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ON THE REAL COHOMOLOGY OF ARITHMETIC
GROUPS AND THE RANK CONJECTURE

FOR NUMBER FIELDS

BY JUN YANG (1)

Let G be a connected semi-simple algebraic group defined over the rational number
field Q, and T an arithmetic subgroup of G. Denote the symmetric space of G(R) with
respect to a maximal compact subgroup K by X. The real cohomology H* (T) of F is
isomorphic to 1$, the group of G-invariant forms on X, in a certain range depending on
the rank of the algebraic group in question, (c/. [B3]). In fact, this is how Borel
computed the ranks of K-groups of algebraic number fields in [B3].

In general, there is a homomorphism

7*: I£-H*(r)

which was proven to be surjective in dimension no greater than a constant m (G) by a
series of works of H. Garland [Ga], W. C. Hsiang [GH] and A. Borel [B3]. Furthermore,
Borel proved that the map is also injective in dimension no greater than a constant c (G),
which we denote by c(G/Q) in this paper. We will improve this injectivity result, our
new constant is roughly twice that of BoreRs. The main theorem of the paper is

THEOREM A. — The map j^ is infective for ^/(G/Q), where /(G/Q)=2c(G/Q)+1 is
a constant which can be computed in terms of the absolute root structure and the Q-rank
of G. In particular, if k is a number field, and G/Q = R^ SL^ then /(G/Q) ̂  d(n - 1),
where R^/Q is the restriction ofscalar functor', and d= [k: Q].

The reason we wanted to improve the constant c (G) of Borel is that we are interested
in the so-called rank conjecture in algebraic K-theory, which is, I believe, due to
Suslin. Little is known about the rank conjecture for general fields. Our purpose here
is to prove the rank conjecture for all non-trivial algebraic number fields, i. e., for number
fields with degree ^2 overQ. To prove the rank conjecture for a number field k, it

(1) Supported in part by an Alfred P. Sloan doctoral dissertation fellowship.
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288 j. YANG

suffices to establish the following simple statements (see § 4):
For k, the image of the natural map

H2 „-1 (GL, (k), Q) ̂  H^_ i (GL (/:); Q)

contains PH^ „ _ i (GL (F); Q) for m ̂  ̂  ̂  1, and

{ i m : H^ „_ i (GL, (/O; Q) -. H^_ i (GL (^); Q)} U PH^-1 (GL (̂ ); Q) = 0

if m<n, where PH denotes the primitive homology. As a corollary of Theorem A, we
get the main result of our paper

THEOREM B. — Ifk is an algebraic number field not equal to Q, then the rank conjecture
is true for all K-groups ofk.

The following corollary follows immediately from the fact that an arbitrary algebraic
extension field of Q is the direct limit of certain algebraic number fields and from the
fact that K-theory commutes with direct limits.

COROLLARY. — The rank conjecture holds for all non-trivial algebraic extension fields of
Q. In particular, it holds for Q, the field of algebraic numbers.

Our work was inspired by the observation that BoreFs work [B3] implies the rank
conjecture for all number fields of degree > 6. The proof of Theorem A is an elaboration
of ideas in [B3]. More precisely, Borel has constructed a complex of "logarithmic
forms" C*, which computes the cohomology of X/F. The constant c(G) is precisely
the upper limit of the range in which forms in C* are L2; the L2 condition is normally
required to prove some sort of "Hodge Theorem" on a noncompact Riemannian
manifold. We have observed however, in the special setting we are considering, that it
is possible to do Hodge-type of argument without all the forms being L2. That is
essentially why we can improve Borel's constant.

Let's have a brief look at the main idea behind the proof of Theorem A. It is well-
known that every form in 1̂  is harmonic. In the very special case when X/F is compact,
1̂  then maps injectively into H*(X/r)^H*(F) by the famous Hodge Theorem. But
even on a non-compact oriented complete Riemannian manifold M, there is a weak form
of Hodge Theorem which we now recall. Let ( . , . )^ denote the inner product on
©^A^T^(M) induced from the Riemannian metric. A scalar product on Q*(M) can
then be defined as follows

1= f (oc,
JM

(OC,P)M= (OC,P),^VM.
JM

Let 5 = (- 1)» (p+1)+1 ^ d^: QM -̂  QM~ 1 be the formal adjoint operator of the differential
operator d. Then one has the following

PROPOSITION. — Let aeQ.^ peQ^1. If a, a?a, |3, and d^ are all square integrable
on M, then we have

(oc,8p)M=(rfa,p)M.
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COHOMOLOGY OF ARITHMETIC GROUPS 289

