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FOLIATED STRUCTURE OF THE KURANISHI SPACE
AND ISOMORPHISMS OF DEFORMATION FAMILIES

OF COMPACT COMPLEX MANIFOLDS

ʙʏ L��ʀ�ɴ� MEERSSEMAN

Aʙ��ʀ���. – Consider the following uniformization problem. Take two holomorphic (parame-
trized by some analytic set defined on a neighborhood of 0 in C

p, for some p > 0) or differentiable
(parametrized by an open neighborhood of 0 in R

p, for some p > 0) deformation families of compact
complex manifolds. Assume they are pointwise isomorphic, that is for each point t of the parameter
space, the fiber over t of the first family is biholomorphic to the fiber over t of the second family. Then,
under which conditions are the two families locally isomorphic at 0? In this article, we give a sufficient
condition in the case of holomorphic families. We show then that, surprisingly, this condition is not
sufficient in the case of differentiable families. We also describe different types of counterexamples and
give some elements of classification of the counterexamples. These results rely on a geometric study of
the Kuranishi space of a compact complex manifold.

R�����. – Considérons le problème d’uniformisation suivant. Prenons deux familles de déforma-
tion holomorphes (paramétrées par un ensemble analytique défini dans un voisinage de 0 dans C

p pour
p > 0) ou différentiables (paramétrées par un voisinage de 0 dans R

p pour p > 0) de variétés compactes
complexes. Supposons-les ponctuellement isomorphes, c’est-à-dire que, pour tout point t de l’espace
des paramètres, la fibre en t de la première famille est biholomorphe à la fibre en t de la deuxième
famille. Sous quelle(s) condition(s) les deux familles sont-elles localement isomorphes en 0? Dans cet
article, nous donnons une condition suffisante dans le cas de familles holomorphes. Nous montrons
ensuite que, de façon surprenante, la condition n’est pas suffisante dans le cas des familles différen-
tiables. Nous décrivons également plusieurs types de contre-exemples et donnons quelques éléments
de classifications de ces contre-exemples. Ces résultats reposent sur une étude géométrique de l’espace
de Kuranishi d’une variété compacte complexe.
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496 L. MEERSSEMAN

Introduction

This article deals with the problem of giving a useful criterion to ensure that two holo-
morphic (respectively differentiable) deformation families are isomorphic as families. This
takes the form of the following uniformization problem. For i = 1, 2, let

πi : X i → U respectively πi : X i → V

be two holomorphic (respectively differentiable) families of compact complex manifolds
parametrized by some analytic set U defined on a neighborhood of 0 in C

p, for some p > 0
(respectively an open neighborhood V of 0 in R

p, for some p > 0). Assume that they are
pointwise isomorphic, that is, for all t ∈ U (respectively t ∈ V ), the fiber X1(t) = π

−1
1 ({t}) is

biholomorphic to the fiber X2(t) = π
−1
2 ({t}). Then the question is

Q����ɪ�ɴ 1. – Under which hypotheses are the families X1 and X2 locally isomorphic

at 0?

By locally isomorphic, we mean that there exist an open neighborhood W of 0 ∈ U

(respectively in V ), and a biholomorphism Φ (respectively a CR-isomorphism) between
X1(W ) = π

−1
1 (W ) and X2(W ) = π

−1
2 (W ) such that the following diagram is commutative

X1(W )
Φ−−−−→ X2(W )

π1

�
�π2

W −−−−−→
Identity

W.

We are also interested in the following broader problem.

Q����ɪ�ɴ 2. – Under which hypotheses are the families X1 and X2 locally equivalent

at 0?

By locally equivalent, we mean that there exist open neighborhoods W1 and W2 of 0 ∈ U

(respectively in V ), a biholomorphism φ between W1 and W2 (respectively a diffeomorphism)
and a biholomorphism Φ (respectively a CR-isomorphism) between X1(W1) = π

−1
1 (W1)

and X2(W2) = π
−1
2 (W2) such that the following diagram is commutative

X1(W1)
Φ−−−−→ X2(W2)

π1

�
�π2

W1 −−−−→
φ

W2.

In other words, X1 and X2 are locally equivalent at 0 if φ
∗ X2 and X2 are locally isomor-

phic for some local biholomorphism φ of U (respectively V ) fixing 0.

Fix a family X1. In this paper, we shall say that this family has the local isomorphism

property (at 0), respectively has the local equivalence property (at 0) if every other family
X2 which is pointwise isomorphic to it is locally isomorphic to it (at 0), respectively locally
equivalent (at 0).
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ISOMORPHISMS OF DEFORMATION FAMILIES 497

It is known since Kodaira-Spencer (see [8], [15] and Section 5.1 of this article) that there
exist pointwise isomorphic families of primary Hopf surfaces which are not locally isomor-
phic, both in the differentiable and the holomorphic cases.

On the other hand, the classical Fischer-Grauert Theorem [2], can be restated as follows.
Let X be a compact complex manifold and U be an open neighborhood of 0 in some C

p.
Then every trivial family X × U has the local isomorphism property. This works also
for differentiable families. Indeed the proof given in [2] for holomorphic families is easily
adapted to the differentiable case, the core of the proof being Theorem 6.2 of [7] which is
valid both for differentiable and holomorphic families.

Moreover, J. Wehler proved in [15] that, over a smooth base, holomorphic families of com-
pact complex tori (in any dimension) as well as holomorphic families of compact manifolds
with negatively curved holomorphic curvature (this implies that they are Kobayashi hyper-
bolic) have the local isomorphism property. This time, the proofs do not adapt to the differ-
entiable case.

Observe that in the two previous cases, the function h
0(t), that is the dimension of the

cohomology group H
0(Xt,Θt) (where Θt is the sheaf of holomorphic vector fields along Xt)

is constant for all t ∈ U . It is equal to n in the case of n-dimensional tori, and to 0 in the
case of negatively curved manifolds. Wehler asks in the introduction of [15] if this condition
is sufficient to have the local isomorphism property.

In this paper, we prove that this is the case, even over a singular base. Namely,

Tʜ��ʀ�� 3. – If U is reduced and if the function h
0

is constant for all the fibers of a

holomorphic deformation family π : X → U , then X has the local isomorphism property.

We then give examples (both in the differentiable and holomorphic setting) of families
not having the local equivalence property, as well as of locally equivalent but not locally
isomorphic families. We classify these counterexamples into two types, and we give in
Theorem 4 a complete classification of 1-dimensional families of type II not having the local
equivalence property.

Coming back to the search for a criterion, we prove that, surprisingly, things are com-
pletely different in the differentiable case.

Tʜ��ʀ�� 5. – There exist differentiable families of 2-dimensional compact complex tori

parametrized by an interval that are pointwise isomorphic but not locally isomorphic at a given

point.

To solve the uniformization problems stated above, we first study the geometry of the
Kuranishi space K of a compact complex manifold X. We show in Theorem 1 that it has a
natural holomorphic foliated structure: two points belonging to the same leaf correspond to
biholomorphic complex structures. More precisely, K admits an analytic stratification such
that each piece of the induced decomposition (see Section III for more details) is foliated. The
leaves are complex manifolds, but the transverse structure of the foliation may be singular
(this happens when the Kuranishi space is singular).

The foliation may be of dimension or of codimension zero. In Theorem 2, we prove
that there exists leaves of positive dimension (that is the foliation has positive dimension
on some piece of the decomposition) if and only if the function h

0 is not constant in the
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498 L. MEERSSEMAN

neighbourhood of 0 in K (0 representing the central point X). In particular, in many
examples, the foliation is a foliation by points.

Although Theorems 3, 4 and 5 on the uniformization problems are not strictly speaking a
consequence of Theorems 1 and 2 on the foliated structure of K, the geometric picture of K

they bring played an essential role in the understanding and resolution of the problem. The
key ingredients to prove the theorems are some trivial remarks on diffeomorphisms of the
Kuranishi space (see Section II), the Fischer-Grauert Theorem [2], a result of Namba [12]
and a fundamental proposition proved by Kuranishi in [10].

We end the article with a discussion of the relationship between the uniformization
problem and the universality of the Kuranishi space.

1. Notations and background

Let X be a compact complex manifold. We denote by X
diff the underlying smooth

manifold and by J the corresponding complex operator.
A (holomorphic) deformation family of X is a proper and flat projection π from a C-ana-

lytic space X (possibly non-reduced) over an analytic set U defined on an open neighborhood
of 0 in some C

p. A differentiable deformation family (see [7]) is a smooth submersion π from
a smooth manifold X endowed with a Levi-flat integrable almost CR-structure over an open
neighborhood V of 0 in some R

p, whose level sets are tangent to the CR-structure. If the al-
most CR-structure on X is not supposed to be integrable, one has a differentiable deformation

family of almost-complex structures of X.
In the three cases, the central fiber X0 = π

−1({0}) is assumed to be biholomorphic
to X. Sometimes, we consider marked deformation families of X, that is we fix a precise
holomorphic identification i : X → X0.

Let us recall some features of the construction of the Kuranishi space following [9]. The
set of almost complex structures close to J is identified with a neighbourhood A of 0 in the
space A

1 of (0, 1)-forms on X with values in T
1,0. In particular, 0 represents the complex

structure J we started with (here and in the sequel, the topology used on spaces of sections
of a vector bundle over X is induced by some Sobolev norms, see [9] for more details).

Put a hermitian metric h on X. Then we have a ∂̄-operator on A
p, the space of (0, p)-forms

with values in T
1,0, a formal adjoint operator δ with respect to the induced hermitian product

on A
p and a Laplace-like operator �. Let SH

1 denote the set of δ-closed forms in A
1.

