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SMOOTH SINGULAR SOLUTIONS
OF HYPERPLANE FIELDS (II)

By A. S. b MEDEIROS (%)

0. Introduction

In this paper we extend to real analytic, and to C* equations, the results established
in [4], concerning the existence of singular solutions of a holomorphic total differential
equation on C", i. e. holomorphic solutions passing through a point where the coefficients
of the equation vanish. Naturally, in the real case, we ask for singular solutions of the
same class of differentiability of the equation.

Although the methods we make use of are basically the same developed in [4], we
encounter, this time, problems of a more delicate quantitative nature (see e.g.
Theorem 2.3.1) due, of course, to the greater complexity of the structure of real bilinear
spaces compared to that of the complex ones. (Theorems2.3.1 and 2.3.2, for example,
could be stated in terms of multilinear algebra only.)

Our main result (Theorem A) describes precisely the maximal dimension of the singular
solutions of an analytic, or a C®, total differential equation on R?™ passing through a
point where its exterior differential has maximal rank.

In order to prove this theorem we have modified the proof of Theorem A of [4] so as
to linearize the problem. For this reason we start, in paragraph 2, with the linear total
differential equations. In that paragraph we define the characteristic frequencies, a finite
sequence of real numbers associated to the given equation, which turns out to be an
invariant of the equation determining the maximal dimension of the singular solutions
stated in Theorem A.

We remark that we shall not include in this introduction a general precise description
of the results for they are somehow technical. We provide, however, in the beginning
of each section an explanation about the relevant facts contained there.

(*) The author was partially supported by FAPERJ.
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276 A. S. DE MEDEIROS

The definitions and notation are introduced along the various sections and are printed
in a different character. Most of them appear in paragraph 1 which consists of a résumé
of the basic facts settled in [4].

We are greatful to Professor Cesar Camacho, who introduced the problem to us, for
his encouragement during the elaboration of this paper.

1. Preliminaries

We shall adopt the same notation and definitions presented in [4]. However, for sake
of clarity, we make below a brief rewiew of these elements.

We denote by Al (R") (resp. Z (R")) the set of germs of analytic differential 1-forms
(resp. analytic vector fields) on R" vanishing at the origin. Given weA! (R") we use
indistinctly the expressions: a singular solution of the total differential equation ®=0, a
singular integral manifold of w, and a singular solution of the hyperplane field defined by o,
to mean a germ of differentiable submanifold, at the origin of R”, such that  pulls back
to zero on it.

The set of linear differential 1-forms on R" is denoted by Al (R"). If we A} (R") then,
the linear subspaces of R” that are singular solutions of =0 are called isotropic subspaces
of .

Let J§(®) be the linear part of weA'(R"). We denote by b,(x,y) and g, (x) the
bilinear form J} (®) (x).y and the quadratic form J} (@) (x).x respectively. A necessary
condition for M to be a singular solution of ®=0 is that its tangent space, T, M, at 0
be an isotropic subspace of b, (and consequently of g,).

The set of forms w in A'(R") such that dm(0) has maximal rank is denoted by
A'(R". When n is even to each form meA! (R”) there corresponds a unique X e Z (R")
such that ©=i(X)dw. We point out that Lyw=w. This vector field is denoted by
X (w).

We define Spect(w) to be Spect(J§ (X (®))). The elements of Spect(w) are called
eigenvalues of .

m

Let 8,=) dx; A dy; be the canonical symplectic form of R*™ We deduce from
1

Darboux’s theorem that any ® in A' (R?™) can be put in the following reduced form

co=dH+%i(I)90

where H(0)=0, I(x)=x is the radial vector field on R*™ and i(I)8, is the interior
product of I and 6,. It follows then that X (®) can be written in the form

X(w)=Xy(0)+ %I
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SMOOTH SINGULAR SOLUTIONS OF HYPERPLANE FIELDS (I) 277

where X,; (w) is the hamiltonian vector field induced by the function H in the symplectic
space (R?™,0,). Of course this implies that

1
Spect (w) = 5 + Spec (J§ (X ()))
Finally we recall that X e Z (R") is not u-resonant if there exists no relation of the type

Y mi=1  with meN and ) m;>2
i=1

i=1

among the eigenvalues A; of J§(X). This means that for any nonzero homogeneous
differential 1-form of degree greater than one we necessarily have L, ®#m, where
A=J15(X).