It is instructive to recall the proof. We follow Borel ([B3], §2). On M, there is a
family of exhaustion functions {^r}rep\ wlt^ compact supports, which satisfy
(da„da,)l/2<D/r, for a constant D and lim <jy= 1. Integrating by parts, we have

r —» oo

(o, a, §P)M = (d(a, a), ̂  = (AT, A a, P)^ + (a, ̂ c, PV

The proposition therefore follows from the assertion that

lim (da, A OC,P)M=O,
r -->• oo

which is easily verified under the assumptions that a, P be L2.
This proposition is the starting point of the proof of injectivity in [B3]. Let M ==X/r,

P be a harmonic form on X/T which is the descent of an element of I§. It is proved in
[B3] that all bi-invariant forms pel^ are square integrable on X/T and that if P is exact,
one can always choose aeC*, so that P=6foc. If one knows that a is L2, then by the
above proposition we have

(P,P)M=(^a,P)M=(a,5p)M=0,

and it follows immediately that P==0. It is proved in [B3] that every form in C* is
square integrable up to dimension c(G/Q), hence we know Theorem A must be true at
least in the same range. However, if we examine the proof of the proposition more
closely, we find it is not necessary that a be square integrable for the above argument to
work. Indeed, since we know ? is harmonic and L2, and that a, has compact support,
it follows that if P==rfa, then

(P,P)=(^a,P)= lim (a^a,P)
r -> oo

= lim [(rf(o, a), P) - (da, A a, p)] = lim [(a, a, 5p) - (d^ A a, P)]
r -> oo r -> oo

= — lim (da, A a, P).
r -+ oo

In the above calculation, we do not need a to be L2! In order to prove injectivity, it
suffices to prove that

lim (da, A a, P) == 0.
r -» oo

As proved in [B3], forms in I§ tend to 0 quickly as one approaches the boundary of X,
the Borel-Serre compatification of X, while aeC* does not grow too fast near the
boundary of X. Since P is better than L2, we can work in a range where a may not be
L2 but the above limit is zero. This is our basic idea.

Theorem B is not only theoretically interesting, but also has concrete applications to
number theory. Many years after Borel's work on the so-called higher regulators ([B4]),
people have been trying to find explicit functions to represent them. The first regulator
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290 J. YANG

can be written down in terms of the function log [ | by the classical Dirichlet Unit
Theorem, while Bloch [Bl] showed that the second regulator can be expressed in terms
of the so-called Bloch-Wigner function. Zagier [Z] has conjectured that the m-th Borel
regulator can be expressed in terms of the classical w-logarithm function. In [Y], we
show that the 3rd Borel regulator can be expressed in terms of the Hain-MacPherson
trilogarithm [HM]. The rank conjecture is an essential ingredient. Goncharov [Go] has
announced that the 3rd regulator can be expressed in terms of the classical trilogarithm.

For the readers' convenience, we use exactly the same notations as [B3] whenever
possible. The first two sections are devoted to some known background material so
most results are stated without proofs. The main references for the first two sections
are [B3], [B2] and [BS].
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NOTATIONS AND CONVENTIONS. — Throughout the paper, the letter G (possibly with
subscripts) will denote a connected semi-simple algebraic group defined over a field
k c: IR, while F (possibly with subscripts) will always denote an arithmetic subgroup of
the corresponding (should be clear in the context) algebraic group. The group of k-
characters of G will be denoted by % (G)^. Lie groups (over [R, unless specified otherwise)
are denoted by Roman uppercase letters while the corresponding Lie algebras are always
denoted by the corresponding gothic lowercase letters. The letter K is always understood
to be a maximal compact subgroup of G (IR), and X the corresponding symmetric space
K\G(!R). The G-invariant real differential forms on X will be denoted by 1 .̂

All cohomology theories in this paper are supposed to have real coefficients unless
specified otherwise.

For two real functions /, g defined on a set U, we write f^g if there exists a constant
c>0 such that/(x)^c^(x), for all xeU.

1. Decomposition of X

This section is basically a collection of results of [B3]. For the proofs of the results
in this section, cf. [B3], [Bl].

1.1. Let g = l © p be the Cartan decomposition of g with respect toK, and 9 the
Cartan involution with respect to K. Let P be a parabolic ^-subgroup of G, and M

4^^ - TOME 25 - 1992 - N° 3



COHOMOLOGY OF ARITHMETIC GROUPS 291

the Levi subgroup of P stable under 9. We put

°M= 0 ker^c2,
X e X ( M ) f c

and let Sp be a maximal k-split torus of R(P), the radical of P. Then we have a
decomposition

P(R)=Ap^°M(IR)o<U(IR)

where Ap denotes Sp (R) and U denotes the unipotent radical of P.
We let Z= (K 0 P)\° M (R), then we have a diffeomorphism

Ho: Y = A p X Z x U ( I R ) ^ X

The map induces an action of P (R) on Y which can be described as

(a, z, u) bmv = (ab, zm, m~1b~1 bmv)

where 6eAp, we°M(R), and z?eU(R).
Fix a maximal fe-split torus S containing Sp. Denote the set of A:-roots of G with

respect to S by<I>. Fix a minimal parabolic ^-subgroup PQ of P. Let A be a base of C>
with respect to P(). Then the set of parabolic fe-subgroups containing P() is parametrized
by the subsets of A. Let I = I (P) c A be the subset corresponding to P, then there is a
canonical isomorphism ([BS], §4.1)

Ap^W)^.