Kuranishi proves in [9]

Pʀ����ɪ�ɪ�ɴ K1. – For A small enough, there exist a neighborhood B of 0 in SH
1

and an application Ξ from A to B mapping an almost complex structure α onto a δ-closed

representant Ξ(α). Moreover, if α(t) is a smooth family of almost complex structures, then so

is Ξ(α(t)).

By representant, we mean that Ξ(α) and α induce isomorphic almost complex structures
on X

diff.
Then Kuranishi defines a holomorphic map G from A

1 to A
1 and proves that it is a

biholomorphism between a special subset of A
1 (containing in particular all integrable
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almost complex structures close enough to 0) and a neighborhood W of 0 in H
1, the (finite-

dimensional) space of harmonic forms in A
1; or, using the Dolbeault isomorphisms, in

H
1(X,Θ).

The Kuranishi space K is the set of integrable structures in W . It is an analytic set.
The Kuranishi family K is the family obtained by endowing each fiber X

diff × {α} of
X

diff ×K → K with the corresponding complex structure encoded by α. Moreover, it is a
marked family.

The Kuranishi family is complete for smooth deformation families as well as for holomor-
phic deformation families (unmarked and marked), not only at 0 but also at all points of K

(shrinking K if necessary). Hence every deformation family X of X is locally isomorphic to
the pull-back of K by some map f from its base space to the Kuranishi space. By abuse of
notation, we write X = f

∗W . If X has a marking, then we ask the pull-back to respect the
markings.

The Kuranishi family is versal at 0, i.e. complete in the previous sense with the additional
property that its Zariski tangent space has dimension equal to the dimension of H

1(X,Θ).
This last property may not be true at points different from 0. The versality property is
equivalent to the following. Given a holomorphic marked deformation family π : X → U , in
the writing X = f

∗ K , then f may not be unique, but its differential at 0 is. The same property
holds for smooth deformation families. It must be stressed that this property is related to the
markings. It is usually lost when dealing with unmarked families. The marking is necessary
in order to prevent from reparametrizing the family by an automorphism which acts non-
trivially in the central fiber.

R���ʀ�. – In the previous setting, if f is unique, then K is called universal. The univer-
sality property does not hold for any Kuranishi space, see [13] and Section 5.5.

R���ʀ�. – The versality property of K at 0 implies its unicity (as a germ), see
[1, Proposition 5.3].

R���ʀ�. – The Kuranishi space may be not reduced at every point [11]. This explains
why one also considers holomorphic families over a non-reduced base. In this context, we
would like to point out the following subtle point. If X is a holomorphic family over a reduced

base, or is a differentiable family, then, in the writing X = f
∗ K , the morphism f is in fact

a morphism from the base U of X to K
red, the reduction of K. Hence the fact that K is

reduced or not is not relevant for these families. But, if U is non-reduced, then such a f

is not completely determined by its image in K
red; one has also to specify the value of its

differential at each point. Anyway, keeping in mind this difference, it is still true that such a
family is obtained by pull-back from the Kuranishi family and that the differential of the pull-
back map at 0 is unique; that is, the notions of completeness and versality remain the same.
In particular, from the previous remark, one deduces that if a deformation family of X over
some reduced analytic space A is versal for differentiable families, then it is diffeomorphic to
the reduction of the Kuranishi space of X.

Finally, we will make an intensive use of the following proposition.
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Pʀ����ɪ�ɪ�ɴ K2. – If h
0

is constant on K, there exist a neighborhood U of 0 in K and

a neighborhood U of the identity in the group of diffeomorphisms of X
diff

such that, for all

couples (t, t�) of distinct points of U , we have

αt� ≡ f∗αt for some diffeomorphism f =⇒ f �∈ U.

Here we have αt = G
−1(t) (respectively αt� = G

−1(t�)). To fully understand this
statement, recall that the Kuranishi family is constructed as a family of complex operators.
Hence every fiber Kt is naturally defined as (Xdiff

, αt). This crucial proposition is proved by
Kuranishi in [10] and used to show that h

0 constant implies the universality of K. We will
discuss this at the end of the article.

2. Preliminary remarks on diffeomorphisms of the Kuranishi family

Let us begin with some definitions.

D��ɪɴɪ�ɪ�ɴ. – A diffeomorphism of the Kuranishi space K is a bijective map φ from
some open neighborhood of 0 in its reduction K

red onto some open neighborhood of 0 in
K

red such that

(i) It sends a complex structure onto an isomorphic complex structure.

(ii) Both φ and φ
−1 are restrictions to K

red ∩W
� ⊂ W

� ⊂ W ⊂ H
1(X,Θ) of a smooth

map of W
� ⊂ W for some W

�.

Such a diffeomorphism is generally, but not always, assumed to fix 0. Notice that such a
map is smooth in the sense of [9].

D��ɪɴɪ�ɪ�ɴ. – A diffeomorphism of the Kuranishi family K is a continuous map F from
some open neighborhood of K0 in K to K such that

(i) F descends as a diffeomorphism f of K;

(ii) the restriction of F to any fiber of K → K is a biholomorphism;

(iii) F is CR in the following sense. Since K → K is a flat morphism, it is locally
isomorphic at each point to an open set of D

dim K0 × K. Representing F locally as a map
between two such charts, we ask it to be holomorphic in the D

dim K0-variables, and smooth
in the other variables (in the sense of the previous definition).

Notice that, even when F fixes the central fiber, we do not ask it to respect the markings.

In the same way, we define automorphisms of K as isomorphisms of some open neigh-
borhood of 0 in the analytic space K (and not K

red this time) generally fixing 0 (and thus
as restrictions to K of local isomorphisms of W at 0); and automorphisms of K as local iso-
morphisms of K descending as automorphisms of K. Finally, all these definitions apply with
trivial changes to other deformation families of X than the Kuranishi family.
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R���ʀ�. – In the definition of a diffeomorphism (and an automorphism) of K, we
consider K as an analytic space of a C-vector space, and not as a set of complex operators.
This explains why a diffeomorphism of K may not lift to a diffeomorphism of K . This lifting
problem is very close to the local isomorphism problem. Indeed, we will give a criterion for
lifting an automorphism of K in Corollary 4, as a consequence of the criterion to have the
local isomorphism property. And we also give in Lemma 6 an example of an automorphism
of K which does not lift.

In the second part of this section, we deal with the problem of extending a diffeomorphism
(respectively an automorphism) of the central fiber K0 to a diffeomorphism (respectively
an automorphism) of K . Let us make first the following trivial remark. Let φ be an
automorphism of X. Via the marking of K , we consider it as an automorphism of K0. The
family (K , K) with the new identification φ◦ i is a new versal family for X, hence, by unicity,
there exists an automorphism Φ of K fixing 0 and extending φ.

The two following lemmas are trivial but of fundamental importance for the sequel.
Part (i) of the first one is even weaker than the previous statement but it has the advantage
to admit slight generalizations stated in Lemma 2 and Proposition 1.

L���� 1. – (i) Let φ be an automorphism of X. Then there exists a diffeomorphism Φ of

K extending φ.

(ii) Let φ be a diffeomorphism of X
diff

such that φ∗0 belongs to the set A of Proposition K1.

Then there exists a diffeomorphism Φ of K extending φ.

Proof. – In both cases, see φ as a diffeomorphism of X
diff. Then it satisfies φ∗0 = 0

(case (i)) or φ∗0 close to 0 (case (ii)). In other words, this diffeomorphism induces a map

φ∗ : α ∈ A
1 �−→ φ∗α ∈ A

1

with 0 as fixed point or with 0 sent close to 0. Consider the following composition

W
� ⊂ W ⊂ H

1 G−1

−−−−→ A
1 φ∗−−−−→ A

1 Ξ−−−−→ SH
1 G−−−−→ H

1

taking W
� small enough to have φ∗(W �) ⊂ A.

This gives φ̃, a map from W
� ⊂ W to H

1. This φ̃ respects the almost complex structures,
that is, sends an almost complex structure onto one which is isomorphic. Hence, it induces
naturally a smooth map from K to K that we denote by Φ.

Consider the image K
� ⊂ K

red of Φ. Since Φ respects the complex structures, we have
that K red is diffeomorphic to Φ∗ K � = Φ∗ K red. Hence, the analytic set K

� is versal for
differentiable families, so, as remarked at the end of Section I, K

� and K
red must be equal

(as germs of 0) and Φ must be a diffeomorphism.

L���� 2. – Let φ be an automorphism of X isotopic to the identity. Then there exists a

diffeomorphism Φ of K extending φ isotopic to the identity. Moreover, if we fix an isotopy

φt between φ and the identity on X, then the isotopy between Φ and the identity of K can be

assumed to be equal to φt when restricted to X.
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Proof. – Apply the proof of Lemma 1 to each member of the isotopy φt. We thus obtain
a family Φt of diffeomorphisms of K extending φt for all t. By compacity of [0, 1], all the
Φt can be defined on a same open neighborhood of 0. Finally smoothness in t comes from
Proposition K1.

Of course, the important point in Lemma 2 is that Φ is isotopic to the identity. We draw
from these lemmas an important consequence.

Pʀ����ɪ�ɪ�ɴ 1. – Assume that the function h
0

is not constant at 0 ∈ K. Then, we can

find φ, an automorphism of X isotopic to the identity, such that

(i) it extends as a diffeomorphism Φ of K isotopic to the identity;

(ii) the projection of every such extension on K gives a diffeomorphism of K whose germ

at 0 is not the germ of the identity.

Proof. – The first step of the proof is a very classical argument. Assume without loss
of generality that K is reduced. The function h

0 is known to be upper semi-continuous.
The assumption that it is not constant in a neighborhood of 0 implies then that it has a
strict maximum at 0. Take a basis of H

0(K0,Θ0). If every vector field of this basis could
be extended to a vector field of the family K (tangent to the fibers, globally smooth and
holomorphic along the fibers), at a point t ∈ K close enough to 0, they all would form a
free family of dimension h

0(0) of H
0(Kt,Θt), contradicting the inequality h

0(t) < h
0(0).

