptional divisor equals the sum
of the Camacho-Sad indices along D, at the singular points of the foliation lying on D. We
consider filtrations of the exceptional divisors ES := E

−1
S (0) and ES� := E

−1
S� (0),

E0 := ES ⊃ E1 ⊃ E2 ⊃ · · · and E�0 := E�S ⊃ E�1 ⊃ E�2 ⊃ · · · ,

defined by induction in the following way: Ej−1 \ Ej is the union of the components D

of Ej−1 having valence 1 in Ej−1. Since the dual graphs of these divisors are trees, we
eventually obtain the empty set. Clearly G( Ej) = E�j , for all j. In order to obtain the
equalities (18) in Theorem 5.0.1 for every singular point s ∈ Sing( F ) and each irreducible
component D of DS , it suffices to show the following assertion for all j ≥ 1:
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(�)j the equality (18) holds at every point s ∈ (Sing(DS) \ Sing( Ej)), for each irreducible

component D containing s.

We conclude by noting that the index formula provides the implication (�)j ⇒ (�)j+1 and
that (�)0 expresses the invariance of the Camacho-Sad indices of the separatrix curve, proved
in Section 7.2.

8. Proof of Classification Theorem 5.0.2

We keep the notations (2), (9), (14), Conventions 4.1.1 and we assume the hypotheses
of Theorem 5.0.2. We shall construct a global N -transversely holomorphic conjugation
between F and F � inducing a realization of (g, h) outside some N -separators of F and
F � in B, satisfying Assertions (a), (b) and (c) of Theorem 5.0.2. We proceed by induction,
by constructing the desired homeomorphism step by step, over “elementary pieces” of
an appropriated decomposition of a neighborhood of the total divisor DS in BS that we
will describe in Section 8.2. These elementary pieces are associated to each singular point
s ∈ Sing(DS) and to each irreducible component D of DS and they are denoted by Ks and
KD respectively.

8.1. Description of the induction

The construction of the elementary pieces is done in Section 8.2. Extension Lemma 8.3.2
is the key tool which allows us to make the inductive step and to begin the process. Given
a realization (φ, �φ, h) of (g, h) over a fiber T of the Hopf fibration contained in a boundary
component of an elementary piece K, this lemma gives a simple topological condition (23)
which allows to extend (φ, �φ, h) to a realization defined over the whole piece. In addition we
have that

1. the restriction of this extension to every Hopf fiber contained in ∂K also satisfies the
condition (23),

2. when T is contained in the intersection of two adjacent elementary pieces, then the real-
izations given by Lemma 8.3.2 over each of these pieces coincide over their common
intersection.

Thus, if Node( F ) = ∅ and we have a realization over an elementary piece K
0, we can extend

it step by step over a whole neighborhood of DS in BS . In order to achieve the proof in
this case, it suffices to be sure that we can apply Lemma 8.3.2 in the context where D is the
strict transform of the irreducible component of S meeting Σ, T = E

−1
(Σ) and letting

K
0 be the elementary piece associated to D. In Section 8.4 we will prove the existence of a

realization (g1, �g1, h) of the conjugation (g, h) satisfying the condition (23) in Lemma 8.3.2
in this context. This will achieve the proof of the theorem in the case Node( F ) = ∅.

If Node( F ) �= ∅, we begin this induction process in each connected component of Σ and
we stop it when it would require to make an extension to an elementary piece containing
a singular point s belonging to Node( F ) ∩ Sing( E F ). For a nodal singularity s (resp. s

�)
belonging to the strict transform S̆ (resp. S̆

�
) of a nodal separatrix of F (resp. F �), Extension

Lemma 8.3.2 provides a foliated homeomorphism Ks → Ks� which can be easily extended
to the adjacent elementary pieces K S̆ → K S̆� by using the product structures of F and F �
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in K S̆
∼= (Ks∩K S̆)×[0, 1] and K S̆�

∼= (Ks�∩K S̆�)×[0, 1]. To complete the process in this case,
it suffices to glue the realizations obtained in this way, by constructing in Section 8.5 suitable
foliated homeomorphisms defined on the elementary pieces associated to the singular points
s ∈ Node( F ) ∩ Sing( E F ).

8.2. Elementary pieces

Recall that we have fixed an N -conjugation (g, h) in Theorem 5.0.2. By Corollary 3.5.4
there exists an excellent homeomorphism germ (B, S) → (B, S

�
) representing the marking

determined by g. Let G : (B, S) → (B�, S�) be its lifting. We fix two Milnor tubes, cf. (14),
T ε for S and T �ε� for S

�, where ε, ε
�
> 0 are chosen small enough so that G( T ε) ⊂ T �ε� and

each real hypersurface {|xs| = 1} and {|ys| = 1}, s ∈ Sing( F ), as well as {|xs� | = 1} and
{|ys� | = 1}, s

� ∈ Sing( F �), separates the tube in two connected components and intersects
transversely the boundary in a 2-torus. We set

H :=

�

s∈Sing( F )

{|xs| = 1} ∪ {|ys| = 1}, H �
:=

�

s�∈Sing( F �)

{|xs� | = 1} ∪ {|ys� | = 1} .

We call elementary piece of T ε (resp. T �ε� ), every intersection K := K ∩ T ε (resp.
K
�
:= K � ∩ T �ε� ), where K (resp. K �) is the adherence of a connected component of T ε \ H

(resp. T �ε� \ H �). For each elementary piece K (resp. K
�), one and only one of the following

assertions holds:

– K (resp. K
�) contains a (unique) point s of Sing( F ) (resp. s

� ∈ Sing( F �)), and
it is contained in the domain W s (resp. W s� ) of the coordinate chart (xs, ys) (resp.
(xs� , ys�));

– K (resp. K �) contains a compact set D
◦

:= D \
�

s W s, where D denotes an irreducible
component of DS (resp. DS� ), and s ranges the set of singular points of F (resp. F �);
in addition, if ε, ε

�
> 0 are small enough then the restriction of the fibration πD

to K ∩ π
−1
D (∂D

◦
) is still a disk fibration;

In the first case the elementary piece will be denoted by Ks (resp. Ks� ), and in the second case
it will be denoted by KD. The intersection of two different elementary pieces is either empty
or a 3-dimensional solid torus.

