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LIPSCHITZ STRATIFICATION OF SUBANALYTIC SETS

BY ADAM PARUSnsfSKI

ABSTRACT. - In this paper we show the existence of Lipschitz stratification (in the sense of Mostowski) for
subanalytic sets. Such stratification ensures, in particular, bi-Lipschitz triviality of the stratified set along each
stratum. In fact, our construction is more precise. We decompose each compact subanalytic set into pieces,
called L-regular sets, distinguished by their simple Lipschitz properties. In a way our decomposition is similar to
triangulation but technically more complicated. In the course of the proof we develop for subanalytic sets such
techniques as: regular projection theorem, subanalytic sets in complex domain and an analog of the Weierstrass
preparation theorem for subanalytic functions.

Introduction

Let (X, re), (X7, x ' } be two germs of analytic subsets of R/\ When can we say that
the singularities of X at x and X' at x ' are equivalent? Consider, for instance, two
extreme approaches.

Analytic equivalence, that is given by analytic isomorphisms, certainly preserves all
the interesting features of the singularity. However, one can easily produce examples
of analytic families of analytically nonequivalent singularities (phenomenon of moduli).
This is also the case for the weaker C1 -equivalence given by the restrictions of C1

diffeomorphisms. This happens, for instance, for Whitney's example given by an equation
xy {x + y) {x - ty) == 0 as a family of singularities in R2 parametrized by t e (0, oo)
(see [G], (2.1) Chapter II) although the singularities look very similar.

On the other hand, any analytic family of analytic singularities has locally only a finite
number of nonhomeomorphic classes of singularities. But homeomorphisms seem to lose
too much structure of the singularity.

In [SS] Siebenmann and Sullivan asked whether there are only countably many local
Lipschitz structures (that is up to bi-Lipschitz homeomorphisms) on analytic spaces. Bi-
Lipschitz homeomorphisms seem to have "good" properties of general interest. They
preserve sets of measure zero, order of contact, and Lojasiewicz's exponents. In 1985
T. Mostowski [Ml] introduced the notion of Lipschitz stratification and proved its existence
for complex analytic sets. This stratification ensures the constancy of the Lipschitz type

• of the stratified set along each stratum and was used by Oshawa [0] in the proof of
the Cheeger-Goresky-MacPherson Conjecture. The existence of Lipschitz stratification for
real analytic sets was established in [PI], [P2]. For a review of results on Lipschitz
stratification the reader can consult [P5].
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662 A. PARUSINSKI

The main purpose of this paper is to show the existence of Lipschitz stratification for
subanalytic sets (Theorem 1.4 below).

Subanalytic sets, a category much wider than analytic sets, were studied in [HI], [DLS],
[BM1] for instance. Using their fundamental properties and the existence of Lipschitz
stratification we show that each subanalytic family of compact subanalytic sets has
locally only a finite number of nonequivalent global Lipschitz types (Theorem 1.6 below).
Unfortunately, this does not give an answer to Siebenmann and Sullivan's question, since
we cannot embed all analytic germs in countably many analytic families. Nevertheless, we
can do it for polynomial singularities, so the answer is positive for semi-algebraic sets.

In Section 1 we recall the notion and properties of Lipschitz stratification and state the
main result (Theorem 1.4) which we prove in Section 3. The proof is generally based on the
ideas introduced in [Ml] and [PI]. The main new ingredient, particular for the subanalytic
geometry, is the use of the local flattening theorem, due to Hironaka, Lejeune-Jalabert,
Teissier [HLT], which we recall in Section 4.

Section 2 presents the properties of L-regular set, which notion was introduced in [PI]
in the semi-analytic set-up. These sets, distinguished by their simple metric properties
(Lemma 2.2 below), are the pieces from which we build a Lipschitz stratification. Each
compact subanalytic set can be decomposed (Proposition 2.13 below) into a finite union of
L-regular sets in such a way that it is easy to glue Lipschitz stratifications of the pieces.
Proposition 2.13 follows from the Regular Projection Theorem proven in Section 5.

Sections 6 and 7 are devoted to the proof of Proposition 3.1, the heart of the proof
of the main theorem. An analogous result for semi-analytic functions was proven in [PI]
by different methods. In Section 6 we develop a theory of subanalytic sets in complex
domain. In Section 7 we show the product formula for locally blow-analytic functions
(Theorem 7.5), a subanalytic version of the Weierstrass preparation theorem. This theorem
allows us to complete the proof of Proposition 3.1 and construct Lipschitz stratifications
of L-regular sets.

The estimates we obtain in Proposition 3.1 and Theorem 7.5 seem to be of independent
interest.

Notation and conventions. - Let X be a subset of R71. By dist (-*-, X) we mean the
function of distance to X. If X = 0 then we mean dist (^ 0) = 1. By Fr (X), Int (X)
resp., we denote the topological frontier of X, the interior of X resp.

For subanalytic X C R72 by Reg (X) we mean the set of regular points (of the highest
dimension) of X.

We call a homeomorphism (p bi-Lipschitz if both y? and y?~1 are Lipschitz mappings.

Acknowledgements. - We thank K. Kurdyka, P. Milman and T. Mostowski for useful
discussions and suggestions concerning the subject of this paper.

This paper was written during the author's stay at the Max-Planck-Institut fur Mathematik
as a fellow of the Alexander von Humboldt Foundation and as a visitor at the University
of Georgia.
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LIPSCHITZ STRATIFICATION OF SUBANALYTIC SETS 663

1. Lipschitz stratification

In this section we first recall the definition of Lipschitz stratification and its basic
properties ([Ml], [PI]). Because of our interest we work in the subanalytic set-up. For
more general review of Lipschitz stratification the reader can consult [P5]. Many of the
facts presented in this section are proven in [Ml], [PI] and [P2] so we omit the proofs.
Then we state the main result of the paper (Theorem 1.4) and give some corollaries.

Let X be a subanalytic subset of R". By a (subanalytic) stratification S = {S^} of X
we mean a decomposition of X into a disjoint locally finite union

x=\Js^
where the subsets Sa C X,^called strata, are connected, subanalytic and nonsingular. For
each Sa of S we require Sa \ So to be contained in the union of strata of dimension
smaller than dim5a- Therefore,

x1 = (j ^
a, dim5'o;^t

is a closed subanalytic subset of X and X1 = X1 \Xi~l is the union of strata of dimension
i. We call X1 the i-th skeleton of S. Thus, each stratification defines a filtration of X
by its skeletons

(1.1) X=Xd^ X^-1 D ... D X1 ^ 0.

Conversely, if we have a filtration X = [X'} of X by closed (in X) subanalytic sets
0

and such that, for each %, X1 = X^ X'"1 is nonsingular of pure dimension i (we assume
X1'1 = 0), then this filtration defines a stratification by taking the connected components
of X1 (i = I,..., d) as strata.

Remark^ - Usually one requires that a stratification satisfies the frontier condition, i. e.
if Sa H S p / 0, then 5a C S p , or equivalently that 1Sp \ Sp is the union of some
strata of dimension smaller that dim 5^. Since, in this paper, we use filtrations rather than
stratifications, we do not consider this condition. If X is a locally closed subset of R/1 then
each Whitney stratification of X [and thus, each Lipschitz stratification, see Remark (ii)
after Proposition 1.5] satisfies automatically the frontier condition ([G], Chapter II (5.7)).

By abuse of notation we call a filtration X as above also a stratification of X. This
coincides with the terminology in [Ml], [PI], [P2] and we hope will cause no confusion.

For q e X1 let P, : R" -. T, X\ P^ = Id - P, : R71 ̂  T^ X1 denote the orthogonal
0

projections onto the tangent and the normal space to X' at q respectively. In terms of
such orthogonal projections the condition (w) of Verdier [V] for a stratification X = {X1}
can be expressed as follows:
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664 A. pARusnMsKi
0

For each p €X' there is a neighbourhood Up of p in X and a constant Cp such that
0 0

for each j > i arid each q € X' D Up^ q' eXi H Up

(w) I^I^Cpk-gl.
Let [/ be an open subset of X. We call a vector field v on X^ n U rugose if
(1) v is tangent to the strata of X\
(2) v is smooth on each stratum;

(3) for each i ̂  k, each p € X' D £/ arid all g eX' D U and g' E X7 H (7 close to p

K^^l^lg-g'l.

As proven in [V], if X satisfies (w), each rugose vector field on X^ n U can be extended
to a rugose vector field on a neighbourhood of Xk C\U in X [and, by [B-T], this property
is equivalent to the condition (w)].

Conditions for tangent spaces similar to (w), but more complicated, which imply the
extension property ofLipschitz vector fields tangent to strata, were introduced by Mostowski
in [Ml]. Whereas the (w) condition has to be satisfied locally by all the pairs (g, q ' ) such
that q' is close to g, Mostowski's conditions ate for sequences of points called chains.
The chains can be defined in various ways (riot necessarily equivalent) as in [Ml], [PI],
[P2], but all these definitions lead in fact to the same condition on stratification (see [P2]
Remark 1 and [PI] Proposition 1.5).

Let c > 1 be a fixed constant and let X = {X1} be as in (1.1). A chain (more exactly,
0

a c-chairi) for q EX3 is a strictly decreasing sequence of indices j = ji, j'2,..., jr = I and
0 .

a sequence of points ̂  e X33 such that q^ = q and js is the greatest integer for which

dist{q,Xk)^2c2disi{q,Xjs) f o r a l l f c < j , , k ^ l
arid \q - ^-J ^ cdist(g, X33}.

The meaning of a chain is the following. Take q € X3 and compute the distances of
q to the subsequent skeletons X\ Mark those indices (j^) where the distances increase
rapidly. Next we choose points {g^} realizing (up to some constant) these distances.

DEFINITION 1.1 (Mostowski's Conditions for Lipschitz stratification). - We call a
stratification X == {X1} a Lipschitz. stratification (in the sense of Mostowski) if for
some constant C > 0, every chain q = g^, g^,..., q^ and every fc, 1 ̂  k ^ r,

(ml) |P^ P^... P^ | $ C \q - ̂  |/dist (g, X^-1).

If, further, g' cibs then

(m2) l(^-^)^...^J^G|g-^[/dist^^-1),

4e s6Rffi - TOME 27 - 1994 - N° 6
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which means for k == 1

\P,-P,'\^C\q-q'\/^^Xjl-l}.
(we set dist(g, X1-1) ^ 1).

In Proposition 1.3 below we give a characterization of Lipschitz stratification in terms
of extension of Lipschitz vector fields tangent to strata.

If a stratification is Lipschitz then conditions (ml) and (m2) are satisfied not only by
chains but also by some other sequences of points [for (ml) it is enough to assume that
^•••? Qjr is a chain, [P2] Remarks 1 and 2]. But in general, as the example below shows,
it is not possible to find a stratification satisfying (ml) and (m2) for all sequences of points
(from the strata of decreasing dimensions).

Example 1.2, - Let Y C R2 be an ordinary cusp given by {x, y) = (t2, t3), t e R.
We take the product of three copies of such cusps X = Vi x Y^ x ¥3 C R2 x R2 x R2

parametrized by r, s and t respectively. Consider the standard stratification X of X
0'. e. the product stratification of the standard stratifications of the cusps) and the points
93 = (-y, s, t), q2 = (r, 5, 0) and q^ = (r, 0, 0). Then infinitesimally at the origin

l^t^-PJ-H, b-^l-M3^2 and dist(g3,XO)~r2+52+^

and so (ml) is not satisfied if s2 > r2 4-12. On the other hand, if ^2, qi, 0 is a chain,
then s2 ~ min{r2, s2} and (ml) holds. If we have an arbitrary stratification of X, then
we can move ^3^2, qi a little in such a way that they are in the strata of appropriate
dimensions and (ml) is still not satisfied.

Let X be a stratification of X. A vector field v defined on a subset of X is called
compatible -with X (or X-compatible, for short) if it is tangent to the strata of X.

By [B], (7.5), p. 122, any Lipschitz function on a subset of X can be extended to a
Lipschitz function on X with the same Lipschitz constant. Therefore, the same holds for
Lipschitz vector fields (the Lipschitz constant can rise ^/n-times if the metric is euclidean).
But there is no guarantee that such an extension of X -compatible vector field is still
^-compatible.

