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TAMELY RAMIFIED SUPERCUSPIDAL
REPRESENTATIONS OF CLASSICAL GROUPS II:

REPRESENTATION THEORY

BY LAWRENCE MORRIS 0

Introduction

In Part I of this paper, henceforth referred to as I, we showed how to construct
parahoric subgroups and filtrations associated to compact maximal tori in classical
groups, when the tori are tamely ramified. In this paper we use these constructions to
associate irreducible supercuspidal representations of a classical group G to appropriate
inducing data, provided no wild ramification is present.

Briefly, the construction proceeds as follows. Firstly, if the torus T is unramified one
can use the constructions of I, and [M] to construct a suitable inducing representation
from an open compact subgroup. There is nothing really new or surprising here, and
the construction is carried out in Section 5 of this paper.

Now suppose the torus contains a ramified part. One then uses the constructions of
I Section 3, to produce a parahoric subgroup P, and a filtration {Pj^o which reflects
the arithmethic properties of a prespecified ramified part of T. Next, one uses a
"cuspidal datum" to produce an inducing representation on a certain open compact
subgroup of G; in a sense this representation can be viewed as concentrated around the
given ramified "block". One then uses more of the cuspidal datum to proceed on the
other blocks. It is crucial for this construction that one use the latter part of Section 3
of I. On each block one proceeds somewhat as in the construction of Howe [H] for the
case of GL^, but care must be taken to ensure that the pieces fit together in a coherent
way. [It is interesting to note that the blocks used in our construction are intersections
with G of Levi components of the GL(V) into which G embeds]. Eventually one is left
with an unramified part (which may be trivial), which is taken care of by Section 5. This
"block" part of the construction is completed in Section 6. For more details, we refer
the reader to section 6.3, where a (brief) guide and motivation are provided.

(1) Supported by N.S.F. Grants D.M.S.-8610730, D.M.S.-8802842 and D.M.S. 90-03213.
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234 L. MORRIS

In Section 7 we show that the compactly induced representation (to G) is irreducible
and supercuspidal. The method is similar in spirit to that carried out in Section 5
of [M].

Section 4 of this paper is concerned with certain semi-simple elements in Lie (G), and
their centralizers. Such elements give rise to characters on the groups P^, by virtue of
the fact that the filtrations of I Section 3 have good duality properties. In particular
we examine the relation between such a centralizer, and the filtration above (cf. Proposi-
tion 4.10, Lemma 4.3); we also provide an example to show that proposition 4.10 need
not hold in general.

Proposition 4.10 implies several structural results (4.13-4.15) which are reminiscent
in spirit at least, of [H] and [M]. The remainder of Section 4 is concerned with
duality (4.17-4.20, 4.24), intertwining/conjugacy properties (4.21, 4.23), and isotropy
subgroups (4.24, 4.25). This section is rather long, and technical; perhaps the reader
should refer to it as necessary.

The representations of Sections 6 and 7 do not exhaust the supercuspidal spectrum of
G. In an afterword (Section 8) we sketch how one can produce more supercuspidal
representations by enlarging the filtrations of I, and adapting the results of [M] on
principal tori.

It is worth emphasizing the differences between this paper and [M]. Originally the
author had hoped to understand the general situation by writing a compact maximal
torus as a product of principal tori (this can always be done). Our motivation in
Sections 6 and 7 has been to proceed inductively through the various "ramified parts"
of T; we return to the original idea in Section 8. We remark that if one starts with a
principal torus T, the filtration used in [M] need not be the one used in this paper [see
example (3.9) b (ii) of I and example 8.6]. Moreover, one obtains supercuspidal
representations from principal tori for symplectic groups in this paper which were not
constructed in [M]. The constructions here and in I also take care of forms with an
anisotropic part. Thus the constructions of [M] which are perhaps easier to understand,
and more intuitive, are much cruder than the methods used here.

As in [M] we have refrained from defining admissible characters, and we do not
treat the problem of equivalences. We remark that characters of tori cannot give all
supercuspidal representations in our situation: the reason is the existence of unipotent
cuspidal representations for the finite classical groups, which can be pasted on to other
data to give representations not parametrized by characters of compact maximal tori
(see Section 6). Nonetheless, the influence of [H] is quite pervasive in this paper.

