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THE BINARY ADDITIVE DIVISOR PROBLEM

By Yoicut MOTOHASHI

ABSTRACT. — Here we try to develop a comprehensive account of the theory of the binary additive divisor
problem. The results contain the hitherto best estimates of the error terms in the asymptotic formulas for both
the ordinary and the dual versions of the problem.

1. Introduction and statement of results

Our aim in the present paper is to investigate the asymptotic behavior of the sums

N
D(N; f) =) dm)d(n+f), (f>1)
N-1
D(N) =Y d(n)d(N —n)

as N tends to infinity, where d(n) is the divisor function, and in the second sum N is an
integer. These belong to the additive divisor problem, and have a rich history. We thus
begin our discussion with a review of former results on D(N; f); the history of D(N)
will be given later.

The first result on D(N; f) is due to Ingham [11], who showed the asymptotic formula

DN ) = (1+ o(1)) 501(f)N(1og N,

where o,(n) denotes the sum of the ath powers of the divisors of n. Then Estermann [8]
was able to improve this to an asymptotic expansion by exploiting his own finding of a
relation between D(N; f) and the Kloosterman sum

l
S(mynil) = 3 e(%(md+m(2)),

d=1
(d,1)=1

where e(z) = exp(2miz) and dd = 1 (mod [) as usual. As is remarked in [1], p. 185 a
minor modification of Estermann’s argument could yield, uniformly for 1 < f < VN ,

(1.1) E(N; f) < Nt ft(log N)?,
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530 Y. MOTOHASHI

where

(1.2) E(N;f)=D(N; f) = N Y (logN)' Y ci; Y d~*(logdy

=0 J=0  d|f

with certain absolute constants c;;.

The importance of the uniformity with respect to the shift parameter f was observed for
the first time by Atkinson in his paper quoted above, where he needed a result of the type
of (1.1) to estimate certain ‘non-diagonal’ parts of his formula for a form of the fourth
power mean of the Riemann zeta-function ((s) on the critical line. In retrospect [1] was
the first instance of the infusion of the theory of Kloosterman sums into the theory of ((s),
which has recently become one of the most important topics in analytic number theory.
Stronger estimates of S(m,n ;1) yield better bounds of E(N; f), which in turn give finer
results for the fourth power mean of ((s). Thus Weil’s estimate

(1.3) IS(m,n;1)| < 12d(1) min{(m,1)?, (n,1)7},

which is the best possible for individual [, led Heath-Brown [10] (via Estermann’s
argument) to

(14) E(N;f) < Né*¢ (1< f<N¥)
and
2M
(1.5) | BippaN < it < p<Nd
M

uniformly in f; here and in the sequel € denotes an arbitrary small positive constant whose
value may differ at each occurrence. These enabled him to establish

(1.6) Ey(T) < T3¢

for the error term E5(7T') in the asymptotic formula for the fourth power mean of ((s), i.e.,

(1.7) | 166+ i)t = T PufiogT) + (T,

where P, is a polynomial of the 4th degree.

However the whole situation was changed very drastically by the appearance of
Kuznetsov’s trace formulas [19][21], which transform sums of Kloosterman sums into
bilinear forms of the Fourier coefficients of cusp forms over the full modular group. This is
due to the fact that the estimation of E(N; f) depends on S(m,n ;l) with variable [’s in a
way that reminds us that the binary Goldbach problem depends on the distribution of primes
in arithmetic progressions with variable modulus. The first application of Kuznetsov’s trace
formulas to D(N; f) was undertaken by Deshouillers and Iwaniec [5], who obtained, for
each fixed f > 1,

(1.8) E(N; f) < N&*e,
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which is a substantial improvement upon (1.4) save for the non-uniformity in f. They
gave the details only in the case f = 1 for the sake of simplicity, but their argument in
fact yields the above. It should be remarked that to show (1.8) they needed also a large
sieve inequality for the Fourier coefficients of cusp-forms, which itself was a consequence
of Kuznetsov’s trace-formulas, and which had been obtained by Iwaniec in his work [16]
on the fourth power mean of ((s).

Then in the important work [22] Kuznetsov himself applied his trace-formulas to the
following generalization of D(N; f):

Aglen W) = Y oa(mag(n+ W),

where «,(3 are complex numbers and the weight W(xz) is a smooth function which is
to satisfy certain decay condition as z tends to +0 or 4+oo. What he obtained is an
explicit formula which expresses Af(c,8; W) in terms of a bilinear-form of L-functions
attached to holomorphic and non-holomorphic cusp-forms, providing «,3 are in a domain
determined by W. This enabled Kuznetsov to state the estimate

(1.9) E(N; f) < f#(Nlog N)%d(f)

uniformly for 1 < f < N#(log N)~!, which is to be compared with (1.8). It induced
also a new result on the fourth power mean of ((s). Thus Zavorotnyi [31] could use
Kuznetsov’s explicit formula for A;(0,0; W) with suitably chosen W’s to prove the
following improvement upon (1.6):

(1.10) Ey(T) < T3+,

But Kuznetsov’s argument in [22] is, unfortunately, highly sketchy, and does not seem
to suit the value of the results claimed there. Especially it lacks the proper procedure of
the analytic continuation of an intermediate spectral decomposition [formula (117)], which
in our view is the most crucial step to complete the proof of his remarkable Theorem 3.5.

Under these circumstances it seems very desirable for us to have a rigorous proof
of his formula for A¢(a,3; W), at least for the sake of giving it a sound base for its
future applications. We shall undertake this task by pursuing an approach that is somewhat
different from Kuznetsov’s; in fact it is closely related to the argument we have developed
in our recent works [24][25] on the fourth power mean of {(s). Then, as a sort of reward, we
are able to use safely the explicit formula for A¢(0,0; W) (see Theorem 3 below) to prove

THEOREM 1. — We have, uniformly for 1 < f < N*#,

N

6 N7
L) 2 d(n)d(n + f) =p/0 m(z; f)dz

n

+O{(N(N+f))%+6+f%(N(N+f))%+6+f—l-%Ne}
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532 Y. MOTOHASHI

Here
m(z; f) =o(f) log # log(x + 1)
F{o(f)(2y - 2%(2) ~ log ) + 20/ (f)} log(z(x + 1))
(1.12) + o021 - 252) ~ log 17 - 45 2)
o' ()(2 - 2%(2) ~log ) + 40" (1)

with obvious abbreviations, where vy is the Euler constant, and

o) (f) = d(logd)”.

dlf

The main term in (1.11) is different from that in (1.2), for our range of uniformity is
much wider; if f is less than N then our main term reduces to that in (1.2) with an
admissible error. In particular we have

COROLLARY 1:
E(N;f) < Ni* (1< f<N#)

uniformly in f.

COROLLARY 2:

6 [N/ 10
D(N; f) = (1 + o(1)) / m(e: flde (1< f<N¥)

7 Jo
uniformly in f.

We now turn to the sum D(N), which may be called a dual of D(N; f). Though research
on D(N) was not so intensive as on D(N; f), perhaps because of no apparent relation

with the mean values of ((s), the history of D(IN) can be traced much farther than that of
D(N; f). For, the origin of the problem of D(/N) may be found in the explicit formulas like

N-1

" 03(m)as(N — n) = = (53(N) — o3(N),

n=1
which is due to Jacobi. Ramanujan once tried to extend this to the sum

N-1

> oa(n)os(N - n),

n=1

and conjectured that it would be

Dt DB+ et DAB+Y) o
Tla+B+2) ((a+tp+2) TS

(1.13) (1+o(1))
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providing «, § > 0. Then Ingham [11] took up D(N), and proved
6
(1.14) D(N) = (1+ o(1)) z01(N)(log N)?,

which obviously corresponds to his result on D(N; f) quoted above. But it was again
Estermann who made the first essential work on D(N). In [7] he could relate D(N) with
Kloosterman sums, and obtained

23

E(N) < Ni(logN)%o_s(N),
where

2 2
(1.15) E(N)=D(N)- N (logN)" > di; »_d~'(logd)’

1=0 7=0 le

with certain absolute constants d;;. As Halberstam showed later in the work [9] on the
above conjecture of Ramanujan, Estermann’s argument could have yielded

(1.16) E(N) < Ni(logN)®

if it was combined with (1.3). After this there had been virtually no research on D(N)
until Kuznetsov [22] (Theorem 3.5 with w; = 0) found an explicit formula for

By(a,B; W) = iaa(n)ag(N - n)WO(%),

where W is a smooth function with a support in the unit interval. As a matter of
fact he did not consider By(a,3;Wy) separately from As(a,3; W), since we have
A_n(a, ;W) = By(a, 3; W) with a suitable choice of W. But we make this separation,
because of a reason that will become apparent in the last two sections of the present paper.
Kuznetsov’s formula expresses By (a, 3; Wp) in terms of cusp form L-functions in much
the same way as in the case of Af(a,3; W), though his brief argument again does not
seem to suit the value of the result. We shall give a rigorous proof of his claim, and as its
application prove an improvement upon the long standing result (1.16):

THEOREM 2. — Let E(N) be as above. Then we have
E(N) & N0.7+e.

Theorems 1 and 2 are deep in the sense that they depend not only on the spectral
resolution of the non-Eucledian Laplacian but also on the hitherto best estimates of the
Fourier coefficients of holomorphic and non-holomorphic cusp-forms.

Acknowledgment. — While preparing this paper the author could enjoy various important
comments by Profs. J.-M. Deshouillers, J. Friedlander, H. Halberstam, A. Ivi¢, H. Iwaniec
and M. Jutila. He is grateful to them all. Especially he wants to record that a discussion
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with Prof. Jutila at Marseilles harbor during Journée Additive (Sep., 1991) led him to
substantial improvements upon the draft.

2. Explicit formulas

In this section we shall first introduce some basic terminology from the theory of
automorphic forms, with which the formulas for D(N; f) and D(N) are to be formulated.
Then we shall give some further discussion on them.

Thus, let {); = x2 + ;5; >0 (j =1,2,3...) } U {0} be the discrete spectrum of the
non-Eucledian Laplacian acting on the space of all non-holomorphic automorphic functions
with respect to the full modular group. Let ¢; be the Mass wave form attached to the
eigenvalue \A; so that {¢;} forms an orthonormal base of the space spanned by all cusp
forms, and each ¢; is an eigen-function of every Hecke operator T(n) (n = —1 or n > 1).
The latter means that we have, for n > 1,

(T(n)pj)(z) = % > zd:%GZ_dﬂ)

ad=n b=1
= tj(n)p;(2)

with a certain real number ¢;(n), and
(T(=Deg;)(2) = ¢i(-2)
= ¢£;;(2)

with e; = £1. The ¢;(n)’s appear also in the Fourier expansion of ¢;:

;(@ +iy) = p; (VY Y t5(n) Ki, (27 |n]y)e(nz),
n#0

where K, is the K -Bessel function of order v. With the first Fourier coefficient p;(1) we set
a; = lps (V)P (coshmr;) L.
Then Kuznetsov [21] has shown

(2.1) > ati(n)? < K*+nite,
KZJ'SK

where the implied constant depends only on €. Also we have Serre’s bound
(2.2) It;(n)] < d(n)n?;

for the proof of this important fact see [23][28].
The Hecke L-function H;(s) attached to ¢; is defined by

H(s) =) ti(m)n,
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which converges absolutely for Re(s) > 1. The multiplicative property of ¢;(n) can be
expressed in terms of H;(s): We have, for any v,

(2.3) Y o (n)ti(n)n™* = (25 — v) T H;(s)H(s — v),

n=1

providing the left side converges absolutely. This is an analogue of Ramanujan’s identity
(24) Y oum)ou(n)n = ((s)C(s = v)¢(s — w)C(s — v — p)/¢(2s — v — p).
n=1

On the other hand H;(s) can be continued to an entire function, and it satisfies a functional
equation which implies, in particular,

(2.5) Hj(s) < &5

uniformly for bounded s. Here and in the sequel the letter ¢ stands for a constant whose
value may differ at each occurrence, and whose dependency on other parameters (e.g., on
s in the above) may easily be inferred from the context. Though (2.5) serves for most
purpose below, we need also the following statistical result:

> o;Hj(3)* < K2(log K)™,
k; <K

whose proof is given in [26].