2. Linear forms

2.1. APROXIMATION BY SIMPLER FORMS. — Let Al (R") denote the set of linear differen-
tial 1-forms o such that do has maximal rank.

Roughly speaking, we describe in this section perturbations of @e Al (R?™) that have
a very simple structure and that inherit, as far as isotropic subspaces are concerned, the
relevant characters of o itself.

The result we state below as the normal decomposition lemma is an immediate
consequence of Williamson’s theorem discussed in [1], and the reduced form of ® men-
tioned in the last paragraph.

Normal decomposition lemma. — Given weAl(R?™) there exists a decomposition
R2™=@ E, such that ® reduces, by a linear change of coordinates, to a direct sum of

forms of the type dH +(1/2)i(I)0, on these subspaces. Moreover the functions H are
in the normal forms listed in [1].

We recall, according as described in [1], that the subspaces E; are invariant subspaces
of X, () associated to a partition of its Jordan blocks into groups of the following six

types:
o Type 1: A pair of blocks with real eigenvalues +a; a#0.
o Type 2: A quadruple of blocks with complex eigenvalues +a= bi; a,b#0.
e Type 3: A pair of blocks with eigenvalue zero.
e Type 4: One block of even order with eigenvalue zero.
e Type 5: A pair of blocks of odd order with purely imaginary eigenvalues =+ bi; b+#0.
e Type 6: A pair of block of even order with purely imaginary eigenvalues + bi; b#0.

We shall denote by v (w) the number of subspaces of type 5 in the normal decomposition
of . (Note that 2v is simply the number of blocks of odd order with purely imaginary
eigenvalues in the normal Jordan form of Xy (®).)
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278 A. S. DE MEDEIROS

If v#0 let E, ..., E, be such subspaces and +b,i, ..., +b,i, b;>0, be the corre-
sponding eigenvalues. For each 1<k<v let g ==+1 be the sign of the signature of
.| Ei. (The signature of a quadratic form is the difference between the number of
positive and negative squares in its diagonal form.) We define, following the current
nomenclature of hamiltonians’ theory, the characteristic frequencies of ® to be the finite
sequence of real numbers o, =g, b,; k=1,...,v. We shall suppose from now on that
these frequencies are enumerated in nondecreasing order i.e. a; <. .. <0,.

If v=0 we say that o is frequency free.

Now we proceed to the description of the particular perturbations we shall make use
of to ensure the existence of high dimensional singular solutions of ®=0.

It is well known that, generically, the eigenvalues of a hamiltonian vector field are all
simple. Accordingly, the same conclusion holds for the eigenvalues of the differential
1-forms in A! (R?2™). Unfortunatly, this result, yet general, is not sharp enough for our
purpose, once small perturbations in the frequencies have shown to cause abrupt lowering
in the maximal dimensions of the isotropic subspaces.

In order to make precise the perturbations we need, we define we Al (R?™) to be simple
if Xy (o) is diagonalizable and nonsingular (i. e. det (Xy; (®)) #0)

By suitably perturbing ® on each subspace E; of its normal decomposition it is not
difficult to prove the following

PROPOSITION 2.1.1. — Every we Al (R?>™) can be arbitrarily approached by simple forms
having the same characteristic frequencies as ® itself.

2.2. EXISTENCE OF HIGH DIMENSIONAL ISOTROPIC SUBSPACES. — Given meAl(R?™) we
shall consider the decomposition R2"=E (0) ® E' (0), where E(resp. E’) is the sum of
all subspaces, in the normal decomposition of ®, associated to eigenvalues with zero
(resp. nonzero) real parts. Of course this yields a decomposition of ®, henceforth
denoted by o=0 @ o'.

If dim E'=2m" it follows from Corollary 1.3.1 of [4] that o has an isotropic subspace

of the maximal dimension m’. Consequently, ® has an isotropic subspace of dimension
m' + p, where p is the index of Witt of b;,.

Now let we Al (R*™) be given and let o, be any sequence of simple forms, like in
Proposition 2.1.1, approaching ®. It is easily seen that, for sufficiently largek,
(i) dimE' (0,)=2 (m—v (o))

(ii) (;)k= 2 o; (x;dx; +y;dy)+(1/2)i(1) 0y, where a,,...,a, are the characteristic fre-

i=1

quencies of ® and (Xy, . . ., X,, ¥y, . . .,,) are the coordinates on E (,).