One might hope that the constructions we give yield (almost) all supercuspidal represen-
tations of G. The problem of exhaustion leads one to a suitable notion of fundamental
G-stratum (cf. [B2], [H-M] for the case of GL^). As mentioned in the introduction to I,
constructions similar to those of Section 2 of I play a role here.

As a final technical note, we remark that the numbering of this paper is a continuation
of that of I, as is the notation.

The first draft of this paper was written while the author visited the Institute for
Advanced Study. It is pleasure to thank the Institute for its hospitality.
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SUPERCUSPIDAL REPRESENTATIONS OF CLASSICAL GROUPS 235

4. Semi-simple elements and characters

4.1. We adhere to the notation and conventions of Section 3.1, and we begin, as in
3.3, by supposing that A=Ei=E. One then has the lattice chain {^^}^gz» ^d ^e
associated hereditary order ja^, with Jacobson radical ^, filtration {^^gz? anc! ̂ ^
normal subgroups {Pj^gN of the parahoric Pc=G.

Suppose that E is a tamely ramified field extension of k. Let C = Cg be the group
generated by roots of unity of order prime to p that are in E, and a given uniformizer
Tig. Then (cf. [H]) E* = C. Ug where Ug = U^ = 1 + ̂ g. If x e E one can find a unique
c=c^eC such c~lxe\J^ i.e., ord^(c-x)^OTd^(x), or again |^-^ |E^ME- We
assume that K^=K where e = ramification degree of E/F.

The group C is preserved by Aut(E/^); if reAut(E/fc) then either T C = C or
| T c - c Ie = | c Ie, all c e C. Moreover if E =) E' -=> k, then Ng/e' (Cg) <= Cg', and Cg' c: Cg.

Let X e C = CE c: E c= End^ (V) = End^ (E). We write ^ [X] for the commutator of X in
Endfc (E); in other words

^[X]={YeEndfc(E)|ad(Y)X==0}

where ad (Y) X = YX - XY.
Let tr (Y) = tracegnd^E) (Y)if Y e Endfc (E)- We then have

Endfc(E)=^[X]®^[X]1

where

^ [X]1 = {Y e Endfc (E) | tr (YZ) = 0, all Z e ̂  TO}

Lemma 3 in [H] says that in fact

^n = ̂  [X] U ̂ "©^ [X]1 0 ̂ n, all ^ e Z.

Let ^"_= (^n)_={Ye^n |Y+aY=0}. If X+aX=0 we then find that there is a
decomposition of feo-vector spaces

( 4 . 1 . 1 ) y_ =^PC] n ̂ -©^[x]1 n y-
(cf. [M], proof of Lemma 2.20).

Set

^=^rn^[x],
^-^"n^pc]1

Suppose that ^rdg (X) = m. Then lemma 4 of [H] says that

adtX)^1^^"11, all neZ
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236 L. MORRIS

IfYeO^-^then

a(XY-YX)=aYaX-aX(jY
(4.1.2) ==YX-XY if X + a X = = 0

whence a^X)^1)^^1.

We shall commence this section by proving analogues of (4.1.1) and (4.1.2) for the
filtrations we have constructed in Section 3, and appropriately chosen elements X. We
then derive some consequences of these results which will play an important role in the
representation theory.

r

4.2. We begin with the unramified filtration of Section 3.4. Thus A= © E^ where
1=1

each Ei is unramified over fe. It was shown there that one obtained a unique lattice
chain J^fy = ̂  by the summation process of Section 2; the associated hereditary order ^
was given the filtration by powers of the Jacobson radical. We remind the reader of
Lemma 2.17: ^ is either principal of period 1, or ^ has period 2 and is the intersection
of two (canonically chosen) principal orders A, A* = cr A.

