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HODGE METRICS AND THE CURVATURE OF
HIGHER DIRECT IMAGES

 C MOUROUGANE  S TAKAYAMA

A. – Using the harmonic theory developed by Takegoshi for representation of relative co-
homology and the framework of computation of curvature of direct image bundles by Berndtsson, we
prove that the higher direct images by a smooth morphism of the relative canonical bundle twisted by a
semi-positive vector bundle are locally free and semi-positively curved, when endowed with a suitable
Hodge type metric.

R. – Nous utilisons la théorie de représentation par formes harmoniques des classes de co-
homologie relative développée par Takegoshi et la structure des calculs de courbure de fibrés images
directes développée par Berndtsson, pour étudier les images directes supérieures par un morphisme
lisse du fibré canonique relatif tensorisé par un fibré vectoriel holomorphe hermitien semi-positif. Nous
montrons qu’elles sont localement libres et que, munies de métriques convenables de type Hodge, elles
sont à courbure semi-positive.

1. Introduction

This is a continuation of our works [23] [24] on the metric positivity of direct image sheaves
of adjoint bundles. The goal of this paper is to prove the following

T 1.1. – Let f : X −→ Y be a holomorphic map of complex manifolds, which
is smooth, proper, Kähler, surjective, and with connected fibers. Let (E, h) be a holomorphic
vector bundle onX with a Hermitian metric h of semi-positive curvature in the sense of Nakano.
Then for any q ≥ 0, the direct image sheaf Rqf∗ΩnX/Y (E) is locally free and Nakano semi-
positive, where n is the dimension of fibers.

A real (1, 1)-form ω on X is said to be a relative Kähler form for f : X −→ Y , if for
every point y ∈ Y , there exists a local coordinate (W ; (t1, . . . , tm)) around y such that
ω + cf∗(

√
−1

∑
j dtj ∧ dtj) is a Kähler form on f−1(W ) for a constant c. A morphism f is

said to be Kähler, if there exists a relative Kähler form ωf for f (see [27, 6.1]).
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906 C. MOUROUGANE AND S. TAKAYAMA

In case when E is a semi-positive line bundle and q = 0, Theorem 1.1 is a theorem of
Berndtsson [2, 1.2]. In our previous paper [24], we obtained independently from [2] a weaker
semi-positivity: the Griffiths semi-positivity of f∗ΩnX/Y (E) for a semi-ample line bundle E.
Right after two papers [2] [24], especially [2] have appeared, the analogous statement for
higher direct images has been considered as a next problem among others. Theorem 1.1
solves this problem for Nakano semi-positive vector bundles E.

For a Nakano semi-positive vector bundle E, the local freeness Rqf∗ΩnX/Y (E) is a
consequence of Takegoshi’s injectivity theorem [27]. Here is one point where we use the
smoothness of f . We can only expect the torsion freeness in general, by Kollár [15],
[16] ([27] in analytic setting). Another theorem in [27] shows that Rqf∗ΩnX/Y (E) can

be embedded into f∗Ω
n−q
X/Y (E) at least locally on Y , and that Rqf∗ΩnX/Y (E) = 0 for

q > n. The sheaf f∗Ω
n−q
X/Y (E) has a natural Hermitian metric induced from a relative

Kähler form ωf and h (at least where it is locally free) the so-called Hodge metric. For
local sections σ, τ ∈ H0(W, f∗Ω

n−q
X/Y (E)), the inner product at y ∈ W ⊂ Y is given by∫

Xy
(σ|Xy ) ∧ ∗hy (τ |Xy ), where Xy = f−1(y) is the fiber, and ∗hy is the “star”-operator with

respect to ωy = ωf |Xy and hy = h|Xy . By pulling back this Hodge metric via the injection,
say Sqf : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E), we have a Hermitian metric on Rqf∗ΩnX/Y (E) in

the usual sense. Our original contribution is the right definition of this “Hodge metric” on
Rqf∗Ω

n
X/Y (E), and our main theorem is that its curvature is Nakano semi-positive.

The space Hq(Xy,Ω
n
Xy

(Ey)) has another natural inner product with respect to ωy and
hy. For cohomology classes uy, vy ∈ Hq(Xy,Ω

n
Xy

(Ey)), it is given by
∫
Xy

u′y ∧∗hyv′y, where
u′y and v′y are the harmonic representatives of uy and vy respectively. These fiberwise inner
products also define a Hermitian metric onRqf∗ΩnX/Y (E). We first tried to compute its cur-
vature, but we did not succeed it.

We follow [2], not [24], for the method of computation of the curvature. Since one can
directly see the original method in [2], let us explain the differences from [2], i.e., the differ-
ences in cases q = 0 and q > 0. In case q = 0, the map S0

f : f∗Ω
n
X/Y (E) −→ f∗Ω

n
X/Y (E) is

an isomorphism, in fact the multiplication by a constant. Moreover f∗ΩnX/Y (E) is locally
free thanks to Ohsawa-Takegoshi type L2-extension theorem [26] [25] [20], and the (1, 0)-
derivative of σ ∈ H0(Y, f∗Ω

n
X/Y (E)) = H0(X,ΩnX/Y (E)) vanishes on each fiber Xy by

simply a bidegree reason. However in case q > 0, we have no local freeness of f∗Ω
n−q
X/Y (E),

nor the vanishing of the (1, 0)-derivative of σ ∈ H0(Y, f∗Ω
n−q
X/Y (E)) = H0(X,Ωn−qX/Y (E))

on Xy. To overcome these difficulties, we need to restrict ourselves to consider the image of
Sqf : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E). Then we have a local freeness as we mentioned above,

and the vanishing of the (1, 0)-derivative thanks to an estimate by Takegoshi [27]. This is a
key fact, and which is like the d-closedness of holomorphic p-forms on a compact Kähler
manifold. After getting those key observations: the local freeness, the right Hodge metric to
be considered, and the closedness of holomorphic sections, the computation of the curvature
is a straightforward generalization of [2].

There are many positivity results of direct image sheaves of relative canonical bundles and
of adjoint bundles, which are mostly about the positivity in algebraic geometry. We will re-
call only a few here. The origin is due to Griffiths in his theory on the variation of Hodge
structures [9]. Griffiths’ work has been generalized by Fujita [7], Kawamata [12], Viehweg
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[29], Kollár [15], [16] and so on, in more algebro-geometric setting. There are also posi-
tivity results on higher direct images by Moriwaki [22], Fujino [6] and so on. We refer to
[21] [5] [30] [17] for further remarks on related results. On the analytic side, it can be under-
stood as the plurisubharmonic variation of related functions to the Robin constant [32] [18],
or of the Bergman kernels [19]. There is also a series of works by Yamaguchi. As he men-
tioned in [2], his method is inspired by those works. There are also related recent works by
Berndtsson-Păun [3] and Tsuji [28].

Acknowledgments. We would like to thank Professor Berndtsson for his correspondences
in many occasions, for answering questions, and showing us a revised version of his paper [2].
A part of this work was done during the second named author’s stay in Rennes. He would
like to thank the mathematical department of Rennes for a support to stay there.

2. Preliminaries

2.1. Hermitian vector bundles

Let X be a complex manifold of dimension n with a Hermitian metric ω, and let E
be a holomorphic vector bundle of rank r on X with a Hermitian metric h. Let (E∗, h∗)

be the dual vector bundle. Let Ap,q(X,E) be the space of E-valued smooth (p, q)-forms,
and Ap,q0 (X,E) be the space of E-valued smooth (p, q)-forms with compact support. Let
∗ : Ap,q(X,E) −→ An−q,n−p(X,E) be the Hodge star-operator with respect to ω. For any
u ∈ Ap,q(X,E) and v ∈ As,t(X,E), we define u ∧ hv ∈ Ap+s,q+t(X,C) as follows. We take
a local trivialization of E on an open subset U ⊂ X, and we regard u = t(u1, . . . , ur) as a
row vector with (p, q)-forms uj on U , and similarly for v = t(v1, . . . , vr). The Hermitian
metric h is then a matrix valued function h = (hjk) on U . We define u ∧ hv locally on U by

u ∧ hv =
∑
j,k

uj ∧ hjkvk ∈ Ap+s,q+t(U,C).

We should write tu ∧ hv, but if there is no risk of confusions, we will write in this way. In
this manner, we can define anti-linear isomorphisms ]h : Ap,q(X,E) −→ Aq,p(X,E∗) by
]hu = hu, and ∗h = ]h ◦ ∗ : Ap,q(X,E) −→ An−p,n−q(X,E∗) by ∗hu = h∗u. The inner
product on Ap,q0 (X,E) is defined by (u, v)h =

∫
X
u ∧ ∗hv. Denote by Dh = ∂h + ∂ the

metric connection, and by Θh = D2
h the curvature of (E, h). The Hermitian vector bundle

(E, h) is said to be Nakano semi-positive (resp. Nakano positive), if the End (E)-valued real
(1, 1)-from

√
−1Θh is positive semi-definite (resp. positive definite) quadratic form on each

fiber of the vector bundle TX ⊗ E.