8.3. Extension of realizations

By Corollary 3.5.4 there is a geometric representation (g, �g, h) of the N -conjugation
(g, h), with g excellent. We assume that ε > 0 is small enough so that G := E

−1
S� ◦ g ◦ES| T ε

is defined on T ε into T �ε� . Thanks to properties of excellent maps stated in Definition 3.5.2,
the restriction of G to the total divisor fulfills the following equalities:

G(Kα ∩ DS) = KG(α) ∩ DS� , α ∈ Comp(DS) � Sing( F ) ,

and G(Kα) is a neighborhood of KG(α) ∩ DS� in KG(α).
We consider an irreducible component D of DS and a Hopf fiber

T := π
−1
D (c) ∩ T �, over a point c in the boundary of D

◦, cf. (15). The connected com-
ponent C of ∂D

◦ containing c, is a circle that bounds a disk W s ∩ D, s ∈ Sing( F ). The
point c

�
:= G(c) belongs to the boundary of D

�◦, D
�

:= G(D). We denote T
�

:= π
−1
D� (c

�
)

and we assume that a germ of biholomorphism φS : (T, c) → (T
�
, c
�
) is given, as well
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as a pro-germ at infinity �φ∞ : ( �T ∗,∞) → ( �T ��,∞) lifting φS , such that (φS , �φ∞, h) is a
realization of (g, h) over T and T

�.

C�ɴ��ɴ�ɪ�ɴ� 8.3.1. – For B ⊂ �B∗ and B
� ⊂ �B��, we denote:

π0(B,∞) := lim←−U∈U F ,Σ
π0(B ∩ �U∗) , π0(B

�
,∞) := lim←−U∈U F �,Σ�π0(B

� ∩ �U�
) .

L���� 8.3.2 (of extension of realizations). – Let K (resp. K
�
) be one of the elementary

pieces KD or Ks (resp. KG(D) or KG(s)) and let us denote Z := K ∩ DS and Z
�
:= K

�∩ DS� .

We assume that �φ∞ and the restriction of �g to �T ∗ induce the same map

(23) �φ∞ = �g : π0(
�T ∗,∞) −→ π0(

�T ��,∞) ,

and, in the case that K = Ks, we also assume the following equality concerning the Camacho-

Sad indices:

CS( F , D, s) = CS( F �, D�
, G(s)) .

Then there are homeomorphisms Φ : V → V
�
and �Φ : �V ∗ → �V �� such that for each component

D̆ of DS meeting K, the following properties hold:

(a) V (resp. V
�
) is an open neighborhood of DS ∩K in K (resp. DS� ∩K

�
in K

�
), �Φ lifts Φ,

i.e., q
� ◦ �Φ = Φ ◦ q|�V ∗ and Φ|Z∩D̆◦ = G|Z∩D̆◦ ;

(b) Φ preserves the Hopf fibres over K ∩ D̆
◦
, more precisely,

πD̆� ◦ Φ|V ∩π−1

D̆
(V ∩D̆◦) = G ◦ πD̆ |V ∩D̆◦ ,

with D̆
�
:= G(D̆);

(c) the germ of the restriction of Φ to T coincides with φS and the pro-germ at infinity of the

restriction of �Φ to �T ∗ coincides with �φ∞;

moreover, except in case K = Ks, s ∈ Node( F ), we have:

(d) if we denote by ΦS the germ of Φ along K ∩ DS and by �Φ∞ the pro-germ at infinity of �Φ,

then (ΦS , �Φ∞, h) is a realization of the geometric conjugation (g, h) over V and V
�
, in the

sense given in Conventions 4.1.1; in particular Φ is a transversely holomorphic conjugation

between the restricted foliations F |V and F �|V � ;

(e) for each t ∈ D̆
◦ ∩K, the restrictions of �g and �Φ to Tt := π

−1
D̆

(t) induce the same map

�g|�T∗t = �Φ|�T �
t

: π0(
�T ∗t ,∞) → π0(

�T ��t� ,∞) , T
�
t� := π

−1
D̆� (t

�
) , t

�
:= G(t) .

In addition, the homeomorphisms obtained above by extension along K = KD and K = Ks,

coincide over the intersection of their domains of definition.

8.4. Beginning of the induction

We begin with a realization (ψ, �ψ, h) over N -collections of transversals Σ and Σ
� of

a geometric N -conjugation (g, h) between the monodromies of F and F � geometrically
represented by (g, �g, h). For each connected component Σ̆ of Σ we consider the irreducible
component S̆ of S meeting Σ̆. From Condition (σ) in the introduction and Condition (2) in
Theorem 5.0.2, we deduce that S̆ (resp. S̆� := g(S̆)) is a non-nodal separatrix of F (resp. F �).
Denote by S̆ and s (resp. S̆

�
and s

�) the strict transform of S̆ (resp. S̆�) and its attaching point
in the exceptional divisor ES (resp. ES� ). Denote by Σ̆

� ⊃ ψ(Σ̆) the connected component
of Σ

� meeting S̆
�. Thanks to the invariance by F or F �-isotopies stated in Proposition 3.6.4,
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we can assume that Σ̆ (resp. Σ̆
�) is contained in the image ES(T0) (resp. ES�(T

�
0)) of a Hopf

fiber T0 (resp. T �0) in the intersection of the elementary pieces K S̆ and Ks (resp. K S̆� and Ks� ).
Analogously, up to composing the geometric representation (g, �g, h) of the N -conjugation
(g, h) with S or S

�-isotopic homeomorphisms, cf. Remark 3.4.4, we can assume the equality
of germs (g(Σ̆), g(Σ̆∩ S̆)) = (Σ̆

�
, Σ̆
�∩ S̆

�
). Finally, we also assume that xs = 0 (resp. xs� = 0)

is a reduced local equation of S̆ (resp. S̆
�
) and we set:

T := ES({|ys| = 1, xs = 0}) and T� := ES�({|ys� | = 1, xs� = 0}) .

In order to simplify the notations in the rest of this section we will write �Σ∗ and �Σ�� instead

of �̆
Σ∗ and �̆

Σ��.

Now notice that ψ and �ψ are necessarily holomorphic. This follows from the commuta-
tivity of the diagram (�) in Definition 3.6.1, using Proposition 3.3.1. Then, in order to begin
with the inductive process described in Section 8.1, we will construct a geometric representa-
tion (g1, �g1, h) of the N -conjugation (g, h) which will satisfy the topological condition (23)
required by the Extension Lemma 8.3.2 in the case D = S̆, T = T0 and (φS , �φ∞, h) =

(ψ, �ψ, h). This condition is equivalent to the following equality:

(24) �ψ = �g1 : π0(
�Σ∗,∞) −→ π0(

�Σ��,∞) .