1.2. On g we have a scalar product defined by

^(^T1)=-B(^,9(T1))

where ^, T| are vectors in y, B (., .) is the Killing form. The restriction of go to p
defines a metric on T^(X) via the natural projection from G(IR) to X, where T^(X) is
the tangent space at the canonical base point o. This then extends to a G (R)-invariant
metric on X, which we denote by Ac2.

Let dy2=\JL'odx2, and denote the right-invariant metrics on A and U(R) induced from
go by da2 and du2 respectively. The restriction of go to a can be written in the form

^ c^ddd^.
a . p e A - I

Hence the metric on A can be written as

da2^ S c^a-1?-1^^.
a. P € A - I

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Let e>p denote the set of roots of P with respect to Sp. The set <^p is the union of the
set of positive roots ^+ c= 0 and the set of roots in ^ generated by I, which we denote
by <I>i. For simplicity, let O^^ -Oi, then

u= ® Up.
peop

For peOp, let h^ be the right invariant scalar product on u which is zero on u, if a^P
and equal to go on u^

1.3. PROPOSITION. — At any point (a,z,M)eY, the spaces a at a, T(Z) at z and u^ at u
are mutually orthogonal and we have the decomposition of metric as follows

{dy2\^^{da2\@{dz2\@ © 2-la2^(z)
M<&p

where h^ (z) = (int m)* Ap, for any m e °M (51), such that z = o m.
C/.Prop.4.3in[B3].

1.4 PROPOSITION. — If dV^, dV^, JVz and dV^j are the volume elements of the metrics
dy2, da2, dz2 and du2, then

^VAp=^A^^a/a

where c=(detc^)112 and
^^-dimU/2^2Pp^v^^v^^

Here2pp== ^ (dimUp)P.
peop

1.5. Let us recall more notations from [B3]. Assume A-1 consists of roots a^, ,. ., a,
and let m=dimX. We choose a moving frame ®1, 1 ̂ i^m on T*Y, so that co1 is lifted
from rfloga, on Ap if i^s, from an orthonormal frame on Z if s<i^t, and from a set
of right invariant 1-forms on U if Ki^m.

Let !„= { 1 , . .., m }, and for el^, we put

, - f 0 if 1<?^
"^IP if coieu?

For a subset J of I.., we let

(O^A^®1, a(J)=^a(0
t e J

and denote by [J| the number of elements inJ. Then a ^-form T on Y can be written
as

T- E f^\H^\
m=€

4eSERlE - TOME 25 - 1992 - N° 3
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where the/j's are functions onY.

1.6. Let dy2=g^j(Qio^ denote the metric on Y induced from the metric of X, and (g^)
the inverse matrix of (g^). Write

I .=I iUIoU(UIp)
p

where I i = = { l , . . .,j}, I o = { ^ + 1 , . . . , ^} and Ip={;e l^ |o)^eu^}. Let also
h^^ E ^•OOo)1^

» , J 6 l p

and denote the inverse matrices of (h^ ^) and (c^) by (h^) and (c1-7). Then it follows
immediately from Proposition 1.4 that

c13 if ^'el_i,
^ §fj if <JeIo.

^ l^-^A^z) if ^'elp,
0 otherwise.

For two sets of indices J = {j\, . . . Jq} and J' = {j[, . . . J'q ], it is convenient to introduce
the notation J~J7 when | J |== | .T[ and J and J' have the same number of elements in
each of I_ i , Io, and each Ip. Let

^^det^)^,,^

it then follows that g 1 ' 1 =0 unless J^F. Assume this is the case, then we have
a(J)=a(Dand

|^J '(^)|^-a(J)-a(J/)(p(z)=^-2a(J)(p(z),

where y = (a, z, u) e Y, and (p (z) is a smooth function on Z.

2. Properties of Siegel sets

2.1. Let us fix a decomposition of X with respect to a parabolic subgroup P as in
Section 1.1. For />0, we define

A^^eAplfl^/, for all aeA}.