Suppose that XeA. Then Section 1.18 of [M] says that
r

^[X]^End^(V)c. © Endp/E,)
j'=i

where, if X== (X^, . . ., X,), F .̂ is the field generated by Xp and Ax= © F^. Put
j = i

^x = © (9] where (9j is the ring of integers in ¥ p ^x = © ^r we have

(4.2.1) ^x==^x

since each F .̂ is unramified over k.
We can now apply the proof of Lemmas 2.17 and 2.18 of [M] to deduce that

A=^[x]nA©(^[x] lnA)
(If ^ is principal, we can replace A by ^ = A == A^.) The key observation is that those
lemmas can be applied because of 4 .2 .1 and the fact that A is principal.

4.3. LEMMA. — ^ == ̂  n ̂  [x]©^ n ̂  [X]1.
Proof. — This is really Lemma 2.20 of [M] which we give to avoid repeatedly referring

to that paper. We have

A==An^[x]©An^[x]1

and similarly for A^ == a A. Let y = a z e A P [ a A . Then

y=yx+y^ ^xeAn^[X], etc.
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SUPERCUSPIDAL REPRESENTATIONS OF CLASSICAL GROUPS 237

Also

^=az=(jZx+ozx, azxeoAn^IX], etc.

Then y^ - a Zx = a Zx - ̂ x e ̂  [X] 0 ̂  [X]1, so that ^x = a ̂  Yx == (J z^ an^ we are

done. Note that we have used the following lemma, in proving this.

4.4. LEMMA. —7/ 'X+aX=0, then ^[X], ^[X]1 are a-stable.

Proof. - Let Ye^pq. Then (aY)X-X(aY)=a{(aX)Y-Y(aX)}. But aX= -X,
so this last is simply a {YX - XY} =0. Let Y e ̂  [X]1. Then

tr(XaY)=tr(a(YaX))= -tr(<7(YX)= -aotr(YX)=0.

(The penultimate equality follows from the known structure of involutions a associated
to (TO — e sesquilinear forms, for example.)

4.5. PROPOSITION. — With the assumptions of 4.2, let ^ be the Jacobson radical of^.
Then for any integer n,

^n = ̂ r n c[X]©^" n ctx]1

Proof. - We imitate the proof of Proposition 2.21 of [M], and note that we have just
proved the assertion in case n==0. Consider the case n=\, we observe that ^=7ij^*,
so we may replace ̂  by ̂ *, and do so. Let x e j^*, so that x e End^ (V) = ̂  [X]©^ [X]1:
we set x = s +1, where s e ̂  [X], t e ̂  [X]1. Now

where

It follows that

Q =D tr (x 0 = tr {{s +1) (^x®^))

^x=^[x]rw, ^^^pc^n^.

^=)tr(x^)=tr(^^x)+ t r(^^x)

hence

tr(^j^x)^^ trO^)g(P.

In particular, ^e^x» where "*" is with respect to tracee^ (Y)- Now

^x=^n^ra
is a sum of hereditary orders determined by the lattice chain for ^ (for each
"E^-component" of the summed chain is stable by (9^, so that

^^Tr^x^'^n^ixi).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



238 L. MORRIS

(Note that ^n^[X] is the Jacobson radical for j^n^[X] by repeating the
various definitions.) Thus j^x = (n ~1 3S) Pi ̂  [X] = e^* H ̂  [X]. Also tr (^ j^x) = 0» ^d
tr (/ j^x) c= ̂ , so tr (/ jaQ 1= 0 i. e., t e ̂  C\ ̂  [X]1. This proves the assertion when n = 1.

We have already noted that if 36 is not principal, then ^2 is principal: ^2 = TI jaf in
this case. The assertion then follows from that for n = 0. Again, if S is not principal
(in which case everything follows from the case ^=0), we can write ^3=^2.^>=fc^,
and b can be chosen to be in d^^A. Thus we obtain a decomposition from that for
^, and the general case follows easily, for n>0. The case n<0 is then obtained by
periodicity.