We can see that (24) holds if the equality �ψ(σ0) = �g1(σ0) is satisfied by a fixed element σ0

of π0(
�Σ∗,∞). Thanks to the Lemma 8.4.1 below, �g(σ0) and �ψ(σ0) belong to the same fiber

of the map ι : π0(
�Σ��,∞) → π0(

�T��,∞) induced by the inclusion ι : �Σ�� �→ �T��. This
property will allow us to construct a homeomorphism Θ : B� ∼−→B� which is S

�-isotopic to
the identity and whose lift �Θ satisfies �Θ(�g(σ0)) = �ψ(σ0). We achieve the beginning of the
inductive process by taking g1 = Θ ◦ g and �g1 := �Θ ◦ �g. The homeomorphism Θ is a sort of
foliated Dehn twist that we will describe before proving Lemma 8.4.1 below, which is needed
to construct it.

On the disk S̆
�
∩ W �

s� , we consider the real vector field ϑ whose flow is (t, ys�) �→ e
2iπt

ys� .
We fix a smooth function u with support contained in {xs� = 0, ς ≤ |ys� | ≤ 1}, 0 < ς < 1

taking the value 1 on the circle C
�
:= {xs� = 0, |ys� | = 1} and we denote by Y the vector

field on V
� tangent to F � and projecting over uϑ by π S̆� . The flow Υt of Y is defined on a

open neighborhood U
�
I of S̆

�
in W s� , once we fix an interval I ⊂ R where we allow the time t

to vary. Hence, we can lift the flow Υt to a unique map �Υt : �U ��I → �V �� being the identity
on |ys� ◦ q

�| ≤ ς, and defining consequently a germ at infinity �Υt∞ : (�V ��,∞) → (�V ��,∞).
Clearly the germ �Υn∞ fibers over C

�, i.e., π S̆� ◦ q
� ◦ �Υn∞|�T��

= π S̆� ◦ q
�
∞|�T��

, for each n ∈ Z.

It defines a deck transformation �Υn : Π
� ∼−→Π

� of the natural covering

ρ
�
: Π

� → C
�
, ρ

�−1
(p) := π0(

�T �p�
,∞) , T

�
p := π

−1

S̆�
(p) .

We put Θ := Υn0 and �Θ := �Υn0 , choosing the integer n0 in the following way. First, we fix a
point a in the circle C := {xs = 0, |ys| = 1} and an element ν of π0(

�T �
a ,∞), Ta := π

−1

S̆
(a).

We consider the natural covering ρ : Π → C of C with fibers ρ
−1

(p) := π0(
�T ∗p ,∞) and the
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following two covering morphisms over G|C

Π
Λ−→ Π

�

ρ ↓ � ↓ ρ
�

C
G|C−→ C

�

, Λ = �ψ and Λ = �g ,

defined by �ψ and �g. Using Lemma 8.4.1, σ
�
:= �ψ(σ0) and σ

��
:= �g(σ0) belong to the same

fiber of the map ι : π0(
�T �a��,∞) → π0(

�T��,∞), induced by the inclusion map ι : �T �a�� �→ �T��.
On the other hand, the action

Z× π0(
�T �a��,∞) −→ π0(

�T �a��,∞) (n, σ) �→ �Υn(σ) ,

of Z on the fiber of ρ
� at the point a

�
:= ψ(a) = G(a) ∈ C

� coincide with the action
of π1(C

�
, a
�
) � Z induced by the covering ρ

� on this fiber. The orbits of that action
correspond to the fibers of ι. We choose n0 to be the unique integer number such that
Υn0(σ

�
) = σ

��.

L���� 8.4.1. – The following diagram is commutative:

π0(
�Σ∗,∞)

�ψ−→ π0(
�Σ��,∞)

ı ↓ � ↓ ı

π0(
�T∗,∞)

�g−→ π0(
�T��,∞)

Proof. – Let �Σ∗0 be a connected component of �Σ∗ and consider the subgroup Γ0 ⊂ Γ∞
consisting of those elements ϕ ∈ Γ∞ such that ϕ(�Σ∗0) = �Σ∗0. Let us denote �Σ��0 := �g(�Σ∗0)
and �Σ��1 := �ψ(�Σ∗0) and for i = 0, 1 consider also the subgroups Γ

�
i of Γ

�
∞ consisting of

those elements ϕ such that ϕ(�Σ��i ) = �Σ��i . There exists γ ∈ Γ
�
∞ such that �Σ��1 = γ(�Σ��0 ).

A straightforward computation shows that Γ
�
1 = γΓ

�
0γ
−1. On the other hand, if ϕ ∈ Γ0

then �g∗(ϕ) ∈ Γ
�
0. Using (��) we also deduce that �g∗(ϕ) ∈ Γ

�
1 for all ϕ ∈ Γ0. Consequently

Γ
�
0 ∩ γΓ

�
0γ
−1 �= {1}. We fix a point �c ∈ �Σ�

0 and we identify Γ
�
∞ to π1(B��, c), c := q

�
(�c),

by means of the isomorphism χ : ϕ �→ q
� ◦ γ̇ϕ, ϕ ∈ Γ

�
∞, where γϕ denotes a path in �B��,

having endpoints �c and ϕ(�c). Clearly, χ(Γ
�
0) = π1(Σ

�∗
0 , c) = �mc� ⊂ �mc, pc� = π1(T��, c),

cf. Definition 6.1.2. Since H1(B��, Z) is torsion free, if mα
c = χ(γ)mβ

c χ(γ)
−1 then α = β and

consequently [mα
c , χ(γ)] = 1. It remains to see that if α �= 0 then χ(γ) belongs to π1(T��, c).

Indeed, if this is the case then �Σ��0 and �Σ��1 are contained in the same connected component
of �T��. That χ(γ) ∈ π1(T��, c) follows easily from the Sub-Lemma 8.4.2 below. Indeed, we
apply it first to A = π1(W, c), where W ⊂ B�� is the JSJ block containing Σ

��. We deduce
that χ(γ) ∈ A and we pass to the quotient Ā = A/�pc� by its center �pc�. We express
Ā = Zmc ∗ G and we apply again Sub-Lemma 8.4.2 in order to have that χ(γ) ∈ �mc�.
Hence χ(γ) ∈ �mc, pc�.