In particular the index of Witt of b; depends only on ® and will be ‘denoted by
p(w). In the case w is frequency free we set p (w)=0. ‘

It follows from the above discussion that each ®, has an isotropic subspace of
dimension m—v(w)+ p(w). By taking on account the compactness of the Grassmann
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SMOOTH SINGULAR SOLUTIONS OF HYPERPLANE FIELDS (II) 279

manifolds we have established the following

LemMma 2.2.1. . — Let o€ AL (R?™). Then, there exists an isotropic subspace of ® of
dimension m—v (®) + p (o).

2.3. THE MAIN RESULT FOR LINEAR FORMS. — We proceed now to the characterization
of p(w) in terms of the characteristic frequencies of ®. This will be a consequence of
the more general result stated in

THEOREM 2.3.1. — Let (X, ...,X,Vy» - - -»),) denote the coordinates in R*" and let
o, <...<a, be real numbers. Then, the linear differential 1-form

0= z o; (x; dx; + y; dy;) + %i(l)eo

i=1
has an r-dimensional isotropic subspace if, and oly if, the following inequalities hold

(*) oto, ;4 1<0 and Oy_x+1 10 _, 4,20, foral k=1,...,r.

Proof. — Let D be the vxv diagonal matrix diag(a,,...,a,). If we consider in

0 Id .
o) the matrix

R?Y the complex structure determined by the operator J=(

<]0) I(;)-!-(l /2)J of the bilinear form b,, represents the linear transformation M of C"

given by M =D+ (i/2) Id.

We point out that the sesquilinear form B on C' represented by M is such that
b,=ReB.

The proof clearly follows from the lemmae below

LEMMA 1. — There exists an r-dimensional isotropic subspace for ® if, and only if, D is
unitarily equivalent (in C") to a (hermitian) matrix whose first r X r principal submatrix has
only purely imaginary entries.

For further references we shall report to such a matrix as an r-imaginary matrix.

LemMAa II. — Let o, <...<a, be real numbers. Then, the matrix diag(a,,...,,) is
unitarily equivalent (in C") to an r-imaginary matrix if, and only if, the inequalities (*) are
satisfied.

Proof of Lemma 1. — Suppose there exists a unitary matrix U such that U*DU is
r-imaginary. Under the linear change of coordinates U, the matrix of the sesquilinear
form B will become U*BU=U*DU+(i/2)Id which is itself an r-imaginary
matrix. Hence, the restriction of B to the real subspace spanned by the first r basic
vectors has zero real part and since b,= Re B this subspace is an r-dimensional isotropic
subspace.

Conversely, let E be an r-dimensional isotropic subspace of ®. Since E is isotropic
for J there exists (see Theorem III.2.B of [3]) a v-dimensional isotropic subspace E of J
such that E =« E. By extending an orthonormal basis of E to an orthonormal basis of
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280 A. S. DE MEDEIROS

E and by adjoining to this set of vectors their images under J we obtain an orthonormal
basis of R?". The change of basis transformation T on R?" represents a unitary
transformation U on C'. In fact, T is a real orthogonal canonical transformation i. e.
T'T=1Id and T'JT=1J. So that JT=TJ which is the condition for representing a linear
complex transformation U and, since T is orthogonal, this transformation is unitary.

Finally the matrix U* DU which corresponds, in C", to the matrix T'diag(D,D)T is

r-imaginary for the latter has the form ( i) and A has the first r X r principal

submatrix equal to zero.

Proof of Lemma 11. — First we observe that condition (%) holds if, and only if,

(*%) there exist real numbers b, < ... <b, such that

byt+b,_+:=0 and o <b. <o, _,1p Vk=1,...,r

This fact is an elementary exercise in real numbers.
We start by proving the sufficiency.

Suppose that (*x*) holds. All we have to show is that there exists an r-imaginary
matrix H such that Spect(H)={a,, .. .,a,}.

If r=v we have necessarily o, =b, and in this case we can define H to be the block
diagonal matrix H=diag (A,), where

<° °""> if 1<k<———v;1

A= — oy i

the zero 1 X 1 matrix if k=(v+1)/2 is an integer.