A Siegel set (S^ ^ m ̂  wlt^ aspect to the decomposition in 1.1 is defined as

®^=MA,xW)

where W is open and relatively compact in ZxU(lR). In case we want to emphasize
that the Siegel set is given with respect to a specific decomposition with base point o
and a parabolic ^-subgroup P, we shall write ®o, p, (, w

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPER1EURE
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Note: one should be aware that the Siegel sets defined above are the so-called open
Siegel sets of [B3].

2.2. Let r be a torsion-free arithmetic group, and let

7i: x-^x/r

be the natural /projection. For suitably chosen t and W, n maps ®, ^ injectively onto
an open set V in X/T. Such open sets are called special neighborhoods. The main
property of Siegel sets with respect to a torsion-free arithmetic group we need is described
in the following theorem.

2.3. THEOREM. — If G is a connected semi-simple algebraic group defined over Q, and
r a torsion-free arithmetic subgroup, then there exists a finite cover ofX/V consisting of
special neighborhoods.

For a proof, see [B3], § 6.

2.4. In [B3], it is proved that there exists a subcomplex C* of Q* (X/F) which contains
1̂  with the property that the natural inclusion

C* -̂  Q* (X/F)

induces an isomorphism on cohomology. The complex C* consists of forms with
"logarithmic growth." More precisely, a form aeft*(X/F) lies in C* if and only if on
any special neighborhood n (©, ^), the pull back of a has logarithmic growth on ©, ̂
that is, if

T=(7^^o)^lc(^|n(^w))=Z/JO)J

J

on A, x (o, then

| /j (a, w) [ -< | P (log a^, . . . , log a^) | (where a e A,, and w e W, for all J),

for some polynomial P in s variables. In fact, to be completely rigorous, one really
needs a compactification of X, which we again refer to [B3] and [BS]. For our purpose,
it suffices to know the following weaker growth conditions

\f,(a^)\^a-e\ where v- ^ a,,
2 l^ i^s

for all e>0.

2.5. Let d\ji denote the measure on X induced from the G (IR)-invariant metric dx2

(cf. § 1). The pushdown of d[i to X/F for F discret and torsion-free will also be denoted
by 4i. Let ( , \ be the inner product on ®^A^T*(X/F) induced from the riemannian

4eSERIE - TOME 25 - 1992 - N° 3



COHOMOLOGY OF ARITHMETIC GROUPS 295

metric. Define an inner product ( , ) on Q* (X/F) by

(o),y=f (o),i;),4t,
Jx/r

where it is understood that the inner product is meant for any two forms such that the
above integral converges. Denote by 8 the formal ajoint operator ofd on X/T. It is
well known that every coel§ is harmonic, i.e. fito)==0, 6©=0. A form G) is called square
integrable on an open subset U of a Riemannian manifold M if the integral

(CO^,G)^4l
Ju

converges. The restriction of an invariant form coel^ to a Siegel set satisfies nice growth
conditions.

2.6. PROPOSITION.—Let G)6l$ be an invariant form. If for a Siegel set ©^ w? we

write

T=(7^o)*(^|,((^))== E f^1

\J\=9

on A, x W, then we have

\f,(a,w)\<a^\

In particular, co is square integrable on every Siegel set.
This is essentially Corollary 5.7 in [B2].

3. Proof of theorem A

In this section, F always denotes a torsion-free arithmetic subgroup. As pointed out
in [B3], it suffices to prove the theorem for suchF.

3.1. Define a smooth regular function ^X/F-^R*. on X/F by regularizing the
distance function on X/F with respect to the canonical base point. Then ^ satisfies

|M^)-MjO|<dist(x,jO

which implies that

Klh<i.
For more details, cf. [Rh], §35.

Let m: [0, oo) -> [0,1] be a smooth function which takes the value 1 on [0,1] and 0 on
[2, oo). Define a family of functions { a ^ ]reR\ on X/F by

CT,: X/F-^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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x ^—> m (k (x)/r)

The following lemma is trivial to check.

3.2. LEMMA. — The family of functions { ^ r ] r e ^ ' + nas the following property:
(i) O^a.^1;

(ii) the sets C^={xe X/F | a^ (x) = 1} and Dy = { x e X/F | c^ (x) ̂  0} are both compact',
(in) Cy c= C^for r<r\ and the union ofC^ is all ofX.

3.3. For a parabolic ^-subgroup P of G, let X(Ap) denote the group of continuous
homomorphisms ofAp into 1R*.. Then any element ^eX(Ap) can be written as

^=E^..

(See Section 1 for notations). We write ̂ 0 if each c^>0. Define the constant /(G,P)
by

/ (G,P)=max{^|2pp-a(J)>0, for all |J| with |J|<^}.

In particular, if P() is a minimal parabolic ^-subgroup, then we let

/(G/^)=/(G,Po).