S�ʙ-L���� 8.4.2. – Let Γ = A∗C B be an amalgamated product of groups A and B over

a common subgroup C. Fix an element α ∈ A \
�

a∈A aCa
−1

. If γ ∈ Γ commutes with α then

γ ∈ A.

Proof of the sub-lemma. – For each element γ in Γ, there is a unique natural number
n ≥ 1 such that γ can be written in only one of the following ways
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(i) a1b1a2 · · · anbn,
(ii) b1a1b2 · · · bnan,

(iii) b1a1b2 · · · an−1bn,
(iv) a1b1a2 · · · bn−1an,

provided that ai ∈ A \C and bi ∈ B \C. If [α, γ] = 1 then necessarily γ is of type (iv). Since
a
−1
1 αa1b1a2 · · · bn−1anα

−1
= b1a2 · · · bn−1an and a

−1
1 αa1 /∈ C it follows that n = 1.

8.5. Gluing at the nodal singularities

For s ∈ Node( F ) ∩ Sing( ES) both germs of F at s and of F � at s
�

:= G(s) are
holomorphicaly conjugated to the germ, at the origin in C2, of the same linear complex
foliation L having a multivaluated first integral xy

λ, where λ ∈ R<0 \ Q and 1/λ are the
common Camacho-Sad indices at these singularities. This foliation L has a conical structure
over the induced (real) foliation by lines LR on the sphere ∂P with P = D1×D1. Outside the
knots defined by the coordinate axis, the leaves of LR are contained in the tori constituted
by the level sets of |x||y|λ in that sphere. Restricted to any torus, LR can be seen as the
suspension of the rotation of angle 2πλ. The following property of L allows us to easily
build a topological conjugation between F and F �, which is defined on neighborhoods of
the divisors in the elementary pieces associated to s and s

� and which coincides with the
conjugations previously obtained on the adjacent elementary pieces.

– let φ(x, y) := (φ(x, y), y) be a germ along the circle C := {0}×∂D1 of a biholomorphism

defined on a neighborhood of C in the solid torus D1× ∂D1, which preserves the foliation

LR. Then there exist positive real numbers ε1 < ε2 < 1 and a global homeomorphism

Φ : ∂P ∼−→∂P which coincide with φ for |x||y|λ ≤ ε1, and is the identity map for

|x||y|λ ≥ ε2.

The proof is based on the linearity of the maps φ(x, ·) resulting of their commutations with
the holonomy map of L along the circle C -which is a non periodic rotation. We can construct
Φ by a suitable interpolation, along the family of tori (Tr := ∂Dr × ∂D1)ε1≤r≤ε2 between
the restriction of φ to Tε1 and the identity map on Tε2 .

8.6. Proof of Extension Lemma 8.3.2 for K = KD

Thanks to Theorem 4.3.1, φ conjugates the holonomy representation of F along D
◦

and that of F � along D
�◦. Therefore, by using the classical lifting path method we have the

following:

(�) there are fundamental systems (Wk)k∈N and (W
�
k)k∈N of neighborhoods of D

◦
and D

�◦

in K and K
�

and there are homeomorphisms Φk from Wk onto W
�
k, such that:

1) for all k, l, Φk and Φl coincide over Wk ∩Wl;

2) the intersection of Wk (resp. W
�
k) with the fibers of πD (resp. πD�) are conformal disks

and hence W
∗
k and K

∗
(resp. W

��
k and K

�
) are homotopic;

3) Sat F (T ∩Wk, Wk) = Wk and Sat F �(T
� ∩W

�
k, W

�
k) = W

�
k;

4) πD� ◦ Φk = G ◦ πD |Wk
;

5) the restrictions of φ and Φk to Wk ∩ T coincide;

6) Φk conjugates F |Wk
to F �|W �

k
.
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Set V := W0 , V
�

:= W
�
0 ,Φ := Φ0, ∆ := V ∩ T and ∆

�
:= V ∩ T

�. From Property
(�) 2) above it follows that the restriction of q to each connected component �V ∗β of �V ∗,
β ∈ π0(

�V ∗) (resp. �V ��β� of �V ��, β
� ∈ π0(

�V �∗)) is a universal covering of V
∗ (resp. V

��); the
same is true for the connected components �∆∗α of �∆∗ over ∆

∗, α ∈ π0(
�∆∗ ∩ �V ∗β) and for

those �∆��α� of �∆�� over ∆
��, α

� ∈ π0(
�∆��

). We fix β ∈ π0(
�V ∗), α ∈ π0(

�∆∗ ∩ �V ∗β) and we
denote by �Φβ

: �V ∗β → �V ��β� the unique homeomorphism that lifts Φ over �V ∗β coinciding
with �φ on �∆∗α, where β

� corresponds to the connected component of �V �∗ containing �φ(�∆∗α
).

We will prove the following assertions:

(i) �Φβ does not depend on the choice of α ∈ π0(
�∆∗ ∩ �V ∗β);

(ii) the homeomorphism �Φ : �V ∗ → �V �� defined by requiring that its restriction to �V ∗λ,
λ ∈ π0(

�V ∗), coincides with �Φλ satisfies Conditions (a)-(e) of Lemma 8.3.2.

8.6.1. Proof of Assertion (i). – Using the uniqueness of the lifting of Φ over the covering
�V ∗β , it suffices to show that for each κ ∈ π0(

�∆∗ ∩ �V ∗β) the maps �Φβ and �φ coincide at one
particular point of �∆∗κ. In fact, we will prove the equality of the germs at infinity of their
restrictions to �∆∗κ.