We define ϑh : Ap,q(X,E) −→ Ap,q−1(X,E) by ϑh = − ∗ ∂h∗ = −∗h∗∂∗h, which is
the formal adjoint operator of ∂ : Ap,q(X,E) −→ Ap,q+1(X,E) with respect to the inner
product ( , )h. We also define ϑ : Ap,q(X,E) −→ Ap−1,q(X,E) by ϑ = − ∗ ∂∗, which is
the formal adjoint operator of ∂h : Ap,q(X,E) −→ Ap+1,q(X,E) with respect to the inner
product ( , )h. We denote by e(θ) the left exterior product acting on Ap,q(X,E) by a form
θ ∈ As,t(X,C). Then the adjoint operator e(θ)∗ with respect to the inner product ( , )h is
defined by e(θ)∗ = (−1)(p+q)(s+t+1) ∗ e(θ)∗. For instance we set Λω = e(ω)∗. We recall the
following very useful relation ([11, 1.2.31] [31, 6.29]):

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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L 2.1. – For a primitive element u ∈ Ap,q(X,E), i.e., p+ q = k ≤ n and Λωu = 0,
the Hodge ∗-operator reads

∗(ωj ∧ u) =
√
−1

p−q
(−1)

k(k+1)
2

j!

(n− k − j)!
ωn−k−j ∧ u

for every 0 ≤ j ≤ n− k.

As immediate consequences, we have

C 2.2. – Denote by cn−q =
√
−1

(n−q)2
=
√
−1

n−q
(−1)(n−q)(n−q−1)/2.

(1) Let a, b ∈ An−q,0(X,E). Then ∗a = (cn−q/q!)ω
q ∧ a, ∗ha = (cn−q/q!)ω

q ∧ ha,
a = (cn−q/q!) ∗ (ωq ∧ a), and a ∧ ∗hb = (cn−q/q!)ω

q ∧ a ∧ hb.
(2) Let u ∈ An,q(X,E). Then u = (cn−q/q!)ω

q ∧ ∗u.

N 2.3. – We use the following conventions often. Denote by cd =
√
−1

d2

=√
−1

d
(−1)d(d−1)/2 for any non-negative integer d. Let t = (t1, . . . , tm) be the coordinates

of Cm.
(1) dt = dt1 ∧ · · · ∧ dtm, dt = dt, and dVt := cmdt ∧ dt =

∧m
j=1

√
−1dtj ∧ dtj > 0.

(2) Let ”dtj be a smooth (m−1, 0)-form without dtj such that dtj∧”dtj = dt, and ”dtj = ”dtj .
(3) Let ÿ�dtj ∧ dtk be a smooth (m−1,m−1)-form without dtj and dtk such that

√
−1dtj∧

dtk ∧ ÿ�dtj ∧ dtk = cmdt ∧ dt.

2.2. Set up

In the rest of this paper, we will use the following set up.
LetX and Y be complex manifolds of dimX = n+m and dimY = m. Let f : X −→ Y

be a holomorphic map, which is smooth, proper, Kähler, surjective, and with connected
fibers. Let (E, h) be a holomorphic vector bundle on X of rank r, with a Hermitian metric
h whose curvature Θh is semi-positive in the sense of Nakano.

(I) a general setting: f : (X,ωf ) −→ Y . We take a relative Kähler form ωf for f , and
let κf = {ωf} be the de Rham cohomology class. On each fiber Xy, we have a Kähler form
ωy = ωf |Xy , and a Nakano semi-positive vector bundle (Ey, hy) = (E, h)|Xy .

(II) a localized setting of (I): f : (X,ω) −→ Y ⊂ Cm. We further assume that the base
Y is a unit ball in Cm with coordinates t = (t1, . . . , tm) and with admissible charts over Y
(see below). We take a global Kähler form ω = ωf + cf∗(

√
−1

∑
dtj ∧ dtj) on X for large

c > 0, without changing the class κf nor the fiberwise Kähler forms ωy.
Since f : X −→ Y is smooth, for every point y ∈ Y , we can take a local coor-

dinate (W ; t = (t1, . . . , tm)) centered at y, so that (W ; t) is a unit ball in Cm, and a
system of local coordinates U = {(Uα; zα, t); α = 1, 2, 3, . . .} of f−1(W ) which is lo-
cally finite, and every Uα is biholomorphic to a product Dα ×W for a domain Dα in Cn;
x 7→ (z1

α(x), . . . , znα(x), t1, . . . , tm), namely the projection fromDα×W toW is compatible
with the map f |Uα . We can write zjα = f jαβ(z1

β , . . . , z
n
β , t1, . . . , tm) for 1 ≤ j ≤ n on Uα∩Uβ .

All f jαβ(zβ , t) are holomorphic in zβ and t. We call it admissible charts U over W (cf. [14,
§2.3]).

Since our assertions are basically local on Y , we will mostly use the set up (II). The set up
(I) will be used in subsections 3.1, 3.3, 4.3 and 5.1.
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3. Generalities of relative differential forms

Let f : (X,ωf ) −→ Y and (E, h) be as in §2.2.I. We recall the complex analytic properties
of the relative cotangent bundle ΩX/Y = ΩX/f

∗ΩY and the bundle of relative holomorphic
p-forms ΩpX/Y =

∧p ΩX/Y . We will not distinguish a vector bundle and the corresponding
locally free sheaf. For a subset S ⊂ Y , we denote by XS = f−1(S) and ES = E|XS .

3.1. Definition of relative differential forms

Let U ⊂ X be an open subset.
(1) For a form u ∈ Ap,q(U,E), we have the restriction u|Xy∩U ∈ Ap,q(Xy ∩U,E) on each

fiber over y ∈ Y , which is the pull-back as a form via the inclusion Xy −→ X. Two forms
u, v ∈ Ap,q(U,E) are said to be f -equivalent “u ∼ v”, if u|Xy∩U = v|Xy∩U for any t ∈ Y .
We denote the set of equivalence classes by

Ap,q(U/Y,E) = Ap,q(U,E)/ ∼ .

The set Ap,q(U/Y,E) will be called the space of relative differential forms on U . We denote
by [u] ∈ Ap,q(U/Y,E) the equivalence class of u ∈ Ap,q(U,E).

(2) A form u ∈ Ap,0(U,E) is said to be holomorphic on each fiber, if the restriction u|Xy
is holomorphic, i.e., u|Xy ∈ H0(Xy,Ω

p
Xy

(Ey)) for every y ∈ Y . A form u ∈ Ap,0(U,E) is
said to be relatively holomorphic, if for any local chart (W ; t = (t1, . . . , tm)) of Y , the form
u ∧ f∗dt is holomorphic on XW ∩ U , i.e., u ∧ f∗dt ∈ H0(XW ∩ U,Ωp+mX (E)).

(3) For a function α ∈ A0(Y,C) and [u] ∈ Ap,0(U/Y,E), we can define α[u] :=

[(f∗α)u] ∈ Ap,0(U/Y,E). For each open subset W ⊂ Y , we set

A0(W, f∗Ω
p
X/Y (E)) := {[u] ∈ Ap,0(XW /W,E); u is holomorphic on each fiber},

H0(W, f∗Ω
p
X/Y (E)) := {[u] ∈ Ap,0(XW /W,E); u is relatively holomorphic}.

We can see thatA0(W, f∗Ω
p
X/Y (E)) becomes anA0(W,C)-module, andH0(W, f∗Ω

p
X/Y (E))

becomes an H0(W,OW )-module.
(4) It is sometimes convenient to use local coordinates to look at those properties above.

Let u ∈ Ap,q(X,E). On an admissible chart (Uα; zα, t) as above, we can write

u =
∑

I∈Ip,J∈Iq

uIJαdz
I
α ∧ dzJα +R,

where uIJα = uIJα(zα, t) ∈ A0(Uα,Cr), and

R ∈
∑
j

Ap−1,q(Uα,Cr) ∧ dtj +
∑
j

Ap,q−1(Uα,Cr) ∧ dtj .

Here we use a standard convention. We set Ip = {{i1, i2, . . . , ip}; 1 ≤ i1 < i2 < · · · < ip ≤ n},
and I0 is empty. For I = {i1, i2, . . . , ip} ∈ Ip, we set dzIα = dzi1α ∧ · · · ∧ dz

ip
α . Similar for

J ∈ Iq and dzJα . The restriction on a fiber is locally given by

u|Xy =
∑

I∈Ip,J∈Iq

uIJα|XydzIα ∧ dzJα.