Next we turn to holomorphic cusp-forms. Thus, let {p;x; 1 < j < 9(k)} be the
orthonormal base, consisting of eigen-functions of all Hecke operators Tj(n), of the
Petersson unitary space of holomorphic cusp-forms of the even weight 2k with respect to
the full modular group. This means in particular that we have

kK d
a az+b
(3> ZSO”’“( d )
b=1

= tjk(n)p;r(2)

(Tu(n)s)(2) = % >

ad=n

with a certain real number ¢; (n). These appear also in the Fourier expansion of ¢; i (z):

0ik(2) = pin(1) D tix(n)e(nz).
We put
ajp = 16T(2k)(4m) 21| p; (1))

Then corresponding to (2.1) we have

9(k)
(2.7) > ok < k.
—
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As before we define the Hecke L-series Hjx(s) by

s) = Z tik(n)n™°.
n=1
This converges absolutely for Re(s) > 1, for we have the famous bound
(2.8) |t5.6(n)] < d(n)

due to Deligne [3]. We have also the analogue of (2.3):
(2.9) > ou(m)tik(n)n™ = ((2s — v) T Hyk(s) Hi(s — v).
n=1

Again Hj ;(s) is entire, and for bounded s
(2.10) H;i(s) < k°

uniformly in j. Finally, we have the analogue of (2.6):

9(k)
(2.11) Y oirHik(3)* < K*(log K)°.

k<K j=1

This follows from a large sieve inequality due to Deshouillers and Iwaniec [6], (1.28)
with a little refinement.

We may now state our version of Kuznetsov’s formulas for Af(0,0; W) and
Bn(0,0; Wo):

THEOREM 3. — If W is a C*° function with a compact support on the positive real axis,
then we have, for any f > 1,

id(n)d(n + f)w(ﬁ)
n=1 f
oo l —ir 4
= % i m(z; )W (x)dz + — I / f Ulzcwljzlgz(rz); i)l O(r; W)dr
(2.12) o
+ 1) ati(f)H;(3)%0(k;; W)
i=1
” oo Y(k)
+ f ZZ aJkt]k f)HJk(%):‘(k—%§W)-
k=6 j=1

Here m(z; f) is defined by (1.12), and

O(r; W) = %Re{ <1 + m)so(ir; W)},
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where

L(E+3)

(2.13)  E(GW) = Te+ 1)

/ x"%_5F<§+%,§+%;2£+1;_1>W($)dx
0 xr

with the hypergeometric function F.

THEOREM 4. — If Wy is a C* function with a compact support on the open unit interval,
then we have, for any integer N > 2,

N-1

Z d(n)d(N — n)WO(%) = }6-2 /01 n(z; N)W (z)dz

n=1
N N? /°° N="a3in(N)[C(5 +ar)[*
T Jooo (L + 2dr)]?

A(r; Wo)dr
(2.14) L&
+ N2t (N)H;(3)*Alkj; Wo)
Jj=1
oo B(k)
N2 N (1) 0 utin(N) H; (3)*E s (k — 5 Wo).

k=6 j=1

+

NG

Here n(x; N) is defined to be the result of replacing log(1 + z) by log(1 — x) and f by
N in the definition (1.12) of m(z; f). Also

A(r; Wo)
-1 1[{log:l:—i—2’y+2Re£I(l+z'7“)——1——}F(l+ir L )
2 Jo r*? cosh(rr)’” 2 T2 o

(2.15) + {%F(% +a+tir,+a—ir;l+ 20:;37)}&:0] Wo(z)dz,
Ei(k— %QWO)

oo T(k+ ) N
/0 (Gt 2ar ke —ayF Bt @1 =k osld2050)a%},_ Wo(a)da,

where -y is the Euler constant.

The combination of Theorems 3 and 4 is essentially equivalent to the most interesting
case of Theorem 3.5 of Kuznetsov [22] (i.e., s = v = % there ). It should be remarked
that in applications the requirement of the compactness of the supports of the respective
weight functions is by no means restrictive than Kuznetsov’s corresponding assumptions,
and in fact it can be replaced by a condition more general than his.

Also, the explicit formula (2.12) should be compared with our result on the fourth power
mean of ((s) ([25, Theorem]): If 0 < A < T'(log T')~! then there exist absolute constants

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



538 Y. MOTOHASHI
c(a,b; k,1) such that, with an obvious abuse of notation,

<A¢31/ (s + (T + )fe WA  dt = (Ay/m)

@ , T®

x / Re{ > cla,bik l)( )’“(T)’@ +i(T + 1) }e" @2 g
(2.16) 1wmgﬁw
;/;oo 'I?(—f—:ézr—w'ﬂ(t T A dt + lea] )319(I€J,T A)
oo V(k)
+ 33 (1) *0yaHik(2)%0(k — 3T, A) + O(T~ (log T)?).
k=6 j=1
Here
I(r;T,A) = Re{(1+smh( 7n)) (ir; T, A) };

I(3+¢)?
T(1+26) J,

x exp ( — (%log (1+ %))2)F(% +&1+61 +2£;—%)dm.

0(&T,A) = x_l_g(l-l—a:)_%cos (Tlog (1 + i))

The formula (2.16) has the appearance that it might be considered as a result of averaging
(2.12) over the shift parameter f. In fact, in the context of the fourth power mean of ((s)
the expression (2.12) corresponds to the contribution of the individual non-diagonal term,
and this observation led Zavorotnyi to (1.10). However, according to our experience such
an averaging of (2.12) cannot yield a result as explicit as our (2.16); instead we need an

approach that is an extension of Atkinson’s method [2] on the mean square of ((s).

From Theorems 3 and 4 we shall deduce the following consequences on D(N; f) and

D(N), respectively:

THEOREM 5. — If we have the bound
(2.17) tj(n)] <n® (n2>1),

then we have, uniformly for 1 < f < N?2/(+2e),

N/ f
DNif) =25 [ miaif)da
+ O{(N(N + f))5+e + f3H34(N(N + f))i+e + fitene),

(2.18)

THEOREM 6. — We have, on (2.17),

(2.19) E(N) « Nitote,
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From these and (2.2) Theorems 1 and 2 follow immediately. To prove (2.18) we shall
use (2.12) as it stands. However, to prove (2.19) we shall not use (2.14) but rather an
intermediate result which implies (2.14). For, there is a certain difficulty in applying the
saddle point method to A(r; W,); in contrast ©(r; W) does not cause such a difficulty.

Returning to the analogy between (2.12) and (2.16) we remark that (2.16) yields not only

Ey(T) < T (log T)",

which is a small improvement upon (1.10), but also the following two important
consequences:

(2.20) Ey(T) = Q(VT)
and
(2.21) / i Ey(t)%dt < T?*(log T)°.

Proofs of these can be found in our joint papers [13]-[15] with Ivié. Thus one may expect
that similar results on E(N; f) would hold. In fact Ivi¢ conjectured an analogue of (2.20)
for E(N; f) when f is fixed. Confirming this we shall prove

THEOREM 7. — For each fixed f > 1 we have

E(N;f) = Q(VN).

Also we have obtained, jointly with Ivié, the analogues of (2.21) for E(N; f) and E(N)
(thus improving (1.5)); for the details see [15].

We shall prove Theorems 3 and 4 by using Kuznetsov’s trace formulas, and as has been
remarked above our argument is close to that of our former work [25]. But, it should be
stressed that there is an alternative approach (the inner product argument) to binary additive
divisor problems in general. This was first indicated by Selberg [29], and later considered
by Kuznetsov [20] with more details. Then Tahtadjan and Vinogradov [30] carried out full
details. They applied Selberg’s spectral theory directly to a modification of the Eisenstein
series, and obtained a meromorphic continuation of the additive divisor zeta-series

> d(n)d(n+ f)n~*,

which could yield a proof of (1.8). On this matter see also Deshouillers [4]. Recently Jutila
[18] used the argument of [30] to extend his theory [17] of transforming trigonometrical
sums involving the divisor and the allied functions. In this context, the argument of [30]
seems to have more possibilities than the one developed in the present paper. But, for the
original additive divisor problems D(N; f) and D(N) our argument that exploits the inner
structure of the divisor function has so far been able to yield results deeper than those
obtainable by the method of Tahtadjan and Vinogradov.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE
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3. Spectral decomposition

In this section we shall show spectral decompositions of As(«a, 5; W) and By(a, 8; Wy)
in the domain

(3.1) R(b) = {(e, B); 0> Re(a) > b, 2b — 2 > Re(a + )},

where b is an arbitrary fixed negative number. Since our interest is in the values of
Ag¢(a, B; W) and By (o, B; Wy) at the origin (0,0) which is not in R(b), we shall have to
continue analytically these spectral decompositions to a neighbourhood of the origin. That
will be carried out in the next section. Thus, in the present section we shall always assume
that (o, §) € R(b). We shall treat only Af(a,3; W) in great detail, for By (e, 8; Wo) is
quite similar as far as the spectral decomposition is concerned.

To begin with we quote, as Kuznetsov did in [22], an identity of Ramanujan: For
Re(v) < 0, n > 1, we have

(3.2) a(n) =((1=v) Y 1" te(n)
=1

where
!
(3.3) a(n)= Y

We apply (3.2) to the factor og(n + f) in the sum A¢(a, 3; W), getting

0o l

B4 AslemW) = -0 30T 3 o "H3 e (n)e(?n)W(?).

h=1
(h,l)=1

We then introduce the Mellin transform of W:
(3.5) w(s) = / W(z)z* dz.
0

Since W € C2°(0, 00), w(s) is entire and of rapid decay in any vertical strip. The latter
means that for any fixed B > 0 we have

(3.6) w(s) < (1+]s])77,

if Re(s) is bounded. This fact will be used constantly in the sequel. Then we have the
inversion formula

1 -8
W(z) = 2 “ w(s)z™°ds

4°¢ SERIE — TOME 27 — 1994 — N° 5
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for any = > 0, where the symbol (a) denotes the straight line Re(s) = a. This transforms
(3.4) into

) !
(3.7) As(a, BW)=Cc1-p) 3 1P e(éh)i—i/()fSw(s)D(s,a;e(%))d&
=1 h=1 a
(h,)=1

where a > 1 is to be sufficiently large, and
D(s a'e(ﬁ)) = ia (n)e(ﬁn)n_" (h,0) =1.
3y ) l ~ a l 9y )

We are going to shift the contour in (3.7) to the left. For this sake we quote some facts
about D(s, a; e(%)): For each fixed a # 0 this is a meromorphic function of s, which
has simple poles at s = 1 and 1 + « with the residues (1 — @)~ and ¢(1 + a)l=*71,
respectively, and has no singularities elsewhere. We have also the functional equation

D(s, o e(%)) = 2(2m)2 272 (] — )T(1 + « — 5)

(3.8)
x { cos (52)D(1 = s, —ase(

~| 3

) —cos (r(s — 5)) D(1 - s, —ase( —

where hh = 1 (mod [). These facts can be proved easily by expressing D (s, a;e(2))
in terms of Hurwitz zeta-functions.