4.6. Next, we turn to the analogue of 4.1.2, in the case that all the field extensions
are unramified over k. First, let X e A ^ j if e(^/)=2, otherwise XeA^ some m (cf.
Lemma 3.4). In other words, if e(^/)=2, we let XeA^, m an even integer. Next, we
let Cf==C^ denote the group corresponding to the field E^ in Section 4.1. We write
X^^b, where b is a product of roots of unity of order prime to p: if we put
CA= < 7tA ) . n ®i ^ere B .̂ is the group generated by roots of unity of order prime to p

in E*, and n^= (n^, . . ., n^) n^ a given uniformizer for Ep then we have chosen XeC^.
It follows that if we set ̂ 1 = ̂ n U ̂  [X]1 = ̂  „ then ad (X) ja^x, n ̂  ̂  ̂ , n-
This last is equal to

(w^,«+ 2 m if ^2 is principal
I ^in+m ifnot

Set /=2 i f j^ is not principal, 1 otherwise.

LEMMA. - ad(X)(^^)-=^(^^)-= G<n^)~.

Proof. — Exactly the same as the proof of Lemma 2.24 of [M].

4.7. Suppose X^X+BeX+^m+i.x- If ^^(^x,n)~. the above says ad(X)a=&,
^e(^x,n)~» so that ad(X /)fl=Z?+ad(B)^,ad(B)^e(^„+^+l)~ where /=2 ifs/ is not
principal, 1 otherwise. Then we can find a^e(^^n+i)~ so fhat ad(X)ai=Bai, and
ad (X') (a + a^) = Z? — B ̂ i. Continuing we obtain an element OQ so that ad X' OQ = &. This
implies the following

COROLLARY. — Let X e CA H ̂ w X' e X + ̂ ^ x. TO^

ad(X/)(^)-=G<^J-.

4.8. We now turn our attention to the situation where at least one of the E^ occurring
in the sum for A is ramified over k [i.e., ^(E^)=^>1]. We remind the reader of the
framework in Sections 3.5-3.7. In particular we write

A=A,®E^®...©E,

4°SERIE - TOME 25 - 1992 - N° 3



SUPERCUSPIDAL REPRESENTATIONS OF CLASSICAL GROUPS 239

and the lattice chain associated to A is given inductively by ^Q=^^ J^==J2^._i©J^,
i fy>l

J^=^=^_i©^

where Jij is the self dual lattice chain {^^n e z- ^e remark (again) that this construction
depends on the ordering (E^+i, . . ., E^).

4.9. Let X = X,. be a non zero element of E,.; we put F = F,. = Fx for the field generated
by X. Suppose that X^ + a X,. = 0 where a^ = a | E,.; then o^ acts non-trivially on F, while
preserving it. Let G^=U(/^, E^)=U(/y., V^) (in the notation of 3.11), with Lie algebra
given by

{YeEndfeCv2) |Y+cj ,Y==0}

where "par abus de notation" we let CT,. also denote the restriction of a to End, (V^). It
follows that

T^= {xeEjxa^x= 1}

is a compact maximal torus in G,., with Lie algebra

Lie(T,)={YeE, X+a,X=0}

In particular X^eLie(T^)c=Lie(Gy). The centralizer in G^ of X^ is given as follows
(cf. [M], 1.19)

ZG, (X,)= {^ e Endp^ (V,) | ̂  a^ = 1}

We remark that the involution Oy == a | Endp^ (V^) corresponds to a c—cjo sesquilinear
form

F,: E,xE^F,

such that traceF,./fe°F,=/, (cf. [M], 1.18). Note that since X,+(jX,=0, the group
ZG^(X^) can be identified as the (genuine) unitary group of the (skew) hermitian
form F,..

4.10. We have

Lie (ZG, (X,)) c: End^ (V) g End, (EQ® . . . ©End, (E,) g End, (VO©End, (V,)

where as usual V\=Ei© . . . ©E^_^.
The commuting algebra of Xy in End, (V), which we denote by ^ [X] is then easily

computed to be

End,(VO©End^(V2)

PC^eF*, hence is invertible in End.CV^)].

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



240 L. MORRIS

Let ^=^' C ^ ^ " ' ' { ^ i } be the hereditary order and filtration by (^/, 0 bimodules
given in 3.5-3.7.