In particular, for two forms u, v ∈ Ap,q(X,E), they are f -equivalent u ∼ v if and only if
uIJα = vIJα for any (I, J) ∈ Ip × Iq on any admissible chart (Uα; zα, t).
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(5) Let u ∈ Ap,0(X,E). On an admissible chart (Uα; zα, t), we have

u =
∑
I∈Ip

uIαdz
I
α +R

as above. Therefore u is holomorphic on each fiber (resp. relatively holomorphic) if and only
if every uIα is holomorphic in zα (resp. holomorphic in zα and t) for any I ∈ Ip on any
admissible chart (Uα; zα, t).

3.2. Holomorphic structure of f∗Ω
p
X/Y (E)

We also give the holomorphic structure on f∗Ω
p
X/Y (E) by an action of the ∂-operator.

Let (W ; (t1, . . . , tm)) ⊂ Y be a local chart, over which we have admissible charts. Let
[σ] ∈ A0(W, f∗Ω

p
X/Y (E)), which can be seen as a differentiable family of holomorphic

forms. Since (∂σ)|Xy = ∂(σ|Xy ) = 0, we can write

∂σ =
∑
j

ηj ∧ dtj +
∑
j

νj ∧ dtj

with some ηj ∈ Ap−1,1(XW , E) and some νj ∈ Ap,0(XW , E). In particular ∂(σ ∧
dt) =

∑
j ν

j ∧ dtj ∧ dt. On an admissible chart (U ; z, t) = (Uα; zα, t), we write
σ =

∑
I∈Ip σIdz

I + R with R ∈
∑
j A

p−1,0(Uα,Cr) ∧ dtj . Then we have νj |Xy∩U =

(−1)p
∑
I∈Ip(∂σI/∂tj)|Xy∩UdzI ∈ H0(Xy ∩ U,ΩpXy (Ey)) for every j. In particular, the

class [νj ] ∈ A0(W, f∗Ω
p
X/Y (E)) is well-defined for [σ]. For [σ] ∈ A0(W, f∗Ω

p
X/Y (E)), we

define
∂[σ] =

∑
j

[νj ]dtj ∈ A0,1(W, f∗Ω
p
X/Y (E)).

Here A0,1(W, f∗Ω
p
X/Y (E)) = A0(W, f∗Ω

p
X/Y (E))⊗A0,1(W,C) as A0(W,C)-module, but it

has only a formal meaning. Then, [σ] ∈ H0(W, f∗Ω
p
X/Y (E)) if and only if ∂[σ] ≡ 0. In fact

both of them are characterized by the holomorphicity of all σI in z and t locally.

L 3.1. – Let (W ; (t1, . . . , tm)) ⊂ Y be a local chart as above in §2.2. Let σ ∈
Ap,0(XW , E) such that [σ] ∈ H0(W, f∗Ω

p
X/Y (E)). Then (1)

∂σ =
∑
j

ηj ∧ dtj

with some ηj ∈ Ap−1,1(XW , E),
(2) these ηj are not unique, but [ηj ] ∈ Ap−1,1(XW /W,E) are well-defined for σ,
(3) all ηj |Xy are ∂-closed on any Xy, and

(4) [2, Lemma 4.3] all ηj |Xy ∧ ωq+1
y are ∂-exact on any Xy.

Proof. – (1) is now clear. We show (2) and (3). For each j, σ ∧”dtj ∈ Ap+m−1,0(XW , E)

is well-defined for σ, and so is ∂(σ ∧”dtj) = ηj ∧ dt. Hence [ηj ] are well-defined for σ, by
Remark 3.2 below. Moreover (∂ηj) ∧ dt = ∂ ∂(σ ∧”dtj) = 0. Hence we obtain ∂(ηj |Xy ) =

(∂ηj)|Xy = 0 by Remark 3.2 again.

(4) We fix j. By a bidegree reason, we can write σ ∧”dtj ∧ ωq+1 = aj ∧ dt with some aj ∈
An,q+1(X,E). We note that the class [aj ] ∈ An,q+1(X/Y,E) is well-defined by Remark 3.2.
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By taking ∂, we have ηj∧dt∧ωq+1 = (∂aj)∧dt. Then [ηj∧ωq+1] = [∂aj ] inAn,q+2(X/Y,E)

by Remark 3.2, and hence ηj |Xy ∧ ωq+1
y = ∂(aj |Xy ) on any Xy.

R 3.2. – For u, v ∈ Ap,q(XW , E), a relation u ∧ dt = v ∧ dt implies [u] = [v] in
Ap,q(XW /W,E), and the converse holds true in case q = 0.

R 3.3. – Each cohomology class {ηj |Xy} ∈ Hp−1,1(Xy, Ey) is well-defined for
[σ] ∈ H0(W, f∗Ω

p
X/Y (E)). As it is well-known, {ηj |Xy} is obtained by the cup-product (up

to a sign) with the Kodaira-Spencer class of f : X −→ Y at y ∈ Y for tj-direction. However
we will not use these remarks.

3.3. Canonical pairing

There is a canonical pairing on each stalk f∗Ω
p
X/Y (E)y with respect to ωy and hy, via

the natural inclusion f∗Ω
p
X/Y (E)y ⊂ H0(Xy,Ω

p
Xy

(Ey)). At each point y ∈ Y , we have the
fiberwise inner product

gy(σy, τy) := (σy, τy)hy =

∫
Xy

(cp/(n− p)!)ωn−py ∧ σy ∧ hτy

for σy, τy ∈ Ap,0(Xy, Ey). When considered as germs σy, τy ∈ f∗Ω
p
X/Y (E)y, we will de-

note this inner product by gy(σy, τy). On the other hand, when considered as forms σy, τy ∈
H0(Xy,Ω

p
Xy

(Ey)), we will denote it by (σy, τy)hy . These two are the same, but our standing
points are different, i.e., at a point y ∈ Y , or on the fiber Xy.

For relative forms [σ], [τ ] ∈ Ap,0(XW /W,E) (or H0(W, f∗Ω
p
X/Y (E))) over an open sub-

set W ⊂ Y , the above fiberwise inner product gives

g([σ], [τ ]) := f∗((cp/(n− p)!)ωn−pf ∧ σ ∧ hτ),

where the right hand side is a push-forward as a current. For a test (m,m)-form ϕ on W
(i.e., a smooth form with compact support), we have f∗((cp/(n− p)!)ωn−pf ∧ σ ∧ hτ)(ϕ) :=∫
X

(cp/(n− p)!)ωn−pf ∧ σ ∧ hτ ∧ f∗ϕ. Hence the right hand side does not depend on repre-
sentatives σ nor τ (see Remark 3.2). Since the map f is smooth, g([σ], [τ ]) is in fact a smooth
function on W .

We remark that the definition of the pairing g depends only on the fiberwise Käh-
ler forms {ωy}y∈Y . For example, over a local chart (W ; t) ⊂ Y , we can replace ωf by
ωf + cf∗(

√
−1

∑
dtj ∧ dtj) for any c ∈ R in the definition of g([σ], [τ ]). The pairing g

defines a Hermitian metric on every locally free subsheaf of f∗Ω
p
X/Y (E) in the usual sense,

which we call the Hodge metric. As a matter of fact, g itself is called the Hodge metric on
f∗Ω

p
X/Y (E) commonly, although it may not be locally free.

4. Harmonic theory for Nakano semi-positive vector bundles

We collect some fundamental results of Takegoshi [27], and immediate consequences from
them.
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4.1. Absolute setting

Let (X0, ω0) be an n-dimensional compact Kähler manifold and let (E0, h0) be a holo-
morphic Hermitian vector bundle onX0. We have an inner product ( , )h0 and the associated
norm ‖ ‖h0 on each Ap,q(X0, E0). Let Hp,q(X0, E0) be the space of harmonic (p, q)-forms.
From Bochner-Kodaira-Nakano formula, it then follows that if (E0, h0) is furthermore
Nakano semi-positive and Nakano positive at one point, then Hq(X0,Ω

n
X0

(E0)) vanish for
all q > 0.

Enoki [4] and Takegoshi [27] (a special case of Theorem 4.1 below) show that if (E0, h0)

is Nakano semi-positive, then the Hodge ∗-operator yields injective homomorphism
∗0 : Hn,q(X0, E0) −→ H0(X0,Ω

n−q
X0

(E0)). Recalling that (cn−q/q!)ω
q
0 ∧ ∗0u = u for

u ∈ An,q(X0, E0), it then follows that the Lefschetz operator Lq0 : H0(X0,Ω
n−q
X0

(E0)) −→
Hq(X0,Ω

n
X0

(E0)) is surjective. Hence we have

H0(X0,Ω
n−q
X0

(E0)) = KerLq0 ⊕ ∗0Hn,q(X0, E0).