If r<v we proceed by induction onv.

It is easy to show that there exist real numbers p, . . .,p,_; such that

(1) oy <py <A <L <0y SE - S

() W<b<Hy-1)-r+e YE=1,.. 1.

By the induction hypothesis and (ii) above there is an r-imaginary matrix H of

order v—1 such that Spect (H)={n,, ...,n,_;}. Let A=diag(n,,...,p,_), Theorem
4.3.10 of [6] asserts that, if condition (i) above is satisfied then, there exist ye R¥™!-and

y
a

If U is a unitary

. A .
a€R such that the matrix H' = (y‘ > has the eigenvalues o, . . ., a,.

A

transformation such that U*AU=H then, U=<I0J (1)) is unitary and H=U*H'U is

r-imaginary. Since Spect (H)=Spect (H’) the sufficiency is established.

The converse is a direct consequence of Theorem 4.3.15 of [6] (that relates the
cigenvalues of a hermitian matrix to those of a principal submatrix) and the fact that
the eigenvalues of an rxr r-imaginary matrix occur in pairs +A. This, of course,
finishes the proofs of both Lemma II and the Theorem. W
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SMOOTH SINGULAR SOLUTIONS OF HYPERPLANE FIELDS (1) 281

We finish this section with

THEOREM 2.3.2. — Let weA}(R?>™) and let v be the number of its characteristic
[frequencies. Then, the maximal dimension of the isotropic subspaces of ® is precisely
m—v+p, where p=0 if v=0 and, otherwise, p is the greatest integerr (1<r<v) for which
the characteristic frequencies o, < . . . <o, satisfy the inequalities

ot <0 and o, F o, =0, Vk=1,...,r

Before we prove the theorem we need the following

TECHNICAL LEMMA. — Let R?™=R?>™ @ R?™2 and let 0,=0} ® 03, where 0} (i=1,2)
denotes the canonical symplectic form on R*™. If T=T, ® T,:R'— R?™ is an injective
linear transformation such that T*0,=0 then, rank (T |Ker(T%))>[—m,, where T} is the
first coordinate of T, relatively to the decomposition R*™2=R™2 @ R™2.

Proof. — Let I'’=rank (T, | Ker (T3)) and suppose that I’ </—m,.

We denote by (xy,...,X;,,) and (uy, ..., U, s, .. .,7,,) the coordinates on R*>™
and R?™2 respectively.

Now, let Im*(T) be the subspace of (R")* generated by the coordinates of T. By
successively extending a basis of Im*(T}) to basis of Im* (T, ® T;) and Im*(T), we

obtain a complete set of coordinates (u;, .. .,u;,X;, ..., Xj, Vs - - -»¥,) on R' having
the following properties:

(1) Ker (T3) is the subspace u;, = . .. =u; =0.

(2) T, does not depend on vy, . . ., v,

3) I'=s.

On the other hand, since /'</—m, and [=r+s+t, we deduce from (3) that
r+t>m,. This implies, in particular, that L={i,, ...,i,} N\ {ky, ...,k }#J.

Let T,=T,®T,. By rearranging the coordinates on R' we may assume that T, and
T7 have the following forms

r —
To=@y o thsthyyys oot Uy, o, UL Uy, 000U,

"o
Ty =1 - s0 Vst >V Opats o+ 0 Vot o - Vi)

where r'=#(L), t=r—r'+tand U,, V, are linear functions.

From the equation T*0,=0 we deduce T%03= —T*0} and, since T, does not depend
on the v-coordinates, the expression in the differentials du; A do;(i=1, ...,r"), in the
expansion of T%02, must vanish. Then, by taking on account the particular form of

T,, we conclude that —) du; A dv; is precisely the term in the differentials
1

my
du; A dvi(i=1,...,r") in the expansion of n= ) dU, A dV,. Hence, we must have
T+1
rank(m)=2r'. On the other hand, from the very definition ofn, we have
rank (n)<2(m,—1) and then m, — 1>+ which contradicts the fact that I'</—m,. N
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282 A. S. DE MEDEIROS

Proof of the Theorem. — In view of Lemma 2.2.1 and Theorem 2.3.1 it suffices to
show that m—v+p is an upper bound for the dimensions of the isotropic subspaces
of w.

We proceed by induction on m.