Hence, there exists a global vector field ξ on K0 which cannot be extended as a vector
field of K tangent to the fibers. Let φ be the corresponding automorphism of K0 isotopic
to the identity obtained by exponentiation for small time. By Lemma 2, there exists a
diffeomorphism Φ of K extending φ isotopic to the identity, proving (i).

Now, for every such choice of Φ, the induced diffeomorphism of K cannot be the identity,
even in germ, otherwise the global vector field of K obtained by differentiating Φ would be
tangent to the fibers and would extend ξ. Contradiction which proves the proposition.

A classical result of [7] states that, if the function h
0 is constant in a smooth deformation

family π : X → V , then every automorphism of X0 isotopic to the identity can be extended
as a diffeomorphism of the family X which is the identity on V . Automorphisms of X

which does not extend as automorphisms of K that are the identity on K are usually called
obstructed automorphisms. Proposition 1 tells us that obstructed automorphisms extend as
diffeomorphisms of K with non-trivial projection on K, but isotopic to the identity.

3. Foliated structure of the Kuranishi space

3.1. Local submersions

Let t be a point of K corresponding to the complex manifold Xt = (Xdiff
, Jt). Denote by

(K)t the space K but with base point t and not 0 and by (K )t the corresponding deformation
family of Xt (choosing some identification maps). The family (K )t → (K)t is complete at t,
but not always versal. On the other hand, let K(t) be the Kuranishi space of Xt, and K (t) the
corresponding versal family. We thus have a sequence of pointed analytic spaces

( S) (K(t), 0)
it−−−−→ ((K)t, t)

st−−−−→ (K(t), 0)
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which lifts to a sequence of maps between families

K (t)
It−−−−→ (K )t

St−−−−→ K (t).

And ( S) is the restriction of the sequence (defined on neighborhoods of the base points)

(H1(Xt,Θt), 0)
ı̃t−−−−→ (H1(X0,Θ0), αt)

s̃t−−−−→ (H1(Xt,Θt), 0).

L���� 3. – The map s̃t is a submersion at αt.

Proof. – Since K(t) is versal at 0, the composition ıt ◦ st is a local isomorphism at 0. So
is ı̃t ◦ s̃t. Hence s̃t is a submersion at Jt.

Apply the submersion Theorem to s̃t. This gives a diagram

V ⊂ (H1(X0,Θ0), Jt)
s̃t−−−−→ W ⊂ (H1(Xt,Θt), 0)

local biholomorphism
�

�natural projection

W ×B −−−−→
identity

W ×B

where B is the unit euclidean ball of C
p for p = h

1(0)−h
1(t) and h

1(t) denotes the dimension
of H

1(Xt,Θt).
This submersion allows to locally foliate H

1(X0,Θ0) in a neighborhood of αt. The leaves
correspond to deformation families of almost complex structures which are pull-back by s̃t

of a constant family. In other words, the points of a same leaf all define the same almost
complex structure up to isomorphism.

When we restrict to K, we obtain the diagram of analytic spaces

(K)t
st−−−−→ K(t)

local biholomorphism
�

�natural projection

K(t)×B −−−−→
identity

K(t)×B

that defines a local foliated structure of K.
We aim at gluing those local foliations together into a global foliation. This brings some

problems since the induced foliations in two arbitrarily close points may be of different
dimensions. To overcome this problem, it is necessary to decompose the space K.

3.2. Decomposition of K

Decompose K as a disjoint union

(D) K = K
min � · · · �K

max

where K
i denotes the set of points t of K such that the dimension of K(t) is i. Observe that

the completeness of K at each point implies that 0 belongs to K
max. Set Zj = �i≤jK

i. The
sequence Zmin ⊂ . . . ⊂ Zmax = K is a stratification of K.

We want to show that this decomposition is analytic in the sense that, for all
min ≤ i < max, the set Zi is an analytic subset of Zi+1 and thus of K.

L���� 4. – The decomposition (D) of K is analytic.
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Proof. – Assume first that K is reduced. Define, for min ≤ c ≤ max

Ec = {t ∈ K | h
1(t) ≥ c}.

These sets form an analytic stratification of K, see [4]. Call G = (Gc) the associated
decomposition.

On the other hand, denoting by Gc the family of complex structures with base Gc, the
results of [4] show that the group H

1( Gc,Θ) is isomorphic to a locally free sheaf over Gc

whose stalk at t is H
1(Xt,Θt). The set of integrable structures in this sheaf is given as the

zero set Zt of a field of quadratic forms in the fibers which is analytic in t.
This allows us to analytically stratify each piece Gc by

Gc,d = {t ∈ Gc | codim Zt ≤ d}

for d ≤ c.
Then the Ec, respectively the Gc,d, are analytic sets of K, respectively of Gc, whereas

Gc ⊂ Ec is a quasi-analytic open set.
Observe now that the completeness property of a Kuranishi space at each point close

enough from the base point implies that the function t ∈ K �−→ dim K(t) is upper semi-
continuous for the standard topology. Since Gc,d is an analytic set of Gc and since the Zariski
closure of Gc, that is Ec, is equal to its closure for the standard topology, this proves that the
Zariski closure Gc,d of each Gc,d in Gc = Ec is just

Gc,d = {t ∈ Ec | codim Zt ≤ d}.

We now just have to set
Fi = ∪c−d≥i Gc,d

for i between min and max, to obtain an analytic stratification of K whose associated
decomposition Fi \ Fi+1 (i > min) and Fmin is the decomposition D.

If K is not reduced, we just perform the previous stratification on its reduction, then
we obtain the decomposition (D) by putting on each Fi the multiplicity induced from K.
Of course, we may be forced to add more pieces if some component contains an analytic
subspace of higher multiplicity (think of a double point inside a line; then K has two
components, whereas K

red has just one).

Let t ∈ K
i for some i. By definition, it and st respect the decompositions of K and K(t),

that is
it(K(t)max) = K

i and st(K
i) = K(t)max

.

It is thus possible to restrict the submersions st to a piece of the decomposition to obtain
the following diagram

(Ki)t
st−−−−→ K(t)max

local biholomorphism
�

�natural projection

K(t)max ×B −−−−→
identity

K
max
t ×B.

In the sequel, st will always denote the restricted submersion from K
i to the piece

K(t)max, for t ∈ K
i.
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3.3. Foliated structure of K

Using the submersion st, we will define a foliated structure on each piece K
i.

D��ɪɴɪ�ɪ�ɴ. – Let X be an analytic space. A transversally singular foliation of dimen-
sion p on X is given by an open covering (Uα) of X

red and local isomorphisms φα : Uα →
B ×Zα (for B the unit ball of C

p and Zα a reduced analytic space) such that the changes of
charts φαβ ≡ φβ ◦ (φα)−1 preserve the plaques B × {pt}.

Thus a transversally singular foliation is a lamination with a transverse structure of an
analytic space. The choice for this somewhat unusual name (rather than analytic lamination
or something analogous) comes from the fact that we find more judicious to reserve the word
lamination to a situation where the total space has no analytic structure.

Now, given such a foliation, one may define the leaves as in the classical case by gluing
the plaques. Hence the leaves are holomorphic manifolds. Remark also that the germ of the
analytic space Zα is the same along a fixed leaf.

Starting from a non-reduced space X, one may consider such a foliation on it as a foliation
of its reduction with holomorphic submanifolds as leaves; or one may endow X itself with
a "non-reduced" foliation whose leaves are non-reduced holomorphic submanifolds. Both
points of view are equivalent.

We may state

Tʜ��ʀ�� 1. – Let K be the Kuranishi space of a manifold X. Consider the decomposition

D of K.

Then each piece K
i

admits a transversally singular foliation F i
locally defined by the

submersions st of Section 2.

Notice that two points belonging to the same leaf correspond to the same complex man-
ifold (up to biholomorphism). Notice also that the Kuranishi family K admits an induced
decomposition in pieces K i, each of these pieces being foliated. By [2], the leaf of K i corre-
sponding to t ∈ K

i is a locally trivial fibre bundle with fibre Xt over the leaf of K
i through t.

And the foliation of K (respectively K ) extends to a holomorphic foliation, respectively an
almost-complex foliation (this time in the classical sense, that is with smooth transverse struc-
ture) of W and respectively W using the submersions St. To simplify the exposition, we will
always consider the foliation of K.

Proof. – Take a covering of a piece K
i by open sets where a submersion st is well defined.

Using the submersion theorem, we obtain foliated charts modelled on a product of a ball of
dimension (dim K − i) with an analytic space of dimension i. Now, the changes of charts
respect the leaves, since they have an intrinsic geometric definition: the leaf through t ∈ K

i

is the maximal connected subset of K
i of points corresponding to the complex manifold Xt

up to biholomorphism.

Remark that this proof adapts immediately to the case of W , with the only difference that
Xt may just be an almost complex manifold.
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N����ɪ�ɴ �ɴ� D��ɪɴɪ�ɪ�ɴ. – We denote by F the global foliation of Theorem 1, that
is the union of the foliations F i.

We say that the foliation F is trivial if each foliation F i is a foliation by points.

The foliation F is trivial if and only if the decomposition (D) has a single piece, that is
if and only if the dimension of K(t) is constant near 0. On the other hand, observe that
F may be of codimension 0 (that is each F i has codimension 0 in K

i) with a non-trivial
decomposition (see the examples below).

3.4. Examples

(i) Let X be a complex torus of dimension n. Following [8], the Kuranishi space of X may
be represented by a neighborhood of 0 in C

n2
and it is versal at each point. Therefore, the

decomposition (D) has a unique piece and the foliation F is trivial.
However, observe that given a well-chosen compact complex torus, there exists an infinite

sequence of points of K corresponding to this torus [8, p. 413]. This shows that two points
belonging to different leaves of F may nevertheless define the same complex structure.