4.2. Localized relative setting

Let f : (X,ω) −→ Y ⊂ Cm and (E, h) be as in §2.2.II. We take a C∞ plurisubharmonic
exhaustion function Φ = f∗

∑m
j=1 |tj |2 on X. We take any 0 ≤ q ≤ n. Following [27, 4.3],

we set the following subspace ofE-valued harmonic (n+m, q)-forms with respect toω and h:

Hn+m,q(X,E,Φ) = {u ∈ An+m,q(X,E); ∂u = ϑhu = 0 and e(∂Φ)∗u = 0 on X}.

By [27, 4.3.i], u ∈ Hn+m,q(X,E,Φ) if and only if ϑu = 0, (
√
−1e(Θh+∂∂Φ)Λωu)∧hu = 0

and e(∂Φ)∗u = 0 on X. One can check easily that (f∗α)u satisfies those latter three condi-
tions, if α ∈ H0(Y,OY ) and if u ∈ Hn+m,q(X,E,Φ).

T 4.1 ([27, 4.3]). – (1) The space Hn+m,q(X,E,Φ) does not depend on C∞

plurisubharmonic exhaustion functions Φ, and has a natural structure of H0(Y,OY )-module.
(2) For u ∈ Hn+m,q(X,E,Φ), one has ∂ ∗ u = 0 and ∂h ∗ u = 0. In particular, the Hodge

∗-operator yields an injective homomorphism ∗ : Hn+m,q(X,E,Φ) −→ H0(X,Ωn+m−q
X (E)),

andHn+m,q(X,E,Φ) becomes a torsion free H0(Y,OY )-module.

Let ι′ : Zn+m,q

∂
(X,E) −→ Hq(X,Ωn+m

X (E)) be the quotient map which induces the
Dolbeault’s isomorphism.

T 4.2 ([27, 5.2]). – (1) The spaceHn+m,q(X,E,Φ) represents Hq(X,Ωn+m
X (E))

as a torsion free H0(Y,OY )-module, in particular the quotient map ι′ induces an isomorphism
ι : Hn+m,q(X,E,Φ) −→ Hq(X,Ωn+m

X (E)).
(2) The injective homomorphism ∗ : Hn+m,q(X,E,Φ) −→ H0(X,Ωn+m−q

X (E)) induces a
splitting homomorphism (up to a constant)

∗ ◦ ι−1 : Hq(X,Ωn+m
X (E)) −→ H0(X,Ωn+m−q

X (E))

for the Lefschetz homomorphism

Lq : H0(X,Ωn+m−q
X (E)) −→ Hq(X,Ωn+m

X (E)).

such that (cn+m−q/q!)L
q ◦ ∗ ◦ ι−1 = id.

(3) Let u ∈ Hn+m,q(X,E,Φ). Then the form ∗u ∈ H0(X,Ωn+m−q
X (E)) is saturated in

base variables, i.e., ∗u = σu ∧ dt for some [σu] ∈ H0(X,Ωn−qX/Y (E)) (see the proof of [27,

4 e SÉRIE – TOME 41 – 2008 – No 6



HODGE METRICS ON HIGHER DIRECT IMAGES 913

5.2.ii]). In particular, u = (cn+m−q/q!)ω
q ∧ σu ∧ dt and the map u 7→ [σu] is well-defined.

Thus the Hodge ∗-operator induces an injective homomorphism

Sq : Hn+m,q(X,E,Φ) −→ H0(X,Ωn−qX/Y (E)).

In Theorem 4.2 (3), we used our assumption that f is smooth.
We take a trivialization OY −̃→ΩmY given by 1 7→ dt, which induces isomorphisms of

sheaves ΩnX/Y
∼= ΩnX/Y ⊗ f

∗ΩmY
∼= Ωn+m

X by [u] 7→ u∧ dt, and hence of cohomology groups

αq : Hq(X,ΩnX/Y (E)) −̃→Hq(X,Ωn+m
X (E)). We also have an injection Ωn−qX/Y −→ Ωn+m−q

X

by [σ] 7→ σ ∧ dt, and hence an injection β0 : H0(X,Ωn−qX/Y (E)) −→ H0(X,Ωn+m−q
X (E)).

Combining with Theorem 4.2, we have

ι−1 ◦ αq : Hq(X,ΩnX/Y (E)) −̃→Hq(X,Ωn+m
X (E)) −̃→Hn+m,q(X,E,Φ),

∗ = β0 ◦ Sq : Hn+m,q(X,E,Φ) −→ H0(X,Ωn−qX/Y (E)) −→ H0(X,Ωn+m−q
X (E)),

(αq)−1 ◦ Lq : H0(X,Ωn+m−q
X (E)) −→ Hq(X,Ωn+m

X (E)) −̃→Hq(X,ΩnX/Y (E)).

Then Theorem 4.2 (2) reads the following relative version:

C 4.3. – Let

Sqf = Sq ◦ ι−1 ◦ αq : Hq(X,ΩnX/Y (E)) −→ H0(X,Ωn−qX/Y (E)),

Lqf = (αq)−1 ◦ Lq ◦ β0 : H0(X,Ωn−qX/Y (E)) −→ Hq(X,ΩnX/Y (E)).

Then (cn+m−q/q!)L
q
f ◦ S

q
f = id on Hq(X,ΩnX/Y (E)).

We can also see, thanks to [27, 5.2.iv] (see also [27, 6.5.i]) that those constructions can be
localized on Y , and induce homomorphisms of direct image sheaves.

C 4.4. – There exist homomorphisms induced from the Hodge ∗-operator and
the Lefschetz homomorphism:

Sqf : Rqf∗Ω
n
X/Y (E) −→ f∗Ω

n−q
X/Y (E), Lqf : f∗Ω

n−q
X/Y (E) −→ Rqf∗Ω

n
X/Y (E)

so that (cn+m−q/q!)L
q
f ◦ S

q
f = id on Rqf∗ΩnX/Y (E). In particular

f∗Ω
n−q
X/Y (E) = Fn−q ⊕Kn−q, with Fn−q = ImSqf and Kn−q = KerLqf .

We translate some results above into explicite forms.

L 4.5. – Let σ ∈ An−q,0(X,E) such that [σ] ∈ H0(Y, Fn−q). Then

(1) ∂hσ =
∑
j

µj ∧ dtj

for some µj ∈ An−q,0(X,E),
(2) these µj are not unique, but [µj ] ∈ An−q,0(X/Y,E) are well-defined for σ, and
(3) ∂hy (µj |Xy ) = 0 on any Xy and all j.

Proof. – There exists u ∈ Hn+m,q(X,E,Φ) such that ∗u = σ∧dt ∈ H0(X,Ωn+m−q
X (E)).

By Takegoshi’s Theorem 4.1, we have ∂h ∗ u = 0. Hence (∂hσ) ∧ dt = ∂h ∗ u = 0, and we
have (1). We can show (2) and (3) by the same method in Lemma 3.1.
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R 4.6. – Unlike in the case q = 0 that is treated by degree considerations [2, §4],
we used the semi-positivity here. In general, for [σ] ∈ H0(Y, f∗Ω

n−q
X/Y (E)) with q > 0, we

cannot have ∂hσ =
∑
µj ∧ dtj for some µj ∈ An−q,0(X,E). This is in fact a key property,

and it makes various computations possible. We also note that ηj in Lemma 3.1 and µj are
not well-defined for a class [σ] ∈ H0(Y, Fn−q), and that means, we have some freedom of
choices in a class.

Stalks or fibers at a point y ∈ Y will be denoted by f∗Ω
n−q
X/Y (E)y, F

n−q
y ,Kn−qy respec-

tively. Those stalks can be seen as subspaces of H0(Xy,Ω
n−q
Xy

(Ey)), i.e., Fn−qy ⊕ Kn−qy =

f∗Ω
n−q
X/Y (E)y ⊂ H0(Xy,Ω

n−q
Xy

(Ey)).

L 4.7. – Let σy ∈ Fn−qy and τy ∈ Kn−qy , and regard them as elements of
H0(Xy,Ω

n−q
Xy

(Ey)). Then, (1) ∂hyσy = 0 in An−q+1,0(Xy, Ey),

(2) ωqy ∧ τy ∈ An,q(Xy, Ey) is ∂-exact, and
(3) (σy, τy)hy =

∫
Xy

(cn−q/q!)ω
q
y ∧ σy ∧ hyτy = 0.