From now, on unless otherwise stated, we assume the vector fields on stratified sets to
be compatible with their stratifications.

PROPOSITION 1.3 ([PI] Proposition 1.5). - Let X = {X1} be a stratification ofX as in
(1.1). X is Lipschitz if and only if it satisfies the following extension property:

(el) There exists C > 0 such that for every W C X, such that

(1.2) X3'1 C W C X3

for some j •== I,..., d, each Lipschitz X-compatible vector field on Wwith Lipschitz constant
L and bounded on W H X1 by a constant K, can be extended to a Lipschitz. X-compatible
vector field on X with a Lipschitz constant C {L 4- K).

Remarks. - (i) For simplicity, in this paper we consider mainly stratifications with
nonempty zero dimensional skeleton (I == 0). Then K = 0 and the extension property
is easier to check.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUP^RIEURE



666 A. PARUSINSKI

(ii) The above extension property is much stronger that simply saying: every Lipschitz
^-compatible vector field on a skeleton of X can be extended to a Lipschitz ^-compatible
vector field on X. This seems to cause some trouble. For instance, there is no canonical
Lipschitz stratification ([M2], §7, [P2], §7). It would be interesting to find local conditions
equivalent exactly to the property of extending Lipschitz X -compatible vector fields locally.
Interesting steps in this direction were made, in the complex case, in [M2] and [M3].

Let {Xi} be a family of subsets of X. We call a stratification XofX compatible with
{Xi} if each Xi is a union of some strata of X. We say that X is compatible with a
stratification X' of X (or that X refines X ' ) if it is compatible with X' considered as
a family of subsets of X.

THEOREM 1.4 (Main Theorem). - Let X be a compact subanalytic subset of R" and
let {Xi} be a finite family of subanalytic subsets of X. Then, there exists a Lipschitz.
stratification X of X, compatible with {Xi} and such that:
(1.3) there is C > 0 such that for each stratum S ofX and for each q C S

dist (q, S\S)^ Cdist (g, X3-1),

where j == dim*? [we set dist (g, 0) = 1].
We shall prove Theorem 1.4 in Section 3. Condition (1.3) is added mainly for the sake

of inductive argument in the proof. A Lipschitz stratification satisfying (1.3) we call a
strong Lipschitz. stratification.

PROPOSITION 1.5. - A stratification X as in (1.1) is strong Lipschitz. if and only if it
satisfies the following extension property'.

(e2) There exists c > 0 such that for every W C X, such that
(1.4) for any stratum S of X, if W U 5' ^ 0, then ~S \ S C W,

each Lipschitz. X-compatible vector field on W with Lipschitz, constant L and bounded
on W D X1 by a constant K, can be extended to a Lipschitz. X-compatible vector field on
X with Lipschitz. constant C {L + K).

In particular, if X is strong Lipschitz. then it induces a strong Lipschitz. stratification on
each closed union of strata.

Proof. - Assume that X is strong Lipschitz. Then, its restriction to any skeleton is
Lipschitz. Let W satisfies (1.4), and let v be a Lipschitz vector field on W. Let k e {I,..., d}
be such that X^1 C W and Xk ^ W. By Proposition 1.3 we can extend v to a vector field
v on Xk U S whose restriction to Xk is Lipschitz. Then, thanks to (1.3) and (1.4), we can
show inductively on j that ^|x-'rw is Lipschitz. Therefore v is Lipschitz. Consequently,
we can extend v skeleton by skeleton onto X.

Consequently, if X satisfies (e2), then by Proposition 1.3 it is Lipschitz. We show that
it satisfies also (1.3). Take a point q of a stratum S and let j = dim S. Let q' G X3'1 be
such that \q - q'\ ̂  2 dist {q, X3'1). By dimension argument, there is a vector v e Tq S
such that |v| = 1 and Pqi v = 0. Define a vector field v on {q} U (S \ S) by: v = 0 on

4° SERIE - TOME 27 - 1994 - N° 6



LIPSCHITZ STRATIFICATION OF SUBANALYTIC SETS 667

S \ S and v (g) = v. It is Lipschitz with constant (dist (g, 5 \ 5))-1 and by (e2) can be
extended to a Lipschitz vector field v on X. Then

1^1^)-^ (</)| ^ C7[9 - (/|/dist (g, 5 \ 5) ^ 2 C dist (g, ^-^/dist {q, S \ S)^

which shows (1.3). D
We call a pair (X, <Y) a (strong) Lipschitz stratified set if X is a (strong) Lipschitz

stratification of X.

Remarks. - (i) If U is an open subset of a (strong) Lipschitz stratified set X C R/1,
then the induced stratification A" on X D (7 is not necessarily (strong) Lipschitz. Although,
after intersection with U, the left-hand sides of inequalities (ml), (m2) remain the same,
the distances to skeletons are different. Nevertheless, then X' is locally Lipschitz in the
sense of [P5].

If X is compact, U C R71 is a C1 submanifold with boundary and this boundary is
transverse to all strata of X, then the induced stratifications of X n U, X D Int (U) are
(strong) Lipschitz.

(ii) ([Ml], Proposition 7.1, [PI], Corollary 1.6). If X is a Lipschitz stratification, then
it satisfies the (w) condition.

(iii) The extensions of Lipschitz vector fields mentioned in Propositions 1.3 and 1.5 can
be constructed skeleton by skeleton (as in the proof of Proposition 1.5) as follows: first we
extend a given Lipschitz vector field to a Lipschitz vector field not necessarily tangent to
the given stratum and then project onto the strata (see [Ml], Section 2, [PI], Section 1).

Here are some consequences of Theorem 1.4.

THEOREM 1.6 (Lipschitz Isotopy Lemma). - (i) Let X C R71 x R771 be subanalytic and
let the projection TT : X —> R/1 be proper. Then, there exists a closed subanalytic nowhere
dense subset Z of TT (X) such that X is locally bi-Lipschitz. trivial over TT (X) \ Z, that is
for each y G TT (X) \ Z there is a neighbourhood Uy 3 y in TT (X) and a bi-Lipschitz.
homeomorphism over Uy

^'{Uy^UyXTT-^y).

(ii) Let (X, X) be a Lipschitz. stratified set and assume that X is locally closed in W.
Then {X, X) is locally bi-Lipschitz. trivial along each stratum, that is for each stratum S of
X and each x G S there are: a neighbourhood Uy, 3 x in X, a Lipschitz. stratified set F and
a bi-Lipschitz. stratified set and a bi-Lipschitz. homeomorphism

u, -^ (u^ n S) x F,
which sends the induced stratification ofUy, onto the product stratification of(U^ H S) x F.

Proof. - The theorem follows from the standard properties of subanalytic sets and the
following lemma.

LEMMA 1.7. - Let X be a Lipschitz. stratification ofX C R71 and let M be a C1 manifold.
Let f : R/1 —^ M be a C1 map such that f\X is proper and submersive to M on each
stratum of X. Then each locally Lipschitz. vector field on M can be lifted to a locally
Lipschitz. vector field on X.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPfiRIEURE
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In particular, (X, X} is locally bi-Lipschitz. trivial over M.

Proof. - We follow the proof of Proposition 1.1 of [Ml].
Let k = dim M and let v be a locally Lipschitz vector field on M. By partition of unity,

it suffices to lift v to a neighbourhood of each x e X. Let S be the stratum containing x.
We identify a neighbourhood of / (x) with an open subset V of R^. Let ei, ..., e^ be the
standard constant vector fields on V. Since f\s is a submersion, each e^ can be lifted to
a locally Lipschitz vector fields Vi on 5. By the extension property they can be extended
to Lipschitz vector fields Wi on a neighbourhood of x. In general /* (w^) / e^, but since
they are linearly independent at every point of a neighbourhood of x, we can replace them
by suitable linear combinations and get Lipschitz liftings e^ of e^.

If now v = V^ V1 ei is an arbitrary Lipschitz vector field, then v = V^ v1 e^ is the
i i

required lifting.
The last statement of the lemma follows by integrating suitable liftings of Lipschitz

vector fields (see [Ml] proof of Proposition 1.1 or [G] proof of Thorn's Isotopy Lemma
(5.2) Chapter II).

This finishes the proofs of the lemma and of the theorem. D

2. L-regular sets

In this section we decompose subanalytic sets into L-regular sets. The notion of L-regular
set was introduced in [PI] (in the semi-analytic set-up) in the proof of the existence of
Lipschitz stratification of semi-analytic sets. The main advantage of L-regular sets are their
simple metric properties (see Lemma 2.2 below) which allow us to construct inductively
a Lipschitz stratification of them. The decomposition theorem that is Proposition 2.13
below says that we can decompose (in the sense of Definition 2.3) an arbitrary compact
subanalytic set into L-regular sets in such a way that we will be later able to glue Lipschitz
stratifications of them. This method differs from that of [PI] where we showed that each
semi-analytic set can merely be covered with L-regular sets (a similar result for subanalytic
sets was shown in [P3]). A decomposition of subanalytic sets into L-regular sets was
obtained independently by Kurdyka [K2]. The methods used in [K2] are simpler than
ours but the result is weaker and seems to be not sufficiently strong for our purpose. It
would be interesting to extend Kurdyka5 s methods to obtain a simpler proof of existence
of Lipschitz stratification.

Consider the compact subanalytic subsets of R71. We call a subanalytic subset of R71

thick if it is non-empty and equals the closure of its interior, in other words, if it is of pure
dimension n. We define L-regular subsets X C R71 inductively on n and k = dim X.

DEFINITION 2.1 (compare [PI], Definition 3.2) . - By an L-regular set X C R" (with
respect to the given linear coordinates on R71) and its boundary 9X we mean:

(1) if dimX = 0, then X is a point and 9X = 0;
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(2) if dimX = n, then X is thick and is of the form

(2.1) X = {(^, xn) G R71-1 x R; / (^) $ xn $ (7 (^/), ̂  G V}

where V C B/1-1 is L-regular and dimV == n - 1, /and ^ are continuous subanalytic
functions which on Int (V) are: analytic, have bounded derivatives and satisfy f < g.QX
is the (topological) frontier of X\

(3) if dimX == k < n, then X is the graph of a continuous subanalytic map
$ : V -^ R/1-^ where Y CRk is L-regular and thick, and ^ is analytic on Int (V) and
has bounded derivative. 9X is the graph of $ restricted to 9Y.

We call X C R" L-regular if it is L-regular after a linear change of coordinates in R71.
Note that one dimensional thick L-regular sets are just the intervals in R.
Below we list some other simple properties of L-regular sets. We leave the proof to

the reader.

LEMMA 2.2. - Let X be an L-regular subanalytic subset of TV. Then
(1) X is pure dimensional;
(2) X \ 9X is homeomorphic to an open ball;
(3) for every x^ x ' € X there exists a subanalytic curve 7 in X joining x and x ' and such

that length (7) ^ C \x - x'\^ where C does not depend on the choice of x^ x'\
(4) ifX is thick and (p : Int (X) -> R8 is a C1 map with bounded derivative, then (p

is Lipschitz;
(5) ifX is as in ( 3 ) of Definition 2.1, then the standard projection TT : R71 —> R/' induces

a bi-Lipschitz homeomorphism between X and Y.

DEFINITION 2.3. - Let X C R" be a compact subanalytic set. By a decomposition into
L-regular sets ofX we mean finite a union X = (J Xi such that for each i / j

X i H X ^ Q X i H Q X j .

In order to decompose a compact subanalytic set X into L-regular sets, we shall study
linear projections restricted to X.

Fix d € {1,..., n - 1}. Let G(n, d) denote the Grassmannian of d-dimensional linear
subspaces of R71. Assume that we have fixed a metric d{V, V) on G(n, d). For
V e G(n, d) we denote by Try : R" -^ V1' the orthogonal projection (along V) onto
the orthogonal complement V^ of V.