Then l(G/k) is independent of the choice of the minimal parabolic ^-subgroup PQ, and
/(G//r)^/(G,P), for all parabolic ^-subgroup P (cf. [B3], §7.1). In particular, when
k = Q, it is easy to see that / (G/Q) = 2 c (G/Q) + 1 = 2 c (G) + 1, where c (G) is the constant
defined in Section 7.1 of [B3].

3.4. Now we can start the proof of Theorem A. Let (oel^ be a q-form with
q^:l(G/k). Since T is discrete and torsion-free, CD descends to a form on X/F which we
still denote byco. To prove Theorem A, it suffices to prove that ifco is exact in X/F,
then (o==0. Suppose that co=^ for some ^eQ^'^X/T). Since co is in I§ c: C*, we
may then choose ^eC*. Let a^ be as defined in 2.5. Since a^ has compact support,
we have

(rf(a,0,co)=(a^,8co)=0.

Combining this with

d(a^ Q = da^ A ^ + a^ = do^ A ^ + a^ o,

we have

0= lim (rf(a^),co)= lim (^A^,(o)4-(co,co).
r -» oo r -> oo

Therefore we have

I c o l l ^ — lim (^a^A^,co).
r -*• oo

4^^^ - TOME 25 - 1992 - N° 3
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It thus suffices to proves that

lim (d^y A ^, co) = 0
r ->• oo

when the degree of co^/(G/^). Since (X/F) is covered by special neighborhoods

^(©oi,Pi,ti,Wi). • • •^(®o,,Pi,^wJ

(Theorem 2.3), it suffices to prove that the pull back of

f KA^A^
Jx/r

|Ofo,Ai;,w),4i
Jx/r

to each Siegel set (£^. ^y. has limit 0 when r—> oo. Let (£^ ^ denote any one of the
®oi, pi, ti, w,» we ^od t^ following estimate on the pull back of ^.

m

3.5. LEMMA. — Set X == (n^o)* (^)- ^/^ = ^ ^ co1, ̂ ^ o^ ^o 1 (©y w), w^ ̂ ^
i= i

l^w)]^0.

Proof. — It is clear that | dk |<< 1 (^^ 3.1). Hence at any point xeX/F, we have

( M Ttt \ Tfl S t

S^co1, S^co 1 ) = ̂  g^^s^ S ^^+ S ^+Z £ a-^h^(z)s^\.
i = l i = l /x i , j= l i,j'=l i = s + l P i , j e l p

where (a, z, M) = Ho 1 (^), 5^ 1.1 for notations. Since the coefficient matrices (c1'3) and
(/^pJ (z)) are positive definite, and z varies on a relatively compact subset, we get

|^(a,w)|-<l, if ;^,

\Si(a,w) -<cft, if ;elp.

whence the lemma. D

3.6. On po '(^w), let

^=^= Z ^0)^ o)"1 Z /j^-
| J ' |=g- l \J\=q

Then by 3.4 and 2.6, have

^.w)!^-^ i/j^w)!^^^
ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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For an index set J c 1 ,̂ and an index ;eI^\J, we write 3 ( i ) = J [ j { i } - We have the
following estimate:

f |(rfm(X/r) A ?,co)J^= ^ f |(^(X/r)^: A ?,co)J^
»/®t,W ^©(.W

^1 f KE^-o^Z/jo^cl^
'" J®( ^ i,J' J

=1 E f \s,t,f,g3•^3\d^
r i ,J ' ,J J®(,w

^1 V ^(O-ev+aW-CaW+ad ' ) )^^! y ^2 pp-ev-a (J') ̂ y

'" i , J ' , J J®(,w r l ' J ' ' J ^r

Since q^l(G/k), we get

s

2pp-ev-a(T)= ^ Wj-^.a^O,
j = i

for sufficiently small £. Hence we have

f |(^(X/r)A^(D)j4i^1 E [ ̂ ''^v^1 E n r^.-1^^1.
J®^w r i , y , ] J^ ' ' i , r , j i< j<s Jo r

Thus, when r -> 0, the limit of the above integral is 0. Therefore as explained in
3.4, we have (co,co)=0, which then implies that (0=0. This completes the proof of
Theorem A.

For applications in the next section, we need the following technical lemma.

3.7. LEMMA. — Let H be a connected semi-simple algebraic group defined over field
k ' . If k' is a separable extension ofk of finite degree d=[k':k], and G=R^H, where
R^'/k stands for restriction of scalar s [W], then

l ( G / k ) ^ d ' l ( H / k 1 ) .