To do that, it suffices to see that �Φβ
(�∆∗κ

) and �φ(�∆∗κ
) are contained in the same connected

component �∆∗κ� of �∆�∗ ∩ �V ��β� . Indeed, �Φβ conjugates �F |�V ∗β to �F
�
|�V �β� and it factorizes

through the leaf spaces of these foliations. Hence the following diagram is commutative:

(�∆∗κ
,∞)

Υ−→ (�∆�∗κ�
,∞)

τ �∆∗κ ↓ � ↓ τ �∆�∗κ�

�Q
F
∞

h−→ �Q
F �

∞

,

where Υ denotes the germ at infinity �Φβ

|�∆∗κ∞
of the restriction of �Φβ to �∆∗κ, and the vertical

arrows are the canonical pro-germs defined in Section 3.3. On the other hand, this diagram
still commutes when we take as Υ the germ at infinity �φ|�∆∗κ∞ of the restriction of �φ to �∆∗κ,

because (φS , �φ∞, h) is a realization of (g, h) over T . The equality �Φβ

|�∆∗κ∞
= �φ|�∆∗κ∞ follows

from Proposition 3.3.1 which asserts that τ�∆∗κ et τ�∆�∗κ� are An←−-monomorphisms.

Consider now the natural connected coverings

χβ :

�

t∈D◦

π0

�
�∆∗

t ∩ �V ∗β ,∞
�

=: Π
β
0 −→ D

◦
, ∆t := π

−1
D (t) ∩ V ,

and χ
�
β� :

�

t∈D�◦

π0

�
�∆�∗

t ∩ �V �∗β
�
,∞

�
=: Π

�
0
β� −→ D

�◦
, ∆

�
t := π

−1
D� (t) ∩ V

�
.

The maps �g and �Φβ send each connected component of �∆∗
t ∩ �V ∗β onto a connected com-

ponent of �∆�∗
G(t) ∩ �V �∗β� , defining in this way covering morphisms �gβ and �Φβ over G|D◦ ,

i.e.,

Π
β
0

Λ−→ Π
�
0
β�

χβ ↓ � ↓ χ
�
β�

D
◦ G|D◦−→ D

�◦

, Λ = �gβ and Λ = �Φβ
,
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Notice that over the point c, the actions of �Φβ and �gβ coincide at the previously fixed point
α ∈ π0(

�∆∗
,∞) ⊂ Π

β
0 . Indeed, we have the equalities:

�Φβ
(α) = �φ(α) = �gβ

(α),

the first one comes from the construction of �Φβ and the second one from the hypothesis (23).
We deduce the identity �Φβ

= �gβ on Π
β
0 . Using again (23) we obtain that �Φβ

(κ) = �gβ
(κ) =

�φ(κ), for all κ ∈ π0(
�∆∗ ∩ �V ∗β), concluding thus the proof of (i).

8.6.2. Proof of Assertion (ii). – Here D̆ = D and K ∩ D̆
◦

= D
◦. Assertions (a), (b) and

(c) of Lemma 8.3.2 are satisfied by construction. The proof of (i) above also shows Assertion
(e). It remains to show (d), i.e., the pro-germ at infinity �Φ∞ defined by �Φ makes commutative
the diagrams (�) and (��) in Definition 3.6.1.

8.6.2.1. Proof of the commutativity of (�). We fix cofinal families Un ∈ U F , Σ∪ES(T ) and
U
�
n ∈ U�F �,Σ∪ES� (T

�), n ∈ N, and we represent h ∈ HomAn←−
( �Q F

∞, �Q F �
∞ ) by a family of

holomorphic maps hn,p from �Q
F
�Un

into �Q
F �

�U �p , cf. (8). By definition, the commutativity of (�)

means the commutativity of all the diagrams

(�V ∗,∞)
�Φ∞−→ (�V ��,∞)

τn ↓ ↓ τ
�
p

�Q
F
Un

hn,p−→ �Q
F �

U �p

, n ≥ p ,

where τn := τ �V ∗, Un and τ
�
p := τ �V ��, U�p are the canonical pro-germs defined in Section 3.3. In

order to prove this, thanks to Theorem 2.1.1, it suffices to determine open neighborhoods
Vn,p of D

◦ in KD, satisfying

(25) Vn,p ⊂ Un , Φ(Vn,p) ⊂ U
�
p and τ

�
n,p ◦ �Φ|�Vn,p

= hn,p ◦ τn,p|�Vn,p
,

where

τn,p : �V ∗n,p −→ �Q
F
Un

and τ
�
n,p : �V ��n,p → �Q

F �

U �p

denote the quotient maps. Take for Vn,p an open set Wκ(n,p) of the fundamental system given
by (�), where the index κ(n, p) ∈ N is chosen big enough so that the above inclusions hold.
The equality in (25) is an equality of maps and it can be checked locally using the open cover
(�V σ

n,p)σ of �V ∗n,p. Notice that such an argument is not valid if we want to check the equality
of pro-germs τ

�
p ◦ �Φ∞ = hn,p ◦ τn without realizing them previously over the open sets Vn,p,

cf. Remark 3.2.1. Put

�V σ
n,p := Sat�F (�∆σ

n,p,
�Vn,p) , σ ∈ π0(

�∆∗
n,p,∞) , ∆n,p := Vn,p ∩ T ,

where �∆σ
n,p is the connected component of �∆∗

n,p corresponding to σ. Property 3) in (�)

implies that the open sets �V σ
n,p cover Vn,p. On the other hand, Property c) in the definition

of ( F ,Σ ∪ ES(T ))-admissibility of Vn,p stated in Section 2.1, implies that each leaf of
the restriction of �F to �V σ

n,p meets (transversely) �∆σ
n,p in exactly one point, defining thus a

holomorphic submersion-retraction-first integral r
σ from �V σ

n,p onto �∆σ
n,p. By using (�) 4), it

is clear that �Φ(�∆σ
n,p) is a connected component of �∆��

n,p , where ∆
�
n,p := V

�
n,p∩T

�
= Φ(∆n,p).

Analogously, we also have a holomorphic submersion-retraction-first integral r
�σ defined
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over the saturated set �V �σn,p of �Φ(�∆σ
n,p) in �V ��n,p onto �Φ(∆

σ
n,p). Clearly �V �σn,p = �Φ(�V �n,p) and

the following diagram commutes

(26)

�V σ
n,p

�Φ| �V σ
n,p−→ �V �σn,p

r
σ ↓ � ↓ r

�σ

�∆σ
n,p

�Φ| �∆σ
n,p−→ �Φ(�∆σ

n,p)

,

thanks to (�) 6). On the other hand, �Φ and �φ coincide on �∆∗. Therefore, the commutativity
of the diagram (�) for ψ = φ in Definition 3.6.1 implies the commutativity of the following
diagram if the index κ(n, p) is chosen big enough:

(27)

�∆σ
n,p

�Φ| �∆σ
n,p−→ �Φ(�∆σ

n,p)

τ ↓ � ↓ τ
�

�Q
F
Un

hn,p−→ �Q
F �

U �p

,

τ and τ
� denoting the quotient maps as usual. It is clear that the commutativity of the

diagrams (26) and (27) gives us the relation

τ
�
n,p ◦ �Φ|�Vn,p

= hn,p ◦ τn,p|�Vn,p

of (25). This finish the proof of the commutativity of (�).