DEFINITION 2.4. - Let X C R71. For e > 0 we say that TT == Try : R" ^ V^ is
e-semi-regular at XQ e R" (with respect to X) if:

(a) TT\X is finite (set-theoretically);

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPfiRIEURE



670 A. PARUSINSKI

( b ) for each x G Tr"1 (TT (rro)), the intersection of X with the open cone

C, {x, V) - {x + v\ v G V \ 0, d (V, V) < e}

is empty near a;.
Note that if TT is s-semi-regular at XQ, then it is e-semi-regular at every point of

Tr'^Tr (a;o))- If, furthermore, XQ is a regular (of dimension n — d) point of X, then X
near XQ is the graph of an analytic map with derivative bounded by C (e) (that is by a
constant depending only on e). Semi-regularity is a much weaker property than regularity
of projection (see Section 5) but has some advantages. For instance, if TT is ^-semi-regular
with respect to Xi and X^ at the same point XQ it is also e-semi-regular with respect to
Xi U X2 or Xi H X2 at XQ. The following proposition follows easily from much stronger
Regular Projection Theorem (Theorem 5.5) which we prove in Section 5.

PROPOSITION 2.5. - Let X C IU1 be compact subanalytic and dimX ^ n — d. Then there
exists a finite number of V\^..., Vg such that:

(2.2) For some constants e^ e1 > 0 and generic x G R71 (that is from the complement of
a subanalytic subset of dimension smaller that n) there is V (x) (E {Vi,..., Vg} such that
Try is e-semi-regular at x ("with respect to X) if only d(V^ V {x)) < e'.

In fact, as it follows from Theorem 5.5 below, (2.2) is satisfied by generic choice of
Vl,..,yn+l.

Assume that X is a compact subanalytic and nowhere dense subset of R72. Consider
linear projections TT^ : R71 —> R71"1 restricted to X and parametrized by 77 G RP {n — 1).
Define the set of lines tangent to X as

L (X) = {{x, I ) e Reg (X) x RP (n - 1); I C T, Reg (X)}.

Let pi, p2 be the standard projections of L{X) to R71, RP {n — 1) respectively. By
the set of lines tangent a? re € X we mean

Mx)=pr1^)-
By TL (X) we denote the total set of lines tangent to X, that is

T£(X)- IJ L^X)=p,{L{X)).
x^X

The sets L (X), L^ (X) and TL (X) are compact and subanalytic. If ̂  TL (X), then
TT^ is ^-semi-regular (for some e > 0) at every x G R71. But, in general, even Lx (X) can
be equal to the whole RP (n — 1) (for example for Whitney's umbrella {x2 = zy2} C R3

at the origin). Then, locally near such point, X can not be written as a union of graphs
of Lipschitz maps in any fixed system of coordinates. Therefore, we decompose X into
the union of sets with sufficiently small total set of tangent lines. For this purpose we
shall use L-regular sets.

LEMMA 2.6. - I f X ' C R71 is nowhere dense and L-regular, then TL (X') / RP (n - 1).
IfX C R71 is L-regular and dimX = n, then TL (9X) ^- RP {n - 1).

Proof. - Since Gn = (0 : ... : 0 :1) e RP {n - 1) is not contained in TL (X') the first
statement follows. To prove the second one we use induction on n. Assume that X
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is given by (2.1). Then 9X = Xi U X^ where Xi is the union of graphs of / and
g, and X^ is a subset of the cylinder 9Y x R. It is easy to see that e^ ^ TL(X^)
and TL (^2) C II-1 (TL (V)) U {e,}, where n : RP (n - 1) \ {e,} ̂  RP (n - 2) is
the standard projection. By the inductive hypothesis, TL (V) ^ RP (n - 2) and since
TL (X) = TL (Xi) U TL (^2), some points of RP (n - 1) near e^ are not in TL (X).
This ends the proof. D

Even if TL (OX) is a proper subset of RP (n - 1), it is (in general) of dimension n - 1.
To estimate its size we use the ordinary volume form on RP (n - 1) [;. e. induced by the
standard volume on the unit sphere 5'71-1 and normalized to Vol (RP (n-1)) = 1]. Note that
for every subanalytic subset T ' of RP (n - 2) the inverse image II-1 (T1) by the standard
projection n : RP (n-l)\{e^} -^ RP (n-2) satisfies Vol^-i (n-1 (T')) = Vol^ (T').

LEMMA 2.7. - Let X C R" be compact subanalytic and thick. Then, for each S > 0 there
exists a decomposition ofX into thick L-regular sets Xi such that for each i

Vo\{TL(OXi))<8.

Proof. - Induction on n = dimX.
Let ^i,..., ^ satisfy the statement of Proposition 2.5 for Fr (X) (with some e, e' > 0).

Let TT = TT^. Consider compact subanalytic sets

Ys = Int (TT {{x G X; Trise-semi-regular}))

and Z = 7r(X)\Ys. They are both thick, provided they are not empty, and their
intersection is nowhere dense in R^i. By the inductive assumption we can decompose
Ys into L-regular thick sets. Then, using semi-regularity of TT, we can also decompose
Xs = 7r~1 (Int (Ys)) n X into the union of thick L-regular sets.

Take one of these sets X' and assume that it is given by (2.1) with Y = TT {X') and
defining functions / and g. Divide Y into small pieces Y^ such that the volume of total
sets of lines tangent to the graphs of / and g restricted to each Y'y is sufficiently small
(say smaller than 8/2). Next we apply again the inductive hypothesis to each of Y ' with
8 / 2 in place of 8, and the decomposition obtained of Xs satisfies the required properties.

By the inductive hypothesis we may also decompose Z = \J Zj in such a way that
Zj are L-regular and the volumes Yo\{TL(OZj)) are very small (in comparison to £').
Fix one of 7r-1 (Int (Zj)) H X and denote it by X ' . Then Fr{X/) = X[ U X^ where
X[ C Fr {X) \ Xs and X^ C 7r-1 (9Zj). Therefore, ^i,..., ^_i satisfy (2.2) with respect
to X[ and, after moving them a little, any of them satisfies (2.2) with respect X^. Therefore,
they satisfy (2.2) with respect to Fr {X') and the lemma follows by induction on s. D

DEFINITION 2.8. - Let X be an L-regular subanalytic set and let Z be another subanalytic
subset of R71. We say that Z is L-separated from X if there exists C > 0 such that for
every x € X

(2.3) dist {x, QX} ̂  C dist (x, Z).
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We call two L-regular sets Xi, X^ L-biseparated if they are L-separated from each other,
i. e. there exists C > 0 such that for every x^ e Xi, x^ e X^

(Bl) dist (^i, aXi) $ Gdist (^i, ^2)

(B2) dist (x2, <9^2) ^ C dist {x^, Xi).

Then, in particular Xi n ^2 = <9Xi n 0X2.
The following lemma follows easily from (5) of Lemma 2.2.

LEMMA 2.9. - Let X C B/1 be an L-regular set given as the graph of $ : Y —> R^-^
as in ( 3 ) of Definition 2.7 and let TT : R71 —^ R^ te rA^ standard projection. Then any
Z C 7T-1 (R^ \ Int (V)) is L-separated from X.

L'biseparation does not imply regular separation with exponent 1 in the sense of
Lojasiewicz [L], §18 which says:

(LI) dist (a:i, Xi H X^) ̂  Cdisi (rri, X^)

(L2) dist (^2, Xz n ^2) ^ C dist (x^ Xi)

for every rci € Xi, ^2 € X2 and universal C > 0. Also, in general, (Bl) does not imply
(B2), though this property is enjoyed by Lojasiewicz's regular separation, that is (LI)
implies (L2) (the constant changes). This follows from the following general fact.

LEMMA 2.10. - Let Xi, X2, Z be arbitrary subsets of a metric space and let for each
x^ E Xi

distal, Z) ^ Cdist(^i, J^).

Then, for each x^ € X'z

dist (^2, Z) ^ {C + 1) dist (^ ^i).

Proof. - We may ssume that the sets in question are closed. Take an arbitrary x^ e X^
and let a;i e .Xi be such that dist {x^, Xi) = \xi - x^\. Then

dist (a:2, Z) ^ l^i - x^\ + dist (x^ Z) ^ jrci - x^\ + C7dist (rri, ^2)
$ (C + l)|a;i - ̂ 2! = {C + 1) dist (a:2, Xi),

which shows the lemma. D
In particular, if we put Z = 9Xi, we see that (Bl) for all x^ € Xi implies

dist (a-2, 0Xi) ^ (C7 + 1) dist (^, ^i)
for all x^ e X^' This gives the following
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LEMMA 2.11. - Let Xi, X^ be L-regular sets satisfying (Bl) for each x\ (E X^ and

(B2') dist (^2, 9X^ ^ Gdist {x^ 9X^

for every x^ € X^ and some C > 0. Then, they are L-biseparated [that is shortly speaking
(Bl) and ( B 2 ' ) imply (B2)].

DEFINITION 2.12. - We call a finite family {Xi} of L-regular sets nicely situated if they
are of the same dimension, Xi H Xj = 9Xi n QXj for i ̂  j, they are L-regular in the
same system of coordinates and in description (3) Definition 2.1 they are the graphs of
maps ^i : Y —^ RT^^ with the same L-regular source Y.

PROPOSITION 2.13. - Let X be a compact subanalytic subset of Rn and dimX == k.
Then, there exists a finite number of finite nicely situated families {Xa,i} of k-dimensional
L-regular sets such that

x^x'u^x^

where dimX' < k and for each a, i the set X \ (J Xaj is L-separated from Xa,i' In
j

particular, Xa,i^ -X^,j from different families are L-biseparated.
First we show a special case.

LEMMA 2.14.- Let X be as in Proposition 2.13. Assume that there exists a linear projection
TT : R^ —> R^ which is e-semi-regular with respect to X at generic points of Rn (that is
from the complement of a subanalytic set of dimension smaller than n). Then, Proposition
2.13 holds for X.

Proof. - We may assume that TT is the standard projection. Let Reg(X) be the set
of regular points of X (of dimension fc). It is a subanalytic subset of R/1 (by [Kl], for
instance). We call x E X a critical point of 7r|jc if either x € Sing (X) = X \ Reg (X)
or it is a critical point of 7r|Reg(X)- The set of critical points of 7r\x is compact and
subanalytic and so is its image T in R^.

0 0

Consider any connected component Y of R^ \ T such that 7r~1 (V) n X is nonempty.

Then Y is relatively compact and TT~ (Y) H X —>Y is a finite analytic covering. By
0

Lemma 2.7 the closure of Y can be a decomposed into the union of L-regular sets. Fix one
of them Ya. By (2) of Lemma 2.2, the analytic covering 7r~1 (Int (Va)) n X -^ Int (V^)
is trivial. By assumption on TT, the family {Xa,i} of the closures of the sheets of this
covering is a family of nicely situated L-regular sets. Such families {Xa^} constructed for
all Ya and all connected relatively compact components of R^ \ T satisfy the statement.

Proof of Proposition 2.13 in the general case. - For k == n the statement follows from
Lemma 2.7.
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Assume k < n. Let d = n - k and let Vi,..., Vs satisfy (2.2) with respect to X. Let
TT = TTy^ and

YI = Int (TT ({a; C X; Trise-semi-regularata:})).

By Lemma 2.14 we can decompose Xi = 7r~1 (Vi) D X as in the statement of the
proposition

x,=x[u\Jx,^,^
f3,i

and by Lemma 2.9, for each /3, %, X \ (J^-Xi^^ is L-separated from Xi^^. Let

X2 = XVX^U {X[ U |j 9Xi,^).
/?,z

Then Vi,..., Vs-i satisfy (2.2) with respect to X^. By induction on 5' [the number of
projections satisfying (2.2)] there is a decomposition

x,=x,u\Jx^,
7.J

as in the statement of the proposition. Then

X = X[ U X^ U |j X,^^ U |j X^,
l3,i 7,J

has the desired properties.
Indeed, take any X\ = Xi^^, X^ = X2,-y^. By Lemma 2.9, Xs is L-separated from

Xi, and by construction, QX\ is L-separated from Xs. Thus, by Lemma 2.11, X\ and X^
are L-biseparated. This ends the proof. D

3. Proof of the main theorem

This section contains the proof of Theorem 1.4. The proof is by induction on k = dim X.
Let X be as in the assumption of Theorem 1.4. We shall construct a strong Lipschitz

stratification of X. It suffices to construct a stratification X of X satisfying the properties
(el) (see Proposition 1.3) and (1.3) only for j = k. Indeed, let X == {X1} be such a
stratification. By the inductive hypothesis, there is a strong Lipschitz stratification X' of
Xk~l compatible with {X^<fc. Then, X' and the connected components of X \ X^"1

give a strong Lipschitz stratification.
If we drop the condition of tangency to strata, then a Lipschitz extension of a Lipschitz

vector field always exists [B], (7.5), p. 122. If j = k = n, then the tangency to k
dimensional strata is trivially satisfied. In this case also (1.3) holds. Thus, for k = n the
existence of strong Lipschitz stratification follows easily from the inductive assumption.