(ii) Let X be the Hirzebruch surface F2. Its Kuranishi space may be represented by a
unit 1-dimensional disk whose non-zero points all correspond to P

1 × P
1, see [1]. The

decomposition is
K = K

1 �K
0 = {0} � D

∗

and both foliations have codimension zero.
(iii) Let X be the Hopf surface obtained from C

2 \ {(0, 0)} by taking the quotient by the
group �2Id� generated by the homothety (z, w) �→ 2 · (z, w). Its Kuranishi space is described
in [8]. It may be represented by a neighborhood of the matrix 2Id in

K = {A ∈ GL2(C) | |Tr A| > 3, |∆(A)| = |(Tr A)2 − 4 detA| < 1}.

A point A of K corresponds to the Hopf surface C
2\{(0, 0)}/�A�. If A is a multiple of the

identity, then the corresponding Kuranishi space K(A) has dimension four; in other words
K is versal along the set

∆ =

ß
λId | |λ| >

3

2

™
.

However, if A is not a multiple of the identity, the dimension of K(A) drops to 2. Thus
we decompose K into two pieces

K
4 = ∆ and K

2 = K \ ∆.

On the other hand, consider the map

φ : A ∈ K �−→ (Tr A,∆(A)) ∈ C
2
.

Let (σ, δ) be a point of C
2 with |σ| > 3 and |δ| < 1. If δ is different from zero, all points of

φ
−1(σ, δ) correspond to the same Hopf surface. If δ is zero, the same is true for all points of

φ
−1(σ, δ) except for σ/2 · Id, which corresponds to a different Hopf surface. Notice that in

this case, the level set φ
−1({(σ, δ)}) is singular at σ/2 · Id.

As a consequence of all that, the foliation F 4 is a foliation by points, whereas the foliation
F 2 is a non-trivial one, which is given by the level sets of the submersion φ restricted to K

2.
It has dimension and codimension two.
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4. Non-triviality criterion for F

The aim of this section is to prove the following result.

Tʜ��ʀ�� 2. – Let K be the Kuranishi space of X and let F be the foliation of K

constructed in section III.

Then F is trivial if and only if h
0

is a constant function on K.

This leads to the following corollary.

C�ʀ�ʟʟ�ʀʏ 1. – The Kuranishi space K is versal at all points if and only h
0

is a constant

function on K.

Proof of Corollary 1. – Combine Theorem 2 and the remark after the definition of
triviality for F .

Let us proceed to the proof of Theorem 2.

Proof of Theorem 2. – Assume h
0 constant on K and assume at the same time that F is

non-trivial. Thus there exists a piece K
i ⊂ K whose foliation F i has positive-dimensional

leaves. So there exist non-constant smooth paths c : [0, 1] → K such that the induced family
C = c

∗ K has all fibers biholomorphic. Choose such a non-constant path staying inside
the neighborhood U appearing in Proposition K2. Now the Fischer-Grauert Theorem [2]
implies that C is the trivial family; in other words there exists (φt)t∈[0,1] an isotopy such that

(i) φ0 ≡ Id.
(ii) For all t ∈ [0, 1], we have (φt)∗αc(0) = αc(t).
For t small enough, we have φt in U, violating Proposition K2. Contradiction. The

foliation is trivial.
Reciprocally, assume h

0 non-constant. Then by Proposition 1, there exists an automor-
phism φ of X isotopic to the identity all of whose extensions as a diffeomorphism of K does
not project onto the identity of K on any neighborhood of 0. Let Φ be one of these exten-
sions; still by Proposition 1, recall that Φ may be chosen isotopic to the identity. Let Φt be
the isotopy. All that means that there exist points x ∈ K arbitrary close to 0 such that the
path t ∈ [0, 1] �→ Φt(x) ∈ K is a non-constant path. But the Fischer-Grauert Theorem may
be geometrically reformulated as follows.

L���� 5. – The Kuranishi space of a compact complex manifold does not contain a

non-constant path passing through 0 all of whose points correspond to X.

Proof. – Assume the contrary and consider the family associated to such a non-constant
path. By [2], its Kodaira-Spencer map is zero at every point. On the other hand, K is versal at
each point of the path. This is due to the fact that at any such point t, the Zariski dimension
of K is greater than h

1(t) by completeness. Since h
1(t) is equal to h

1(0), they must be equal
yielding the versality of K at t. Now all that means that this non-constant path should be
parametrized by a map whose derivative at each point is zero. Contradiction.

As a consequence, for such a point x, the space (K)x cannot be the Kuranishi space K(x).
That is it is not versal at x. But we already noticed in 3.3 that this is enough to prove that the
foliation is non-trivial.
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Finally, note that:

C�ʀ�ʟʟ�ʀʏ 2. – The stratum K
max

(or, in the non-reduced case, the union of the strata

corresponding to the stratum K
max

of K
red

) is the set of points t ∈ K such that h
0(t) = h

0(0).

Proof. – Assume that K is reduced. Set

H = {t ∈ K | h
0(t) = h

0(0)}.

This is an analytic space by [4] (recall that h
0(t) ≥ h

0(0) implies equality). Arguing
exactly as in the first part of the proof of Theorem 2, we show that F is trivial on H . So
H is included in K

max.

Conversely, assume that h
0 is not constant on K

max. Then arguing as in the second part
of the proof of Theorem 2, we show that F max is non trivial. Contradiction.

The non-reduced case can be treated in a similar way.

R���ʀ�. – Indeed, although Proposition K2 is stated for the complete Kuranishi
space K, a quick look at the proof shows that it is valid in restriction to any subset V ⊂ K

where h
0 is constant equal to h

0(0).

5. The isomorphism and equivalence problems

We refer to the introduction for the definition of these two problems. Let us give two more
definitions.

D��ɪɴɪ�ɪ�ɴ�. – Let X1 and X2 be two families which are pointwise isomorphic but not
locally isomorphic at 0. Then we say that they form a type (II) counterexample (to the

isomorphism property) if there exist

f, g : (U, 0) −→ (K, 0)

such that

(i) We have X1 = f
∗ K and X2 = g

∗ K .

(ii) There exist U1 ⊂ U and U2 ⊂ U such that f(U1) and g(U2) are equal.

And we say that they form a type (I) counterexample if we cannot find f and g as above.

Same definitions are valid for the equivalence problem. Roughly speaking, a type (II)
counterexample is a counterexample obtained by reparametrization, whereas a type (I) coun-
terexample relies on the particular geometric structure of the Kuranishi space.
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5.1. Counterexamples

A counterexample of type (II) for the two problems (in both differentiable and holo-
morphic cases) can be found in [8] (and explained in [15]). Start with the Hopf surface
C

2 \ {(0, 0)}/�2Id�. We use the notations of Section 3.4 (iii). Define X1 as the family
corresponding to an embedding disk (respectively an interval) in the closure of the two-
dimensional leaf φ

−1(4, 0). This is an example of a jumping family. Let us give a precise
definition.

D��ɪɴɪ�ɪ�ɴ. – A holomorphic (respectively differentiable) jumping family is a family
π : X → U (respectively π : X → V ) such that

(i) it is trivial outside 0, but the central fiber X0 is not biholomorphic to the generic fiber.
(ii) The Kodaira-Spencer map at 0 is not zero.

Notice that the Kodaira-Spencer map ρ1 of our family X1 is not zero at 0, since it is
an embedding at 0. This follows from the versality property of K at 0. Consider now the
ramified covering

z ∈ D �−→ z
2 ∈ D or more generally z

n ∈ D

or respectively t ∈ I �−→ t
3 ∈ I. Then define X2 as the pull-back of X1 by this application.

By the “chain-rule for the Kodaira-Spencer map”, we have at 0

ρ2

Å
∂

∂z

ã
= ρ1

Å
Jac 0(z �→ z

n) · ∂

∂z

ã
= ρ1(0) = 0

respectively ρ2

Å
∂

∂z

ã
= ρ1

Å
Jac 0(t �→ t

3) · ∂

∂z

ã
= ρ1(0) = 0

so X2 is not isomorphic, nor equivalent, to X1.
Of course, this construction can be generalized starting from any jumping family (for

example, one can take the jumping family with the Hirzebruch surface F2 as central fiber
and P

1 × P
1 as generic fiber; this shows that such counterexamples exist even for projective

manifolds). So we state:

Pʀ����ɪ�ɪ�ɴ 2. – A (holomorphic or differentiable) jumping family has neither the local

isomorphism, nor the local equivalence property.

It is important for the sequel to observe that the function h
0 is not constant in a jumping

family (cf. [6]).
We give now a type (I) counterexample for the two problems, in both differentiable and

holomorphic cases. Although it can be obtained easily from the treatment of Hopf surfaces
in [8], we do not know of any reference where it is described.

Once again, we use the results and the notations of Section 3.4 (iii). Consider





X1 = C
2 \ {(0, 0)} × D

���
2 + t t

0 2 + t

�
, t

�
,

X2 = C
2 \ {(0, 0)} × D

���
2 + t t

3

0 2 + t

�
, t

�
.
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Replacing D by I in the definition of X1 and X2, one obtains a differentiable counter-
example.

We claim that X1 and X2 are pointwise isomorphic but not locally equivalent at 2Id, and
finally that they have distinct image in K. The last point is a direct consequence of the fact
that, since the families are embedded, same image would imply locally isomorphic.

Now, an elementary computation shows that for t �= 0, the fibers (X1)t and (X2)t are
biholomorphic and conjugated by

P (t) =

�
±t q

0 ±t
−1

�

where q is any complex number (we assume without loss of generality that P has determinant
one). Since (X1)0 = (X2)0 and since none of these conjugating matrices extend at 0, we are
done for the isomorphism problem. Finally, for the equivalence problem, just observe that if
t and t

� are distinct and both different from 0, then (X1)t and (X2)t are not biholomorphic
(look at the traces). Hence, in this case, there is no difference between the isomorphism
problem and the equivalence problem.