Proof. – We will argue at y = 0.
(1) Since Y is a unit ball in Cm, there exists [σ] ∈ H0(Y, Fn−q) such that σ|X0 = σ0. By

Lemma 4.5, we have ∂h0(σ|X0) = 0.
(2) We take [τ ] ∈ H0(Y,Kn−q) such that τ |X0 = τ0. We have Lqf ([τ ]) = 0. Recall the

definition of Lqf = (αq)−1 ◦Lq ◦ β0, where β0([τ ]) = τ ∧ dt, and (αq)−1 is an isomorphism.
Then we have Lq ◦ β0([τ ]) = 0 in Hq(X,Ωn+m

X (E)), namely ωq ∧ τ ∧ dt = ∂a for some
a ∈ An+m,q−1(X,E). By a bidegree reason, a can be written as a = b ∧ dt for some b ∈
An,q−1(X,E). Then (ωq ∧τ −∂b)∧dt = 0. By restricting onX0, we have ωq0 ∧τ0−∂b0 = 0,
where b0 = b|X0

.

(3) By (2), we have
∫
X0
ωq0 ∧ σ0 ∧ h0τ0 =

∫
X0
σ0 ∧ h0∂b0. Since ∂(σ0 ∧ h0b0) =

(∂h0σ0)∧ h0b0 + (−1)n−qσ0 ∧ h0∂b0, and since ∂h0σ0 = 0 by (1), we have
∫
X0
σ0 ∧ h0∂b0 =

(−1)n−q
∫
X0
∂(σ0 ∧ h0∂b0) = 0.

4.3. Local freeness

We shall show that the direct image sheaves Rqf∗ΩnX/Y (E) are locally free. This is an im-
mediate consequence of a result of Takegoshi [27]. We start by recalling a general remark.

L 4.8. – Let X and Y be varieties (reduced and irreducible), f : X −→ Y be a
proper surjective morphism, and let E be a coherent sheaf on X which is flat over Y . Assume
that the natural map ϕq(y) : Rqf∗E ⊗ C(y) −→ Hq(Xy, Ey) is surjective for any y ∈ Y and
any q ≥ 0, whereXy is the fiber over y, and Ey is the induced sheaf ([10, III.9.4]). ThenRqf∗E
is locally free for any q ≥ 0, and ϕq(y) : Rqf∗E ⊗C(y) −→ Hq(Xy, Ey) is an isomorphism for
any y ∈ Y and any q ≥ 0.

Proof. – By [10, III.12.11(a)] (cohomology and base change), the surjectivity ofϕq(y) im-
plies that it is an isomorphism. By [10, III.12.11(b)], the local freeness of Rqf∗E in a neigh-
borhood of y ∈ Y follows from the surjectivities of ϕq(y) and of ϕq−1(y).

We can find the corresponding results in the category of complex spaces, for example
[1, III.3.4, III.3.7].
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L 4.9 (cf. [27, 6.8]). – Let f : (X,ωf ) −→ Y and (E, h) be as in §2.2.I. Then

(1) the natural restriction map Rqf∗ΩnX/Y (E) −→ Hq(Xy,Ω
n
Xy

(Ey)) is surjective for any
y ∈ Y and any q ≥ 0, and

(2) Rqf∗ΩnX/Y (E) is locally free for any q ≥ 0, and ϕq(y) : Rqf∗Ω
n
X/Y (E) ⊗ C(y) −→

Hq(Xy,Ω
n
Xy

(Ey)) is an isomorphism for any y ∈ Y and any q ≥ 0.

Proof. – (1) Fix y ∈ Y . Since our assertion is local on Y , we may assume that Y is a
unit ball in Cm with coordinates t = (t1, . . . , tm) centered at y = {t = 0}. We take a triv-
ialization OY ∼= ΩmY given by 1 7→ dt = dt1 ∧ · · · ∧ dtm. For every i with 1 ≤ i ≤ m,
we let Yi = {t1 = · · · = ti = 0} be a complex sub-manifold of Y , Xi = f−1(Yi), and
let fi : Xi −→ Yi be the induced morphism. We set X0 = X,Y0 = Y and f0 = f .
By the injectivity theorem of Takegoshi with F = OX in [27, 6.8.i], the sheaf homomor-
phismRqf0∗(f

∗
0 t1) : Rqf∗Ω

n
X/Y (E)⊗ΩmY −→ Rqf∗Ω

n
X/Y (E)⊗ΩmY induced by the product

with the holomorphic function f∗t1 is injective for any q ≥ 0. Hence the restriction map
Rqf0∗Ω

n
X/Y (E) −→ Rqf1∗(Ω

n
X/Y (E) ⊗ OX1

) is surjective for any q ≥ 0. By the adjunc-
tion formula, we have ΩnX/Y ⊗ OX1 = ΩnX1/Y1

. Hence inductively, we obtain a surjection
Rqf∗Ω

n
X/Y (E) −→ Hq(Xy,Ω

n
Xy

(Ey)).

(2) This follows from (1) and Lemma 4.8.

5. The Hodge metric

We shall define a canonical Hermitian metric on Rqf∗ΩnX/Y (E), and compute the metric
connection and the curvature. §5.1 will be discussed in the global setting §2.2.I, and the rest
of this section will be discussed in the localized setting §2.2.II.

5.1. Definition of Hodge metrics

We define a canonical Hermitian metric on a vector bundleRqf∗ΩnX/Y (E), which we call
the Hodge metric.

D 5.1. – Let f : (X,ωf ) −→ Y and (E, h) be as in §2.2.I, and let 0 ≤ q ≤ n.
For every point y ∈ Y , we take a local coordinate W ∼= {t ∈ Cm; ‖t‖ < 1} centered at y,
and a Kähler form ω = ωf + cf∗(

√
−1

∑
dtj ∧ dtj) on XW for a real number c. A choice

of a Kähler form ω gives an injection Sω := Sqf : Rqf∗Ω
n
X/Y (E) −→ f∗Ω

n−q
X/Y (E) over W

(Corollary 4.4). Then for every pair of vectors uy, vy ∈ Rqf∗ΩnX/Y (E)y, we define

g(uy, vy) =

∫
Xy

(cn−q/q!)(ω
q
f ∧ Sω(uy) ∧ hSω(vy))|Xy .

Here the right hand side is the restriction on the image of Sω of the canonical pairing, say g
again, on f∗Ω

n−q
X/Y (E)y in §3.3.

The injection Sω = Sqf : Rqf∗Ω
n
X/Y (E) −→ f∗Ω

n−q
X/Y (E) over W may depend on the

choices of Kähler forms in the relative Kähler class {ωf}, however
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L 5.2. – In the situation in Definition 5.1, the induced metric g onRqf∗ΩnX/Y (E)|W
via Sω = Sqf : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E) over W does not depend on the choice of a

Kähler form ω in the relative Kähler class {ωf |XW } ∈ H2(XW ,R) so that ω|Xy = ωf |Xy for
any y ∈W , and hence g defines a global Hermitian metric onRqf∗ΩnX/Y (E) over Y by varying
y ∈ Y .

Proof. – It is enough to check it in case uy = vy. We may also assume that Y = W ⊂ Cm.
We take two Kähler forms ω1 and ω2 on X, which relate ω1 − ω2 = f∗

√
−1∂∂ψ for some

ψ ∈ A0(Y,R).
(i) We need to recall the definition of Sqf . Let

u ∈ H0(Y,Rqf∗Ω
n
X/Y (E)) ∼= Hq(X,ΩnX/Y (E))

be an extension of uy. With respect to ωi, we denote by ∗i the Hodge ∗-operator, by
Hn+m,q(X,ωi, E,Φ) the space of harmonic forms in Theorem 4.1 with Φ = f∗‖t‖2, by
ιi : Hn+m,q(X,ωi, E,Φ) −̃→Hq(X,Ωn+m

X (E)) the isomorphism in Theorem 4.2 (1), and
by Si the injection Sqf : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E). We have isomorphisms

Hi = ι−1
i ◦ α

q : Hq(X,ΩnX/Y (E)) −̃→Hn+m,q(X,ωi, E,Φ)

(see the argument before Corollary 4.3). Then we have ∗iHi(u) ∈ H0(X,Ωn+m−q
X (E)), and

∗iHi(u) = σi ∧ dt for some [σi] ∈ H0(X,Ωn−qX/Y (E)). Namely Si(u) = [σi]. In this setting,
our lemma is reduced to show that

f∗(ω
q
1 ∧ σ1 ∧ hσ1) = f∗(ω

q
2 ∧ σ2 ∧ hσ2).