Case 1. - Assume that X is a finite union of nicely situated L-regular sets {Xi}.
Let Xi be the graphs of <I>, : Y —^ RT^ as in (3) of Definition 2.1. The coordinate

functions <E^^of ̂  {j = 1,..., n - k) are subanalytic and belong to the class SSUB (R/1)
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(see Definition 7.1 below). This class of functions was introduced by Kurdyka in [Kl]
where he showed that the partial derivatives of such functions are also in the class [Kl],
Theoreme (2.4). In Section 7 we show the following result.

PROPOSITION 3.1 (compare [PI] Lemmas 4.4 and 4.5). - Let U be an open, relatively
compact and subanalytic subset ofl^ and let a function f G SSUB (R^) be analytic in U.
Then, there exist a stratification SofU and a constant C > 0 such that for every Lipschitz
S-compatible vector field v with Lipschitz constant L

(3.1) \Df {x) v {x)\ ̂  CL \f {x)\ for every x (E U.

Remark. - It suffices to show the existence of a stratification of a big closed ball
B C R^ satisfying the above property. Indeed, let B be such a stratification. As we already
have shown, by the inductive assumption of the proof of Theorem 1.4, we can find a
strong Lipschitz stratification B' of B compatible with B and U. Then, B' restricted to
U satisfies the statement, since each Lipschitz vector field on U and compatible with B'
can be extended on B.

Let y be a stratification of Y such that:
(i) each <i^ is analytic on the strata of y;
(ii) y is compatible with the zero sets of every <&^ — <I>^;
(iii) y satisfies the statement of Proposition 3.1 for all ^>^j - <1>^ on Int (V);
(iv) y satisfies the statement of Proposition 3.1 for all partial derivatives Q^i^/Qxs.
Let TT : R/1 —> R^ be the standard projection. By (i) the inverse images (by ^\xi) of the

strata of V form a stratification Xi of Xi. By (ii) they glue to a stratification X of X.
Before we show that X has the required properties we need some preparation. For

x G R71 we write x = {x'', x ' 1 ) , where x ' € R^ and x" G 'Rn~k. Similarly, for a vector
field v on R/1, we write v = (?/, v")^ where v1 are the first k coordinates and v11 are the
last n — k ones. The following lemma, follows from the proof of Fact. 4.1 of [PI].

LEMMA 3.2. - Let $ : V —> Rn~k be like in ( 3 ) of Definition 2.7 and let V be a
stratification of Y satisfying the statement of Proposition 3.1 for all partial derivatives of
coordinate functions of^. Assume also that <& is analytic on the strata ofY. Then, there
exists a constant C > 0 such that if vf (a/) is a Lipschitz V-compatible vector field on
Y with constant L, then v {x) = {v' {x'\ D^ [ x ' ) v ' { x ' ) ) is a Lipschitz. vector field on X
with constant CL.

By Lemma 3.2
v {x) = {v1 (a/), D<S>i (x') v' {x'}} ̂  v' (^)

establishes one to one correspondence between Lipschitz y-compatible vector fields on Y
and Lipschitz A^-compatible vector fields on Xi. Assume that X^"1 CWC Xk and v is
a Lipschitz vector field on W. Let v be a Lipschitz extension of v on X (not necessarily
tangent to strata). Then, by Lemma 3.2,

Wi{x)=(vf(x),D^i{x/)v/{x))
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is a Lipschitz vector field on Xi. The w^s glue to a Lipschitz vector field w on X.
Indeed, we only need to check the Lipschitz condition for the pairs of points of the form:
p = (a/, <1>^ (a:')), g = (a/, $^ (a;')). This follows from (iii)

|w(p) - w{q)\ = P(^(^) - ̂  (rr^w' (^| ̂  C£|^ (^) - ̂  (^)| ̂  CL|p- g|.

This finishes the proof in Case 1.

GeneralCase. - The general case follows from Case 1 and Proposition 2.13.
Similarly we show the existence of a strong Lipschitz stratification of X compatible

with a finite family of subsets of X. Thus, to complete the proof of Theorem 1.5 it
remains to show Proposition 2.5 and Proposition 3.1, which will be proven in Section 5
and Section 7 respectively. D

4. Local flattening theorem
I

The majoi1 technique we shall use in the next three chapters is the local flattening
theorem. Fof the reader convenience we recall in the section its statement and give some
corollaries (for the details the reader can consult [HLT], [HI]). For our purpose it suffices
to consider only the case of nonsingular target. In this case the local flattening theorem
can be stated as follows (compare [HLT], Th^or&me 4 or [HI], Theorem 4).

THEOREM 4.1. - Let f : X —> M be a morphism of complex analytic spaces and assume
that M is nonsingular. Let L and K be compact subsets of X and M respectively. Then, there
exists a finite number of analytic morphisms s^ : Wa —> M, such that:

(1) each Sa is the composition of a finite sequence of local blowings-up with smooth
nowhere dense centers;

(2) for each a there is a compact subanalytic subset Ka of Wa and

[ j s ^ K ^ ^ K ' ^
a

(3) the strict transforms fa : Xa —^ W^ off by Sa are fiat at every point x € Xa
corresponding to L.

The real analytic version can be expressed as follows (a stronger result can be obtained
from [HI], 4.17 or [HLT], Theorem 4).

PROPOSITION 4.2. - Let f : X —> M be a morphism of real analytic spaces and assume
that M is nonsingular. Let L and K be compact subsets ofX and M respectively. Then, there
exists a finite number of real analytic morphisms Sa : Wa —> M, such that:

(1) each Sa is the composition of a finite sequence of local blomngs-up with smooth
nowhere dense centers;

(2) for each a there is a compact subanalytic subset K^ of Wa and

|j s^ (^) = AT;
Cf
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(3) the strict transforms fa : Xa —^ Wa of a complexification off by complexifications
of Sa are flat at every point x G Xa corresponding to L.

Remarks (to Theorem 4.1 and Proposition 4.2). - (i) To choose the centers of local
blowings-up nonsingular we use, for instance, [H2], Main Theorem II" or [BM1], Theorem
4.4.

(ii) Let dimM = n. In the complex case can always assume that Wa are small
neighbourhoods of the origin in C", and in the real one that each Wa is isomorphic to R^.

(iii) Let Ea C Wa denote the exceptional divisor (that is the union of the inverse images
of the exceptional divisors of subsequent local blowings-up). By the same argument as in
(i) we can assume that Ea is normal crossings.

(iv) Let q (t) be a germ of analytic curve and q (0) C K. Then, there exist an a and
a lifting q^ of q by Sa such that q^ (0) G Ka.

(v) In this paper we only need the equidimensionality of the strict transforms which
is a condition strictly weaker than flatness. See [P4] for a simple proof of such weaker
versions of Theorem 4.1 and Proposition 4.2.

The following corollary follows from Proposition 4.2 and the fibre-cutting lemma ([HI],
(7.3.5) or [BM1], Lemma 3.6).

COROLLARY 4.3. - Let M, N be real analytic manifolds and let X be a compact nowhere
dense subanalytic subset ofMxN. Let y? : X —» M denote the map induced by the standard
projection. Then, there exist a finite number of real analytic morphisms Sa : Wa —> M and
compacts Ka C Wa satisfying ( 1 ) and ( 2 ) of Proposition 4.2 for given compact K C M
and such that all the fibres of

^a: X ^ = X X M {W^\E^)-^W^

where E^ denotes the exceptional divisor of Sa, cire nowhere dense in N.

5. Regular projections theorem

Regular Projections Theorem was introduced by Mostowski [Ml] in the course of proof
of existence of Lipschitz stratification for (germs of) complex analytic sets. The subanalytic
version of this theorem was proven in [P3]. In this section, we extend the method from [P3]
to generalize Regular Projections Theorem to the case of projections of any codimension.
Unlike the proof of Mostowski our proof allows to estimate the number of projections
needed by the dimension of the ambient space plus one.

First we recall the classical notion of regular projection ([Ml], Section 4, [P3]). Let
X C K71 (K = R or C). For $ € K71-1, we denote by ^ : K71 -^ K'1-1 the linear
projection parallel to the vector (^, 1) € IC1"1 x K.

DEFINITION 5.1. - For $ e K71"1 we say that TT = TT^ is regular at XQ € K71 (with respect
to X) if there exist positive constants C, e such that:

(a) TTjj^ is finite (set theoretically);
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(6) the intersection of X with the open cone
Ce (^o, 0 = {xo + A (77, 1); |77 - $| < e, A G K - 0}

is an empty set or a finite disjoint union of sets of the form
{xo + A, (77) (77, 1); |77-^| <£},

where \i are K-analytic nowhere vanishing functions defined for \rj - ̂ | < e\
(c) the functions \i from f^ satisfy for all [77 — ^| < e

|gradA,(77)|^C|A^)|.
The following lemma explains the geometric meaning of regularity of projection.

LEMMA 5.2 (compare [Ml], Proposition 4.2). - Let the standard projection TT = 71-0 :
K71 —> K'1"1 te regular (with constants C, e) at XQ C K" with respect to X. Then, there
exist positive constants £1, 5, M, depending only one^C^n {and not on X or XQ) such that
C^ (xo, 0) nX is contained in the disjoint finite union of the graphs of K-analytic functions

^: B(7rOro), |A,(0) |5)- .K,

which correspond bijectively to the \i ' s and satisfy
|grad^| ^M,

and these graphs are contained in Ce (^o? 0) (^ X.

Proof. - Let XQ = 0, A = A, and denote {rj G K71-1; 1^1 < e} by £4. By (c) of
Definition 5.1

(5.1) p ln (A) |^C7

(in the real case we assume A to be positive). Hence

(5.2) e-^I^IA^/A (0)1^6^1.

Let ^ : U^ -^ K71-1 be defined by ^ (77) = A (77) 77. Then

\D^ (77) - A (0) Id| ^ |DA (77)| |77| + |(A (77) - A (0)) Id|

^ C \\ (77)| H + IDA (77')! |77| ^ 2 C|A ̂ le0^' |77|,

and thus, for |77| ^ £Q (C^ e, 71), D^ (77) is an isomorphism and

KDvI^n^lA^)!-1.

Claim. - There are constants e^ > £1 > 0 and 6 > 0, e^ ^ £o, such that ^ is
injective on (7^ and ^ (E4J D B(o. IA(0)15) D ^(^i)' In particular, ^-1 is defined
on B(0, |A(0)|5).

Since ^ preserves the lines through the origin, it is enough to prove the claim only for
n = 2. The argument, we present, is different in the complex and real case.

Case K = R. - Then ^ is injective on £4o- If H < (^F^ then ̂  (5.1) and (5.2)
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1^ W\ ̂  [A (77)| - |Y (77) 77| ^ |A (0)16-^1 - C7 H [A (0)1^1 ^ e-1/4 [A (0)|/4.

Put £2 = mm{(4C)-1 , eo}, 6 = e-1/4^^. Then ^ (U^ D 5(0, |A(0)[^). On the
other hand, for \T]\ < (4C7)-1,

| ^ (77 ) | ^ [A(^ |+ |A / ( r7 )^^4e l / 4 |A (0 ) [ ,

so B (0, |A (0)[5) D ^ (^J for ^i = e-1/4 ̂ /4. This shows the claim in the real case:
Case K == C. - By (5.2) there is e ' such that

| A ( 7 7 ) - A ( 0 ) | ^ | A ( 0 ) | / 3 if \rj\ ̂  e ' .