Notice that h
0 is not constant along these families, dropping from 4 (at 0) to 2.

Let us give now examples of locally equivalent but not locally isomorphic families. We still
use the Kuranishi space of the Hopf surface described in Section III, 4 (iii). The key point is
given by the following lemma.

L���� 6. – The map A ∈ K → t
A ∈ K is an automorphism of K fixing 2Id which does

not lift to an automorphism of K .

Proof. – This is clear for K using the fact that A and t
A are conjugated. On the other

hand, assume that this automorphism lifts to an automorphism of K . Then, in a neighbor-
hood of 2Id, it would be possible to find a family of invertible matrices P (A) depending holo-
morphically on A such that

t
A = P

−1(A) · A · P (A)

where we assume without loss of generality that P (A) has determinant equal to one.
Straightforward computations show that we must have

P (A) =

�
α ±i

±i 0

�
for A =

�
2 t

0 2

�

where t is in C and α is any complex number and can be chosen independently of t. And we
must also have

P (A) =

�
α 0

0 1/α

�
for A =

�
2 0

0 2 + t

�

where t is in C and α is any non-zero complex number and can be chosen independently of t.

Since these two families do not have any common limit where t goes to zero, we are
done.
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Now let X1 be the Kuranishi family and let X2 be obtained by pull-back by the transpo-
sition map. So the two families are locally equivalent by definition. Now, by Lemma 6, they
are not locally isomorphic.

Observe that this trick gives only type (II) counterexamples.

5.2. Holomorphic families

In this section, we prove

Tʜ��ʀ�� 3. – Let π : X → U be a holomorphic family of deformations. If U is reduced

and if h
0

is constant in a neighborhood of 0, then it has the local isomorphism property.

Notice the immediate corollaries.

C�ʀ�ʟʟ�ʀʏ 3. – Let X be a compact complex manifold such that h
0

is constant on its

Kuranishi space X. Then any holomorphic deformation family of X with reduced base has the

local isomorphism property at 0.

C�ʀ�ʟʟ�ʀʏ 4. – Let π : X → U be a holomorphic family. Assume that h
0

is constant

and that U is reduced. Then every automorphism of U lifts to an automorphism of X .

Proof of Corollary 4. – Let f be an automorphism of U , then X and f
∗ X are pointwise

isomorphic. So are locally isomorphic by Theorem 3. And this means that f lifts.

On the other hand, recall that we gave in Lemma 6 an example of an automorphism of a
reduced Kuranishi space which does not lift.

Proof of Theorem 3. – Assume h
0 constant in a neighborhood of 0. Assume first that π

is a 1-dimensional family parametrized by the unit disk. Let π
� : X � → D be a pointwise

isomorphic family. Let
f, g : D −→ K

such that X = f
∗ K and X � = g

∗ K . We may assume without loss of generality that
(i) The maps f and g are defined on the whole disk (otherwise shrink and uniformize).
(ii) The families X and X � are equal to f

∗ K and g
∗ K , not only isomorphic (otherwise

replace).
We assume also without loss of generality that K is reduced, since f and g map in fact

onto K
red.

Call D the image of f , and D
� that of g. If D or D

� is reduced to a point, then all the fibers
of X and of X � are biholomorphic and the Fischer-Grauert Theorem implies that both D and
D
� are reduced to a point. Both families are locally trivial, hence locally isomorphic. So we

may assume that D and D
� are disks.

Choose (φt)t∈D a family of pointwise biholomorphisms

φt : Kf(t) −→ Kg(t).

L���� 7. – There exists a dense subset of D such that, for each t in this subset, there

exists a sequence (tn)n∈N with all tn different from t and with (φtn) converging to φt in Sobolev

norms as n goes to infinity.
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Proof. – It is inspired from [2]. Since the set D is uncountable, the sequence (φt)t∈D
contains an accumulation point for the Sobolev topology. This comes from the fact that
Diff(Xdiff) endowed with the Sobolev topology contains a countable dense sequence (com-
pare with [Bourbaki, Topologie Générale, Chapitre 10, Théorème 3.1] which gives a proof
for the topology of uniform convergence). Moreover, given any open set U

� of D the same is
true for the subset (φt)t∈U � . Hence the claim.

As a consequence, fix a neighborhood V0 of 0 in K. Then Lemma 7 implies that there
exists a sequence (tn)n∈N ∈ V0 converging to some point t∞ of V0 with φtn converging to
φt∞ in Sobolev norms.

Assume that f(t∞) is equal to g(t∞) and that φt∞ is the identity. By Proposition K2,
assuming V0 small enough, this would mean that we must have

f(tn) = g(tn)

for n ≥ n0 and n0 big enough. Now, this implies that f − g is a holomorphic function on
the disk with a non-discrete set of zeros, hence f ≡ g and we are done. Observe that K is
naturally embedded in the vector space H

1(X,Θ) as an analytic set, hence the difference f−g

is meaningful as holomorphic map from D to H
1(X,Θ).

In the general case, things become more complicated, but the previous pattern can be used
as a guideline to proceed. Consider the embedded family K |D� → D

� and write

K |D� = (D� ×X
diff

, α)

where the complex operator αt ∈ A
1 turns {t} ×X

diff into the complex manifold K(t).
Remark that we have a diffeomorphism

φ
−1
t∞ : Kg(t∞) −→ Kf(t∞).

Remark also that, by Corollary 2, the set K is versal at both f(t∞) and g(t∞). So by
Lemma 1, there exists a diffeomorphism (Ψ, ψ) of K defined on a neighborhood of f(t∞)
which extends φ

−1
t∞ . To simplify the notations, we identify in this proof a point t of K and

the integrable almost-complex operator αt = G
−1(t) defining Kt. With this convention, ψ is

constructed as a composition of

(φ−1
t∞)∗ : A

1 −→ A
1

with the map Ξ of Proposition K1. This gives us a new realization

h ≡ ψ ◦ g : U
� ⊂ D −→ K

defined on a neighborhood U
� of t∞ such that X � is locally isomorphic to h

∗
K at t∞.

But now we can make use of Proposition K2. The sequence

Ψ ◦ φtn : Kf(tn) −→ Kh(tn)

converges in Sobolev norms to

Ψ ◦ φt∞ : Kf(t∞)
Identity−−−−−→ Kh(t∞) = Kf(t∞),

hence f and h take the same values not only at t∞ but also at every tn for n big enough.
Moreover, still by Proposition K2, and since we assumed that K is reduced, the map h is
the unique map such that X � is locally isomorphic to h

∗ K at t∞ (provided K is based and
marked at f(t∞) and provided a marking of X � is fixed at t∞ and asked to be preserved).
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Since the family X � is a holomorphic family, h must be holomorphic. So as before we have
f ≡ h.

R���ʀ�. – This is just another way of saying that K is universal with respect to families
with h

0 constant equal to h
0(0). Proposition K2 was proved by Kuranishi to have this type

of result.

We claim that X � is isomorphic to h
∗ K over the whole disk D, and not only over a

neighborhood of t∞ in D.
This can be proven as follows. Let U

� ⊂ D be the maximal subset of D such that X �|U � is
isomorphic to h

∗
|U � K . Let t ∈ D and let c be a path in D joining c(0) = t∞ to c(1) = t. We

will prove that t is in U
�.

The problem that could appear is that (φ−1
t∞)∗f(c), which is a path in A

1, is not fully
included in the domain of definition A of Ξ. Let K

� ⊂ A
1 be the Kuranishi space of

X
�
f(c(1)) based at (φ−1

t∞)∗f(c) (which is reduced since K is reduced). Let Ξ� be the map of
Proposition K1 defined in a neighborhood A

� of (φ−1
t∞)∗f(c(1)) in A

1. For simplicity, assume
that the whole path (φ−1

t∞)∗f(c) is included in A ∪ A
�. Take a point s ∈ [0, 1] such that

(φ−1
t∞)∗f(c(s)) lies in the intersection of A and A

�. Then there exists a local isomorphism
between the pointed analytic sets (K,Ξ((φ−1

t∞)∗f(c(s))) and (K �
,Ξ�((φ−1

t∞)∗f(c(s))) since
these two spaces are versal for X

�
f(c(s)). And this isomorphism can be chosen in such a way

that the image of Ξ((φ−1
t∞)∗f(c)) is sent to Ξ�((φ−1

t∞)∗f(c)) in a neighborhood of s, still by the
universality property.

Let us sum up. We can glue K and K
� to obtain an analytic space K̃ such that h extends

as h̃ along c in such a way that X � is isomorphic to h̃
∗ K̃ along the full path c. Still by

universality, in our case, h̃ must be equal to h, so that t is in U . In particular, observe that
the image of h̃ stays in K ⊂ K̃. So the claim is proved.

Now, we have
X � � h

∗ K = f
∗ K � X

on the whole disk (the symbol�meaning isomorphic). In other words, X and X � are locally
isomorphic in a neighborhood of 0. This proves the theorem for 1-dimensional families.

Let us now assume that the families X and X � are p-dimensional. We will use general
arguments (already used in [15], though not exactly in the same way) to pass from the one-
dimensional to the general case.

By a theorem of Namba [12, Theorem 2], the union H of pointwise holomorphic maps
from Xt to X

�
t for all t can be endowed with a structure of a reduced analytic space such

that the natural projection map p : H → U is holomorphic and surjective. Moreover, the
topology of H is that of uniform convergence.