We now shift the contour in (3.7) to Re(s) = b, where b is as in (3.1); note that we
have (3.6) and that (3.8) implies that D(s,a;e(%)) is of polynomial order with respect
to s if Re(s) is bounded. We then have

(39) Af(a$ IB’ W) = Ul(av ﬁ) + Al(av ﬂ)»

where U;(a, () is the contribution of residues and A;(«, ) the rest. The above facts
about D(s,a;e(%)) imply that

Ui(a, B) = ¢(1=6) Y 1P"H{¢(1=a)l*  a(f) fu(D)+((L+a)l ™ e(f) 1 w(l+a) ),

=1
where ¢;(f) is defined by (3.3). Thus by (3.2) we have
¢~ a)(1- )
(2-a-p)

+ Povsasl(Nu(t+ o TEEZD

As for A;(a, B) we use (3.8), and replace D(1 — s, —a; (% %)) by their absolutely
convergent Dirichlet series; we note that («, §) € R(b) gives the absolute convergence
throughout. Hence, after some exchange of the order of sums and integrals, we obtain

(3.11) Ai(e, B) = Af (a, B) + A7 (a, B).

Ur(a, B) =f**P01a—p(flw(1)

(3.10)
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Here

(3.12) Af(a, B) =2(2m)""'¢(1 -6 )f2(°'+"“)20 (M@ DKL(fin;0a, B),

n=1
where
(313) K:t(fan «, /6) Z S(:I:fa l)'(/}:l:(47r\/f_n a, :8)
with

2s—a—p-1

(3.14) ¥, (z;0, f) = —cos(’;"‘)/ D(1 - 5)T(1 +a — s)u(s)(3) ds,

(®)

Y_(z;, B)

(3.15) 1 o o2 pt
__2_7;2/(11) I(1—s)(14+a—s)cos(m(s— 5))w(s)(§) ds,

To K+(f,n;a, B) we apply the following versions of Kuznetsov’s trace formulas:

LEMMA 1. — Let ¢ € C3(0,00) satisfy the conditions, for v = 0, 1, 2, 3,

(3.16) {‘p(”)(x) <@t asz — 40,

e(z) € 71" as — +oo,

where 1 is an arbitrary small positive constant. Then we have, for any m, n > 1,

Z %S(m, n; l)(p(47r\frm) = Zajtj(m)tj(n)gb(nj)

+ 575" agatin(m)tin(n)é (i (L - k) + 1 /°° : azif(m)azir(ﬁ) o(r)dr,

T J_oo (mn)|((1 + 2ir)|2

P(r) = 2s1nh(7rr)/ (Joir(@ J_zir(l'))@dl'

with Jai-(x) being the J-Bessel function of order 2ir.
LEMMA 2. — Let ¢ € C3(0,00) satisfy the conditions, for v = 0, 1, 2, 3,

(3.17) {so‘”)(w) Lzt as z — +0,

oW (z) € 717"V as z — 400,
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where 1 is as above. Then we have, for any m, n > 1,

Z% —-m,n; l)cp(47r\{%)

[ee)

= 2 ciantimitmp(s) + s e

where

&(r) = 2cosh(nr) /;O Kgi,(x)cp(x)%

with K;-(x) being the K-Bessel function of order 2ir.

For a detailed proof of these see our manuscript [27].

We apply Lemmas 1 and 2 to Ki(f,n;a, 8), respectively. We consider first
K, (f,n;a, B). Thus we have to see if (3.16) is satisfied by ¢, (z;a, 3) when
(a, B) € R(b). Because of (3.6) we have obviously 94 (z;a, 3) € C3(0,00). On the
other hand («, B) € R(b) implies Re(2s — @ — 8 — 1) > 1 in the integrand of (3.14),
which means that the first condition in (3.16) is also satisfied by ¥, (z; @, 3). Further, we
may move the contour in (3.14) to the left as much as we want without encountering any
singularities, and hence the second condition in (3.16) is satisfied by ¥4 (z; @, 3). Thus
we can apply Lemma 1 to K (f,n;a, 8) when (a, 3) € R(b). We have

Ki(finsa, B) =Y ats()ti(n)dy (x50, B)
j=1

oo ¥(k)
(3.18) + Z Z ajnti (£t k() Py (i(3 — k); o, B)

k=6 j=1

1 [ ou(f)oze(n) -

to | G g e B

where

. o d
619) e B) = g [ (o) = L) wio, B)F
To transform this integral we consider, in view of (3.14),
(3.20) / ~ Joir(z) [ T(1 =8P+ a - s)w(s)(2)* "2 dsda.

0 (%) 2

We are going to exchange the order of integrals. For this sake let us assume temporarily
that besides (3.1)

(3.21) 2<2b—Re(a+B) < 3.
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Then we move the contour of the last integral to Re(s) = b — % The resulting double

integral is absolutely convergent, for Jo;-(z) < 1 as £ — 40 and Jo;r(z) < z~% as
x — oo if r is real and fixed. Hence (3.20) is equal to

- —s)w(s = oir (T Ly2ema=B=2 ) ds
/(;)_é)m L1+ a—s) ()/0 Tan(a)(3) dd

_/ [(s—3(a+B+1)+ir)
~Jo-nT(3B+a+p) —s+ir)

I'1-s)I'(1+a— s)w(s)ds,

which is regular in R(b). But the original double integral (3.20) represents also a regular
function in R(b). This can be seen by dividing the range of the variable x into two parts
according to 0 < z < 1 and = > 1, say. Obviously the first part yields a regular function in
R(b). For those z in the second part we move the contour in the s-integral to the far left,
getting an integral function of o and . Thus we may drop (3.21), and see that (3.20) is
equal to the last integral for any («, 3) € R(b). Hence, after some rearrangement, we have

1/;4_("'; «, ﬂ)
TQ

(3.22) = —cos (7) /(b) sin (m(s = 3(a+8)))T(s — 3(a+B+1) +ir)

xT(s=1(a+B8+1)—ir)T(1-s)I(1+a— s)w(s)ds
for real 7 and (a, B) € R(b).

As for 9, (i(3 — k);, B) we note that J;_ox(z) = —Jak—1(z) for any integer k > 1.
Then we can show as above that for any integer k£ > 1 and («, 3) € R(b)

P o(s(1 (=1)* TQ
¢+(Z(§ - k);a’ 'B) = 47 cos (—‘2_)
P(s+k-1-3(a+p)

X/(,,) Pk+1-s+3(a+pP)

(3.23)

1 -s)I'(1+a-s)w(s)ds.
Now we introduce, for the sake of a later purpose, a function of three complex variables:

1 o1
U, (& u,v) = — cos (ﬂ)/ sin (7(s = 2(u +v)))
(3.24) i ool
' xP(s=2(u+v+ 1)+ T (s—(u+v+1)— &1 -s)
x I'(1 4+ u — s)w(s)ds.

Here the path is such that the poles of the first two gamma-factors in the integrand and
those of the other two gamma-factors are separated to the left and the right, respectively, by
the path, and £, u, v are assumed to be such that the path can be drawn. When Re(§) = 0
and (u,v) € R(b) we can take Re(s) = b as the path in (3.24). Thus we have
(3.25) pi(rie, B) =T, (ir;e, B)

instead of (3.22).
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We define another function of three complex variables by

1 /°°" F¢-Lu+v+1)+s)

(3.26) Bo&un) =50 | T iutvrd—s)

I'(1—-s)I'(1 4 u— s)w(s)ds,

where the path separates the poles of I'(§ — 2 (u+v+1)+s) and those of I'(1—s)I'(1+u—s)
to the left and the right of the path, respectively. If &, u, v are such that U, (&;u,v) is
well-defined, then we have

7 cos (3mu)
4 sin(m§)
In fact, for such &, u, v we may use the path of (3.24) in the defining integrals of

Zo(£&; u,v) too, and the rest of the proof of (3.27) is a simple application of the relation
I'(s)I'(1 — s) = 7/ sin(ws). We should note also that (3.23) can be written as

(3.28) P (i(3 = k)5, B) = (~1)*3 cos (5)Zo(k - 41, )

for any integer k£ > 1 and («, 3) € R(b).
Next we consider K_(f,n;«, 3) briefly. As in the case of ¢ (z;«a, ) we see easily
that ¢ _(z; , §) satisfies (3.17). Hence Lemma 2 gives

(3.27) U, (&u,v)=— {Z0(&u,v) — Bo(—&u,v) }

K_(fin;a, B) =) ejat;(/)t;(n)d_ (x5, B)
j=1

l * oar(foir(n)
T /_oo (F)r|C(1 + 2ir)

(3.29)

where o y
gﬁ_(r;a, B6) = 2cosh(7rr)/ Ko () (r; B)—l:
0 X

Inserting (3.15) into the last integral we get an absolutely convergent double integral, since
we have (3.6) and K»;.(z) < |logz| as £ — 40 and Ky;, < €™* as  — oo providing
r is real. Thus, exchanging the order of integrals, we have

. 1
_(r;«a, = — — cosh(nr cosws—%a 'l —-s)I'(1+a-s)w(s
- ) = = g coshia) [ cos (n{s — )L =)L+ s)u(s)

X / Ky (2) (E) Bl ds.
0 2

The inner integral is equal to I'(s — 2(a + 8+ 1) + ir)['(s — 3(a + 8+ 1) — ir). Hence,
as in (3.25) we obtain, for real r and («, ) € R(b),

(3.30) b-(r;a, B) = V_(ir; a, B),
where

U_(&u,v) =— Lcos(7r£) /ooi cos (m(s — 2u))T(s — L(u+v+1)+§)
(3.31) T 4m —oi 2 2

xT(s—3(u+v+1) = &1 — )1+ u— s)w(s)ds;
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the path is as in (3.24). We have also the following counterpart of (3.27):

(3.32) P60 = L)

X {sin (w(f - %I/))Eo(f; u,v) + sin (71'({ + 3v))Eo(=&u,v)},

providing &, u, v are such that U_(§;u,v) is well-defined.