By Rouch^'s theorem, for \y\ ^ |A(0)|£73 the equation y = A (77) 77 has exactly
one solution on ^/. Therefore, ^-1 is well defined on 5(OJA (O^/S) and
^(^(O, |A(0)[673)) D (7,//4. Then 52 = ^74, 6 - |A(0)|e2/3, and 61 = ^/4
satisfy the claim.

In both cases we define (p : B(0, |A(0)|^) -^ K corresponding to A by ( p ( y ) =
A(^-1^)). If rj = ̂ -l(y), then

\Dy (y)\ = \D\ (77) D (^-1) (y)\ ̂  C |A (77)! |(D^ (77))-1!

^C |A(0)[e^ l4e l / 4 |A(0) | - l ^M,
as required. This ends the proof. D

Fix d G {1,..., n - 1}. We generalize the notion of regular projection to the case of
projections onto the subspaces of K71 of arbitrary codimension d. Let G {n, d) denote the
Grassmannian of d-dimensional linear subspaces of K". The scalar product on K71 induces
an isomorphism G (n, d) ̂  G (n, n - d). By p : E -^ G (n, d) we denote the tautological
bundle over G (n, d) and by p-1- : E1- -^ G (71, d) the bundle induced by the tautological
bundle over G (n, n - d). Assume also that we have fixed a metric d (V, V) on G {n, d).
For V E G (7i, d) we denote by Try : K71 -^ V1- the orthogonal projection (along V) onto
the orthogonal complement V1- of V. We shall identify G {n, d) with the zero section of E.

DEFINITION 5.3. - Let X C K71. For (C, e) € R^ and V e C?(n, rf), we say that
TT == Try : 1C1 -^ V1- is (C, e)-regular at XQ (= K71 (with respect to X) if:

(a) TT)^ is finite (set-theoretically);
(6) the intersection of X with the open cone

C, (xo, V) == {xo + ^; 7; G V \ 0, ^y', V) < £}
is a K-analytic smooth submanifold of pure dimension n - d (or an empty set);

( c ) for every x e X n C^ (xo, V) the angle between T, Z and V is bounded from zero
by C by which we mean that: for every V 3 x - XQ such that d { V ' , V) < e and every
v e Tc X we have [pry/ (^)[ ^ \v\/C (in particular Ta, X n V = 0).

Remarks. - (i) For d = 1 Definitions 5.1 and 5.3 coincide (the constants G, e are
different but related).

(ii) Regularity of projection is preserved under small deformations of V that is if Try
is ((7, ^-regular at XQ, then for V close to V, Try/ is (C', ^-regular at XQ for some
0', £' close to (7, £.
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DEFINITION 5.4. - Let q be a germ (at 0 G K) of a K-analytic curve in K". We say
that Try is ((7, e)-regular at q if it is so at every q (t) for t -^ 0 and small. We say that
Try is regular at a point ^ G K^ or at a germ q if it is ((7, £)-regular for some positive
(7, £. Finally, we call a subset P C G{n, d) a set of regular projections for X if there
exist (7, £ > 0 such that for every germ q of a K-analytic curve (and so for every point
x) one can find V G P such that Try is ((7, £)-regular at q.

THEOREM 5.5 (Regular Projections Theorem for subanalytic sets). - Let X C R/1 be
compact and subanalytic and let dimX ^ n — d. Then for generic Vi, 1̂  "^ ^n+i (i- e.
from an open dense subset of G (n, d)^1) the set {Vi, V^ • • • 5 ^n+i} ^ ^ ̂  o/ regular
projections for X.

Proof. - In the next section we show a similar theorem for "complex subanalytic sets". To
stress the similarities between the proofs we divide them into several corresponding steps.

Step 1. Condition (a). - We show the existence of projections satisfying the statement
for the condition (a) of Definition 5.3. By the Koopman-Brown Lemma (see [KB] or [L],
§22), if dimX < n, then the restriction of a generic linear projection R7^ -—>• R/1"1 to X
is a finite map. In general the following lemma holds.

LEMMA 5.6. - Let X be a compact subanalytic subset ofTU^ and let dimX ^ n — d.
Then, the subset of all such V G G (n, d) that 7Tv\x ls not finite is subanalytic and nowhere
dense in G(n, d).

Proof. - Let p ' : R^ x G (n, d) -> E1- be defined by p ' {x, V) = (Try (x), V^). By the
existence of stratification of a proper subanalytic map, the subset Y C E1' of the points
over which P\^^G ̂  d) ls not ̂ i^ ls subanalytic and relatively compact. The set of those
V € G{n, d) that TTV\X is not finite equals just p1- (V), so is also subanalytic. By the
Koopman-Brown Lemma, if d == 1, it is also nowhere dense. Next, by induction on d,
we show that it is always nowhere dense.

Step 2. Restriction to B". - The statement is local in G{n, d)^1. Take
(YI, V^,..., Vn+i) C G{n, d)71-^1 and assume that Vi H V^ H ... H V^+i = 0. Then,
for x e R" with \x\ sufficiently big and for any (V/, V^..., Vy^i) sufficiently close to
(^i? ^2; • • • 5 ^1+1)5 one of Ce {x, V/) n X is empty. Hence, corresponding Try/ is regular
at x (with arbitrary C and £ depending only on {Vi, V^ • • • ? ^n+i})- Therefore, to avoid
the problem of non-compactness of R71, we can consider only the points from a big
ball B" C R71.

Step 3. Restriction to generic curve. - We show the statement of theorem (that is
regularity of projections) only for the case of generic curve. That means that we establish
the existence of a nowhere dense compact subanalytic subset S of B71 such that the
statement holds for all (germs of) curves q (t) such that q (t) ^ S for t -^- 0. Note that
this is the case we need in this paper. The method of proof can be carried over to the
general case (see Step 9).

Step 4. Main construction. - The proof is based on the following geometric construction.
Let p : E —^ R" be the canonical map and let F : R" x E -> R" be defined by
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F (^ v) = X + ?{v)'

Let II : R" x E —> R71 x G (n, d) denote the projection induced by p. Then
X = F~1 {X) H II"1 (B71 x G (n, d)) is a compact subanalytic subset of B71 x E and

(5.3) c, (x^ v) = n-1 ({(rro, y'); d(y, y') < ̂ ) \ ({^0} x c?(n, d)).
In particular, if IL^ is a finite analytic covering over {(xo^ V); ri(V, V) < e'}^ then
Try satisfies conditions ( b ) and fc^ of Definition 5.3 (with some constants) at XQ. The
following lemma, which follows easily from the assumption on dimension of X, shows
that for generic V and fixed XQ it is always the case.

LEMMA 5.7. - Let X C R71 x E be as above. Then, for each XQ G B71 the set of those
V € G (n, d) for -which X D II~1 (a;o, V) is finite is subanalytic and dense in G (n, d).

Our task is to assure the existence of regular projections uniformly on B^ By Lemma
5.7 there is a compact nowhere dense subanalytic subset Y C B71 x G (n, d) such that
n|^ is an analytic covering over R/" x G (n, d) \ Y. Enlarging Y, if necessary, we may
assume that the induced map

X° = X \ (R71 x G (n, d) U n-1 (V)) -^ R71 x G (n, d) \ Y
is also an analytic covering. These are our preparations to handle with condition (6).

To work with condition ( c ) , we consider the regular part (of dimension n — d) Reg (X) of
X. Then X° C F-1 (Reg (Z)). The function 7' : Reg (X)° x G (n, d) -^ [0, 1] given by

Y (a;, V) = min^T, x\o ky MI/H
induces a continuous subanalytic function 7 on X° by setting

- y { x , v) =7' (F(x, v\ PW)'

Let y? : Y -—> IU1 be the induced projection. Consider its fibres Yx = y?"1 (re) as subsets
of G (n, d). We leave the proof of the following observation to the reader.

LEMMA 5.8. - If V ^_ Ya;o? then Try satisfies condition (b) of Definition 5.3 with any e
such that e < dist (V, ^co)' Moreover, if^ (rco, v) is bounded from below on

x° n n-1 {(xo, y7); dist (v, V) < e}
by 8 > 0, then the condition (c) is satisfied with C = 6~1.

Step 5. Application of the local flattening theorem. - Let Z ' C R/1 x E x [0, 1] be the
closure of the graph of 7 and let Z be its projection in R71 x G (n, d) x [0, 1]. Then Z is
compact and subanalytic and the generic fibres of the projection ^ : Z —> TU1 are nowhere
dense in G(n^ d) x [0, 1]. Also the generic fibres of (p : Y —> TU1 are nowhere dense
in C?(n, d). Let {sa '- Wo, —> R/1} and Ka C Wa satisfy the statement of the statement
of Corollary 4.3 [and Remark (iii) after Proposition 4.2] for y? and ^ and K = B".
Then, all the fibres of:

^ : Va = V X R n (W,\£,) -^ W,

^ : Z, = ^XR. Q^\EJ -̂  W,

are nowhere dense in G?(n, d), C?(n, d) x [0, 1] respectively.
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Step 6. Estimate of the number of projections. - For given V € G (n, d) we put
(Wa)v = {x G ATa; (^ ^) G ^oj. By the lemma below, for all a and generic
V^V^.^Vn^

n+1

(5.4) F| (WJ^ = 0.
i=l

LEMMA 5.9. - L^ G, W be compact subanalytic sets and let Y be a subanalytic subset of
W x G. We denote the projections of Y in G and W by TTQ and 'KW respectively and for
g G G we put Wg = TTW (^c1 (^))* ^et ^lm W ^n and assume that all fibres ofTTw are
nowhere dense in G. Then for each f c = l , 2 , . . . , n + l and ^i,..., gk generic (that is from
an open dense subanalytic subset of Gk)

k n+1

dim 0 Wg^ ^ n — fc, in particular^ 0 Wg^ = 0.
i=l i=l

Proof. - Induction on fc. Let m = dimG. Then dimY < n + m and dimpr^1 {g) < n
for generic n. This follows the statement for k = 1. Assume that the statement holds for
k — 1. Then, by the assumption on the fibers of TTW

( k - l \diniTT^1 ( Q Wg, j ^ m + n - k,
V=i /

for generic ^i,..., gk-i € G. Hence, for generic g
/ A-i \ \

dim TT^ Q W^ nTr^^) ^ n - fc,
<z==l

^-1 / /1 \ f^l ^-1and since TT^ (Tr^/ (A) H TT^ (^)) = A H TV^ for any A C TV, we get the result. D

Step 7. Condition (b). — Now we show the theorem for condition ( b ) of Definition 5.3.
Take Vi, V^,..., Vn-\-\ satisfying (5.4). There exists e' > 0 such that for each a and
each x e Ka we may find V (x) G {Vi, V^,..., Vn+i} such that {x, V) ^ Ya if only
|y-y(f)| < e 1 .

Let 5 = |j Sa {Ka r\ EC,) and let q {t) be (a germ of) an analytic curve in B" such that
q (t) ^ S for ^ 7^ 0. There is an a and a lifting qa (t) of g by s^ such that ̂  (0) e -Ka-
By construction, for t ̂  0 the fibres y^1 (^a (^)) and (^-1 (g (t)) are equal (as subsets of
C?(n, d)). Take V = V {q^ (0)). Then, by Lemma 5.8, Try satisfies condition ( b ) at each
g (t) {t ^ 0 and small) with e = £72.

Step 8. Condition (c). - Thanks to the following lemma a similar argument works for
condition (c) of Definition 5.3.

LEMMA 5.10. - For each a and x G Wo, the intersection ̂ 1 {x) D (G (n, d) x {0}) is
nowhere dense in G?(n, d) x {0}.

Proof. - First we express 7' in local coordinates.
Let (.TO, Vo) € (R/1 x C?(n, d)) \ V. Assume, for simplicity, that XQ is the origin in

R/1 and Vo = R^ x 0. We parametrize G{n, d) near Vo by Hon^R^, R71-^), that is
we identify V e G(n, d) with the graph of ( e Hon^R^, R'1"^) and in particular VQ
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with zero homomorphism IQ. As a trivialization of E near VQ we take that given by the
standard projection on R^.