8.6.2.2. Proof of the commutativity of (��) for ψ = Φ∞. Notice that �φ∞ makes the
corresponding diagram (��) commutative in Definition 3.6.1:

Γ∞
ι

�→ Γ�T∗,∞

g ↓ � ↓ �φ∞∗
Γ
�
∞

ι�

�→ Γ�T ��,∞

,

where ι(ϕ) := ϕ|�T∗ (resp. ι
�
(ϕ) := ϕ|�T �� ). By applying the following sub-lemma with

W1 := ES(T ), W2 := ES(V ), W
�
1 := ES�(T

�
) and W

�
2 := ES�(V

�
), we obtain directly

the commutativity of (��) in our context.

S�ʙ-L���� 8.6.1. – Let W1 ⊂ W2 (resp. W
�
1 ⊂ W

�
2) be submanifolds of B (resp. B�) not

contained in S (resp. S
�
) such that W1∩S �= ∅ (resp. W

�
1∩S

� �= ∅). Consider �Ψ2 : �W2 → �W �
2

a lift of a homeomorphism Ψ2 : W2 → W
�
2 such that Ψ2(W1) = W

�
1. We denote �Ψ1 := �Ψ2|�W∗

1

and we keep the notations introduced in Section 3.6. Then the following diagram (��) commutes

for k = 1 if and only if it commutes for k = 2:

Γ∞
ιk
�→ Γ�W∗

k ,∞

g ↓ ↓ �Ψk∗

Γ
�
∞

ι�k
�→ Γ

�
�W �

k
�,∞

, k = 1, 2,

where ιk(ϕ) := ϕ|�W∗
k

and ι
�
k(ϕ) := ϕ|�W �∗

k
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



440 D. MARÍN AND J.-F. MATTEI

Proof of the sub-lemma. – It suffices to observe that the horizontal lines of the diagram
below are composition of monomorphisms:

Γ∞
ι2
�→ Γ�W∗

2 ,∞
ι12
�→ Γ�W∗

1 ,∞

g ↓ ↓ �Ψ2∗ � ↓ �Ψ1∗

Γ
�
∞

ι�2
�→ Γ

�
�W �

2
�,∞

ι�12
�→ Γ

�
�W �

1
�,∞

,

with ι12(ϕ) := ϕ|�W∗
1

and ι
�
12(ϕ) := ϕ|�W ��

1
.

This achieves the proof Assertion (ii) and consequently we have proved Lemma 8.3.2 in
the case K = KD.

8.7. Proof of Extension Lemma 8.3.2 for K = Ks

We assume that ys = 0 (resp. ys� = 0) is a reduced local equation of D (resp. D
�)

supporting the transverse fibers T = π
−1
D (c) and T

�
= π

−1
D� (c

�
), c

�
= G(c). We denote by D̆

(resp. D̆
�) the irreducible component of DS (resp. DS� ) meeting K (resp. K

�) whose reduced
local equation is xs = 0 (resp. xs� = 0). We also adopt the following notations:

Pλ,µ := {|xs| ≤ λ, |ys| ≤ µ} , P�λ, µ := {|xs� | ≤ λ, |ys� | ≤ µ} ,

Tλ, µ := {|xs| ≤ λ, |ys| = µ} , T�λ, µ := {|xs� | ≤ λ, |ys� | = µ} ,

Tλ,µ := {|xs| = λ, |ys| ≤ µ} and T
�
λ,µ := {|xs� | = λ, |ys� | ≤ µ} .

Denote by X (resp. X
�) the real vector field tangent to F (resp. F �), whose flow writes as

(xs, ys, t) �→ (F (xs, ys, t), e
t
ys) (resp. (xs� , ys� , t) �→ (F

�
(xs� , ys� , t), e

t
ys�)).

First, we will construct Φ and �Φ satisfying Assertions (a)-(d) of Lemma 8.3.2. Next we will
modify these two homeomorphisms, without affecting Properties (a)-(d), in order to satisfy
also Assertion (e).

8.7.1. First step: construction of Φ. – Thanks to Theorem 4.3.1, the germ φS conjugates the
holonomies of F and F �. Therefore it extends to neighborhoods of the punctured disks

D
�
s := {0 < |xs| ≤ 1, ys = 0} , D

�
s�
�

:= G(D
�
s) = {0 < |xs� | ≤ 1, ys� = 0} ,

defining a unique germ of homeomorphism ΦD�
s

from (W s, D
�
s) onto (W �

s� , D
�
s
�
) which

conjugates F to F � and commutes with the Hopf fibrations, i.e., πD� ◦ ΦD�
s

= G ◦ πD.
Since the germ φS is holomorphic and G is excellent, cf. Definition 3.5.2, and consequently
holomorphic on a polydisk Pα, β , we deduce that the germ ΦD�

s
is holomorphic for |xs| ≤ α

if α > 0 is small enough. In fact, following the construction given in [10] we can assume that
G satisfies also the relations

xs� ◦G|Pα, β
= xs|Pα, β

, ys� ◦G|Pα, β
= ys|Pα, β

.

The equality of the Camacho-Sad indices will allow us to extend the germ ΦD�
s

to the
singular point s and this extension can be represented by a homeomorphism ΦDs defined
on a polydisk P1, �, 0 < � < α into an open set containing another polydisk P�1, �� . This
homeomorphism ΦDs conjugates F to F � and verifies πD� ◦ΦDs = G ◦ πD |P1,�

. In addition,
ΦDs is holomorphic on Pα, �.
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When s is not a nodal singular point of F , we can apply the conjugation Theorem stated in
[12] (see also [7, §5.2.1]) to construct ΦDs . Otherwise, the nodal singularities are linearizable
and these linearizations can specifically be done without changing the Hopf fibrations of D

and D
�. Indeed, there exists a coordinate �ys (resp. �ys� ) such that F (resp. F �) is given a linear

vector field in the coordinates (xs, �ys) (resp. (xs, �ys�)). On the transversals T and T
� the

holonomy maps around the singularities s and s
� are irrational rotations when expressed in

the coordinates �ys |T and �ys� |T � respectively. Thus the conjugation germ ΦS is linear in these
coordinates and any linear extension is a conjugation between F and F �. In both cases up
to restricting α and � > 0, we can also assume that

– the vector field X is transverse to the torus Tα, � and X
� is transverse to the real analytic

hypersurface H := ΦDs(Tα, �),
– H does not intersect the torus T�1,β ,
– for α

�
> 0 small enough, (P�α�, 1 \ H) possesses two connected components and that

one not containing s, does contain Tα�,β ; we denote by P�+α�, 1 its adherence.