Before inserting (3.18) and (3.29) into (3.12) we make an important observation that
Z0(&;u,v) is of rapid decay when (u,v) € R(b) is bounded and ¢ tends to infinity on the
imaginary axis. To show this we note that in (3.26) we may use the path which is the
result of connecting the points b — coi, b— $|¢[i, —c — $[€[i, —c+ 5[], b+ (€4, b+ ooi
with straight lines, where ¢ > 0 is to be chosen sufficiently large. Then (3.6) and Stirling’s
formula give the desired result. Similarly we can show that Eo(k — %; u,v) is of rapid
decay when (u,v) € R(b) and the integer k tends to +o0c. Then the relations (3.25), (3.27),
(3.28), (3.30), (3.31) and (3.32) imply that 9. (75, B), P-(r;a, B), ¥ (i(: — k); , B)
are of rapid decay as functions of real r and integral £ > 1, providing (o, 3) € R(b)
is bounded. Having this we insert (3.18) and (3.29) into (3.12), getting multiple sums
which are absolutely and uniformly convergent for all bounded («, 3) € R(b); note that
we need here (2.1), (2.7) and (2.8) (naturally (2.8) can be replaced by some statistical
result like (2.1)). Hence, after some exchanges of the order of summation we find that
(3.9) with (3.11) can be replaced by

(3.33) Af(a, ;W) = Ui(a, B) + Ac(a, B) + Aa(a, B) + An(a, B).

Here, with an obvious abuse of notation,

Ad(a, B) =2(2m)P 71 frlet04D i a;t;(f)

(3.34)4 <
X Hi(;(1—a—-P)H;(5(1+ a—0) (Y4 +&;V_)(ik;; e, B),
1 T\ — (k)
(31), (e 0)=g@mPfrer Y cos () g ;<—1>’caj,ktj,k<f>

X H]:k(%(l — o= ﬁ))H],k(%(]‘ +oa-— IB))EO(k - %;aa ﬂ)a

Adler, B) = = di(2m)°=2 f3(a+0+D

(3.34). x/ o0 (£)Z(& 0, B)
© C(1+28)¢(1-2¢)

(\I’+ + \Il—)(é.;aa ﬂ)df,

where
Z(&a, B)=¢(3(1—a—-p)+&)¢(3(1 —a-F) - §)
x((z(1+a=B)+&)¢(3(1+a—-pB)—-¢).

In the above we have used (2.3), (2.4), (2.9) as well as (3.25), (3.28), (3.30). This ends
our discussion of A¢(c, ;W) when (o, 3) € R(b).

(3.35)
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We now turn to By(a, §;Wy), but we shall be brief. We first introduce the Mellin
transform

1
(3.36) wo(s) = / Wo(z)z*d.
0
Since the integral is over the unit interval, we see that for any B > 0

(3.37) wo(s) < (L +[s])8

whenever Re(s) > —B; note that this is much stronger than (3.6). We then follow the
argument leading to (3.9)-(3.11), and get, in R(b),

(3.38) Bn(a, B;Wy) = Vi(e, B) + B (a, B) + By (a, B).
Here

Vi(a, B) :Na+ﬂ01_a_ﬂ(N)w0(1)C(1 —a)¢(1-7)

C2-a-p)
(3.39)
¢(1 +a)¢(1 ~ B)
+ NP011amp(fwo(l + a) {2+a-pB)
and

(340) B (o, B) = 2(2m)°7}((1 - B)NFHAHD ia_a<n)n%<a+”—l>Li(N,n;a, B),

n=1
where
1 4mv/Nn
(3.41) Li(N,n;a, ﬁ)=275(iN,n;1)wi( i B);
=1
QO-I—(‘T; Q, ﬁ)
. 1 s—a—pF3—
(3.42) =—— [ I(1-s)(1+a—s)cos(m(s— %oz))wo(s)(z)2 71 s,
2w () 2
(3.43) ¢_(z;a, B) = L cos (H) / r1-s)rl+a- s)wo(s)(f)%_a_ﬁ_lds.
27 27 Jw 2
We apply Lemmas 1 and 2 to L., respectively. We have
Li(N,n;a, B) =Y ajt;(N)t;(n)g (k5 B)
Jj=1
oo 9(k)
(3.44) + 3N it (Ntin(n)@y (i(3 — k), B)
k=6 j=1

+

1 /°° 02ir(N)o2:ir(n)

7 ) Ny icL + 2imyp P+ (e A)dr
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In this we have, for real r and («, 8) € R(b),

(3.45) P4(ria, B) = 4(ir;a, B),
where

Bulu) == 1 [ cos (s — 3u) sin (r(s — u+ )

x (s — %(u+v+1)+§)F(s— %(u-{—v-}-l)—ﬁ)
xI'(1 = $)I'(1+u— s)wo(s)ds

(3.46)

with the same path as in (3.24). The analogue of (3.27) for &, (&;u,v) is

(3.47) 4 (Eu,0) = ——”Grf—){a(é;u,v) ~ Ey(~&u,0)}.

" 4sin

where

— 1 ooiI‘(ﬁ—%(u—l—v-l—l)—i—s)
(3.48) 2Guwv) =35 /_ooi L€+ 3utv+3)—s)

X T(1 = $)D(1 4+ u — s) cos (m(s — 3u))wo(s)ds

with the same contour as in (3.26). Also, corresponding to (3.28), we have
~ . 7rr—w
(3.49) P+ (i(3 — k)i, B) = (1) 584 (k- 350, ).

On the other hand we have

L_(N,n;a, B) =Y e5astn(f)t;(n)p- (k5 0, B)

(3.50) i=1
+l/°° 02ir(N)0o2ir(n)

) Ny [C(1 + 2ir

In this we have

(3.51) o_(r;a, B) = _(ir; a, B),

where

B-(§u0) = cos(m)cos () [ T(s = hutv 1)+

2 — 001

xT(s—3(u+v+1)—&T1 - s)D(1+ u— s)wo(s)ds

(3.52)

with the same path as in (3.34). Then, on the condition

(3.53) sin g(u + v) sin g(u —v) #0,
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we have the following analogue of (3.32):

m cot(n) cos (2mu)

(3.54) @_(&u,v) = {E-(&u,v) - E_(=&u,0)}.

~ 4sin 37 (u + v)sin 37(u — v)

where

. _ 1 ©f (6 —S(ut+v+1)+s)
sz o &w) =g /_w- (¢ + ;(u+v+3) —)
X I'(1 = $)I'(1+u — s)sin (7(s + (v — u)) ) wo(s)ds

with the same contour as in (3.26).
The relation (3.54) needs a proof. For this sake we note that if &, u, v are such that
®_ (& u,v) is well-defined, then we have

(3.56) [wl, sin(rs)sin(m(s — u))T'(s — F(u+ v + 1) +¢)

xT(s—2(u+v+1) =& - s)I'(1+u— s)wo(s)ds =0,

where the path is as in (3.24). In fact this integrand is regular on the right of the contour.
Thus by virtue of (3.37) we get (3.56) after shifting the path to Re(s) = +o00. But we have

sin(rs) sin(m(s—u))+sin g(u+v) sin g(u—v) =sinm(s+3(v—u))sinm(s—3(u+v)).
Hence, if (3.53) holds, then the integral in (3.52) is equal to
L /wi sin(s+ 3(v—u))sinm(s — 3(u+v))
sin ir(u +v)sin i (u —v) /oo 2 2
xT(s—L(u+v+1)+&T(s—F(u+v+1)— &1 - s)I(L+u — s)wo(s)ds

w24

- 1 {E_(—f;u,v)—E_(f;u,v)},

sin(7€) sin 37 (u 4 v) sin 37(u — v)

whence we have (3.54).

Next we observe that for any bounded (a, 8) € R(b) the functions ¢ (r;«, 3) and
@—_(r; a, B) are of rapid decay when r tends to oo on the real axis. This can be proved
by using in (3.45) and (3.51) (or equivalently in (3.46) and (3.52)) the path that we have
used in proving the rapid decay of Z¢(;u,v). (Here it should be stressed that 2 (&; u, v)
are not of rapid decay when ¢ tends to infinity on the imaginary axis.) On the other hand,
to prove the rapid decay of ¢4 (z(% — k);a, ,6) we use the relation (3.49); we need only
to shift the path to Re(s) = —c with a large ¢ > 0.

Having these we insert (3.44) and (3.50) into (3.40). Then we get the following analogue
of (3.33)-(3.34): For any (a, 3) € R(b)

(3.57)  By(a, B;Wo) = Vi(e, B) + B (e, B) + B (e, B) + Ba(e, B) + Bu(, f),
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where V7 is as in (3.39), and

Ba(a, B) = 2(2W)ﬂ—1N%(a+ﬂ+l)

(358)a > esti(NH; (3(1 = o= B) H (3(1+ a = B)) (4 + ;@) (ikj3 0, B),
1 ro oo Y(k)
@5y, @)= 7 2m)P NFEH cos (=) k; ;(*1)’°aj,ktj,k(N)

X Hip(3(1—a-3)H;x(3(1+a—P)Es (k- 0, B),

(358)c B(;:{:(a, ,8) — _4i(2ﬂ)ﬂ—2N%(a+ﬂ+l)/ N_£0'2E(N)Z(€;a, IB) (b:l:(é;aa ﬂ)dﬁ,

o C(1+26)¢(1—2¢)

where Z(&; a, () is defined by (3.35). This ends our discussion on By(c, 8; W,) when
(a, B) € R(b).

Before closing this section we remark that the functions =y and =4 are introduced in
order to make clear the process of analytic continuation of A.(c, 8) and B (a, 3), which
is to be developed in the next section.

4. Analytic continuation

Now we have to continue analytically the spectral decompositions (3.33) and (3.57) to
a neighbourhood of the origin, and finish our proof of Theorems 3 and 4.

We deal first with A¢(a, 8; W). Obviously our problem is equivalent to studying the
analytical properties of ¥ (&;«, ) as functions of three complex variables. To this end
we introduce the sets

D _{(ﬁuv)EC‘" neither ﬂ:ﬁ—%(u+v—1) nor i§+%(u—y+1)}
+ = s Wy 5

are equal to non-positive integers

and put
Dy=D,NnD_.

These are domains in C3; that is, they are open and arcwise connected. The latter can
be shown by simply connecting two points of respective sets by a straight line with
possible indents. By the definitions (3.24) and (3.31), V4 (&; a, 3) are well-defined and
regular at each point of Dy. Then by a routine argument we can show that they are single
valued regular functions over Dy. Namely, starting at a point of Dy they can be continued
analytically to any point of D, and the result is always given by their original integral
representations with a suitable choice of the contour. As a matter of fact ¥ (&;u,v)
are meromorphic over the entire C3, but we shall not use the notion of meromorphy to
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avoid any ambiguities that may be caused by the complicated nature of the polar sets
of these functions.

We then confine (u, v) in an arbitrary fixed bounded set of C?, and assume that
& is in a fixed vertical strip of C. Obviously we have (§,u,v) € Dq if |Im(&)| is
sufficiently large. On this situation one can show that Wy (&;u,v) are of rapid decay
with respect to £ uniformly for such (u,v) when ¢ tends to infinity. To show this
we use, in (3.24) and (3.31), the path that is the result of connecting the points
¢ — ooty ¢ — 3[¢li, —c — 3|Eli, —c + F|Eli, ¢+ 3[€]i, ¢+ ooi with straight lines, where
¢ > 0 is sufficiently large. Then the result follows from (3.6) and Stirling’s formula.

Next we define, for each ¢ € C,

(4.1) Qo(€) = { (u,v) € C?; (§,u,v) € Do},

which is never empty. We put

Qa = () Qolir;).

=1

This is obviously a domain in C2. One should observe that Q4 D R(b) for any negative b,
and (0, 0) € Dg4. Then we consider A4(c, ). The summands in it are all regular over Q4
because of (2.1) (with n = 1), (2.5) and the rapid decay of ¥, mentioned above. Hence
Ay(a, B) exists as a regular function over Qg .