Proof. - Let 0^ (G), 0^ (H) be the root system of G, H over k, k' respectively. There
is an isomorphism ([BT], 6.21)

^ 0,,(H)^0,(G),

with the following property: if a is an arbitrary root of ^' (H), then the dimension of
the weight space of ^(a) in Ofc(G) is d times the dimension of the weight space of a in
<D^ (H). The lemma then follows immediately from the definition of l(G/k) (§ 3.3). D
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4. The rank conjecture for number fields

4.1. Recall for any commutative ring R, the n-th K-group of R is defined as follows,

K^ (R) = 7^ (BGL+ (R)) for n^\

where BGL^R) is an H-space which has the same homology as BGL(R), and
TCI (BGL^ (R^GL^R)^, the abelianization of BGL(R). In fact, BGL+ (R) and like-
wise, BSL+ (R) are associative and commutative H-spaces (c/. [L]). By a theorem of
Milnor and Moore [MM], we have the following isomorphism

Hurewicz

K^ (R) ® Q = ̂  (BGI^ (R)) (g) Q ————^PH, (GL (R); Q),

where PH denotes the group of primitive homology classes. From now on, we denote
the rational K-groups K^(R)®Q by KJR)^. Using the above isomorphism, we can
define the so-called rank filtration of the rational K-groups of R by

r, K, (R)^ = { i m : H^ (GL, (R); Q) -. H^ (GL (R); Q)} 0 PH^ (GL (R); Q).

On the other hand, the K-groups are known to be special X-rings, which then have
the so-called y-filtration which we denote by y'K^R), cf. [H]. The y-filtration is a
decreasing filtration as opposed to the rank filtration which is obviously increasing. The
rank conjecture of algebraic K-theory claims that these two filtrations complement each
other when R is an infinite field. More precisely, it is conjectured that

K^(R^=^(R)Q ® y1^ K^(R)^

when R is an infinite field. Even though the rank conjecture is well known among K-
theorists, its origin seems to be quite a mystery even among experts. To the best of my
knowledge, the rank conjecture was first formulated by Suslin.

4.2. Now assume that A: is a number field. From Borel's work [B3], one knows that
K2»(^)<Q)=0, hence the rank conjecture is trivial for K^/Q. While from Beilinson's
work [Bei], one knows that the y-filtrations on ̂ n-i WQ are as follows,

v-K (k\ -f^"-^ if l^yK,,-,(^-^ Q ^ ^

We sketch a proof which was carefully explained to me by R. Hain. There exists a
sequence of the so-called Adams operations {v^}^!^,... on K groups of k [H]. Hence,
K^ (k)^ breaks into a direct sum of the eigenspaces of vj^.

K,(^=®KTO,

where each K^ (k) is the eigenspace of v '̂ corresponding to eigenvalue / (also called the
weight space with weight/). One has the so-called Chern character map ch from K-
groups to a decent cohomology theory, which in this case we take to be the so-called
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Deligne-Beilinson cohomology H| ([Bei], [Gi]). By formal properties of the Chern
character, we have the following natural homomorphism

ch: KTO^H^-^spec^);^/)),

where tR(/) denotes (2710^. Beilinson proved that the Borel regulators are in fact the
Chern character maps (at least up to Q*) from K-groups to the Deligne-Beilinson
cohomology. Since

0, if q+\\
HI, (spec (^); H (/)) ̂  IR'1 +r2, if q = 1, and / is even;

^2, if ^=1, and/ i s odd,

where r^ and r^ are the number of real and non-conjugate complex embeddings of k
respectively. Since Borel regulator maps are injective mod torsion, it follows that
K! n-i W is pure of weight n. Since the rational y-filtration can be defined by

/^(^©K^),
l^i

the above results follow immediately.

4.3. Hence, the rank conjecture of a number field k will follow from the following
statement: The image of the natural map

H2 n-1 (GL, W; Q) ̂  H,,_, (GL (k), Q)

contains PH2^-i(GL(A:)) if m^-n, and the image does not contain any primitive homol-
ogy class if m<n. Hence the rank conjecture for number fields consists of two
parts. One part is to prove the surjectivity in certain range (called the upper rank
conjecture in the sequel), the other part is to prove the triviality in certain range (called
lower rank conjecture in the sequel). It is well known that for n > 1, one has

PH, (GL (k\ Q) ̂  PH, (SL (k\ Q).

Hence for upper rank conjecture, when n >1, it suffices to prove the above statement
where GL^(fc) and GL(^) are replaced by SL^(^) and SL(A;) respectively. When n^ 1,
the rank conjecture is trivially true. So we now assume that n> 1.

First, we need to compute 1 .̂ We have

I$®C=H*(g,f;C),

where H*(g,I;C) denotes the Lie algebra cohomology. Lie algebra cohomology is
computable using the compact form trick which we now recall briefly.