We fix such a α
� and we “glue” ΦDs with Φ C given by applying the following sub-lemma. We

denote by D1 (resp. D
�
1) the irreducible component of DS (resp. DS� ), containing s (resp. s

�),
which is different from D (resp. D

�).

S�ʙ-L���� 8.7.1. – There is a homeomorphism Φ C defined on an open neighborhood V C
of the annulus C := {xs = 0, � ≤ |ys| ≤ 1} in {|xs| ≤ α

�
, � ≤ |ys| ≤ 1}, into an

open neighborhood V
�
C � of C � := P�+α�,1 ∩ {xs� = 0} in P�+α�,1, conjugating F |V C

to F �|V �
C�

,

which coincides with ΦDs when restricted to V C ∩ T1,�, satisfying the relation πD�
1
◦ Φ C (p) =

G ◦ πD1(p), for |ys(p)| ≥ β and verifying Sat F (V C ∩ T1,�, V C ) = V C .

The proof can be done using the classical lifting path method and the vector fields X

and X
�.

Thus, we obtain a homeomorphism Φ defined on P1,� ∪ V C . We choose ζ > 0 small
enough so that the set V := {|xsys| ≤ ζ} ⊂ W s is contained in P1,� ∪ V C and we put
Φ := Φ|V : V → V

�
:= Φ(V ).

8.7.2. Second step: construction of �Φ. – With Conventions 8.3.1, we have that the natural
maps

(28) π0(
�T∗1,1,∞) −→ π0(

�V ∗,∞) , π0(
�T�∗1,1,∞) −→ π0(

�V �∗,∞) ,

induced by the inclusions �T∗1,1 ⊂ �V ∗ and �T�∗1,1 ⊂ �V �∗, are bijective. Hence, each lift
�ΦT1,1 : �T∗ζ,1 → �V �� of the restriction of Φ to T∗ζ,1, extends in a unique way to a homeomor-
phism �Φ : �V ∗ → �V �� lifting Φ. In order to choose �ΦTζ,1 , we first apply the Lemma 8.3.2 in
the case K = KD, for which it is already proved. We obtain a homeomorphism ΦD◦ defined
on a neighborhood VD◦ of D

◦ and a lift �ΦD◦ defined on �V ∗D◦ satisfying the assertions of
the lemma. Since Conditions (b) and (c) of Lemma 8.3.2 give the unicity of these homeo-
morphisms and Φ also satisfies (c), we deduce that its restriction to Tζ,1 coincide with ΦD◦ ,
after taking germs. Therefore we can define �ΦTζ,1 as the extension of �ΦD◦ onto �V ∗, up to
restricting ζ > 0 so that Tζ,1 be contained in VD◦ .
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8.7.3. Third step: proof of Assertions (a)-(d). – Assertions (a)-(c) are trivially satisfied.
In order to show (d) we must prove the commutativity of the two diagrams appearing in
Definition 3.6.1. The commutativity of (��) follows exactly in the same way that in the case
K = KD. It only remains to prove the commutativity of (�). Using the previous notations
we remark that since the triple (ΦD◦ , �ΦD◦ , h) is a realization of the N -conjugation (g, h)

over V , its restriction (Φ|Tζ,1
, �Φ|�T∗ζ,1

, h) is a realization of (g, h) over Tζ,1. Hence, we have
the following commutative diagram

(29)
(�T∗ζ,1,∞)

�Φ|Tζ,1−→ (�T��ζ,1,∞)

τ ↓ � ↓ τ

�Q
F
∞

h−→ �Q
F �

∞

,

where τ and τ
� denote the canonical pro-germs. On the other hand, using the techniques

appearing in [9, §4.2] in the case of a resonant singularity, and a straightforward compu-
tation in the case of a linearizable singularity (excluding the case of a nodal singularity by
hypothesis in Lemma 8.3.2), we can prove the following result.

S�ʙ-L���� 8.7.2. – There are open neighborhoods U of DS∩K in K and U
�
of DS�∩K

�

in K
�

and there are deformation retractions R : U
∗ → U ∩ T∗1,1 and R

�
: U

�� → U
� ∩ T��1,1

such that if we set Uλ := (DS ∩K)∪R
−1

(T∗1,λ)) and U
�
λ := (DS� ∩K

�
)∪R

�−1
(T��1,λ)), then

1. the family (Uλ)0<λ�1 (resp. (U
�
λ)0<λ�1) is a fundamental system of neighborhoods of

DS ∩K in K (resp. of DS� ∩K
�

in K
�
);

2. every point p of Uλ (resp. U
�
λ) belongs to the same leaf of F |U∗λ

(resp. F �|U ��λ) than R(p),

(resp. R
�
(p)).

Thanks to Properties (1) and (2) in Sub-Lemma 8.7.2 above, the (unique) lifts of these
retractions define germs at infinity R∞ and R

�
∞ which make commutative the following

diagrams

(�V ∗,∞)
R∞ ��

τ �V ∗ ��

(T̃
∗
,∞)

τ�T∗��
�Q

F
∞

(�V ��,∞)
R�∞ ��

τ �V �� ��

(�T��,∞)

τ�T����
�Q

F �

∞

as well as

(�V ∗,∞)
�Φ∞−→ (�V ��,∞)

R∞ ↓ � ↓ R�∞

(�T∗,∞)

�Φ|�T∗∞−→ (�T��,∞).
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The commutativity of (��) follows directly from the commutativity of these three diagrams
and that of (29):

(�V ∗,∞)
�Φ∞ ��

R∞

��
τ �V ��

��

(�V ��,∞)

R�∞

��
τ �V ��

��

(�T∗,∞)

τ�T∗
��

�Φ|�T∗∞ �� (�T��,∞)

τ�T����
�Q

F
∞

h �� �Q
F �

∞

8.7.4. Fourth step: modification of Φ and �Φ to satisfy (e). – A priori the homeomorphism �Φ
that we have constructed does not have to satisfy (e). However, it induces on π0(

�T∗1,1,∞) the
same map as �g,

(30) �Φ = �g : π0(
�T∗1,1,∞) −→ π0(

�T��1,1,∞) .