We next consider A (a, (). This time we need to know the analytical properties of
Z0(&;u,v). One may show without difficulty that Z¢(&; u,v) exists as a regular function
over D, and that it is of rapid decay with respect to £ uniformly for all bounded (u,v)
when ¢ tends to +oo in any fixed horizontal strip. We then define Q. (£) analogously
to (4.1), and

Qn = ﬂ Q+(k-1).
k=6

This is a domain in C2, which contains the origin and the set R(b) for any negative b.
The sum defining A (c, 3) is uniformly convergent for all bounded (a, 3) € @}, because
of (2.7), (2.8) and (2.10) as well as the rapid decay of Eo(k -5 u,'u)‘ Hence Ap(a, 0B)
exists as a regular function over Q.

Thus we have shown that A4(a, 8) + Ar(a, B) exists as a regular function over the
domain Q4N Q. This implies that A.(c, 8)+ Ui (e, B) is a regular function over Q;NQ4,
for all other members in (3.33) are regular there. We shall make this fact more explicit
in terms of A.(«, B3).

To this end we introduce a large parameter P > 0 which is to satisfy the condition

C(s)#0 for Im(s) = +£2P.

Then we divide the range of integration in (3.34). into two parts according to |£| > P and
|¢€] < P, and denote the corresponding parts of A.(«, B) by Ac1(e, ) and A.z(a, B)
so that

(4.2) Ac(, B) = Aca(a, B) + Acp(e, B),
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where we have («, ) € R(b) of course. We consider A, 1(a, 8) with (o, 8) € R(b)NTp
where
T = {0 bl < P/3).

We observe that if Re(§) = 0, |[Im(&)| > P, then Z(;a, 3) is regular and O([¢[°) in
Tp; where ¢ depends only on P. Hence A. (e, () is a regular function over Tp. As
for A.2(a, B) we argue more carefully. We first transform it by using (3.27) and (3.32),
and apply the functional equation of ((s) to the factor {(1 — 2£)~1. Then we have, for
(o, B) € R(b),

Pi
Acalar, B) = 2i(2m) 20 [ -t )

(4.3) —Pi

x { cos (%) —sin (m (€ - g))}Z@;a, B¢ +26)6(26)} " Eo(; v, B)dE.

In this we move the path to Lp which is the result of connecting the points
—Pi, [P+ 1 - Pi, [P]+ ; + Pi, Pi by straight lines. Since (¢, , 3) € Dy if Re(¢) > 0
and (a, ) € R(b), the singularities of the integrand which we encounter in this procedure
come only from Z(&;a, B)I'(1 — 2€)¢(2€)71, and they are all poles and located at

(4.4) ~a+B+1), —-3(B-a+l),
and
(4.5) 30 (Imp| < P), 3n (2<n<[P)),

where p runs over complex zeros of {(s); note our choice of P. To avoid any coincidence
of the points in (4.4) with those in (4.5) we assume further that («, 8) € Q. where

Qe = {(u,v); neither u + v nor u — v are equal to integers}.

This is a technical condition, and will soon be eliminated. Then we see that the poles given
in (4.4) are simple whenever («, 8) € R(b) N Tp N Q., and there we have

(4.6) Acp(a, B) = Us(a, B) + Y (e, B) + A 5(a, B).

Here Us(a, 8) and Y («, () are the contributions of the residues at the poles given in (4.4)
and (4.5), respectively, and AZ,Q(a, B3) has the same expression as the right side of (4.3)
but with the contour Lp. In (4.6) the term A’ ,(«, () is regular over Tp. For, Z(&; a, 3)
and Z(&; a, 8) are regular over Lp x Tp; observe that (¢, «, 3) € D, there. To define a
domain where Y (a, () is regular we introduce the sets

Q- = [ [Q+(p/2) N {(u,v); Z(p/2;u,v) # o}],

Q: = [ [Q+(n/2) N {(u,v); Z(n/2;u,v) # co}],

n

where p runs over complex zeros of ((s). Then @, NQ; is a domain in C?, which contains
the origin and R(b) N Q.. But, the residues at the poles listed in (4.5) are obviously all
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regular over @, N @, and so is Y («, B). Gathering the above discussion we have the
decomposition

Af(o, B; W) =Us(a, B) + Uz(e, B) + A7 5(a, B)
+ Ac,l(a7 /6) + Y(aa /6) + Ad(a7 /8) + Ah(a, ﬁ)
for any (a, #) € Sp where

Sp=QaNQrNQ.NQ:NTp.

It should be stressed that we have dropped the condition («, §) € Q.. This is legitimate.
For, all members, except for U; (o, 3) and Uy (e, ), in (4.7) are regular in Sp. Obviously
Sp is a domain in C? such that Sp N R(b) # O and (0, 0) € Sp. Hence (4.7) gives
an analytic continuation of (3.33) to a neighbourhood of the origin. Having this we now
suppose in the expression (4.7) that «, 0 are small. We then move the contour Lp in
A} 5(a, () back to the original segment [— P4, Pi]. This time we encounter only the poles
listed in (4.4), and get

(4.8) A7 (e, B) = =Y (a, B) + A75(a, B),

where A%%(a, B) has the same expression as the right side of (4.3) but with different
(a, B). Obviously A¥%(a, B) is regular when «, 3 are small. Namely we have, in a
neighbourhood of the origin,

(4'9) Af(a’ﬂ; W) = U(aa ﬂ) + AC(OQ ﬂ) + Ad(av /8) + Ah(av ﬁ)a

where U(a, B) = Ui(a, B) + Us(e, B) and Ac(c, B) = Aci(a, B) + A(a, B). We

note that A.(c, ) is regular at the origin, and has the same representation as (3.34).. but

with different (o, 3). The relation (4.9) implies in particular that U(«, [3) is regular at the

origin. This ends the analytic continuation of (3.33) to a neighbourhood of the origin.
Now, setting («, 8) = (0, 0) in (4.9) we obtain

(4.7)

(4.10) i d(n)d(n + f)W(;) = U(0, 0) + A(0, 0) + A4(0, 0) + A4 (0, 0).
n=1

Let us express U(0,0) explicitly in terms of the weight W. By the definition of Us(a, (3)
we have, after some rearrangement,

Us(a, B) =aa+ﬂ+1(f)Fi(_lﬁ-i)_ggﬁl;f;) Eo( - 3(a+B+1);a, B)

((1-a)(1+p) o
L(-B)¢(2—a+pB)
at least if («, 8) € R(b) N Q.; this we suppose for a while. But we have, for such («, 3),

(4.11)

+ [0 _arpr1(f) (_ %(‘O‘""ﬂ'i'l);a? 6))

Eo( - La+B+1)a,8) = 2—715 W‘F(s —a—= -1+ a-s)w(s)ds,
S0~ H-at Bt o f) = o= [ T(s - - DI - shu(s)ds,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



554 Y. MOTOHASHI

where the path in either integral is, by definition, such that it separates the poles of the
first gamma-factor from those of the second of the respective integrand. To these we insert
(3.5), and exchange the order of integral. We then get

S0l + B+ Dio ) =T(=H) [ Wla)o*(1+2)%ds,
(4.12)
Eo(— 3(-~a+B8+1)a,8) =T(- ﬁ)/ W (z)(1 + z)’dz.

This shows that we may now drop the condition (o, 8) € R(b) N Q.. Thus, from
(3.10),(4.11) and (4.12), we find that

Ula, B) = /Ooo W(z)ps(z; o, B)dz

where
Mf(fﬂ}av ﬂ)
_ CA+a)(1+8) , o ¢(1 —a)¢(1+p)
= 014a+6(f) Cra+ph) © (1+2)° + feo1-ass(f) B=atP (1+2)°
C(l*l—()d)((l—ﬁ) o a C(].“O[)C(l—/@)
+ fﬂ01+a—ﬂ(f) <(2+Ot — ,B) T+ f +ﬂ01—a—ﬁ(f) C(2 e B) .
Then by a standard argument we get
6
ps(x;0,0) = A )uf(:v;a, p) = —m(z; f),

where m(z; f) is defined by (1.12). Hence we have

(4.13) U(0,0) = / W (z)m(z; f)dz

which is the first term on the right side of (2.12).
On the other hand we have
(
~ ot [T . 'C( +ir)[* .
A.(0,0) = 22/ T ogir(f) = (U + U_)(4r;0,0)dr,
( ) T f _oof 02 (f)|C(1+2 )|2( ++ )(Z'I" ) T
(414) Ad(0,0) = W—lf% Z aJt](f)H](%)z(\Ij+ + ‘l’_)(llﬁ],o,O),
Jj=1
oo V(k)

ZZ( 1) aJkt]k(f) Jk() (k_%§070)§

L k=6 j=1

.nlv—'

on the right side of A4(0,0) we have used the fact that H;(3) = 0 if &; = —1 which is a
consequence of the functional equation of H;(s). But, we have, by (3.27) and (3.32),

(4.15) (U4 + U_)(ir;0,0) Re{( an—h%;))so(ir;o, 0)},
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providing r is real. Further by (3.26) we have

= (¢ _ 1 ' - 3+ s)
'—'0(€a Oa 0) - Zr“; /(a) f(f_ﬁ-g‘—.—?)r(l - s)zw(s)ds

if Re(¢) > —— , where 1 — Re(£) < a < 1. Then by (3.5) we get

L(£+ 3)? 1
(4.16)  E0(§0,0) = rgg ji) / W(z)e 2 SF (£ + 3,6+ 3; 26 + ;=) dm,
where F' is the hypergeometric function. Finally, collecting (4.10) and (4.13)-(4.16) we
end the proof of Theorem 3.

We now turn to the proof of Theorem 4, which is somewhat different from that of
Theorem 3. The main difference occurs when we try to find an analytic continuation
of B¥(a,3) to a neighbourhood of the origin; otherwise there is not much difference.
Thus, following the above argument on Af(c, 8; W) up to the point where we started the
discussion of A.(«, ), we can conclude without difficulty that By(«,3) and By(a, )
are regular in Q4 N Q4, and hence B} (a,B) + B (., B8) + Vi(a, B) is regular there. As
before we have to realize the analytic continuation of BX(«,3) in their own term. But
this time we have to treat them separately, since we do not have the analogue of (4.3)
for B (a, ) + BZ (a, ).

We consider B (a, 3) first. As in (4.2) we divide it into two parts:

(4.17) Bf(a,p) = Bf1(a,p) + Biy(a, ).