By assumption, X° over a small neighbourhood (7 of (rco, Vo) == (0, ^o) is the union of
graphs of finitely many nowhere vanishing analytic maps X1 : U —> R^ Fix one of them
A (/) = A1 (0, /). We claim that for some universal constant C/ and I close to /o

(5.5) (7(0, Z, A(Q))-1 ^ ̂ (l + |I5A(0|/|A(/)|).
Indeed, we may assume \(l) = (Ai (Q,0,... , 0). Since the image of U by

F(0, I , A(Q) = (A(() , < ( A ( 0 ) G R^ x R'1-^ is contained in X°, the tangent space
T^X° to X° at x = F(0, <, A(Q) is the image of

(5.6) r -^ (D\ (o r + / (D\ (o Q) + r A (Q),
where <' varies over all // G Hon^R^, R71"^). Note that the first summand is contained
in the graph of <, that is in V G G (n, d) corresponding to Z, and the second in 'Rn~d. If
// = e^ 0 w G e^ 0 R71-^ C Hon^R^ R71-^), then

Z ' ( A ( 0 ) = A i ( O w .
Consequently Tc X° is the image of (5.6) with /' varying over e^ 0 'Rn~d. Now an easy
computation gives (5.5).

To show the lemma we assume that it is false. Then, there exist an a and
(.TO? Vo) G Wo, x G?(n, d) \ Ya such that ^1 (xo) is contained [near (Vo, 0)] in
G(n, d) x {0}.

Let X^ C Wa x E be the inverse image of X° by (^, id) :W^x E ̂ If x E and let
7 be a function on X^ induced by 7. By construction, the projection X^ —> G (n, d) x Wo,
is a finite analytic covering outside (Ea x G(n^ d)) U Y^. Let UG be a small contractible
neighbourhood of VQ in G(n^ d) such that ({^0} x (7^) D Va = 0 and let i7 be a small
neighbourhood of XQ. Then, by the curve selection lemma, there exists an analytic curve
q : [0, e) —^ Wa, ^(0, e) C Wa \ Ea and g(0) = XQ^ such that for some section A of
U x E\ua for all V e UG

7(^) ,^A(g(^y))- .0 if t-0.
Let Dv A denote the derivative of A in direction V. Then, by (5.5), for all V G UG

(\Dv\{q(t^V)\/\\(q^V)\-.oo if ^0,
which contradicts Pawlucki's version of Puiseux's theorem [Pa], that says A {q(t8)^ V) is
analytic near generic V and for some positive integer s.

This ends the proof of lemma. D

Step 9. - We show how to extend the proof to such curves q in B71 whose liftings qoc
lie entirely in £a. Take one such £^- By construction, it is normal crossings, so taking
a component we may assume that it is nonsingular and of dimension n — 1. Let Foe :
Ea x E -> R71 be given by Fa (x, v) = F (^ {x), v). Let IL : Eo, x E -> E^ x G (n, d)
denote the projection induced by II. Then Xa = F^1 (X) D II^1 (Kc, x G(n, d)) is a
compact subanalytic subset of E^ x E. By Lemma 5.7 11̂  [^ is a finite analytic covering
outside a nowhere dense subanalytic subset of K^ x G (n, d). Thus, using the same method
as above we can show the statement for generic curves in £^. The general case follows
by descending induction on dimE^. Q
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6. Subanalytic sets in complex domain

To get the estimate (3.1) from Proposition 3.1 in the semi-analytic case we used in
[PI] Regular Projections Theorem for complex analytic sets. Similarly, in the subanalytic
case we use a regular projections theorem for subanalytic sets in complex domain
(Theorem 6.5 below).

Since we need only the case of projections onto linear subspaces of (complex)
codimension 1, we work rather in the language of Definition 5.1 than in more general
context of Definition 5.3. In particular, we parameterize linear projections by C71"1 and
associate to each ^ G C71"1 the linear projection TT^ : C" -^ C71"1 parallel to (^, 1).

We consider only analytic spaces which are countable at infinity.

DEFINITION 6.1. - Let X be an subanalytic subset of complex analytic space Z. We say
that dime X ^ k if there exist a complex analytic space Z', dime Zf ^ k, SL subanalytic
subset K C Z ' and a complex analytic morphism y?: Z ' —r Z such that y?|^r is proper and
X = (p {K). We say dime X = k if dime X ^ k and not dime X ^ k - 1.

We call a subset H C Z a complex analytic leaf if there exists an open subset U C Z
such that H is a connected, complex analytic and nonsingular subset of U. If dime X ^ k^
then X is contained in a countable union of complex anaytic leaves of dimension not
bigger than k.

The properties of complex dimension of subanalytic sets are similar to those of real
dimension.

LEMMA 6.2. - (1) Let $ : Z —> Z ' be a morphism of complex analytic spaces and let
X C Z be subanalytic and dime X ^ k. If ^\-^ is proper, then ^ {X) is subanalytic
and dime ̂  {X) ^ k.

(2) Let <1> : Z —> Z ' be as above and let X' C Z ' be subanalytic dime X' ^ k. Assume
that the fibres of^ over X/ have dimension not bigger than r. Then dime ̂ -1 (X') ^ fc+r.

(3) Let X C C71 be subanalytic and dime X ^ k. Then, dimp X H R/1 ^ k.
(4) (Koopman-Brown Lemma [KB] for subanalytic sets in complex domain) Let X C C71

be relatively compact subanalytic and contained in a countable union of complex analytic
leaves of dimension smaller than n. Then, for generic r] G C72""1 (that is from the complement
of a subanalytic set contained in a countable union of complex analytic leaves of dimension
smaller than n — 1) the projection TT^\X '• X —> C71"1 is finite (set-theoretically).

Proof. - (1), (2) and (3) are clear.
To show (4) we note, that by the same argument as in the proof of Lemma 5.6, that

the set T of those 77 € C""1 where TT^ is not finite is subanalytic in C71"1 [even in
CP (n — 1)]. We prove that T is contained in a countable union of complex analytic
leaves of dimension smaller than n — 1. It suffices to show this for an analytic leaf. We
follow the idea of proof of Koopman and Brown [KB].

Let H C U C C^ be an analytic leaf such that there is a complex analytic function
/ : U —^ C, not identically equal to zero on all components of U, and H C f~1 (0). We
may assume that H = f~1 (0). Let

Z = {{x, rf) € H x C71'"1; TT^j^is not finite at x}.
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Z is an analytic subset of H x C71"1 and T equals the image of its projection in C71"1.
Therefore, T is a countable union of complex analytic leaves. Suppose that one of them
is of dimension n - 1. Then, there is an open subset V C C71"1 and a complex analytic
map (p : V —> C^ such that ( p ( V ) C H and TT^H 1s n0^ finite at (p(rj). In particular, for
rj C V and A from a neighbourhood of 0 in C,

/ (^ )+A(^1))=0,

which is not possible since the Jacobian of (p (rj) + A (77, 1) has a nonzero term A""^. Thus
we get the contradiction. This ends the proof. D

The following lemma is a complex analog of the fibre cutting lemma ((7.3.5) of [HI]
or Lemma 3.6 of [BM1]).

LEMMA 6.3. - Let (p : Z —> Z ' be a morphism of complex analytic spaces and K a
subanalytic subset ofZ such that (p\-^- is proper. Then

dime ̂  {K) ^ dime Z —l^

where I = minx^K {dime (p~1 { ( p ( x ) ) x } '

Proof. - It is easy to see that it suffices to consider only the following case:
(i) Z ' is an analytic subset of C^ and then we may assume that Z ' is C71 itself;
(ii) K is compact;
(iii) Z is irreducible.
(iv) replacing Z by an analytic subset of a neighbourhood of K, if necessary, we assume

that min^z {dime ^~1 ((p{x))x} = I;
Let d = dim Z —I and let TT : C71 — ^ C ^ b e a generic linear projection. Then, the generic

fibres of ^ == TT o y? : Z —^ C^ are of dimension 1. Let {a^ : Ua —> Cd^ Ka} satisfy the
statement of Theorem 4.1 for ^, K and ^ (K). Consider the induced diagram

Z, ^ Z
<^a I \V>

Ua X C^ -^ C71

7ra 1 1^

[7, ^ Cd

where ^ a = ^ ' a o ( P a ' ' Z c , — > Ua is the strict transform of ^. Let Ka =
a^ {K) H ̂ 1 (^). Then u ̂  (A:,) = x.

a

All fibres of ^a and so of (pa are of pure dimension I . Hence, the images of (pa (locally
on Za} are analytic sets of dimension d. Then, X is the union of the images of (pa (Ka)
by the induced maps (pa (Za) —'• C71. This ends the proof. D

DEFINITION 6.4. - Let X C C71. For ^ € C71"1 we say that TT = TT^ is weakly regular at
XQ e C" (with respect to X) if there exist positive constants (7, e such that:

(a) TT[^ is finite (set theoretically);
(6) the intersection of X with the open cone
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C, (^o, 0 = {^o + A (^ 1); |y? - ̂ | < ^ A e C \ 0}
is an empty set or is contained in a finite not necessarily disjoint union of sets of the form

{rco+M^l); \n-^<e}^
where \i are C-analytic nowhere vanishing functions defined for \rj — ^\ < £;

(c) the functions \i from (6) satisfy for all \rf — ^\ < e
|gradA^)|^C7|A,(7y)|.

Similarly to Definition 5.4 we define the notions of: weak (G, e)-regularity at a germ of
a C-analytic curve, weak regularity and a set of weakly regular projections.

THEOREM 6.5 (Regular Projections Theorem for subanalytic sets in complex domain). -
Let X C C71 be compact subanalytic and let dime X < n. Then for generic ^i, ^2 5 ""> ^n+i
[that is from an open dense !i C (C71-1)7^1)] the set {^i, ^..., ^+1} is a set of weakly
regular projectons for X. Moreover, 0 can be chosen in such a way that f2 H (R/1"1)71'^1

is open and dense in (R/1''"1)71"^1.

Proof. - Let X = p {K), where p : Z —> C71 is a morphism of complex analytic spaces,
K C Z is compact and subanalytic, and dime Z ^ n — 1.

In the proof we follow quite closely the pattern of the proof of the real analytic case
(Theorem 5.5). We sketch the proof of similar parts stressing the particularities of the
complex case.

Step 1. - The existence of projections satisfying condition (a) of Definition 6.4 follows
from our version of Koopman-Brown Lemma [Lemma 6.2 (4)].

Step 2. - We consider only germs of C-analytic curves contained in a big closed ball
(B271) and projections from a big ball B271-2 c C"-1.

Step 3. - We show the statement for generic curves (that is not contained entirely in
some subanalytic subset of C71 of complex dimension smaller than n). (See also Step 9.)

Step 4. - The proof is based on the following construction.
Let F : C71 x C'1-1 x C -^ C71 be defined by

F ( ^ 7 7 , A ) = ^ + A ( 7 7 , 1 )
and let Z be the fibre product

Z ^- Z
[ p [ p

^ ^- C71 x C71-1 x C.
Let K C Z be the set of points corresponding to K, B271, B271-2 and let X = p {K). Then
X C F~1 (X) is compact and dimcX < 2n. Let n : C^C71-1 x C -^ C71 x C71-1

and pr : C71 x C71"1 -> C71 be the standard projections. Then
C, (:ro, 0 = n-1 ({^o, ry); \T] - ̂  < e}) \ {{x^} x C71-1)),

and we shall study the set of points where II [^ is not a finite analytic covering.
Step 5. - Let A : Z -^ C be the function induced by Z -^ C71 x C71-1 x C -^ C,

where the last map is the standard projection onto the last factor. We may assume that
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ZQ = \~1 (0) is of complex dimension smaller than 2 n - 1 (if not we substitute Z by
the closure of Z \ Zo).

Let Zi C Z be the set of all those points at which II o p : Z —^ C71 x C71"1 is not a
finite analytic covering. For i = 0,1 we denote pi = p\Zi and Ki = K n Z,.

Let the family [s^ : W^ -^ C71-1}, K^ C W^ satisfies the statement of Theorem 4.1
for compact B271 c C71 and simultaneously for:

</? = pr o n o p : Z -^ C71 and K C Z;
^ = pr o n o p, : Zi -^ C71 and K, C Z,, i= 0, 1.