4.4. Let G be a reductive linear algebraic group defined over Q and 9= Lie algebra
of G(R). Again we have the Cartan decomposition

9 = f © p
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with t = Lie algebra of a maximal compact subgroup K. Let

gu^oy^Tp^s^c,
then (^ is the Lie algebra of a maximal compact subgroup G^ of G(C). Evidently,
g^ ® C ̂  g ® C. Hence we have

H*(9,f;C)^H*(9®C,f®C;C)^H*^®C,I®C;C)^H*(9,,f;C)^H*(GJK;C),

where the last isomorphism follows from the fact that the cohomology of a compact
homogeneous space is isomorphic to the complex of invariant forms.

4.5. Now fix a number field k and let G^=R^SL^(k), where R^Q again is the
restriction of scalars functor. We have

G,W=SL,WI x SL«(Cy2, G^C)=SL^(C/,

where r^ (resp. r^) is the number of the real (resp. non-conjugate complex) embeddings
of k and d=[k:Q]r^2r^. Then

K^so^yi x suw2, G^,=SU(^,
are maximal compact subgroups of G^ (R) and G^ (C) respectively. Let

X^,=K^\G^,==(SO(^\SU(n)yi x SU(^.

Then by 4.4, we have

I^®C^H*(X^;C).

The right handside can be readily computed from the following proposition.

4.6. PROPOSITION. — The rational cohomology of SU (n) and SO (^)\SU (n) are as
follows

H*(SU(^);Q)^E<X3, . . . ,x^_i>,
H*(SO(2/2-1)\SU(2^-1);Q)^E<X5, . . . , X 4 , _ 3 > ,

H*(SO(2^\SU(2^);Q)^E<^, . . .^-s^nX

where E stands for the exterior algebra, and x^ e^ denote generators of degree i.
Furthermore, if one takes n -> oo, then each has a natural H op f algebra structure, and the
Xi's are primitive generators in their corresponding Hopf algebras. By slight abuse of
language, we will call x^s primitive, even if we are only talking about finite n.

The cohomology of SU(/z) can be found in a standard topology book, while the
cohomology of SO(n)\SV(n) is computed in [Bl](2).

(2) I would like to thank Professor Stephen Mitchell for showing me his well-written notes on this subject.
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If instead in 4.5, we take G^ = R^/(Q GL^ (k), then one can compute IQ^ in a way similar
to what we did for G^. We have the following analogue of 4.6 [Bl].

4.7. PROPOSITION. — The rational cohomology of\3(n) and 0(n)\\J(n) are as follows

H*(U02);Q)^E<^, . . . ,^ ,_ ,>,

H* (0(2/2- 1)\U (2n- l ) ; Q ) ^ E < X i , . . . , X 4 , _ 3 > ,

H*(0(2^)\U(2/2);Q)^E<Xi, . . . ,^ ,_3,^n>,

where x^ e^ are generators of degree i, and they correspond to the x^ e^ in Proposition 4.6
under the natural restriction map (x^ is mapped to 0). Furthermore, if one takes n -> oo,
then each has a natural H op f algebra structure and the x^s are primitive generators.

4.8. We now begin the proof of Theorem B. We will prove for a number field the
rank conjecture for real coefficients which is of course equivalent to that for rational
coefficients. As we have seen, the rank conjecture for number fields consists of two
parts. We first establish the lower rank conjecture which we can do without the
hypothesis that [k: Q] ̂  2. For this we need a slightly different interpretation of the
map

7*: i§^H*(n.
By Van Est's theorem,

I^H,*(G(R)),

where H*( stands for continuous group cohomology. Via this isomorphism, the map 7*
can be interpreted as the composition

H*, (G (R)) ̂  H* (G (R)) ̂  H* (F),

where the first map is the "forget the topology" map, and the second map is simply the
restriction map. Then, by [B3], Theorem 6.4, we have the following isomorphism (same
notations as in 4.5)

^n-l(G^W)^H2n-l(SL^(k))^H2n-l(SL(k))

for N sufficiently large. Note SL^ (k) is embedded diagonally in

G^)=SL,(Ryixs4(cy2

via different real and non-conjugate complex embeddings of k. Similarly, we have

H,2,"-1 (G^W) -> H2"-1 (GL^^H2"-1 (GLW)

for N sufficiently large. Although in general this is not an isomorphism, its image does
contain PH2 ^(GLO^PH^-^SLOS;)) when n>\, as follows immediately from the
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commutative diagram

H^-l (GN W) ̂  H2 M - 1 (G4, (/c)) ̂  H2 n-1 (GL (/c))
i i i

H^-1 (GN W) ^ H2"-1 (SL^ W) ^ H2"-1 (SL (/c))

where the left hand arrow is an epimorphism because of Prop. 4.7.
We have the following commutative diagram

I^-1 ̂ H^-1 (G^W) - H2"-1 (GL^))
[ I [

I^-l^H2,"- l(G,W)^H2n- l(GL,(fc))

for w<N. It follows immediately from Proposition 4.7 that the primitive elements are
mapped to 0 under the map r if m<n. Here to be completely rigorous, one need to
take N-^oo, which is a minor point we ignor. Hence from the above commutative
diagram we get that the map

PH2" -1 (GL (k)) c, H2 n ~1 (GL (fc)) -. H2 n ~1 (GL^ (fc))

is trivial for m<n. The lower rank conjecture follows immediately from the next
technical proposition.