The mode of division is just as before, and thus BY, (a, 8) is regular for (o, 3) € Tp. As
for B},(«,8) we use (3.47) and the functional equation of ((s), getting

P3
Biy(a, B) = — 2i(2m)P ANFOHAD [ (9n)E N €00 (N)Z(E; a0, )
(4.18) —Pi
x T(1 = 26){¢(1 4 26)¢(1 — 26)} B4 (&, B)dE,

providing (a,3) € R(b). Keeping (a,f) in R(b) N Tp we move the contour to Lp
introduced above. We encounter poles at the points listed in (4.4) and (4.5). Then, on the
condition that (a,8) € R(b) N Q. N Tp, we have

(4.19) BL(a,ﬂ) Vi (e, B) + Y (e, ,8)+B > (a, B),

where V;"(a,3) and Y*+(a, ) are the contributions of the residues at the poles (4.4)
and (4.5), respectively, and B;',' 5(a,B) has the same expression as (4.18) but with the
contour Lp. The terms Y (a, ) and Bj:;(a,ﬁ) are regular in @, N Q; N Tp. On the
other hand we have, in (4.19),

V3 (a,B)
_ 0a+ﬂ+1(N) A+a)¢(1+8) -
(4.20) " 2cos tmBcos im(a+ B) T(=B)C(2+ a+ 3) 4
N®05_at1(N) (A-a)(1+8)
~ 2cos irBeosin(a— B)T(-B)K(2—a+8)"

(—3(a+B+1);a,p)

+(=3(B-a+1)a,p).
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But we have

Er(—Lia+B+1);0,8) = —cos (%)F(_ﬂ)/o Wo(z)z®(1 — z)Pdz,

[1]

1
T
(=48 -atDiaB) = —cosGOT(-) [ Wala)(1 - 0)Pds,
0
which are consequences of (3.36) and (3.48). Thus (4.20) is replaced by

cos (37a)0atpr1(N) C(14+a)C1+3) [* a 8

2cos 1 27r,Bcos e+ B) (2+a+p) / Wole)a™(1 — o) da
cos( 1) N¥0g_as1(N) ¢(1 — @)¢(1 + B)
2cos smflcosim(a—B) ((2—a+p)

Vi (e, 8) =

/ Wo(z)(1 — z)Pdx,

which is obviously meromorphic in each variable o and 3. This means that B+2(a B)
exists as a regular function over the domain

Q:NQ:NTp N {(u,v); V5 (u,v) # oo},
and there we have
(4.21) Bf (a,8) = V3" (a, ) + Y (e, B) + B1 (e, B) + BZ3 (a, B).
Next we consider B (a, ). We have the decomposition
(4.22) B (a,8) = B_ (o, 8) + B_5(a, B)
analogously to (4.17). In this B_,(«a, () is regular for (a,3) € Tp. To discuss the
continuation of B_,(«, ) we assume that (a, 8) € R(b)NQ.. In particular (u,v) = (a, §)

satisfies (3.53), and we can use (3.54). We have, for such (a, 3),

cos (3ma)
sin 2m(a + B) sin 3w — )

[z
—pi C(1+28)¢(1 - 2¢)

By (a,B) = i(27r)ﬂ_1N%(a+ﬂ+1)
(4.23)

cot(r§)=_(&; o, B)dE.

Keeping (a, ) in R(b) N Q. N Tp we move the contour to Lp again. We encounter
poles at the points listed in (4.4) and (4.5), and get

(4.24) Boy(e B) = Vi (e ) + Y~ (e, ) + B3 (v, B),

where V, (o, 8) and Y~ («, ) are the contributions of the residues at the poles (4.4) and
(4.5), respectively, and B_;(«, 3) has the same expression as (4.23) but with the contour
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Lp. The terms Y~ (o, 3) and B_;(a, ) are regular in Q, N Q; N Q. N Tp. On the other
hand we have, in (4.24),

3 cos (37ma) gatg+1(IV) ¢(1+a)¢(1+5)
2cos 33 cos 3m(a + B)sin im(a — B) T(=F)C(2+ a + B)
X E_(=z(a+B+1);a,0)

~ cos(3m)N*05_a41(NV) ((L—a)(1+ph)
2cos 3 cos gm(a — fB)sin im(a + B) T(=B)C(2 — a + )

x E_(-3(8 - a+1)a,p).

But, (3.36) and (3.55) give

Vy (a,8) =

(4.25)

E_(-3(a+B+1)0a,8) = ——sin(?)I’(—ﬁ)/0 Wo(z)z*(1 — z)Pdz , -

[1]

(3B -a+1)50.8) = sin(GIN(H) [ Wo@)1 - )’

Thus V; (@, ) exists as a meromorphic function for each variable o and (. Hence
B (a, ) exists as a regular function in the set

Q:NQ:N Qe NTp N{(u,v); V3 (u,v) # oo},
and there we have
(4.26) B (a, 8) = V3 (@, 8) + Y (e, B) + BZ (e, B) + B3 (e, B).
Gathering the above considerations we get the decomposition
(42n) By(a, B;Wo) = Vi(a, B) + V5" (a, B) + V5~ (@, B) + By (a, ) + BZ 1 (@, B)
+Y* (e, 8) + Y™ (o, 8) + BE;(a, ) + B3 (e, B) + Ba(e, 8) + Ba(e, )

in the domain Sp N Q.; note that the sum of the first three terms on the right side is regular
in SpNQ., for all other terms of (4.27) are regular there. We remark that Sp N Q. contains
points which are arbitrarily close to (0,0). This ends our analytic continuation of (3.57).

Now we suppose in (4.27) that «, § are small and (o, 3) € Q.. On this situation we
move the contour Lp in Bf;(a,,@) back to the original segment [—Pi, Pi]. This time
we encounter poles given in (4.5) and at

1 1
(4.28) §(a+,3+1), §(ﬂ—a+1),
which are close to % We have
Br;(a,B) = Vi (a, f) = Y*(a, B) + BE (o, B),
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where V;(a, ) are the contributions of the poles (4.28), and B3 (a, 8) have the
expression (4.18) and (4.23), respectively, but with different (o, 3). Hence by (4.27) we
have, on the present assumption,

(4.29)  Bn(a,B;Wo) = V(a, ) + BX (e, B) + BS (o, B) + Ba(ex, B) + Bi(a, B),

where V = Vi + V3t + V- + Vit + V57, and BE(a, () have the same expression as (3.58).,
but with different (o, 3). We note that in (4.29) all terms except for V(«, 3) are obviously
regular in a neighbourhood of the origin. That is, (4.29) holds for small «, 8 without the
restriction («, 8) € Q., and in particular V (e, f3) is regular at (0,0).

Namely, specializing (4.29) we get

(4.30) id(n)d(N—n)Wo(%) = V(0,0)+B;(0,0)+ B (0,0)+ B4(0,0) + B, (0,0).

We now compute V'(0,0) explicitly in terms of Wy(z). We note first that by definition

_ Tatp+1(N) (1 +a)¢(1+8)
Vs' (@ 6) "~ 2cosimBceosim(a+ B)T(-B)((2+ a+p)

x Z4(z(a+B+1);0,0)

4.31
(431 + Neop_as1(N) (1 -a)X(1+5)
2cos irBcos im(a— B) T(-B)(2 — a+ )
X E+(%(B -—a+ 1);a7ﬂ)a
Vi (o B) = cos(37)Tayp1(N) C(1+a)(1+4)
3 2cos 2B cos im(a + fB)sin gm(a — B) T(—=B)((2+ a + B)
(4.52) X E_(3(a+B+1);e,P)

cos(3m)N*og_as1(IV) ¢ —a)¢(1+5)
2cos imfcos 3m(a — fB)sin gm(a + B) T(—B)¢(2 — a + B)
xE2_(3(B-a+1);0,8),
providing «,3 are small and (o,3) € Q.. We assume further that the points

(%(a + B+ 1),a,ﬁ) and (%(ﬂ —a+ 1),a,ﬁ) are in Dy. Then we can use (3.47)
and (3.54). We have, from (4.20) and (4.31),

2 (V) (1 +a)((1+5)

m cos(370) VT (B2 + a+ )
X @y (L(a+B+1)a,0)

2

+ Waﬂ—aﬂ(]v)

X (I)+(%(ﬂ —a+ 1);05’

Vit (0, B) + Vs (e, ) =

(433) (1 - a)C(1 4+ B)

¢
T(-A)EZ - a+p)
)
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Similarly (4.25) and (4.32) give

2 (1+a)(1+8)
cos(3mp) 0a+ﬂ+1(N)1"(——,3)C(2 +a+p)

X <IL(%(0¢+;3+ 1);a,,8)

2 ¢ —a)f(1+5)
+ w cos(370) poat1(N) I'(-8)¢(2-a+p)

X ®_(3(8—a+1);0,8).

‘/2_(0":6) + ‘/3—(&,,8) =

(4.34)

But, we have, by (3.46) and (3.52),
(®4+0_)(5(a+ B+ 1);0,8)

= —ﬁ; . {sin g(a + ) cos % + cosm(s — %)sinr(s - 3(a+0)}
xT(s)['(s—a—p—1)I(1—s)I(1+ a— s)we(s)ds
1 oot

= cosm(s —a — g)r‘(s —a— -1+ a— s)we(s)ds;

4 —o0t

in the first integral the path separates the poles of I'(s)I'(s — @ — 3 — 1) from those of
I['(1 — s)I'(1 + @ — s). We shift the contour in the last integral to Re(s) = +o0, while
noticing (3.37). We then find that

(4.35) (P4 +®_)3(a+B+1);0,0) = gl’(~ﬂ) cos ? /0 Wo(z)z*(1 — z)Pdz,

providing the present condition on («, 3). In just the same way we get also

(4.36) (P4 +@)3(B—a+1);a,8) = gl"(—,@) cos ?/0 Wo(z)(1 — z)Pdz.

Collecting (3.39) and (4.33)—(4.36)vwe find that in a neighbourhood of the origin

V(a,8) = /0 Wo(@)px (a3 @, B)de,

where

(L +a)¢(1 +5)
2+ a+p)
(1 —a)¢(1+5)
(2-a+8)
¢(1+a)¢(d - /B)ma

(2+a-p)

+ Na+ﬂ0'1-a_,@(N) C(é(; f)i(i ;)/8) )

(1 —z)P

PN(IE;Olaﬁ) = 01+a+ﬂ(N)

+ N°01-asa(N) (1-2)°

+ Nﬁ0'1+a_g(N)
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Hence we obtain
6 1
(4.37) V(0,0) = ~7r—2/0 Wo(z)n(z; N)dz,

where n(z; N) is defined in Theorem 4.
On the other hand we have in (4.30)

11— ,
(4.38)4 4(0,0) = =N N? Z: L2(®, + ®_)(ik;;0,0),
1 oo ¥(k)
1 —_—
(4.38)1 B,(0,0) ZN? § :E Y*aj it e (N)Hjk(2)?E4 (k — 1;0,0),
k=6 j=1

(B} + B7)(0,0)

(4.38). :_N / N~ (V]

|6(5 +in)[*

12 )|2(<I>+ + ®_)(ir;0,0)dr.

We have, by (3.46),(3.48) and (3.52), respectively,
4.39 ‘~I>+ir;0,0:ﬁ T(s)™’T(s — 2 +ir)I(s — 2 — ir) cot(ms)wo(s)ds,
4 @) 2 2

(4.40) 24 (k- 1,0,0) = 2;2 /(O) Mr(l—s)%os(m)wo(s)ds,

(4.41) ®_(ir;0,0) = 21—175 cosh(7rr)/ [(s — 3 +ir)I(s — § —ir)['(1 — 5)’wo(s)ds,
€]

where r is real, and k is integral. We shift the path in (4.39)-(4.41) to Re(s) = +oo, while
invoking (3.37). Inserting the results into (4.38)4-(4.38)., and collecting (4.30), (4.37), we
end the proof of Theorem 4. We do not give the details here. For, as we have remarked
after the statement of Theorem 6 we shall not use Theorem 4 to prove Theorem 6; we shall
apply the saddle point method to (4.39)-(4.41) without recoursing to (2.15), and prove

Theorem 6 in the next section.