This is reduced to show
∫
X

(f∗β)ωq1 ∧ σ1 ∧ dt∧ hσ1 ∧ dt =
∫
X

(f∗β)ωq2 ∧ σ2 ∧ dt∧ hσ2 ∧ dt
for any β ∈ A0(Y,C) with compact support. We take such a β ∈ A0(Y,C).

(ii) Since the Dolbeault cohomology classes of H1(u) and H2(u) are the same, there ex-
ists a ∈ An+m,q−1(X,E) such that H1(u) −H2(u) = (cn+m−q/q!)∂a. Recalling Corollary
2.2 (2) thatHi(u) = (cn+m−q/q!)ω

q
i ∧∗iHi(u), we have ωq1 ∧∗1H1(u)−ωq2 ∧∗2H2(u) = ∂a,

and hence ωq1 ∧ σ1 ∧ dt− ωq2 ∧ σ2 ∧ dt = ∂a.
By a degree reason in the base variables, we have f∗(∂β) ∧ dt = 0. Hence ∂((f∗β)a ∧

hσ1 ∧ dt) = (f∗β)∂a∧hσ1 ∧ dt+(−1)n+m+q−1(f∗β)a∧h∂h(σ1 ∧ dt). We also have ∂h(σ1∧
dt) = ∂h ∗1 H1(u) = 0 by Theorem 4.1 (2). Hence

∫
X

(f∗β)∂a ∧ hσ1 ∧ dt =
∫
X
∂((f∗β)a ∧

hσ1 ∧ dt) = 0 by the Stokes theorem. Then the relation ωq1 ∧ σ1 ∧ dt = ωq2 ∧ σ2 ∧ dt + ∂a

implies that
∫
X

(f∗β)ωq1 ∧ σ1 ∧ dt ∧ hσ1 ∧ dt =
∫
X

(f∗β)ωq2 ∧ σ2 ∧ dt ∧ hσ1 ∧ dt.
(iii) Now we use ω1 − ω2 = f∗

√
−1∂∂ψ. This leads

∫
X

(f∗β)ωq2 ∧ σ2 ∧ dt ∧ hσ1 ∧ dt =∫
X

(f∗β)ωq1∧σ2∧dt∧hσ1 ∧ dt. The last integral equals to
∫
X

(f∗β)σ2∧dt∧hωq1 ∧ σ1 ∧ dt =∫
X

(f∗β)σ2 ∧ dt ∧ hωq2 ∧ σ2 ∧ dt +
∫
X

(f∗β)σ2 ∧ dt ∧ h∂a. By a similar manner as above,

mainly because of ∂h(σ2 ∧ dt) = ∂h ∗2 H2(u) = 0, we can see
∫
X

(f∗β)σ2 ∧ dt ∧ h∂a = 0.
We finally obtain

∫
X

(f∗β)ωq1 ∧ σ1 ∧ dt ∧ hσ1 ∧ dt =
∫
X

(f∗β)ωq2 ∧ σ2 ∧ dt ∧ hσ2 ∧ dt.

At this point, we have the so-called metric connection (or the Chern connection) Dg of
the Hermitian vector bundle (Rqf∗Ω

n
X/Y (E), g), and the curvature Θg = D2

g . Since the cur-
vature property in Theorem 1.1 is a local question on the base Y , it is enough to consider the
following setting:
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Let f : (X,ω) −→ Y ⊂ Cm and (E, h) be as in §2.2.II, and let 0 ≤ q ≤ n. We denote
by F = Fn−q the image of Sqf : Rqf∗Ω

n
X/Y (E) −→ f∗Ω

n−q
X/Y (E) with respect to ω. Since,

by definition, the canonical pairing g on f∗Ω
n−q
X/Y (E) gives our (Rqf∗Ω

n
X/Y (E), g), we say a

subbundle

(F, g) ⊂ (f∗Ω
n−q
X/Y (E), g).

5.2. The metric connection

We shall construct the metric connection Dg of (F, g). Recall, Lemma 4.5, that
∂hσ =

∑
j µ

j ∧ dtj with some µj ∈ An−q,0(X,E) for [σ] ∈ H0(Y, F ). Since A0(Y, F ) =

A0(Y,C) ⊗ H0(Y, F ) as A0(Y,C)-module, this formula holds for [σ] ∈ A0(Y, F ), too.
We consider the fiberwise orthogonal projection Py : An−q,0(Xy, Ey) −→ Fy given by
uy 7→

∑`
j=1 gy(uy, σjy)σjy, where σ1y, . . . , σ`y ∈ Fy is a basis of Fy. Since F is locally free,

the family {Py}y∈Y induces a map

P : An−q,0(X,E) −→ {u ∈ An−q,0(X,E); u|Xy ∈ Fy for any y ∈ Y }.

Then for [σ] ∈ A0(Y, F ) with ∂hσ =
∑
j µ

j ∧ dtj , we define

∂g[σ] =
∑

[P (µj)]dtj ∈ A1,0(Y, F ).

L 5.3. – The class [P (µj)] is well-defined for [σ] ∈ A0(Y, F ).

Proof. – (1) We shall show that µj |Xy are perpendicular toH0(Xy,Ω
n−q
Xy

(Ey)) under the
condition [σ] = [0], namely σ|Xy = 0 for any y ∈ Y . We write σ =

∑
σj∧dtj with some σj ∈

An−q−1,0(X,E). We note that we can take µj = ∂hσj . We take any s ∈ H0(Xy,Ω
n−q
Xy

(Ey)).

Then ∂(ωqy ∧ σj |Xy ∧ hys) = ωqy ∧ ∂hy (σj |Xy ) ∧ hys + (−1)n−qωqy ∧ σj |Xy ∧ hy∂s. Be-
cause of ∂s = 0, we have gy((∂hσj)|Xy , s) = (cn−q/q!)

∫
Xy

ωqy ∧ ∂hy (σj |Xy ) ∧ hys =

(cn−q/q!)
∫
Xy

∂(ωqy ∧ σj |Xy ∧ hys) = 0.

(2) The above (1) is enough to show that [P (µj)] is well-defined. But in fact, (1) said
slightly more.

L 5.4. – The sum Dg := ∂g + ∂ is the metric connection of the Hermitian vector
bundle (F, g).

Proof. – It is not difficult to see that it is a connection. Let us check the compatibil-
ity with the metric g. Let [σ], [τ ] ∈ H0(Y, F ), and write ∂hτ =

∑
j µ

j(τ) ∧ dtj . Then
∂g([σ], [τ ]) = (−1)n−qf∗((cn−q/q!)ω

q ∧ σ ∧ h∂hτ) =
∑
j f∗((cn−q/q!)ω

q ∧ σ ∧ hµj(τ))dtj .
Since σ|Xy ∈ Fy, the last term becomes

∑
j f∗((cn−q/q!)ω

q ∧ σ ∧ hP (µj(τ)))dtj , and it is∑
j g([σ], [P (µj(τ))])dtj . In the notation of §2.1, we can write as g([σ], [τ ]) = [σ]∧ g[τ ] and

∂g([σ], [τ ]) = [σ] ∧ g∂g[τ ].
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5.3. Curvature formula

We describe the Nakano semi-positivity of a Hermitian holomorphic vector bundle. Since
it is a local property, we will discuss on a local chart. Let Y ⊂ Cm be a unit ball centered
at 0 with coordinates t = (t1, . . . , tm), and let F = Y × C` be a trivial vector bundle with
a non-trivial Hermitian metric g. (This (F, g) may not necessarily be our original bundle.)
We write Θg =

∑
Θjkdtj ∧dtk with Θjk ∈ End (Y, F ). Then (F, g) is Nakano semi-positive

at t = 0, if and only if for any tensor s =
∑m
j=1 ∂/∂tj ⊗ σ0

j ∈ (TY ⊗ F )0, we have Θg(s) =∑
j,k g0(Θjkσ

0
j , σ

0
k) ≥ 0. Moreover the last quantity can be obtained another way from local

sections. If σ, τ ∈ H0(Y, F ), we have ∂2

∂tj∂tk
g(σ, τ) = g((∂gσ)j , (∂gτ)k)− g(Θjkσ, τ), where

∂gσ =
∑
j(∂gσ)jdtj ∈ A1,0(Y, F ) and so on. Hence if σ and τ are normal at 0 with respect

to g (i.e., ∂gσ = ∂gτ = 0 at 0), we have ( ∂2

∂tj∂tk
g(σ, τ))|t=0 = −g0(Θjkσ|t=0, τ |t=0).

N 5.5. – (1) Let V be a continuous (m,m)-form on Y ⊂ Cm. Then we can write
V = v(t)dVt with a unique continuous function v on Y , and we define Vt=0 := v(0).