Let A be a connected bicommutative (i.e. commutative and cocommutative) Hopf
algebra with augmentation ideal IA. Denote its space of indecomposibles IA/IA. IA by
QA. Then by [MM], Cor. 4.18, the natural map PA->QA is an isomorphism. In
particular, there is a natural projection A -> PA. Since the cohomology ring of a
connected commutative H-space has a natural bicommutative Hopf algebra structure,
the following proposition follows easily.

4.9. PROPOSITION.—Let /:X-^Y be a continuous map between two path-connected
topological spaces, where Y is an associative and commutative H-space. Consider the map

^ : PW (Y) c^ W (Y) -> W (X)

and its dual map

g,: H,(X)^H,(Y)^PH,(Y).

where p is the natural projection map. Then ^==0 if and only if gq=Q; and ^ is injective
if and only ifgqis surjective.

4.10. Now let us assume that d=[k:<Q]^3. We keep the same notations as in
4.5. We have the following commutative diagram

I^-1 ^ H2"-^)
[r i

pn-l j2n-l H2"-1^)
Urn —————^. \ m/
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where again N^>w, and the arithmetic subgroups F^, F^ are chosen so that the diagram
commutes. From Proposition 4.6, we see that r is a monomorphism when
m^n. Recall the definition of l(G/k). From the well known root system of SL^, one
readily has

Z(SL,//:)=m-l.

By lemma 3.8, one therefore has /(GJQ)==^./(SL^))^3(w- l )^2m-1 for
w^2. In particular, we have l(GJQ)^ln-\ for all m^n. From Theorem A, it
follows that 72 n - l is injective when m^n. From the above diagram the following
theorem follows.

4.11. THEOREM. — The natural map

H^-^SL^-^H^-^SL^))

is injective for N^>0, m^-n where k is a number field such that [k: Q]^3.
The upper rank conjecture for number field k with [k: Q] ̂  3 then follows immediately

from the dual statement for homology groups. Theorem B is therefore proved for
such k.

4.12. The rank conjecture for quadratic fields is more subtle. Let us see how the
above argument fails for quadratic fields. Let A: be a quadratic field, and let
Gn= ^/(Q) SL^ (k). We know that the Q-root system of G^ consists of the following roots

±^, . . ., ±^-i, ±(?4+^), . . ., ±(^-2+^-1), . . ., ±(^i+ . . . +^-i).

Therefore we have 2p=2(n- l)(^i+ . . . 4-^_^)+other positive terms not involving ̂
and ^_i where X,i, . . .,^-1 are the simple Q-roots of G^. In order fory2""1 to be
injective, we need

2p-oc(J)I>0, for all J satisfying |J|^2^-2.

But apparently, we may have

oc(J )=2(^—l)(^ i+ . . . +^_^)+other positive terms,

for some |J =2^-2, so we can't prove thaty2""1 is injective for G^. But/2""1 being
injective is slightly stronger than the rank conjecture. Indeed, in view of Proposition 4.9,
we need only prove that

y 2 n - l . PH2"-^)-^2"-^)-^2"-^)

is injective. By Proposition 4.6, it follows that the map
p2n- l p2 n-1
^GN -^G,

is an isomorphism, where P^~1 is the subgroup of I2""^,,) consisting of canonical
primitive generators (cf. 4.6). So by the commutative diagram in 4.10, it suffices to

4eSERIE - TOME 25 - 1992 - N° 3



COHOMOLOGY OF ARITHMETIC GROUPS 305

prove that

is injective. Now

X^K,\G,n ^^n \~n '

,2 n - 1 . P 2 n - 1 . T_r2 n - 1 /T^ \
7 • ^Gn ->rl Un)

(SO^\S4 (R))2 if k is real quadratic,
SU^\SL^ (C) if k is imaginary quadratic.

The point we want to make here is that P^~1 is generated by primitive elements in
SO^\S4(R) or SU,\S4(C). In either case, oc(J)<^(^ + . . . +^_i), for any form
in P^~1. Hence, by the proof of Theorem A, we know that

;2 n — 1 . D 2 n — 1 . Tu2 n— 1 /ip \
J • ^Gn ^irl (1 n)

is injective. That is, the upper rank conjecture for quadratic fields is also
true. Theorem B is proved.
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