4° SERIE — TOME 27 — 1994 — N° 5



THE BINARY ADDITIVE DIVISOR PROBLEM 561
5. Specialization

In this section we shall prove Theorems 5, 6 and 7. We shall first deduce Theorem
5 from Theorem 3.

To this end let 0 < § < % and p(z) = exp(—2 exp(—12=)). We define g(x) to be equal
toOforz <fandz>1, p((x—3)/6)for <z <3+6 1fori+6<z<1-9,
p((1 —x)/6) for 1 — 6 < x < 1. We may set W(z) = g(fz/M) in Theorem 3, where M
is a large parameter. Then we have, uniformly for

(5.1) M << i, 1< f<MYe,

the relation

(5.2) D(M; f) = D(M/2; f) = A;(0,0;W) + O(§ M),

where € > 0 is small and fixed. Thus Theorem 3 gives

(5.3)  E*(M;f) - E*(M/2 f) = ex(M; f) + es(M; f) + es(M; f) + O(6M*¥°),

where
M M/f
(5.4 B*(M:f) = Y dn)din+ £) = = [ mia: )i

and e, (M; f) (v = 1,2,3) corresponds to the (v + 1)-th term on the right side of the
expression (2.12).

Let A(r, M/ f) stand for Z¢(ér; W) which is defined by (2.13) and is equal to Z¢(ér; 0, 0)
(cf. (4.16)) on the present specialization of W. Then we have, by Euler’s representation
of hypergeometric functions,

(5.5) AEZ) =2 / o(z) / (y(1 — )"+ (Zz + )~ €dyd,

where Z > 0 and Im(¢) < 1. By partial integration with respect to the variable z we
have also, for v > 0,

(_l)u—lz—u
G-@C ) (v+5-)
X /1 9"tV (x) /l(y(l —y)) T (Zg 4 y) iR dyda.
1 0

2

A€, 2) =
(5.6)

From (5.5) and (5.6) we can deduce the following estimates: If Z > 1, then we have,
uniformly for 4,

1
(5.7) A5 - k)i 2) < Z17k2=k (K :integer > 2),

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



562 Y. MOTOHASHI

(5.8) A6, Z) < ZE(1+[E) T2 (1 +6E)™" (£ + real).
If 0 < Z <1, then we have, uniformly for 4,

(5.9) A((3 - k)i, Z) < min(k~2, k™! exp(—%kZ%)) (k : integer > 2),
-2 Zs | -3 Z o
(5.10) A(§, 2) < (1+[¢])(log 5)° (£ : real, [¢] < Z7%(log 7)),

1 3 1 1 Z
(5.11) MEZ) < Z3|€77 (1 +68l6]2%) ™" (& : real, [¢] > Z7 % (log 5)2)-

Among these (5.7) follows from (5.5) immediately. To show (5.9) we use (5.6) with
v = 0. We have

A - k)3, Z) = —/ ’()/( Dty

The maximum of the inner integrand is O(exp(—31kv/Z)), since 0 < Z < 1 ; and
the integrand itself is O((1 — y)*~!), whence we have (5.9). To show (5.10) we use
(5.6) with v = 0 again. We divide the inner integral into two parts according to
y < Z3(log(Z/2))? and Z%(log(Z/2))? < y < 1. In the first part the integrand is
obviously O(y~%(Z+y)?), and in the second part it is (1—y)~2+%(14+0(y~ 1 Z(1+|£]))),
for we have |¢| < Z~7 (log(Z/2))?. From these (5.10) follows. As for (5.8) and (5.11) we
prove them by applying the saddle point method to the inner integral of (5.6) with v = 0
or 1. But we give the details only for (5.11), since (5.8) is easier than (5.11).
Thus we consider the integral

(5.12) / (y(1 —y))~% U+y)”+2 exp(i€q(y, U))dy,

where U = Zz < 1, £ > U5 (log(U/2))?, q(y, U) = log{(y(1-y))/(U +y)},and v = 0
or 1. The saddle point is at yo = Uz (U% + (U 4 1)2)~1, which is close to Uz when U is
small. We then move the path in (5.12) to L = Ly + L, + L3 where L, (v = 1,2,3) are
the segments [0, yo(1 — row)], [yo(1 — Tow), Yo(1 + row)], [yo(1 + row), 1], respectively.
Here ro is a small positive constant, and w = exp(—3wi). We denote a point on L by
y(1 + rw) where 0 < y < 1. We have r = r9 on Ly, —rog < r < ry on Ls, and
r = yo(1 — y)(y(1 — yo))~'ro on L. Then we note that we have

gy(l -y)

q(y(1+rw),U) =1lo Uty

where

U-2U -y TWw + yU(U +1) r2i
(U+y)(1 ) U+y)U+y+yrw)(l-y)

s(r;y, U) =1+
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This gives immediately that on L; + L3 we have Im{q(y(1 + rw),U)} > cU%r3 with a
positive constant c. Thus the integral over Li + Ls is O(exp(—cr2U%¢)); note the lower
bound of £ which we have introduced above. On the other hand on L, we have y = yq
and Im{q(yo(1 + rw),U)} > cU%r2. Hence the integral over Ly is O(U2(*+2)¢~1),
which is also a bound of the original integral (5.12). Inserting this into (5.6) with v = 0
or 1 we obtain (5.11).

We may now return to (5.3), and assume (2.17). We consider first the case f < M.
Then (5.8) gives readily

(5.13) e1(M; f) < M2 d(f).
Also (5.7) gives

oo B(k)

es(M; f) < MY " ajltiw(HIHu(3)727*
(5.14) k=6 j=1

< fEM7A(f),
for we have (2.7), (2.8) and (2.10). As for ex(M; f) we divide it into two parts 5 (M f),

v = 1,2, according to x; < f i~eand fiT> < K;, respectively, where « is as in (2.17).
We have, by (2.17) and (5.8),

3
(M f) < foMF > o Hi(L);
(5.15) Ks<fi/a-e
< fHEME (log M),

where we have used (2.1) with n = 1 and (2.6). To eg2)(M ; f) we apply (2.1) withn = f
and (2.6) as well as (5.8), getting

(5.16) e (M; f) < (F3T35M3% + M26™% + 6% 3 M¥)(log M)°.
Collecting (5.3), (5.13)-(5.16) and setting 6§ = M —% which satisfies (5.1), we obtain
(5.17) E*(M; f) — E*(M/2; f) < M3+e 4 fs¥iepite (1< f< M)
uniformly in f.

We consider next the case M < f < M?2~¢. This time we use (5.9)-(5.11). Thus (5.10)
and (5.11) give
(5.18) e1(M; f) < fi+e.
To e3(M; f) we apply (2.7), (2.8), (2.11) and (5.9), getting
(5.19) es(M; f) < fte.
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On the other hand (2.17), (5.10) and (5.11) give

Liote _
62(M; f) < f2+ + E ajHj(%)zK,j 2
i S(f/M)H/2

+MHT S gty (NIH ()R (L4 Sy (M)

;> (f/M)L/2

(5.20)

In this the first sum is O(M*¢) by (2.1) with n = 1 and (2.6). To bound the second
sum we consider two cases separately. First we suppose that M?/(1+40) < f < pf2-e,
Then by (2.1) with n = f and (2.6) the sum is O(M#+e + §~2 fi M~i+¢). On the
other hand, when M < f < M?/(+42) e divide the sum into two parts according to
(f/M)z < kj < fi—eor fi—e < k. The first part is estimated by (2.1) with n = 1, (2.6)
and (2.17); we find that it is O(f$+22+¢). The second part is, by (2.1) with n = f and
(2.6), O(fitaete 4 §=5 fiM~i+e 4 §2 Mi+e), Inserting these into (5.20) we see that

e2(M; f)
(5.21) < fhrete | fites—3 (M2/(+40) < f < Mf2-e)
(Mf)§f§+§a+a + f§+s(5—§ +M§f§+e5% (M<f< M2/(1+4a)).

Collecting (5.3), (5.18), (5.19) and (5.21), and setting § = M ~3 f3 which satisfies (5.1),
we get

E*(M;f) - E*(M/2; f)

(5.22) fitate (M?/(+4e) < f < J2/(1+20))
(Mf)%+e+(Mf)%+ef§+%a (M <f< M2/(1+4a)).

From (5.4), (5.17) and (5.22) we immediately obtain the assertion of Theorem 5.

Now we turn to the proof of Theorem 7. Thus we fix f, and so we have, by (5.3)
and (5.14),

E*(M; f) — E*(M/2; f) = ex(M; f) + e2(M; f) + O(§ M),
where ¢ is to be fixed later. We remark that in order to prove Theorem 7 it is enough to show
that the above expression is Q(M %), providing 6 < M~3~2¢_ To this end we introduce

N

FOVif) = [ (B4 ) - B/ )5

N/2

and we shall show that F(N;f) = Q(Nz) with a § < N ~%. Obviously this will end
the proof of Theorem 7.

We have
(5.23) F(N; f) = Fi(N; f) + Fa(N; f) + O(6N'*°),
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where N .y
RWif)= | eOGNGL =12
We put, for £ > 0,
(& 2) = %Re{% _1Z.§(1 + Smhﬂg)(x(é 1 Z) = N& Z/2)},

where

A&z = [ 2D [ - )z + )t ayds

with g being as above. Then we have

o L [T i€y, XG5+t .
G21) RO =28 [ e (€N e
and
(5.25) Fy(N; f) = £33 ajt;(£)H;(3)*n(k5; N/ ).

Jj=1

We have, by partial integration as before,

520 Mei2) =T e et [y

Applying the saddle point method to the inner integral we get, for Z > 1,
NEZ) < 231+ 1E)7F

or
(& Z) < Z3(L+ €))7

uniformly in €. This allows us to truncate (5.25): Thus let Ky > 1. Then we have

(527) BN ) =11 Y aiti(HH;(3) (k5 N/ f) + O(NKG * (log N)),

k; <Ko

where we have used (2.1) and (2.6). On the other hand, when Z > 1+ |£| we may replace
the last factor in the integrand of (5.26) by 1+ O((1+|£|)/Z). This gives, for Z > 1+|¢|,
AT L

P(%‘Hf) _ g—i+it
Ttz 2 T GTgr e

where the implied constant is absolute. Hence, on the condition Ky < N, (5.27) is
transformed into

N Z2) = Z37%

Fy(N; f) = NYF}(N; f) + O(N~3 Ko + N* K + NEKZ6)(log N)°),
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where

F3(N; f) = Zijtj(f)Hj(%)277*(ﬂj;N/f);
i ) (5 +4€)?
sinh7¢’ (3 — i€)2T(1 + i€)

ﬂ*(f7 Z) - %Re{ (1 + (1 _ 2_%+i§)2Z_iE}.

We then set Ko = N3 , and get

(5.28) Fy(N; f) = N*F3(N; f) + O(N¥ (log N)°),
providing
(5.29) Nt <§< N3,

Similarly we have, on (5.29),

Fi(N;f) = n*(6; N/ f)dé + O(N7#).