Consider the induced diagrams
Z~ fa 7- f7 S^Q ry

a —» ^ Z^ —> ^i

^ I [^ ^ I [^

W^ x C71-1 -^ C71 x C71-1 W^ x C71-1 ^ C71 x C71-1

PTa I [PT pra I IP'"
Wa ^ C71 Wa ^ C71

for i = 0, 1, where ̂  =J>^a ° ̂ a and ̂  = pr^ o -0^ are the strict transforms of y?, y?,
respectively. Let K^ C Z^ (resp. ^^ C Z^) be the set of points corresponding to K^
and K (resp. ^,). We denote also by Aa : Za -^ C the analytic function induced by A.

Let To C Zo, be the analytic subset of points at which ̂  is not finite. Then, the set Ya =
^ (A^nT) is compact subanalytic and by Lemma 6.3, dime Ya ^ 2 n-2. Moreover, since
the fibres of y^ are of complex dimension smaller than n, dime (Ya Hp^1 (rr)) < n -1 for
any x e tVa. Also V^ = ̂  (^^), % = 0, 1, satisfy similar properties. Therefore we have

LEMMA 6.6. - The set Y^ = Y^ U Yo^ U Y^ is compact and subanalytic and
dime Va ^ 2n - 2. Also dime (Va n ({a} x C71-1)) < n - Ifor all x € Wa.

The set V^ plays a similar role as in the proof of Theorem 5.5. By construction it
satisfies the following property.

LEMMA 6.7. - For every (x, rf} G W^ \ Y^ there is a neighbourhood U^^ of {x, T]}
in W^ and U^^ of K^ n ̂ 1 {x, r)) such that U^^ -^ U^^ is a finite analytic covering
possibly branched^over the exceptional divisor Ea of s^. Furthermore, the zero set of \a
intersected with Ux,n lies over £^.

Step 6. - For given $ e B71-1, we put (W^ = {x € K^ (x, 0 e Y^}. By complex
analog of Lemma 5.9, for generic ^i,..., ^n+i

n+l

U (w^ = 0.

Moreover, by (3) of Lemma 6.2, ^i,..., ^+1 can be taken generic from (R71-1)7^1.

Step 7. - From Lemma 6.7 and Step 6 we show in the same way as in the real case that
generic {^i,..., ^n+i} form the set of weakly regular projection for the condition (6) of
Definition 6.4 and for such germs of curves q in C71 which, for some a, have a lifting q^
to Wa such that q^ (0) e K^ and q^ is not entirely contained in E^.
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Step 8. - In some sense in the complex case condition (c) follows from condition (b)
(see [M], Proposition 4.1). Namely, take £4,^ ^^ as in Lemma 6.7. Let A : Ux,n —> C
be a multivalued function induced by Aa on Vy^^. Let ^(^) be a germ of analytic curve
and g(0) = rr. Then, by Puiseux's theorem, for some positive integer 5, A(9( t 6 ) , 77)
induces analytic functions \i (t, T]) which are nonzero for t / 0. Hence Py, A^/A^ are
locally bounded. Therefore, by the curve selection lemma, D^ A/A (defined outside E^) is
bounded near (a;, rj). This shows tthe statement for condition (c).

Step 9. - Similarly to the real analytic case the proof extends to the case of all germs
of curves. D

7. Subanalytic functions

In this section we show Proposition 3.1. The main tool in the proof is the product formula
for subanalytic function (Theorem 7.5 below) which can be considered as a subanalytic
version of the Weierstrass preparation theorem.

Consider subanalytic functions defined on subsets of R^ Since there are several different
notions of subanalytic function (see [DLS], [Kl], [P4]), we give a precise definition. We
follow mainly the notation of [Kl].

DEFINITION 7.1. - 1. Let U C R71. We call a function / : U —^ R subanalytic [and write
/ € SUB (R/1)] if the closure of the graph Fj of / is a subanalytic subset of R" x R;

2. We say that such / € SSUB (R") if Yf is subanalytic in R71 x RP (1) [where
RP(1) = RUoo];

3. Let f , g 0 SUB (R71). We say that f = g almost everywhere on V C R71 if there
is a nowhere dense subanalytic subset X C R71 such that: / and g are defined on V \ X
and f\v\x = 9\v\x-

Note that we do not require / to be continuous. Likewise the Weierstrass preparation
theorem does not hold for any semi-analytic function but only for the analytic ones our
product formula for subanalytic functions holds for locally blow-analytic functions.

DEFINITION 7.2. - Let U be a subset of R71. We call a subanalytic function / : U —> R
locally blow-analytic in R71 if f ̂ - SSUB (R") and there exist a locally finite collection of
real analytic morphisms o-a : Ua —> R71 and subanalytic compacts Ka C Ua such that:

(1) each Ua is isomorphic to R71 and |j a a (-Ka) = U\
(2) each o~a is the composition of finitely many local blowings-up with smooth nowhere

dense centres and f o (To, extends to a normal crossings on Ua (or is identically equal
to zero).

Remark. - By the resolution of singularities ([H2] or [BM1]) we get the same class of
functions if we require in (2) only that / o a a extends to an analytic function on U^. This
is the reason why we call such / locally blow-analytic. The class of locally blow-analytic
functions does not coincide with the class of blow-analytic functions of Kuo [Kuj. Clearly
each locally subanalytic function / : U —> R is locally bounded in U. By [BM2] it is
also arc-analytic and continuous in U.
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In some sense locally blow-analytic functions generate SSUB (R71). The following
proposition, which is a combination of recdiinearization and Puiseux's theorem, follows
from [P4], Theorem 2.7.

PROPOSITION 7.3. - Let f : U —> R be a continuous subanalytic function such that
f € SSUBCR^). Then, there exist a locally finite collection of real analytic morphisms
^a '- Wa —> R71 and subanalytic compacts Ka C W a such that:

(1) each Wa ^ R71 and |j ̂  {Ka) = 17;
(2) for each a there exist TI E N, i == 1, 2,..., ?z, such that (f>a = da o -^, w/^r^?

^a ' ' U a - ^ lU1 is the composition of finitely many local blowings-up with smooth nowhere
dense centres, Ua is isomorphic to R71 and in some systems of coordinates on Wa and
Ua, ^a '' Wa -^ Ua is given by

(7.1) ^(rF)=(^1,,..,<-);

(3) f o (j)a extends to either a normal crossings on Wa ^ R71 or the inverse of a normal
crossing (or is identically equal to zero).

In the following corollary of Proposition 7.3 we express each subanalytic function in
terms of locally blow-analytic functions. In general both below equations (7.2) and (7.3)
are valid almost everywhere on some compact subanalytic sets L^ by which we mean
outside a subanalytic subset of La that is of dimension smaller than n.

COROLLARY 7.4. - Let f C SSUB{Rn) and let U C R71 be the domain off. Then,
there exists_a locally finite family {La} of compact subanalytic subsets ofW such that
\JLa = U and:

(i) For each a, one may find bounded locally blo-w-analytic functions f^ integers r^, qi
such that Ti > 0 and qi > 0, and an analytic function g nowhere vanishing on the closure of
the image (/i1^1,..., /^rrl) (I/a) and such that almost everywhere on La either f = 0 or

(7.2) / or f-1 =9^^^ y^71)/?1^1...^^;

(ii) Almost everywhere on each La (and so almost everywhere on every compact subset
°fU)f or f~1 satisfies a unitary equation

(7.3) fN+^gifN-i=0

with locally blow-analytic coefficients gi.

Proof. - (i) follows from Proposition 7.3 by taking La = (t>a (Ka} and /, = x^ o ̂ 1.
(ii) follows from (i), since for each analytic h, h{x{/r\..., xl/^) satisfies (locally) a

similar equation with coefficients analytic in (a;i,..., Xn). D
Let TT : R" —^ R'1"1 be the standard projection. For x e R71 we write x = (a/, Xn) G

R7'"1 x R. The standard projection of R71 onto the last factor we denote by TT^.
The following theorem in crucial in our proof of Proposition 3.1. It can be understood as

an analog of the Weierstrass preparation theorem. Likewise Corollary 7.4, Theorem 7.5 is
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valid almost everywhere but unlike the ordinary Weierstrass preparation theorem it holds
for any choice of coordinates in R/1.

THEOREM 7.5. - Let U C R/1 and let f : U —> R be locally blow-analytic. We assume also
that U is relatively compact in R/\ Then there exists a finite family of compact subanalytic
subsets L<y C U such that |j La = U and almost everywhere on each La

(7.4) f{x)=g(f,{x),...,fn{x))F{x),

where: fi and F are bounded subanalytic functions defined almost everywhere on TT (£a);
they are almost everywhere the finite products of functions of one of the forms:

(7.5) u{x'), { x n - ^ { x ' ) } or their reciprocals (u(x'))~1, {xn - ̂ (n;'))"1

where u, y? are bounded subanalytic functions on {a dense subset of} Tr(L^); and g is
analytic and nowhere vanishing in a neighbourhood of (/i,..., fn) (I/a)-

Moreover, there exists a morphism of complex analytic spaces p : Z —> C72 and a compact
subanalytic subset K C Z independent on the choice of coordinates in TU1 and such that:

(i) dime Z = n — 1;
(ii)for each (pfrom above there is a bounded subanalytic functions ̂  such that the graph

of y? ± v^T^ is contained in p { K ) .

Proof. The begining. - It suffices to consider only such / that there exists a composition
of local blowings-up with smooth nowhere dense centres a : U —> R^ such that f o a is
analytic and the domain of / equals a (L) for a compact L C U. Since the problem is
also local on L we will work in a neighbourhood of p C L.

Let a = ai o ... o a^, where GI : Ui —^ ?7,_i (Uk = U and UQ = R/1) are local
blowings-up and pi G Ui the subsequent images of p = pk. We can assume that near each
pi, cr^+i is a blowing up of a finitely generated ideal J, = (^i,..., 5^). Let Gi = {gij},
i = 0,..., k - 1, and for technical reason (see Step 3 of the proof) we add to Gi also the
differences of <^/s Put Gk = {/ ° a} ̂ d 9ko = / ° ̂

Consider induced complexifications

(7.6) a : Uk ̂  E4-i ̂  ... ̂  U, ̂  Uo = C"

and denote by Zij the zero sets of a complexifications of gij e Gi'
Let Z be a formal union of all Z^/s and let p : Z —^ C71 be induced by (7.6). Let

P ' = 7T 0 p : Z -^ C71-1 and pn = TTn 0 ? : Z -^ C.

Structure of Proof. - The proof is divided into several steps:
(1) Using the local flattening theorem (Proposition 4.2) we can "modify" C71"1 to get

p' finite. Then p ( Z i j ) are contained in the zero sets of some unitary polynomials Pij
with respect to Xn.

(2) We replace a by compositions of some different mappings making the ideals (P^)
(and consequently Ii) invertible. Each of these mappings is the composition of a very
general change of the first (n - 1)-coordinates and in the last step a very restrictive global
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blowing-up involving all the coodinates. In this construction we shall use a rectilinearization
procedure given by Bierstone and Milman in the proof of Theorem 4.4 of [BM1].

(3) Using the previous steps we show inductively on i that each gij (so finally / o a)
satisfies the statement of the theorem.

Step 1. - Since p ' is a complexification of a real analytic map (Z is a complexification
of a real analytic space), by Proposition 4.2, there is a finite family of analytic mappings
(compositions of local blowings-up with smooth nowhere dense centres) T'^ :V^ —> R/1"1

and subanalytic compacts K^ C V^ such that:
(i) V^ ^ R/1-1 and Jo r^ [K'^) is a neighbourhood of TT (po) in R/1-1;
(ii) there exist complexifications f^ : V^ —^ C^1 of T^ such that the strict transforms

Z^ —» V^ of p ' by T^ are finite maps at the points corresponding to {j^}z=o,...,fc-
Fix r ' = r^ V = V^ and K ' = K'^ Let r : V = V x R -^ R71 be given by

T (^/, Xn) = {r1 (^/), Xn) and let r : V = V x C —^ C"' the corresponding complexification
of T.