Let S ⊂ H be the subset of pointwise isomorphisms. It is an open set of H so a reduced
analytic space with a holomorphic (still surjective in this particular case) projection map p.
This openness property can be shown as follows. Given φ, an isomorphism between Xt

and X
�
t for a fixed t, every ψ close enough from φ in the topology of uniform convergence

is a local isomorphism at each point. We just have to prove now that ψ must be bijective.
Forgetting the complex structures we can see φ and ψ as maps of X

diff, using differentiable
trivializations. Since X

diff is compact and ψ locally bijective, ψ is surjective. Besides, still by
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compacity, there exists a finite open covering of X
diff such that any map close enough from φ

is injective when restricted to any member of this covering. Assume ψ is not globally injective.
Then, we could find a sequence of non-injective maps ψn converging uniformly onto φ. So
there would be two sequences of points (xn) and (yn) such that, for all n ∈ N

xn �= yn ψn(xn) = ψn(yn).

By compacity of X
diff, they will converge to some points x and y such that φ(x) = φ(y),

hence x = y. This clearly contradicts the previous property of local injectivity of all φn on a
fixed covering.

To finish the proof of Theorem 3, it is enough to show that p : S → U has a local
holomorphic section at 0. But now, we conclude from what we did for 1-dimensional families
that p has local holomorphic sections at 0 along every embedded disk D in U . Fix one
of these local sections, say σ. Take another such section σ

�. Then σ and σ
� differ by

composition (at the source) by an automorphism of X0 and by composition (at the target)
by an automorphism of X

�
0. If these automorphisms belong to the connected component of

the identity, since U is reduced and h
0 is constant, both extend locally as automorphisms of

the nearby fibers [4]. But this means exactly that, composing σ
� with these extensions, one

may assume without loss of generality that σ
� takes the same value at 0 as σ. Using this trick

and taking account that the number of connected components of the automorphism group
of X0 is countable, we see that there exist local sections with the same value at 0 for almost
every disk embedded in U passing through 0.

Now, by a proposition of Grauert and Kerner [5], there exists an analytic embedding of a
neighborhood S of σ(0) in S

i : S −→ D
dim p−1({0}) × U

such that the following diagram commutes

S
i−−−−→ D

dim p−1({0}) × U

p

�
�2nd proj.

U −−−−−→
Identity

U.

Observe that the dimension of p
−1({0}) is h

0(0) and that, since h
0 is constant, i(p−1(s))

is an open set of D
h0(0) × {s}. On the other hand, by what precedes, p(S) must be equal

to an open neighborhood of 0 in U (because U is reduced). As a consequence, i is a local
isomorphism, which exactly means that X and X � are locally isomorphic at 0.

R���ʀ�. – The last strategy (using Namba’s Theorem and so on) cannot be used
directly to obtain the result for 1-dimensional families. Indeed, it is not possible to exclude
the case of p

−1({0}) being isolated from the other fibers, so that in the diagram above, the
image p(S) reduces to 0. The only fact that can be proven directly is that, if we know that
there exists a sequence

φtn : Xtn −→ X
�
tn

converging uniformly to some φ0 : X0 → X
�
0, then the two families are locally isomorphic

at 0. This is just because, in this case, p(S) is an analytic set of D (we are in the 1-dimensional
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case) containing an infinite sequence (tn) accumulating on 0. So p(S) must contain an open
neighborhood of 0. Now, we obtained the same conclusion using Proposition K2.

R���ʀ�. – In the non-reduced case, Theorem 3 is false, as shown by the following easy
example. Consider the upper half-plane H of C as the parameter space of elliptic curves. Let
H → H be the versal (at each point) associated family. Choose a point τ ∈ H. Take U to be
the double point

U = {t2 = 0 | t ∈ C}.
Let π : X1 → U be the constant family obtained by pull-back by a constant map from U

to H (with value τ ). Now, since U is not reduced, there exist also non-constant morphisms
from U to H. Let f be the unique such morphism sending the single point of U to τ and the
vector ∂/∂t of the Zariski tangent space of U to the horizontal unit vector of H based at τ .
Define X2 as f

∗
H. Then X1 and X2 are obviously pointwise isomorphic, but they are not

locally isomorphic, by computation of their Kodaira-Spencer map. It is 0 for X1, and not
zero for X2.

5.3. Type (II)-counterexamples to the equivalence problem

We derive now a characterization of type (II) counterexamples to the equivalence problem
in the one-dimensional case.

Tʜ��ʀ�� 4. – The following statements are equivalent.

(i) The one-dimensional holomorphic families π : X → D and π
� : X � → D form a type (II)

counterexample to the equivalence problem.

(ii) Both are obtained from the same jumping family π
�� : X �� → D by pull-backs by some

maps. Moreover, the degrees of these maps (as ramified coverings of D) are different.

Proof. – Assume that X (respectively X �) is obtained from the Kuranishi space of X by
pull-back by some map f (respectively h). Call D the image of f and D

� that of h. Shrinking
the domains of definition if necessary to have the same image D

�� ⊂ D∩D
� and uniformizing

at the source and at the target by unit disks, we obtain the following diagram

D
uniform.−−−−−→ f

−1(D��) ⊂ D
f−−−−→ D

�� uniform.−−−−−→ D

Id

�
�Id

D
uniform.−−−−−→ h

−1(D��) ⊂ D
h−−−−→ D

�� uniform.−−−−−→ D.

To simplify, we still denote by f (respectively by h) the composition of the top arrows
(respectively of the bottom arrows). Moreover, we denote by π

�� : X �� → D the target family
and replace X (respectively X �) by f

∗ X �� (respectively h
∗ X ��).

We may assume without loss of generality that f and g are unramified coverings over D
∗

of respective degrees n and m. So we have [3, Theorem 5.11] for all z ∈ D

f(z) = z
n

g(z) = z
m

changing the uniformizing maps at the source by a rotation if necessary.
If m and n are equal, then X and X � are locally equivalent at 0. So assume n > m.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



516 L. MEERSSEMAN

Now, from the one hand, by definition of the pull-back, for all t ∈ D, the fibers Xt and
X
��
tn are biholomorphic, as well as X

�
t and X

��
tm . And from the other hand, the assumption

for the families of being pointwise isomorphic means in this new setting that there exists

Φ : (U1 ⊂ D, 0) −→ (U2 ⊂ D, 0)

a biholomorphism such that Xt and X
�
φ(t) are biholomorphic. Hence by transitivity, Xt and

Xφ−1(tn/m) are biholomorphic for every choice of a determination of t
n/m. Observe that this

is valid for t belonging to a sufficiently small neighborhood U
�
1 of 0 in D. Set

C = {t ∈ D | |t| = λ}

for λ a fixed real number, which is supposed small enough to have C ⊂ U
�
1.

L���� 8. – Let t0 ∈ C. Then the closure of the set

Et0 = {t ∈ D | Xt0 is biholomorphic to Xt}

contains C.

Proof of Lemma 8. – Assume first that φ is equal to a · Id for a non-zero. Defining αk for
k ∈ N by induction �

α0 = a
−1

αk+1 = α
−1 · αn/m

k

(we choose a determination of αk �→ α
n/m
k for each k), we have that Xt and Xαk·(tn/m)k are

biholomorphic. In particular, all the points of

{t0 exp(2iπl(m/n)k) | k > 0, l ∈ Z}

correspond to Xt0 proving the density of Et0 in C.
Now, if φ is not a homothety, it admits a Taylor expansion

φ(t) = at + higher order terms.

Besides, one has that t ∈ Et0 as soon as t
n/m = t

n/m
0 , or

(φ−1(tn/m))n/m = (φ−1(tn/m
0 ))n/m

or more generally
�
φ
−1

�
. . . (φ−1(tn/m))n/m

. . .
�n/m

�n/m
=

�
φ
−1

�
. . . (φ−1(tn/m

0 ))n/m
. . .

�n/m
�n/m

.

Using the Taylor expansion of φ together with the fact that n/m > 1, we obtain that the
sequence �

φ
−1

�
. . . (φ−1(tn/m))n/m

. . .
�n/m

�n/m

αk · (tn/m)k

tends to 1 as k goes to infinity. In this expression, the determinations of the n/m-th power
are chosen at each step according to the choices made for αk.

This means that, given
t = t0 exp(2iπl(m/n)k)

for some fixed k > 0 and l ∈ Z, and given any � > 0, there exists t
� ∈ D which is �-close to t

such that t
� belongs to Et0 . This is enough to conclude that the closure of Et0 contains C.
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Hence, there exists a dense subset of points corresponding to Xt0 in any annulus around
the circle |z| = |t0|. Following [4], the function h

1 is constant on a Zariski open subset of D.
So we may assume that it is constant on D

∗. That means that the differentiable family of
deformations parametrized by |z| = |t0| is a regular one.

Pʀ����ɪ�ɪ�ɴ 3. – All points of the circle C = {|z| = |t0|} in D correspond to the same

complex manifold Xt0 .

Proof. – This is a step by step adaptation of the proof of [2]. We will prove that the
Kodaira-Spencer map is zero for a dense subset of points, hence by regularity for all points, so
that all points correspond to the same manifold Xt0 . We will explain in detail how to modify
the proof of [2] so that it generalizes to this case, but will refer freely to [2] for the common
parts.

Choose � > 0. Choose also an annulus A around C. Choose finally a differentiable
trivialization

T : π
−1({s ∈ A | |s− t0| < �}) −→ Xt0

with Tt0 ≡ Id.
For every t in C, define a diffeomorphism α̃t from Xt0 to Xt as follows. First, choose

some t
� ∈ A such that

(i) We have |t� − t0| < min(|t− t0|, �).
(ii) The parameter t

� belongs to the set

Et ∩ π
−1({s ∈ A | |s− t0| < �}).

This is possible by Lemma 8. By what precedes, there exists a biholomorphism βt between
Xt� and Xt. Define

α̃t ≡ βt ◦ T
−1
t� .