(2) Associated to m-ple σ1, . . . , σm ∈ H0(Y, F ), we let

T (σ) =
∑
j,k

g(σj , σk)ÿ�dtj ∧ dtk ∈ Am−1,m−1(Y,C).

In case all σj are normal at t = 0, we have
√
−1∂∂T (σ)t=0 = −

∑
j,k g0(Θjkσj |x0

, σk|x0
).

Hence we have

L 5.6 ([2, §2]). – A Hermitian vector bundle (F, g) on an open subset Y ⊂ Cm is
Nakano semi-positive at t = 0, if for anym-ple vectors σ0

1 , . . . , σ
0
m ∈ F0, there exist extensions

σj ∈ H0(Y, F ) of σ0
j , all of which are normal at t = 0 and satisfy

√
−1∂∂T (σ)t=0 ≤ 0.

We go back to our original situation. We prepare the following notations.

N 5.7. – Let f : (X,ω) −→ Y ⊂ Cm and (E, h) be as in §2.2.II. Let
σ1, . . . , σm ∈ An−q,0(X,E) such that [σj ] ∈ H0(Y, F ) for all j.

(1) We set
σ̂ =

∑
σj ∧”dtj ∈ An−q+m−1,0(X,E).

Then
T ([σ]) =

∑
j,k

g([σj ], [σk])ÿ�dtj ∧ dtk = f∗((cN/q!)ω
q ∧ σ̂ ∧ hσ̂).

Here N = n− q +m− 1.
(2) We write ∂hσj =

∑
k µ

k
j ∧ dtk. Then

∂hσ̂ =
∑
j

µjj ∧ dt =: µ ∧ dt

with µ ∈ An−q,0(X,E), or rather [µ] ∈ An−q,0(X/Y,E).
(3) We write ∂σj =

∑
k η

k
j ∧ dtk. Then

∂σ̂ =
∑
j

ηjj ∧ dt =: η ∧ dt

with η ∈ An−q−1,1(X,E), or rather [η] ∈ An−q−1,1(X/Y,E).
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L 5.8 (cf. [2, (4.4)]). – In Notation 5.7, one has

−
√
−1 ∂ ∂ T ([σ])t=0 = f∗((cN/q!)ω

q ∧
√
−1Θh ∧ σ̂ ∧ hσ̂)t=0

−
∫
X0

(cn−q/q!)(ω
q ∧ µ ∧ hµ)|X0 −

∫
X0

(cn−q/q!)(ω
q ∧ η ∧ hη)|X0 .

R 5.9. – The first term comes from the curvature ofE, and contributes positively.

The second term is −‖µ|X0
‖2h0

, and it can be seen as the “second fundamental form” of
F ⊂

⋃
t∈Y A

n−q,0(Xy, Ey) at t = 0. This negative contribution will be eliminated by a
careful choice of forms σj , in § 6.2.

The third term is not a definite form. In general one can write η|X0 as a sum η|X0 = η′0 +

ω0 ∧ η′′0 for primitive forms η′0 and η′′0 on X0, and then −
∫
X0

(cn−q/q!)(ω
q ∧ η ∧ hη)|X0 =

‖η′0‖2h0
−‖η′′0‖2h0

. In §6.2, we will show that we can take σj so that all ηkj |X0 and hence η|X0 are
primitive on X0. In that case, the third term is −

∫
X0

(cn−q/q!)(ω
q ∧ η ∧ hη)|X0

= ‖η|X0
‖2h0
≥ 0.

We should read the Kodaira-Spencer class contributes positively.

Proof of Lemma 5.8. – The proof will be done by direct computations. We first note that
f∗(ω

q ∧ ∂σ̂ ∧ hσ̂) = f∗(ω
q ∧ η ∧ dt ∧ hσ̂) = 0 as an (m − 1,m)-current on Y , because it

contains dt. By the same reason, we have f∗(ωq ∧ σ̂ ∧ h∂σ̂) = 0, and hence, by taking ∂, we
have f∗(ωq ∧ σ̂ ∧ h∂h∂σ̂) = −(−1)Nf∗(ω

q ∧ ∂σ̂ ∧ h∂σ̂). Then we have ∂f∗(ωq ∧ σ̂ ∧ hσ̂) =

(−1)Nf∗(ω
q ∧ σ̂ ∧ h∂hσ̂), and then

∂∂f∗(ω
q ∧ σ̂ ∧ hσ̂) = (−1)Nf∗(ω

q ∧ ∂hσ̂ ∧ h∂hσ̂) + f∗(ω
q ∧ σ̂ ∧ h∂∂hσ̂).

Since ∂h∂ + ∂∂h = e(Θh), we have f∗(ωq ∧ σ̂ ∧ h∂∂hσ̂) = f∗(ω
q ∧ σ̂ ∧ hΘh ∧ σ̂)− f∗(ωq ∧

σ̂ ∧ h∂h∂σ̂). Using f∗(ωq ∧ σ̂ ∧ h∂h∂σ̂) = −(−1)Nf∗(ω
q ∧ ∂σ̂ ∧ h∂σ̂), we can write

∂∂f∗(ω
q ∧ σ̂ ∧ hσ̂) = −f∗(ωq ∧Θh ∧ σ̂ ∧ hσ̂) + (−1)N+(n−q)mf∗(ω

q ∧ µ ∧ hµ ∧ dt ∧ dt)

+ (−1)N+(n−q)mf∗(ω
q ∧ η ∧ hη ∧ dt ∧ dt).

Here we mind that
√
−1Θh is real. Hence −

√
−1∂∂f∗((cN/q!)ω

q ∧ σ̂ ∧ hσ̂) is

f∗((cN/q!)ω
q ∧
√
−1Θh ∧ σ̂ ∧ hσ̂)− f∗((cn−q/q!)ωq ∧ µ ∧ hµ ∧ cmdt ∧ dt)

− f∗((cn−q/q!)ωq ∧ η ∧ hη ∧ cmdt ∧ dt).

By taking their values at t = 0, we have our assertion.

6. Normal and “primitive” sections, and the proof of Theorem 1.1

Let f : (X,ω) −→ Y ⊂ Cm and (E, h) as in §2.2.II, and keep the notations in §5.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



920 C. MOUROUGANE AND S. TAKAYAMA

6.1. Effect of normality

We control ∂hσ at one point for [σ] ∈ H0(Y, F ), when it is normal at t = 0. Recall ∂hσ =∑
µj∧dtj with some µj ∈ An−q,0(X,E). To go further, we need a genericity condition over

the baseY . We will assume that the function y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant around

t = 0. This assumption implies that f∗Ω
n−q
X/Y (E) is locally free around t = 0, and that the

fiber f∗Ω
n−q
X/Y (E)y coincides with H0(Xy,Ω

n−q
Xy

(Ey)) around t = 0 ([8, 10.5.5] [10, III §12]).
In case q = 0, i.e., the case in [2, §4], this assumption holds true thanks to Ohsawa-Takegoshi
type L2-extension theorem [26] [25] [20]. Recall Corollary 4.4 that f∗Ω

n−q
X/Y (E) = F ⊕ K,

where K = Kn−q = KerLqf .

L 6.1. – Assume that the function y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant around
t = 0. Let [σ] ∈ H0(Y, F ) with ∂hσ =

∑
µj ∧ dtj , and suppose ∂g[σ] = 0 at t = 0. Then all

µj |X0
are perpendicular to H0(X0,Ω

n−q
X0

(E0)).

Proof. – We will use notations in §4.1 for (X0, ω0) and (E0, h0). Let ( , )h0
be the

inner product of An−q,0(X0, E0) in terms of the metrics ω0 and h0 on X0. We have
H0(X0,Ω

n−q
X0

(E0)) = F0 ⊕ K0, which is an orthogonal direct sum by our assumption
and by Lemma 4.7 (3). We fix j. Let µj |X0

= τ0 + a0 ∈ An−q,0(X0, E0) be the Hodge
decomposition of forms so that τ0 ∈ H0(X0,Ω

n−q
X0

(E0)) and a0 ∈ ϑh0
An−q,1(X0, E0). We

would like to show that τ0 = 0.
Since ∂g[σ] = 0 at t = 0, namely all µk|X0

are perpendicular to F0, it follows that τ0 ∈ K0

by Lemma 4.7 (3). Then ωq0 ∧ τ0 = ∂b0 for some b0 ∈ An,q−1(X0, E0) by Lemma 4.7 (2).
Combining with Lemma 4.5 that ∂h0(µj |X0) = 0, we have

∫
X0
ωq0 ∧ µj |X0 ∧ h0τ0 = 0 by

integration by parts as in Lemma 4.7 (3). Then ‖τ0‖2h0
= (τ0 +a0, τ0)h0

=
∫
X0

(cn−q/q!)ω
q
0∧

µj |X0
∧ h0τ0 = 0, and hence τ0 = 0.