We claim that there is a neighbourhood of the set of points in Z Xc^ V corresponding
to {pi} and K ' whose image in V is contained in a proper analytic hypersurface Z of
V. In fact, by (ii)

Zxc-i V = Z / U Z / / ,

where Z ' is the strict transform and Z" lies over the union of exceptional divisors of r ' .
Now the claim follows from the fact that the following map is an isomorphism

Z Xcn V 3 (z, (v^ pn (z)) ̂  (z, v') G Z Xc-i V.

By the above, Z C V can be chosen as the zero set of an analytic function
h {x) == u (re') P (a;), where u depends only on x ' G V and P is an unitary polynomial in
Xn' Denote by hij {x) = Uij { x ' ) Pij (x) the factors of h corresponding to Zij. Note that
all these functions can be chosen as complexifications of real analytic ones.

Step 2. - We transform h{x) = u { x ' } P { x ) (and so each i^, P^) to a normal
crossings. Since P is a unitary polynomial in Xn

p w = n (^ - ̂  ̂ )) n ((^ - ̂  ^/))2 + ̂  ̂ ^
i=l j=l

where ^ { x ' ) , (j)(x'\ ^ ( x ' ) are bounded and subanalytic. Using Proposition 7.3 we
transform them to normal crossings. Thus, we can assume that

r s

h[x)=u [x') ]̂ [ (^ - a, Or')) \[ ((^ - b, (^/))2 + c] (^/)),
z=l j=l

where u^ a^ bj^ cj are simultaneously normal crossings. For technical reason we make also
all their differences normal crossings. This is all what we can be achieved by transforming
only the first (n — 1) coordinates. Next we blow up in all the coordinates.

LEMMA 7.6 (Bierstone & Milman [BM1], Lemma 4. 7, Sussman [S], (6.VI)). - Let
a, /?, 7 G N71 and let a(x)^ b{x), c{x) be invertible elements <9/R{rc}. If

a (x) X0' — b {x) x13 = c (x) rr7,
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then either a ^ /3 or (3 ^ a (in the lexicographic order).
In fact, then, up to permutation of a, /3,7, a = /3 ^ 7.
If /, ^ are analytic in U, we write / ~ g if / equals ^ times a factor invertible on U.

LEMMA 7.7. - Let V C R"^ &^ an open subset and let h : V —> R be an analytic
function on V such that

h (X) - X16 fl (^n - a, (.Q) n ((^n - bj (^))2 + ̂  (^/)).
i=l j=l

where a^, ^, cj are analytic and all of them and their differences are normal crossings
(or identically equal to zero).

Then, there exist a composition of global blowings-up with smooth nowhere dense centres
a : W —> V and a finite covering of W by open sets W\ such that:

(a) for each \ there exist an open embedding W\ C R71 such that the restrictions
of coordinate functions to W\ are the products of the original coordinate functions
x\ o a,..., Xn o a, (xn — cbi (^/)) o a, {xn — bj (a/)) o a and their reciprocals;

(b) For every A, the restriction of ho a to W\ is normal crossings in these coordinates.

Proof. - We follow closely the proof of Case 2 of Theorem 4.4 of [BM1].
After a coordinate transformation yjc == Xk, k = 1,..., n - 1 and yn == Xn - CL\ {x') [or

Vn = Xn — 61 {x)' if r = 0] we can assume that a\ =. 0 (&i = 0 resp.).
By Lemma 7.6, the exponents a\ /3J, ̂  of nonzero a,i {x1) ~ x10^, bj{xf) ~ x^\

C j { x ' ) ~ x'^ are totally ordered (in the lexicographic order). Let ^ be the smallest of
them. We show the lemma by induction on (r + s, |^|). For simplicity we assume that
r > 0 (if r = 0 the inductive step is similar).

If some CJQ (0) ^ 0, then Cjp as a normal crossing nowhere vanishes and
{xn - b^ (a/))2 + cj^ ( x ' ) in invertible. Therefore we may assume that all cj (0) = 0.

We may also assume that all a, (0) = bj (0) = 0. In fact, assume that this is not the case
and let d equals one of a, (0), bj (0). Let Id = {%; a, (0) = d} and Jd = {j; bj (0) = d}.
On Vd = U \ {(a/, Xn)', Xn = ai {x') for some i ^ Id or Xn = bj {x ' ) for some j ^ Jd}h - {x^ n (^ -a- (:r/)) n ((^ - ̂  (^))2 + c ] (^))•

z€Jd j'6Jd

Since #Id -\- •#Jd < r -{- s we may apply the inductive assumption. It follows from
the construction below that all the centres of blowings-up over Vd lies in fact over
Yd = U {^ xr^ = ^ {x'}} U U {^ Xn = bj (a;')}. Note that if two of {a,, bj} have

i^id jeJd
different values at the origin, then, since their difference has normal crossings, they differ
everywhere. Therefore, for d ^ d!, Yd H Yd' = 0 and the blowings-up of various Vd glue
to one global blowing-up.

We may also assume that not all 0,1 and bj are identically equal to zero (if they are,
we are done). Choose (arbitrarily) k = 1,..., n - 1 such that ^ ^ 0. Let a : V —^ V
be the blowing-up of {xj, =• Xn = 0}. Then V can be covered by two coordinate charts
V^ and V^ such that the restrictions On = <J\v^ and ak = (T\v' are given in coordinates
^/i,..., yn on V^(Vk resp.) by:
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| Xk = Vk Vn
On = \ it i ̂  k

[xi = yi

( Xn = Vk Vn
Ok = if i 7^ n.

Xz =yi

In particular

h o an (y) ~ C O/^ 11 (1 - ffl- (y)) 11 ((1 - ̂  (^))2 + c} ̂ /))'
i=l j=l

where m = ^ + r + 2 5 . Since a^, ^, cj vanish identically on V^ \ V^ g o o-k has normal
crossing in a neighbourhood of V^ \ V^.

On V,

h o a, (y) ~ Q/)6 (^)r+2s n (^ - a- (^)) n ̂  - ̂  (^))2 + ̂  (^ /))-
Z=l J==l

where, as is easy to check, all nonzero a^, &j, Cj and their differences are normal crossings.
Assume that they all vanish at the origin. Then, the exponents <y of di satisfy a^ = a^
for m •^ k and a\ = a\ — 1 (the same holds for f33 and 7^). Therefore, the smallest
exponent ^ satisfies |^[ < |^| and the statement follows from the inductive assumption. D

Step 3. - Let p,\ : W\ —> Va -^ R71 be the compositions of the maps constructed in
the Steps 1 and 2 and let ft\ : W\ —^ C^ be their complexifications. We consider W\
as a subset of R/1. By the diagram

Z ^ Z xc- Va ^ Z xc- WA
^ i [px

C71 ^ y, ^ ^.
(7.7) the image by PA of some neighbourhood of the points of Z Xc^ W\ corresponding
to {pz}i=o,...,k is contained in the union of coordinate hyperplanes. Now we factor p,\
through the original blowing-up a : U^ —>• R71.

LEMMA 7.8. - For each i = 0,..., k there are W\i C W\ and subanalytic compacts
K\i C W\i such that:

(1) There is an analytic map fi\i : W\z —> Ui such that a\ o ... o a^ o ^i^ = p,^^^.
(2) \J\ljt\i (K\i) is a neighbourhood of pi.
(3) for each gij € Qz^ gij o ^^ have normal crossings.

Proof. Induction on i.

Case i == 0. - The family p,\ satisfies (1) and (2). Shrinking W\ and taking appropriate
K\Q we get (3) from (7.7), since the inverse image by fi\ of a small neighbourhood of po
in ZQJ is contained in the union of coordinate hyperplanes.

Inductive step. - Assume the lemma holds for i. Then the induced generators of /^ (J^)
and their differences are normal crossings. Thus, by Lemma 7.6, /^ (J^) is invertible and
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consequently ii\i factors through the blowing-up of Ii. Shrinking W\i we can factor it
through L^+i. For such /^\i+i '' WAI+I —> ^i+i we argue like in Case i = 0. This ends
the proof of the Lemma.

Since all the coordinate functions on W\ are of the form (7.5), Lemma 7.8 for i = k
shows the theorem. D

Proof of Proposition 3.1. Induction on k. - Since both sides of (3.1) are continuous on
U it suffices to show (3.1) for x from a dense subset of V. Let A C SSUB (R^) be the
subset of all such / G SSUB (R/*) that:

(i) the domain U of / is bounded;
(ii) There is a stratification of a big closed ball B C R^ satisfying the statement of

Proposition 3.1 (see the remark after Proposition 3.1).
To show Proposition 3.1 it remains to prove that every / e SSUB (R^) belongs to A.
We start by listing some properties of A. For stressing the domain U of a function /

we often write (/, U) instead of /.

LEMMA 7.9. - (1) if (/, U) G A and V C U, then (/, V) G A;
(2) if (/, U) C A and (</, U) e A, then {fg, U) e A;
(3) if f G A, then 1/f 6 A;
(4) if f G A and r is a positive integer, then f^^ C A (for r even we assume f to

be nonnegative);
(5) iff {x) = g (ai (re), 02 (re),.... a,s (a;)), "where ai G A are bounded, \g\ > e and Dg

is bounded, then f G A;

(6) if U = U U, and (/|^, U,) € A for each i, then (/, U) G A;
1=1

(7) Let f (re) = Xk — ^ (re') € SSUB (R^) with bounded domain, where ip is a bounded
subanaly tic function with bounded derivatives. Then f G A.

Proof. - (1) is obvious. (2) follows from the Leibniz rule. Similarly we show (3) and
(4). We prove (5). Let a (re) = (ai (re), 02 (re),.... Og (rr)). Then

\Df{x)v{x)\ = \Dg{a{x))Da{x)v(x)\ ̂  CL\a(x)\ ̂  C'L\f {x)\.

(6) follows from the existence of a stratification of R^ which refines given finitely
many stratifications of Tik.

To show (7) we take a stratification S of B compatible with the graph Fy of y?. Then
each (S-compatible vector field v on B is tangent to F y . It means, that if we write v in
the coordinates as v = (^/, ^fc), then Vk (^/; ^(a;/)) = D ^ p { x ' } v ' (re', (^(re')). Therefore,
if v is Lipschitz with constant £, then

\Df (x) v{x)\= \Vk {x) - D^p (x') v' {x)\

^ K {x) - v, (rr', (̂  (^))| + \D^p {x'} {v' {x)

-^(rr',^(^))|^CL|refc-^(^)|.

It is interesting to note that we are unable to prove directly that: / G A and g E A
follow / + g G A.
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Remark. - In [PI] (Lemmas 4.4 and 4.5) we showed Proposition 3.1 for semi-
analytic functions. The proof was based on the following observation ([PI], Key Lemma)

s

which we do not use in this paper: if / satisfies an equation f8 + Y^ ai f8 '1 = 0 and
i=l

a,i G A, then / e A.
By (i) of Corollary 7.4 and Lemma 7.9 it suffices to show the statement for locally

blow-analytic functions.
Assume that / is locally blow-analytic. We apply to / Theorem 7.5 (with n = k) and

let Lo,^ p : Z —> Ck and K C Z be given by the statement. By Theorem 6.5 there exists a
finite set of weakly regular projections V G (R^"1)^1 for p { K ) .

Fix TT G P and choose a system of coordinates in which TT : C1^ —> Ck~l is the standard
projection. Then X = p ( Z ) D 7r~1 (R^"1) is the closure of the union of the graphs of
complex-valued functions ( p / s . Fix C > 0 and let V^ C R^"1 be the closure of the set
of those x ' that \Da.^{x'}\ ^ C for all (3. Let Vc = 7r-1 (V^) H La. We claim that
(/5 Vc) G A. Indeed, / is of the form (7.4), and by Lemma 7.9 it is enough to show that
all function from (7.5) belong to A. For u ( x ' ) it follows from the inductive hypothesis
and for xjc — ^ (a/) by Lemma 7.9.

Since P is a set of weakly regular projections, if C sufficiently big, the Vc's constructed
for all projections defined by P, cover the domain of /. Then, (6) of Lemma 7.9 gives
the result. D
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