L ¢k + i€
3 i€ (p)1olz TR
N /_oof %170 7 2ie) P

3|

But, by partial integration we see that this integral is O((log N)~!). Hence
(5.30) Fi(N;f) < N%/logN,

provided (5.29).
Collecting (5.23), (5.28), (5.30) and choosing é appropriately, we obtain

F(N; f) = N¥F5(N; f) + O(N#(log N)™1).

It only remains for us to appeal to [13, Lemma 3]. Then what is to be checked is to
see whether the relevant non-vanishing condition holds or not in F3(N; f). Namely we
need to have a k such that

(5.31) > aiti(HH;(3)* #0.

Kj=K

But, by [26, Lemma] we have, as K — oo,
> aiti(F)H;(3)(53 + ) exp(—(k;/K)?) = (1 + o(1))2r~F K* log K
7j=1

if f is bounded. Obviously this implies (5.31), and we end our proof of Theorem 7.
Now we move to the proof of Theorem 6. Let p be the function introduced at the
beginning of this section. We set, in (4.30), Wy(z) to be the function which is equal to 0
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for 0 <z <46, p((x—98)/6) for 6 <z <26, 1for26 <z <1-24, p((1-6—x)/0)
for1-26 <2z <1-6, 0for1—46 <z <1, where

(5.32) N << i
We have
(5.33) D(N) = By (0,0;Wy) + O(§N'e).

Thus we have
(5.34) E(N)=-¢e1(N)+ex(N)+es(N)+ O(6N*e);

here ¢;(N) (j = 1,2,3) corresponds to B.(0,0), B4(0,0), Bx(0,0), respectively, in the
formula (4.30), where we have put B, = B + B, . We denote by @, (ir) and 2, (k — 3)
the present specializations of ®(ir;0,0) and 2, (k — 1;0,0), respectively. Then we see
that our problem is reduced to the estimation of these quantities for real r and integral
k > 6. We shall show the following estimates:

(5.35)+ @, (ir) € 1731+ 76) "t log(r/6) (r: real > 1),

(5.36) Ei(k— 1) < k72(1 4 67k%) (logk/6)? (k : integer > 6).

The estimates (5.35)1 give e;(N) < Nite, Also, (2.1) with n = 1, (2.6), (2.17) and
(5.35)+ give e3(N) <« Nztetes—c Further, (2.8), (2.11), and (5.36) give es(N) <
1

N2%°6—¢. Hence, choosing § appropriately, we obtain the assertion of Theorem 6.
Thus we have to prove (5.35)4 and (5.36). We first treat &, (ir), = > 1. For this sake
let L be a large integer. Then we have, by (4.39),

by(ir) =7 |

I(s — 1 +ir)(s = 1 — ir)[(s) =2 cot(ms)wo(s)ds + O(e™3™)
(Z+3)

with the present specialization of Wy, where the implied constant depends only on L. We
divide this integral into three parts according to Im(s) > r + /7, |Im(s)| < r + /7, and
Im(s) < —r — /7. By Stirling’s formula we see readily that the second part is O(r~2%)
uniformly in 6. In the expression for the first part we may replace cot(ws) by —i with a
negligible error, and we denote the result by <I>(+1)(i'r). Then we have

(5.37) @, (ir) = 2Re{®(ir)} + O(r~%E).

We note that we have, for any v > 0,
M), LI R L
(5.38) @, (ir) = (-1)"* Z/ Wo" " (2)Gy(z, r)2" da,
s
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where

xdt .

_[® D(L+i(t+ )DL+t — 1))
Gu(xﬂ")—/r+ﬁp(L+%+it)F(L+%+V+it)

By Stirling’s formula we have, after some simplification,
Gy(z,r) = (L, V)/ V721 = (r/8)*)F7 % explig(x, 7, t))dt + O(r™" ),
r+/T
where

g(z,r,t) = (t+r)log(t +r) + (t — r)log(t — r) — 2tlogt + tlog z ;

¢(L,v) and the constant in the error term depend only on L and v. By partial integration
we have

[e s} —v—2 _ 2 L—%
G,,(.’E,T)<</ o1 (1 (T/t) ) |dt—|—r_"_2.

S ot log(1 — (r/t)?) + logx

Here we should observe that we have logx < —4. We compute explicitly this partial
derivative, and also divide the range of integration at ¢t = r6~%. Then we find, without
difficulty, that the last integral is O(r=2log(1/6)) if v = 0, and O(r=*72%) if v > 1,
uniformly in z. Inserting these into (5.38), we get (5.35), via (5.37).

We consider next ®_(ir), which is in fact easier than ® (ir). We shift the contour of
(4.41) with the present specialization of Wy to Re(s) = (logr)~!. We encounter simple
poles at s = % + 47, which contribute negligibly. On noting wo(s) < logr on the new
contour we get ®_(ir) < r~2logr simply by applying Stirling’s formula to the absolute
value of the integrand. Further, shifting the contour to Re(s) = —% + (logr/8)~! and
noting wo(s) < 6% there, we get also ®_(ir) < §~r~3. Combining these estimates
of ®_(ir) we get (5.35)_.

We now turn to 2 (k — ). In (4.40) we shift the path to Re(s) = —v, where v = 1 or
0. We divide the range of integration into three parts according to Im(s) > 1, [Im(s)| < 1
and Im(s) < —1. The second part is estimated by applying Stirling’s formula to the
absolute value of the integrand. Then we see that it is O(k=272767" log(1/6)). For, we

have wo(s) < 67" log(1/6) on the line Re(s) = —v, which is a consequence of the
representation

(_1)V = (v) s+v—1
(5.39) wo(s) = Wy (z)x dz.

s(s+1)..(s+v—1) Js
Denoting the first part by Es_l)(k — 1) we have
(5.40) Ei(k— 1) =2Re{EP(k - 1)} + O(k~2"267" log(1/6)).

Here we note that we have

1-6
(5.41) === 0L [ e b
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where

[P T(k-1-v+it) N o
I,,(:z:,k)—/l F(k+1+u—it)r(y+l it)['(—it) cosh(nt)z**dt ;

we have used (5.39) with v replaced by v + 1. By Stirling’s formula we have, after
some simplification,

(5.42) (z,k) = / T k2)u+l exp(ih(t;z , k), (t; k)dt

where
h(t;z, k) = tlog(1l + (k/t)?) + tlogz — (2k — 1) arctan(k/t) ;

l,(t;k) is regular and absolutely bounded in the region |arg(t — 1)| < 7 — e for any
small € > 0 , and moreover there we have, uniformly in k,

(5.43) Lt k) < |t]72.

at

With these we enter into the proof of (5.36). We see that our problem is reduced to
the estimation of (5.42). We thus consider two cases separately according to 6 < x < 26
and 1 — 26 < x < 1 — 4, because of our present specialization of W,. We shall treat the
second case in detail; the first case will be briefly treated later. Thus we assume, for a
while, that 1 — 26 < & < 1 — §. We first treat the case where §2k < Alog(k/6) with a
fixed constant A. To this end we divide Iy(z, k) into three parts so that

(5.44) Io(z, k) = IV (z, k) + I (3, k) + I (2, k),

where Iél) corresponds to ¢ < %6‘%19, .752) to %6‘%19 <t <267k, 163) to 2677k <t
in the expression (5.42) with v = 0. We have trivially

(5.45) I (z, k) < 6% /k.

On the other hand we have, by partial integration,

1675k
0 lo(t; k) _
5.46 I (2, k / 01> dt + k2,
( ) 0 (37 )<< . lat t2+k2)%h(t;x,k)| +

providing 6~ 2k > 2. Here we have used the fact that

(5.47) h(t z, k) =log(1 + (k/t)%) + logz — ;2%

is a decreasing function of ¢, and its value at ¢t = %5 ~3kis larger than 6. We then perform
the partial differentiations in (5.46), and get without difficulty

(5.48) I (2, k) < k% log(1/6).
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Similarly we can show

(5.49) Iz, k) < k™2

uniformly in 6. Collecting (5.44)-(5.49) we get

(5.50) Io(z, k) < k=2 log(k/6) (k< A6™% log(k/6))

uniformly for 1 — 26 <z <1 — 6, where A is an arbitrary fixed constant.
We next consider the case where §7k is large. For this sake we apply the saddle point
method to I (z, k). The saddle point ¢ = ¢, is such that

(5.51) {%h(t;x,k)} =0.

t=to

As we have observed already the right side of (5.47) is positive at t = %6 ~2k. On the other
hand it is negative at ¢t = 26~ 2 k. Thus £, is uniquely determined by (5.51), and it satisfies

]. 1 1
(5.52) ié‘fk <to <207 %k.

We move the path in (5.42) to § = S; + Sy + S3, where S;, Sy are the segments
[1, to(1 — row)], [to(1 — row), to(1 + row)], respectively; Ss is the half line which starts
at to(1 + row) and goes to +ooe'® with § = arg(to(1 + row)). Here 7 is a small positive
constant, and w = exp(—;i). We denote the points on S by y(1 + rw) with 1 < y < 00
and real r. Thus r = —-(to(t —1)/(t(to — 1)))r0 onS;, —rg<r<rgonSy and r =1¢
on S3. We then note that

h(y(1+ rw); k,z) =y(1 + rw){log(1 + (k/y)*(1 + rw)~?) + log =}

(1+rw)_1 d€

Expanding the right side into a power series in r, we get

R(y(1 + rw); k) = h(y; b, z) + ya%h(y; b 2)rw
(5.53)
(k— 1)ky2 + k4 5. k2y 3
(42 + k2)? yroe+ O(yz T kzr )’

where the implied constant is absolute, providing |r| < 1, say. Having this we may
estimate the contributions of S; (j = 1,2,3). If 1 < y < A with a large A then we
take simply the absolute value of the integrand, and see that the contribution of the
corresponding part of Sy is O(k™%). If A < y < Vk then (547) and (5.53) give
Im(h(y(1 + rw); k,x)) > crologk with a ¢ > 0. The contribution of this part of S; is
O(k~°m4), which is obviously negligible, providing A is sufficiently large. If vk < y < ¢,
then (5.53) implies Im(h(y(1 + rw); k,z)) > ck*t~1r2. The contribution of this part of
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S1is O(k exp(—céékrg)). This ends the treatment of S;. The part S5 can be treated in a
similar way, and we can show that its contribution is bounded likewise. As for Sy we see by
(5.51) and (5.53) that its contribution is O(k‘% %). Gathering these estimates we find that

(5.54) Li(z,k) < k™26%

uniformly for 1 — 26 < z < 1 -6, if 67k > Alog(k/6) with a sufficiently large A.

We still have to consider the case where § < z < 26. If 67k < Alog(k/6) then we
have the analogue of (5.44) with § ~2k being replaced by &2 k, which yields (5.50) for the
interval § < z < 26. If 62k > Alog(k/8) then we use again the saddle point method. But,
the only difference is that this time the solution of (5.51) is in the interval [%—5 %k, 26 %k].
Otherwise the situation is quite similar to the above, and we get (5.54) for the interval
6 < x < 26 too.

Hence we may use (5.50) and (5.54) throughout the interval [§, 1 — 6], whence via (5.40)
and (5.41) we end the proof of (5.36). This completes our proof of Theorem 6.

ADDENDUM

D. Bump et al. (Duke Math. J., 66, 75-81(1992)) have recently succeeded in reducing
Serre’s exponent % to %. This entails obvious improvements upon our results stated in
the first section.
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