L 6.2. – Let [σ] ∈ H0(Y, F ) with ∂hσ =
∑
µj ∧ dtj , and suppose that µj |X0 is

perpendicular to H0(X0,Ω
n−q
X0

(E0)) for some j. Then there exists ξj0 ∈ An−q−1,0(X0, E0)

such that ∂h0
ξj0 = µj |X0

and that ∂ξj0 is primitive.

Proof. – We will use notations in §4.1 for (X0, ω0) and (E0, h0). Recall Theorem
4.1 with dimY = 0 that the Hodge ∗-operator yields an injective homomorphism
∗0 : Hn,q(X0, E0) −→ H0(X0,Ω

n−q
X0

(E0)).
We consider u := ωq0 ∧ µj |X0

∈ An,q(X0, E0), and recall (cn−q/q!) ∗0 u = µj |X0
. Let

u = a + ∂b + ϑh0
c be the Hodge decomposition of forms so that a ∈ Hn,q(X0, E0), b is

ϑh0
-exact, and that c is ∂-exact.

We first show that ∂b = 0. Using integration by parts and by Lemma 4.5 (3), we have∫
X0
∂b ∧ h0µj |X0

= 0. Since ‖∂b‖2h0
= (∂b, u)h0

=
∫
X0
∂b ∧ ∗h0

u, and since the last term is

cn−qq!
∫
X0
∂b ∧ h0µj |X0 = 0, we have ∂b = 0.

We next show that a = 0. Recall in general, (v, w)h0
= (∗0v, ∗0w)h0

holds for v, w ∈
Ap,q(X0, E0) ([11, 1.2.20]). Since ϑh0

c ∈ (Hn,q(X0, E0))⊥ the orthogonal complement in
An,q(X0, E0), we have ∗0(ϑh0

c) ∈ (∗0Hn,q(X0, E0))⊥. We also have ∗0u = c−1
n−qq!µ

j |X0
∈

H0(X0,Ω
n−q
X0

(E0))⊥ ⊂ (∗0Hn,q(X0, E0))⊥. On the other hand ∗0a ∈ ∗0Hn,q(X0, E0),
hence the both sides of ∗0a = ∗0u− ∗0(ϑh0c) have to be 0.
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Now we had u = ϑh0
c for a ∂-exact form c ∈ An,q+1(X0, E0). By the Lefschetz isomor-

phism on forms ([11, 1.2.30]), there exists ξ ∈ An−q−1,0(X0, E0) such that ωq+1
0 ∧ ξ = c. We

have ωq+1
0 ∧ ∂ξ = ∂c = 0, namely ∂ξ is primitive. We also have ∗0c = ∗0(ωq+1

0 ∧ ξ) =

c−1
n−q−1(q + 1)!ξ by Lemma 2.1. Then µj |X0

= (cn−q/q!) ∗0 u = (cn−q/q!)(− ∗0 ◦ ∗0
∂h0

(∗0c)) = −(−1)n−q(cn−q/q!)∂h0
(c−1
n−q−1(q + 1)!ξ) = −

√
−1(q + 1)∂h0

ξ. We finally
take ξ0 = −

√
−1(q + 1)ξ.

6.2. Existence of strongly normal and “primitive” sections

Here we state a key result for the curvature estimate of our Hodge metric, as a consequence
of Lemma 3.1 and Lemma 6.2. The part (I) of Proposition 6.3 below in fact holds not only
for F , but also for any locally free subsheaf of f∗Ω

n−q
X/Y (E). The property (3) (respectively,

(4)) below will be referred to as “primitive” (respectively, strongly normal) at t = 0.

P 6.3 (cf. [2, Proposition 4.2]). – Let σ0 ∈ F0 be a vector at t = 0.

(I) Then, there exists σ ∈ An−q,0(X,E) such that [σ] ∈ H0(Y, F ) with the following three
properties: (1) σ|X0

= σ0,

(2) ∂g[σ] = 0 at t = 0,

(3) ηj |X0
∧ ωq+1

0 = 0 for any j, where ∂σ =
∑
ηj ∧ dtj .

(II) If the function y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant around t = 0, one can take σ
in (I) with the following additional fourth property:

(4) µj |X0
= 0 for any j, where ∂hσ =

∑
µj ∧ dtj .

Proof. – (I) A local extension as in (1) and (2) is possible for any Hermitian vector bundle.
Hence we start with a local extension [σ] ∈ H0(Y, F ) satisfying (1) and (2). We write ∂σ =∑
ηj∧dtj . By Lemma 3.1 (4), we have (ηj∧ωq+1)|X0

= ∂aj0 for some aj0 ∈ An,q+1(X0, E0).
By the Lefschetz isomorphism on forms ([11, 1.2.30]), we can write aj0 = bj0 ∧ω

q+1
0 for some

bj0 ∈ An−q−1,0(X0, E0). We take smooth extensions bj ∈ An−q−1,0(X,E) so that bj |X0
=

bj0, and we let σ̃ = σ −
∑
bj ∧ dtj ∈ An−q,0(X,E). We check [σ̃] is what we are looking for.

Since [σ̃] = [σ] in An−q,0(X/Y,E), we see [σ̃] ∈ H0(Y, F ), and (1) and (2) for σ̃. Moreover
∂σ̃ =

∑
(ηj − ∂bj) ∧ dtj , and (ηj − ∂bj)|X0

∧ ωq+1
0 = ∂aj0 − ∂(bj0 ∧ ω

q+1
0 ) = 0. Hence we

have ηj(σ̃)|X0 ∧ ω
q+1
0 = 0, i.e., (3) for σ̃.

(II) We assume that the function y 7→ dimH0(Xy,Ω
n−q
Xy

(Ey)) is constant around
t = 0. We take σ ∈ An−q,0(X,E) which satisfies all three properties in (I). We write
∂hσ =

∑
µj ∧ dtj and ∂σ =

∑
ηj ∧ dtj . By Lemma 6.1 and 6.2, for every j, there

exists ξj0 ∈ An−q−1,0(X0, E0) such that ∂h0
ξj0 = µj |X0

and that ∂ξj0 is primitive. We take
ξj ∈ An−q−1,0(X,E) such that ξj |X0

= ξj0 for every j. We consider σ̃ = σ −
∑
j ξ

j ∧ dtj .
Since [σ̃] = [σ] in An−q,0(X,E), we see [σ̃] ∈ H0(Y, F ), and (1) and (2) for σ̃. We have
∂hσ̃ =

∑
(µj − ∂hξj) ∧ dtj and ∂σ̃ =

∑
(ηj − ∂ξj) ∧ dtj . The property (3) for σ̃ follows

from the primitivity of ηj |X0
for σ and of (∂ξj)|X0

= ∂ξj0. The property (4) for σ̃ follows
from µj |X0

− (∂hξ
j)|X0

= 0.
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6.3. Nakano semi-positivity

P 6.4. – Let σ1, . . . , σm ∈ An−q,0(X,E) with [σ1], . . . , [σm] ∈ H0(Y, F ) and
satisfying the properties (3) and (4) in Proposition 6.3. Then

√
−1∂∂T ([σ])t=0 ≤ 0 in Nota-

tion 5.7 for these σ1, . . . , σm.

Proof. – We will use the notations in 5.7. By the property (4) in Proposition 6.3, we have
µ|X0 = 0. The property (3) in Proposition 6.3 implies that η|X0 is primitive. In particular, by
using Lemma 2.1,−

∫
X0

(cn−q/q!)(ω
q∧η∧hη)|X0 = ‖η|X0‖2h0

the square norm with respect
to ω0 and h0. Then the formula in Lemma 5.8 is

−
√
−1 ∂ ∂ T ([σ])t=0 = f∗((cN/q!)ω

q ∧
√
−1Θh ∧ σ̂ ∧ hσ̂)t=0 + ‖η|X0

‖2h0
.

The right hand side is non-negative, since the curvature Θh is Nakano semi-positive.

C 6.5. – (F, g) is Nakano semi-positive, and hence so is Rqf∗ΩnX/Y (E).

Proof. – Since g is a smooth Hermitian metric of F , to show the Nakano semi-
positivity, it is enough to show it on the complement of an analytic subset of Y . By Grauert
([8, 10.5.4] [10, III.12.8, 12.9]), there exists an analytic subset Z ⊂ Y such that the function
y 7→ dimH0(Xy,Ω

n−q
Xy

(Ey)) is constant on Y \ Z. We apply the criterion in Lemma 5.6 at
each point on Y \ Z. Then thanks to Proposition 6.3, Proposition 6.4 in fact shows that g
is Nakano semi-positive on Y \ Z.
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