Indeed, �Φ and �g induce the same map from π0(
�T∗1,1,∞) onto π0(

�T�∗1,1,∞), because �ΦD◦

satisfies (e). Then the equality (30) follows from the bijections (28) and

(31) π0(
�T∗1,1,∞)

∼−→π0(
�V ∗,∞) and π0(

�T��1,1,∞)
∼−→π0(

�V �
,∞) .

We will compose �Φ to the left with the germ at infinity �Θ∞ of the lift of a “Dehn twist” Θ

along the leaves of F � with support contained in a small neighborhood of T�1,1:

(�V ��,∞)
�Θ∞−→ (�V ��,∞)

q
�
∞ ↓ � ↓ q

�
∞

(V
�
, DS)

ΘS−→ (V
�
, DS).

We will see then that �Θ∞ ◦ �Φ satisfies (e) as well as (a)-(d), already verified by �Φ.

8.7.4.1. A) Construction of Θ and �Θ. Recall that D̆
� is the irreducible component of DS�

whose local equation is xs� = 0. On the disk D̆
� ∩ W �

s� , we consider the real vector field
ϑ whose flow is (t, ys�) �→ e

2iπt
ys� . We fix a smooth function u with support contained

in {xs� = 0, ς ≤ |ys� | ≤ 1}, 0 < ς < 1 taking the value 1 on C
�
:= {xs� = 0, |ys� | = 1} =

K
� ∩ D̆

�◦ and we denote by Y the vector field on V
� tangent to F � and projecting over uϑ

by πD̆� . The flow Υt of Y is defined on an open neighborhood UI of D̆ in W s� , once we fix
an interval I ⊂ R where we allow the time t to vary. Hence, we can lift the flow Υt to a
unique map �Υt : �U�

I → �V �� being the identity on |ys� ◦ q
�| ≤ ς, and defining consequently

a germ at infinity �Υt∞ : (�V ��,∞) → (�V ��,∞). Clearly the germ �Υn∞ fibers over C
�,

i.e., πD� ◦ q
� ◦ �Υn∞|�T�� = πD� ◦ q

�
∞|�T�� , for each n ∈ Z. It defines a deck transformation

�Υn : Π
� ∼−→Π

� of the natural covering

ρ
�
: Π

� → C
�
, ρ

�−1
(p) := π0(

�T �p�
,∞) , T

�
p := π

−1
D̆� (p) .

We put Θ := Υn0 and �Θ := �Υn0 , choosing the integer n0 in the following way. First,
we fix a point a in the circle C := {xs = 0, |ys| = 1} = K ∩ D̆

◦ and an element ν
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of π0(
�T �
a ,∞), Ta := π

−1
D̆

(a). We consider the natural covering ρ : Π → C of C with fibers

ρ
−1

(p) := π0(
�T ∗p ,∞) and the following two covering morphisms over G|C

(�)Λ

Π
Λ−→ Π

�

ρ ↓ � ↓ ρ
�

C
G|C−→ C

�

, Λ = �Φ and Λ = �g ,

defined by �Φ and �g. After the equality (30) and the bijections (28) and (31), the images
σ
�

:= �Φ(ν) and σ
��

:= �g(ν) belong to the same fiber of the map ι : π0(
�T �a��,∞) →

π0(
�T��1,1,∞), induced by the inclusion map ι : �T �a�� �→ �T��1,1. On the other hand, the action

Z× π0(
�T �a��,∞) −→ π0(

�T �a��,∞) (n, σ) �→ �Υn(σ) ,

of Z on the fiber of ρ
� at the point a

�
:= Φ(a) = G(a) ∈ C

� coincides with the action
of π1(C

�
, a
�
) � Z induced by the covering ρ

� on this fiber. The orbits of that action
correspond to the fibers of ι. We choose n0 to be the unique integer number such that
Υn0(σ

�
) = σ

��.

8.7.4.2. B) Proof of Assertions (a)-(e) for �Θ ◦ �Φ∞. Properties (a)-(c) are trivially satisfied.
Property (d) follows from Proposition 3.6.4. It only remains to prove (e), that is, to show the
equalities

(♦)t (Θ ◦ �Φ�T∗t ) = �g�T∗t : π0(
�T ∗t ,∞) −→ π0(

�T ��G(t),∞) ,

for all t ∈ C and for all t ∈ D
◦ ∩K. In the last case, �Θ is the identity near �T ��t and therefore

�Θ◦�Φ coincides with the homeomorphism �ΦD◦ given by Lemma 8.3.2 in the context K = KD,
which satisfies (e) as we have already seen. In the case t ∈ C, (♦)t is equivalent to the equality
(�Θ◦ �Φ) = �g of the covering morphisms (�)(�Θ◦�Φ) and (�)�g defined by �Θ◦ �Φ∞ and �g∞. Thus,
it suffices to show the equality on a single fiber, i.e., (♦)a. This equality is satisfied for the
element σ of π0(

�T ∗t ,∞) that we have previously fixed to define n0: (�Θ ◦ �Φ)(σ) = �g(σ). Since
Γ∞ acts transitively on π0(

�T ∗t ,∞), we must show the equality (�Θ ◦ �Φ)(ϕ(σ)) = �g(ϕ(σ)), for
all ϕ ∈ Γ∞, which follows directly from the commutativity of (��) for ψ = Φ ◦Φ|Ta

. Indeed,

(�Θ ◦ �Φ)(ϕ(σ)) = [(�Θ ◦ �Φ)∗(ϕ)]((�Θ ◦ �Φ)(σ)) = (�g∗(ϕ))(�g(σ))

= (�g∗(ϕ) ◦ �g)(σ) = (�g ◦ ϕ)(σ) = �g(ϕ(σ)) .
(32)

This concludes the proof of Extension Lemma 8.3.2 for K = Ks.
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