First notice that the set

E = {t ∈ C | ∃(tn)n∈N ∈ C such that (α̃tn) uniformly converges to α̃t}

is dense in C. This comes from the fact that the set of continuous maps from X to π
−1(C)

is of countable type, see [2].
Let t ∈ E. Without loss of generality, we may assume that there exists a finite set of

submersion charts

Ui ⊂ π
−1({s ∈ A | |s− t| < �}) ψi−−−−→ C

dim X × {s ∈ A | |s− t| < �}

π

�
�2nd projection

{s ∈ A | |s− t| < �} −−−−−→
Identity

{s ∈ A | |s− t| < �}

covering π
−1({s ∈ A | |s− t| < �}).

Set αn ≡ α̃tn ◦ α
−1
t . Then the sequence (αn) converges uniformly to the identity of Xt.

Let (Vj) be a covering of π
−1({s ∈ A | |s − t| < �}) by relatively compact open sets with

smooth boundaries such that there exist a refining map r and an integer n0 satisfying

∀n ≥ n0, αn(Vj) ⊂ Ur(j).
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First, assume for simplicity that h
0(t) = 0. Let x ∈ Vi ∩Xt and let (z, t) be the coordinates

in the chart ψr(i). For n ≥ n0, define

ξ
n
i (x) = (ψ−1

r(i))∗(ψr(i) ◦ αn(x)− ψr(i)(x))

= (ψ−1
r(i))∗(z(αn(x))− z(x), t(αn(x))− t(x))

= (ψ−1
r(i))∗(z(αn(x))− z(x), tn − t)

where (ψ−1
r(i))∗ denotes the pushforward of a vector field by the differential of ψ

−1
r(i). This gives

a smooth vector field on Vi∩Xt which is transverse to Xt (since the t-coordinate is non-zero).
Now, let

Mn = max
i

sup
x∈Vi∩Xt

�(ψr(i))∗ξ
n
i (x)�

for some choice of a norm on C
dim Xt ×R. Notice that Mn is positive since it is bigger than

|tn − t|; and that it is finite because of the finiteness of the number of charts and because of
the relative compactness of the Vi.

L���� 9. – The sequence 1/Mn(ξn
i ) converges uniformly to a holomorphic vector field ξi

on Vi ∩Xt.

Proof of Lemma 9. – Let η
n
i = 1/Mn(ψr(i))∗(ξ

n
i ). It is a uniformly bounded sequence of

functions on Di = ψr(i)(Vi ∩ Xt). If we prove that it is an equicontinuous sequence, then
Ascoli’s Theorem will ensure the uniform convergence.

Now, for all j between 1 and dim X, the sequence

∂̄jη
n
i ≡

∂

∂z̄j
η

n
i

is uniformly convergent to zero since we have

∂̄jη
n
i =

1

Mn
(∂̄j(z(αn ◦ ψ

−1
r(i)))− ∂̄jz, ∂̄j(t(αn ◦ ψ

−1
r(i))))

and since αn tends uniformly to the identity, hence z(αn ◦ ψ
−1
r(i)) tends uniformly to z and

t(αn ◦ ψ
−1
r(i))) to t.

On the other hand, deriving with respect to zj the Bochner-Martinelli formula for η
n
i , one

obtains, for k = dim Xt,

∂jη
n
i (z) =

k!

(2iπ)k

��

∂Di

k�

ν=1

((−1)ν
η

n
i )(ζ)

(ζ̄ν − z̄ν)(ζ̄j − z̄j)

|ζ − z|3k+1
dζ̄[ν] ∧ dζ

+

�

Di

k�

ν=1

((−1)ν
∂̄νη

n
i )(ζ)

(ζ̄ν − z̄ν)(ζ̄j − z̄j)

|ζ − z|3k+1
dζ̄[ν] ∧ dζ

�

where dζ̄[ν] = dζ̄1 ∧ . . . ∧ dζ̄ν−1 ∧ dζ̄ν+1 ∧ . . . ∧ dζ̄n.
Since (ηn

i ) is a uniformly bounded sequence and since (∂̄jη
n
i ) is uniformly convergent to

zero, we obtain that (∂jη
n
i ) is also a uniformly bounded sequence. So (ηn

i ) is Lipschitz with
a Lipschitz constant independant of n. Therefore it is equicontinuous.

Finally, since (∂̄jη
n
i ) is uniformly convergent to zero, the limit is automatically holomor-

phic.
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Following [2], it is easy to prove that these ξi glue together to define a global non-zero
holomorphic vector field ξ on Xt. This vector field must be transverse to Xt for we assumed
h

0(t) = 0. Hence, the Kodaira-Spencer map at t is zero.
If h

0(t) is not zero, one has first to modify each αn by composition with a finite number
of well-chosen automorphisms of Xt. The construction of the holomorphic vector field ξ is
then exactly the same. And finally one uses the special properties of this new sequence of
(αn) to prove that ξ cannot be tangent to Xt. Details are exactly the same as in [2].

As a consequence, one obtains that the family over C has zero Kodaira-Spencer map on a
dense subset of points, hence on C as it is a regular family. And applying Theorem 6.2 of [7],
one has that this family is locally trivial at every point. In particular, all the fibers correspond
to the same compact complex manifold up to biholomorphism.

But the existence of such a circle of biholomorphic fibers forces the foliation of Section
III to be non-trivial. From the previous proof, we deduce that all the circles z = |t| of X
correspond to a unique complex structure, say Xt. Fix such a t different from 0. This implies
that the intersection of D with the leaf of the foliation passing through t contains a circle
of points. Since the foliation is holomorphic, this means that a neighborhood of this circle
corresponds to Xt. Let s be in the boundary of this neighborhood. Then the same argument
shows that a neighborhood of the circle |z| = |s| lies in the leaf passing through s. Now, the
two previous neighborhoods must have non-empty intersection which implies that Xs and
Xt are biholomorphic.

We conclude from that that all the points of D
∗ correspond to Xt. Hence, by the Fischer-

Grauert Theorem, X �� must be a jumping family.
To prove the converse, we need to refine the argument given in the proof of Proposition 2.

Consider the local Kodaira-Spencer map of X at 0

0 ∈ U ⊂ D H
0(U,Θ)

ρ X−−−−→ H
1( X |U ,Θ)

which represents the obstruction to lifting a holomorphic vector field in the base U ⊂ D

to the family X |U = π
−1(U). The direct limit of ρ X for U smaller and smaller gives the

pointwise Kodaira-Spencer map used in the proof of Proposition 2 and which represents the
pointwise first-order obstruction to this lifting problem.

But we can also define a pointwise (p + 1)-th order obstruction for any p ∈ N and any
ξ ∈ H

0(U,Θ) by taking the p-jet of ρ X (ξ) at 0 (jet as local sections of Θ) and passing to the
direct limit. This defines a (p + 1)-th order Kodaira-Spencer map

J
p
0 (TD)

ρ(p)
X−−−−→ H

1(X0,Θ(p))

where J
p
0 (TD) is the vector space of p-jets at 0 of holomorphic vector fields of D defined in

a neighborhood of 0 and Θ(p) is the bundle of p-jets of holomorphic sections of Θ (cf. [13]).
Since the local Kodaira-Spencer map satisfies a chain-rule property, so does ρ

(p)
X . Hence,

starting from X , X � pull-backs of X �� by maps f and g, we obtain the following equality

ρ
(p)
X

Å
∂

∂t

ã
= ρ

(p)
X ��

Å
f∗(j

p
o (

∂

∂t
))

ã
and ρ

(p)
X �

Å
∂

∂t

ã
= ρ

(p)
X ��

Å
g∗(j

p
0 ((

∂

∂t
))

ã

with f∗ (respectively g∗) denoting the action of f (respectively g) on p-jets of vector fields.
Now if f has degree n and g degree m, the above (p + 1)-th obstruction of X vanishes for
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p < n and does not vanish for p = n, whereas that of X � vanishes for p < m and does not
vanish for p = m. Hence, if m and n are different, the families X and X � are not locally
isomorphic at 0.

Of course, this is no more true for higher-dimensional families. Starting from two point-
wise isomorphic but not locally isomorphic one-dimensional jumping families, one can take
their products with a fixed family and obtain type (II) counterexamples which are not coming
from jumping families.

5.4. Differentiable families

Things are completely different for differentiable families. In fact, we have

Tʜ��ʀ�� 5. – (i) Let π : X → V be a real analytic family. If h
0

is constant along the

family, then it has the local isomorphism property.

(ii) Some differentiable families π : X → I of 2-dimensional compact complex tori do not

have the local isomorphism property.

Moreover, there exist counterexamples of type (I) among families of 2-dimensional compact

complex tori.

Proof. – (i) This is exactly the same proof as that of Theorem 3. For the 1-dimensional
part, we observe that the only properties of holomorphic maps used are properties of analytic
functions. For the passage to higher dimension, it is enough to embed pointwise isomorphic
families X and X � in holomorphic families XC → U and X �C → U with constant h

0. For
example, one may take for U the reduction of the stratum K

max. Then the only difference
is that the map p : S → U given by Namba’s Theorem may not be surjective. But the same
argument shows that it has a holomorphic section at 0 defined on an analytic subspace of U

containing V .

R���ʀ�. – The same proof shows that if two differentiable families over V are pointwise
isomorphic and locally isomorphic along each path of V containing 0, then they are locally
isomorphic.

(ii) Because of (i), a smooth family of tori not having the local isomorphism property at 0
must be flat at 0.

Recall [8] that the open set

M = {A ∈ M2(C) | det(�A) > 0}

is a versal (and even universal) deformation space for every 2-dimensional compact complex
torus. A point A = (A1, A2) of M corresponds to the quotient of C

2 by the lattice generated
by

(1, 0) (0, 1) A1 A2.