If m=1, either ® is frequency free or o satisfies the hypothesis of Theorem 2.3.1
and, in both cases, the statement is trivially true.

Now suppose it is true for any m<m.

We consider the decompositions R2™=E @ E’ and 0=0@ o' (see Section 2.1) and
we set dim E'=2m’.

Let T:R'—»R2™ be a linear parametrization of an /-dimensional isotropic subspace
of . We shall distinguish the following two cases:

(1) m' #0.

Since, by Lemma 2.2.1, there exists an isotropic subspace of ®' of dimensionm’, we
can choose symplectic coordinates u,, . ..,4,,, on E' so that u;=...=u, =01ssuch a
subspace.

We write T=T @® T’ and denote by T}, j=1,...,2m’ the components of T'. Now
let K be the kernel of (TY, ..., T,). Clearly T |K is a parametrization of an isotropic
subspace of ®, on R2™~™) of dimension /'=rank (T|K) and then, by the technical
lemma above, we necessarily have ['>[—m'.

By the induction hypothesis, and the fact that ® and ® have exactly the same
frequencies, it follows that /—m'<I'<(m—m')—v+p so that I<m—v+ p as desired.

@ii) m'=0.

If all subspaces in the normal decomposition of ® are 2-dimensional, we are in the
conditions of Theorem 2.3.1 and there is nothing to prove.

Now let o be a frequency such that the corresponding subspace E is of dimension 2 m,
m=2k+1>3.

By the normal decomposition lemma, there exist coordinates (X, . . ., X, 415 V1- - - Y2 k+1)
on E such that @ can be written in the form =0 @ (@, + ®,) where

- 1
©; =0 (Xt 1 X1 T Va1 D) T E(xk+1 A1 Vi+19%41)

and where x;= ... =X,=),,= ... =), 41 =0 is an isotropic subspaces of ®,.

By arguing just like in (i) above we arrive to an isotropic subspace of 0@ ®,, on
R2m-m+1) " of dimension I’>/—(m—1), and the induction is completed in exactly the
same way we have done before in (i). W

Remark. — The characteristic frequencies may be computed directly from the given
form ® without any help of a previous change of coordinates. In fact, if M denotes the
matrix of b, then, (1/2)(M'—M) ! (M'+M) (the matrix of X,;(w)) furnishes all the
elements required to determine the frequencies.

4° SERIE — TOME 25 — 1992 — N° 3



SMOOTH SINGULAR SOLUTIONS OF HYPERPLANE FIELDS (11) 283

3. Analytic and C”forms

3.1. THE MAIN RESULT ON EVEN DIMENSION. — Given meA! (R?™) we define the inva-
riants: v(®), characteristic frequencies, and p(®) to be the corresponding invariants of
its linear part J}(®). In fact we may, and we do, extend this definition to forms that
are only differentiable at 0.

In what follows Al (R") denotes the set of germs of C* differential 1-forms on R”
vanishing at the origin.

We are going to prove the following

THEOREM A. — Let we A' (R?™) (resp. we AL (R2™)) be such that do(0) has maximal
rank. Then, there exists an analytic (resp. a C*) singular solution of ®=0 of dimension
m—v(w)+p(w). Furthermore this dimension is maximal among those of the singular
solutions.

Proof. — Clearly the theorem is proved once the existence is established, for, the
maximality is a direct consequence of Theorem 2.3.2.

We follow the proof of Theorem A of [4].

We recall that: X=X (w); N is the X-invariant submanifold whose tangent space, T N,
at 0 is the invariant subspace of J§(X) associated to the eigenvalues A e Spect (®) such
that ReA>1/2; o=w|N and X=X|N.

Now we go one step forward, by showing that the diffeomorphism in Poincaré-Dulac’s
theorem normalizing X, referred in [4], does linearize ®. (If ®eC® we call upon the
C* version of Poincaré-Dulac’s theorem (see 5.24.F of [2]).)

Suppose we have carried out that change of coordinates. Let =0, +®,... and
X=X,+X,+..., where o, (resp.X,) is the k-homogeneous part of  (resp. X). The
decomposition R2"=E (0,) ® E'(®,) induces the decomposition Ty N= E (0) ®F,
where F=E’(0,) T, N. We know from [4] that, for k>2, X, has a zero component
in E(w,). On the other hand, since F is an isotropic subspace of , (see Corollary 1.3.1
of [4]), we conclude that o, =@®,. These considerations together with the classical
formula Lz, 0, =i(X,) do, +d(i(X,) ®,) show that Lz, ®, =0 for k>2.