Notice that every torus can be obtained as such a quotient. Two different points A and B of
M define the same torus up to biholomorphism if and only if there exists

γ =

�
γ11 γ12

γ21 γ22

�
∈ SL4(Z) such that B = A · γ = (γ11 + Aγ21)

−1(γ12 + Aγ22).
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Finally, h
0 is constant equal to 4 (given by the translations), so the condition of Theorem 3

is satisfied.
Let

Ω0 =

�
i 0

0 i

�
and Ω(t) =

�
i + t b(t)

c(t) i + t

�

for t ∈ R and let Xt be the corresponding tori. The smooth functions b and c satisfy

1. They are smoothly flat at zero, i.e. all their derivatives at zero are zero.
2. We have b(0) = c(0) = 0 and b(t) > c(t) > 0 for t different from zero.

The path Ω in M defines a differentiable family of 2-dimensional compact complex tori
centered at X0. Define Ω1 ≡ Ω and

Ω2(t) =

�
Ω1(t) if t ≤ 0
tΩ1(t) if t ≥ 0.

Remark that conditions 1 and 2 imply that Ω2 is also a smooth path.
We claim that the corresponding families X1 → Ω1 and X2 → Ω2 are pointwise

isomorphic but not locally isomorphic at 0.
First note that, for all t,

tΩ1(t) =

�
0 1

1 0

�
· Ω1(t) ·

�
0 1

1 0

�
= Ω1(t) · γ

for

γ =

à
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

í

∈ SL4(Z).

That implies that, for t > 0, the map

(z, w) ∈ C
2 �−→ (w, z) ∈ C

2

descends as a biholomorphism between X1(t) and X2(t). So the families are pointwise
isomorphic.

On the other hand, for a generic lattice, it is well-known that the automorphism group of a
torus is generated by translations and by −Id. Indeed, for this particular choice of matrices
Ω(t), it is straightforward that this is the case if the numbers i + t, b(t), c(t), their squares
and all the products of two of them are linearly independent over Q. Hence, for generic t,
the tori X1(t) and X2(t) have no other automorphisms than these ones. This allows to find
sequences (t�n)n∈N of negative numbers and (t��n)n∈N of positive numbers converging to 0 such
that

(i) For each n, up to translations, the only biholomorphisms between X1(t�n) and X2(t�n)
are the projection of ±Id on C

2.
(ii) For each n, up to translations, the only biholomorphisms between X1(t��n) and X2(t��n)

are the projection of ±
�

0 1

1 0

�
on C

2.
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Suppose now that X1 and X2 are locally isomorphic at 0. Then there would exist a family
(Φt) of biholomorphisms of C

2 (for t in a neighborhood of 0) such that

(i) It is smooth in t.
(ii) Every Φt descends as a biholomorphism between X1(t) and X2(t).

But, by what precedes, at t
�
n the map Φt must be ±Id up to a translation factor, whereas

at t
��
n, it must be ±

�
0 1

1 0

�
up to a translation factor. Since these two sequences do not

converge to the same type of limit when n goes to infinity, we arrive to a contradiction. The
families Ω1 and Ω2 are not locally isomorphic at 0.

On the other hand, the previous family still has the local isomorphism property when
restricted to (−∞, 0] and [0,∞). Nevertheless, it is easy to modify it in order to have a
counterexample even when restricted to (−∞, 0] and [0,∞).

Start with the same path Ω as before, but this time assume that the functions b and c satisfy

1. There exists a sequence (tn)n∈N of positive numbers converging to 0 such that b and c

are zero and flat at all tn.
2. We have b and c even.
3. We have b(t) �= c(t) for t positive and not belonging to the sequence (tn).

For example, let

h(t) =

�
0 for t ≤ 0

exp(−1/t) otherwise

and
f : t ∈ R �−→

�

p∈Z
h(t + p) · h(−t− p + 1) ∈ R

and finally
b ≡ αh(| − |) · f(log | − |) b ≡ βh(| − |) · f(log | − |)

for β �= α. In this case, we have (tn) = exp(−n).
The path Ω in M defines a differentiable family of 2-dimensional compact complex tori

centered at X0. Define Ω1 ≡ Ω and

Ω2(t) =

�
Ω1(t) if |t| ∈ [t2n, t2n+1] for some n

tΩ1(t) if |t| ∈ [t2n−1, t2n] for some n.

That implies that, for t ∈ [t2n−1, t2n] for some n, the map

(z, w) ∈ C
2 �−→ (w, z) ∈ C

2

descends as a biholomorphism between X1(t) and X2(t). In particular, it defines an auto-
morphism of X0 and of X1(tn) = X2(tn) for all n. This proves the pointwise isomorphism
between the fibers.

On the other hand, as in the previous example, one can find sequences (t�n)n∈N and
(t��n)n∈N of positive numbers converging to 0 such that

(i) For each n, we have t
�
n ∈ [t2n, t2n+1] and, up to translations, the only biholomorphisms

between X1(t�n) and X2(t�n) are the projection of ±Id on C
2.
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(ii) For each n, we have t
��
n ∈ [t2n−1, t2n] and, up to translations, the only biholomor-

phisms between X1(t��n) and X2(t��n) are the projection of ±
�

0 1

1 0

�
on C

2.

This is enough to prove that these two families, when seen as families over [0,∞), are
not locally isomorphic at 0. Since the functions b and c are even, the same is true over
(−∞, 0].

In the differentiable case, it seems difficult to give a sufficient condition to have the local
isomorphism property, except for the following trivial one.

Pʀ����ɪ�ɪ�ɴ 4. – Let X be a compact complex manifold. Suppose that K is a local moduli

space for X (that means that two different points of X correspond to two non-biholomorphic

manifolds). Then every holomorphic (over a reduced base) as well as differentiable deformation

family of X has the local isomorphism property.

Proof. – In this case, given any deformation family X of X, the map from the parameter
space of X to K is uniquely determined by the pointwise complex structure of the fibers.

5.5. Universality

Let us finish this section by a comparison between our uniformization problems and the
problem of universality of the Kuranishi space.

Pʀ����ɪ�ɪ�ɴ 5. – Let K be the Kuranishi space of some compact complex manifold X.

Then the following statements are equivalent.

(i) The space K is universal for differentiable families.

(ii) The space K is universal for holomorphic families over a reduced base.

(iii) The foliation of K described in Section III is trivial.

(iv) The function h
0

is constant on K.

Proof. – The equivalence (iii) ⇐⇒ (iv) is given by Theorem 2. The implications
(iv) ⇒ (i) and (iv) ⇒ (ii) are immediate consequences of Proposition K2. Indeed, it is
used in [10] to prove that. The converse (ii) ⇒ (iv) is proved in [13] and [14]. Indeed, (ii) can
be replaced by: the space K

red is universal for holomorphic families over a reduced base.
Now, from [13, Proposition 4.2], we have that it is the case if and only if a certain extension
problem (called the second extension problem in [13]) is solvable for K

red. Then one uses [14,
p. 349] to conclude.

So we just need to prove (i) ⇒ (iv). Assume h
0 non-constant. Then, by Proposition 1,

there exists an automorphism φ of X isotopic to the identity such that any extension as a
diffeomorphism of K does not project onto the identity of K. Let Φ be such an extension.
Still by Proposition 1, we may assume that Φ is isotopic to the identity. Let (Φt)t∈[0,1] be
such an isotopy, Φ0 being the identity map. Now set Ψ(−) = Φλ(−)(−), for some smooth
function λ : K → [0, 1] satisfying

(i) λ0(0) = 0.
(ii) det Jac0 λ �= 0.
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For a good choice of λ, the map Ψ is a local diffeomorphism at 0. Indeed, a direct
computation shows that

Jac0 Ψ = Id + Jac0 λ · ∂Φt

∂t |t=0

so it is enough to take �Jac0λ� very small.

Recall now that Φt may be chosen so that, for all t, its germ at 0 does not project as the
germ of the identity (see the proof of Lemma 2 and Proposition 1). From this, we deduce that
the germ of Ψ at X0 is not the identity, even if Ψ|X0

is the identity of X0. In other words, one
can find a path c in K passing through 0 whose image by Ψ is different from c. But this means
that the family corresponding to c is locally isomorphic to the family corresponding to Ψ(c),
with the same identification at 0. Hence K is not universal for differentiable families.

Consider now the case where K is non-reduced. For example, assume that

K = {t2 = 0 | t ∈ C}

is the double point. Consider the trivial family

X = K × C −→ U = K × C.

Assume that X0 has an automorphism α = exp ξ isotopic to the identity with the additional
property that its action on H

1(X0,Θ0) is non trivial. Then the family

(exp(t · ξ))t∈C

defines an automorphism of X red which is the identity on X0 and projects onto the identity
of U

red = C.

Now the crucial point is that it also defines an automorphism F of X which is the identity
on X0. But F projects onto a non-trivial morphism f of U . Indeed, f is still the identity on
U

red. But its differential is not the identity for t �= 0. It may be identified with the action of
exp(t · ξ) on H

1(Xt,Θt) � TtU . Hence X can be obtained as a pull-back of K by the map

s : (0, ∂/∂z, t) ∈ U = K × C �−→ (0, ∂/∂z) ∈ K

but also as a pull-back of K by s ◦ f . These two morphisms respect the marking at 0 but are
different, disproving the universality of K.

Observe that this argument can easily be adapted to the case where K is arbitrary but non-
reduced.

Although we do not know of such a precise example (Mumford’s example in [11] has no
automorphisms isotopic to the identity), it makes very plausible that Proposition 5 (espe-
cially the equivalence between (ii) and (iv)) is not true for holomorphic families over a non-
reduced base.

Observe that Theorems 3 and 5 compared to Corollary 4 show that, surprisingly, the local
isomorphism problem is fundamentally different from the universality problem. In this last
problem, there is no difference between the differentiable case and the (reduced) holomorphic
case.
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