At this point we are ready to show (by induction on k) that ®, =0, for k>2.

In fact the relations Lg, @, =0(Vk>2) and Lz 0= imply

(%) Lg, o, +Lg,0_;+...+Lg,_, 0,=w, forall k>2.

If k=2 we have directly Lg, ®,=®, and, since X, is not u-ressonant, we conclude that
0,=0.

Suppose now that ®,=0,...,®,=0. It follows from (%) that Lg ®,,,=®,,, and
again @, ,=0.

In other wordl we have shown that

(i) ® is linear in the analytic case.

(i) @=1J5(@)+mn, where n(p)=o0(p®), in the C* case.
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284 A. S. DE MEDEIROS

From the equation Lzo=0 we deduce Lzn=mn. We claim that this implies
n=0. (Which establishes, definitively, the linearity of ®.)

In fact, that equation is equivalent to (X,)* n=¢€'n, where X, denotes the flow of X.
Hence, by taking norms, we have

In|<e” InX, (p) || D, X,]

On the other hand, there is a neighborhood V (0) such that
(a) there exist K, p>0 for which

|X,(p)|<Ke*'|p|, Vi<O and peV,

for, ReA>0, V AeSpec (J§ (X)) (see Theorem 9.1 of [5]).
(b) there exist K’, y’>0 such that

|D,X,|<K'e ", ¥t<0 and peV,
once, D, X, satisfies the linear differential equation

Y=A(p,)Y, where A(p,))=Dx,,X

Since 1 (p)= o0 (p®), we deduce from (a) and (b) above that there exists a neighborhood
V(0) such that for each k€ Z™ one can find a constant C,>0 verifying the following
inequality

6] [n(p)|<Cpe*rw-Dy ¥t<0 and peV.

By choosing k such that kp—p’'—1>0 and by taking, in(1), lim , we conclude finally

t— —

that n(p)=0, VpeV, as desired.

The theorem obviously follows from the above linearization of ® and Theorem 2.3.1
of the last section. W

3.2. COMMENTS ON THE ODD DIMENSIONAL, AND LOWER RANK, CASES. — We shall denote
by AL (R") the set of ®e AL (R") such that dw (0) has maximal rank.

Given ® in A'(R?™*!) (resp. in AL (R2™*')) we can define the invariants v (o),
characteristic frequencies and p (®), to be the corresponding invariants of the form |E,
where E is the (2 m-dimensional subspace) image of the skew-symmetric matrix of dw (0).

An immediate consequence of Theorem A is the following

THEOREM B. — Let o€ A~ (R2™*1) (resp. @ AL (R?™* 1)) then, there exists an analytic
(resp. a C*®) singular solution of =0 of dimension m—v+p.

We point out that, similarly to what happens in the complex case, there could exist a
singular solution of dimension (m—v+p)+ 1, but none of a greater dimension.

We would like also to mention that the choice of E=1m(dw (0)), which lies behind
the statement of Theorem B, is due exclusively to its intrinsic character. Of course to
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any 2m-dimensional subspace E, where do(0)| E has maximal rank, there corresponds
an analogous of that theorem.

Finally we remark that the same procedure of taking restrictions to adequate subspaces
allows us, as well, to apply Theorem A to situations where dw (0) fails to have maximal
rank. We omit however the explicit statements of such results for they do no fit to a
general result such as Theorem B of [4]. In other words those statements would sound
in some sense artificial.

3.3. FiNAL CONSIDERATIONS. — We could resume the proof of Theorem A starting
with weC¥, by invoking the C* versions of Darboux’s and Poincaré-Dulac’s theorems
(see 4.1 of [7] and 5.24.F of [2] respectively).

On the other hand, it is easily seen that the same estimates, carried out in the proof
of the C® part of Theorem A, would likely work if @ was only C*, if k is sufficiently
large. Therefore C* versions of Theorems A and B above are clearly available under
the proper restrictive assumptions on k. We remark however that, since doe C*™!, the
singular solutions obtained by this method are also of class C*~?! rather than of class C*
as one could expect.
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