PROPOSITION. - ^=^,n^[x]®^n^[x]1.
Proof. - As usual set V = V^ ®V^ where V^ = E,. By Lemma 3.12 we can write

^== © ^i(l,m)
1^1, m^2

where ^,(/, m) = ̂ , U Hom^ (V^, V^). Now ^,(1, 2), ^,(2, 1) are both in ^[X]1, and
^•(1, 1) is in ^[X], by the remarks preceding the statement of the proposition. On the
other hand we can apply (4.1.1) to ^(2, 2), End^V^), X, to see that

,̂ (2, 2) == ̂  (2, 2) H ̂  [XJ©^ (2, 2) 0 ̂  [XJ1

where we set ̂  ̂ ) = Endp, (X,), and "1" is with respect to traceE^vs)
Putting all this together, we see that the assertion of the proposition is true.

4.11. One might be led to believe that proposition 4.10 is the rule rather than the
exception. Care must be exercised however. As an example, one can take a quartic
totally ramified extension £4, and a quadratic totally ramified extension E^ such that E^
is a subfield of E4. The resulting algebra E2©E4 gives a torus in Sp^ via

trace^ (co2 x ay) + trace^ (co x ' a' /).

Here we have chosen co^Tr, E^^k^], E^A^co2], a: co2!-^ -co2, a ' : coh^ -co. One
can then find X in E2@E4 which provides a diagonal embedding of E^ ^ E^Q^ such
that

^ 3 ̂  n ̂ [X]©j^ n ̂ p<]1

where ^ is the order which stabilizes the entire chain J^f®^ (it is an Iwahori order), or
the order ^ ' C\ ̂ " of 3.5-3.7.

4.12. We now assume that X, is a member of the group C,=C^ introduced in 4.1,
and that ̂ r^^im^ri^im+r ^ brevity we set

^x^r n cpq,^==^- n^[x]1.
From 2.10 we see that

ad(X)(^-)^r4-2m

The kernel of this map is ̂ x- Restricting our attention to ^^x we obtain a map

ad(X): ^^^T^x of ^-modules

PROPOSITION. - ad(X): ^7x-^ ̂ ^ m, x ^ ̂  isomorphism. Similarly, if we replace
ad(X) ̂  ad(X7) where X^X+^'m+i,^^ ad(X') ^ an isomorphism.
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SUPERCUSPIDAL REPRESENTATIONS OF CLASSICAL GROUPS 241

Proof. - It is sufficient to prove this for ad (X), since the second assertion can be
proved by an approximation argument as in 4.7. Also we only need show surjectivity.

By proposition 4.10 and Lemma 3.12 we can write

^-^(L 2)©^,(2, 1)©^(1, l)n^[XJ1

where the last "J-" is with respect to traceEnci^vi)' Thus, if be^^ we write it in matrix
form as

b^
f 0 b^
^21 ^22.

where Z^^^iO? 2)=^HHom(V2, V\) etc. Moreover, in matrix form we may write
our form /=/i ®/2 as

'Ji 0
. 0 J,

and X. has the form (Vo x.
Given c== ( c12 \^^^rn x we must fmd be^, x such that ad(X)&==c. Now

\<'21 <'22/ '

set b== ( 12 1. The equation to be solved is then
\^21 ^227

/ 0 -& l2 .X , \ ^ /0 C,,\

VX,.^i ad(X,)^J YC^ c^/

As an endomorphism of V^, X^ is invertible, so that we find

^^^"^•XT » ^21==Xr '^21

ad(X,)&22=^22

By proposition 3.17 (b) and (c) and (4.1.2) this last equation is also solvable. It

remains to check that the element b== ( 12 ) that we have produced, lies in ^fx-
\b2i b^l)

Now the way that b^ was produced, implies that this element lies in ^[X]1.
Moreover, since c is skew, and b^ is skew by (4.1.2), one sees by a short computation
using the matrix description of the form / given above, that our element b is also skew.
Finally, using the block description for ̂ , ^ i+2m? and (2.10) again, we see that be^i.
Namely, we have ^21' ^i ̂  ̂ i + 2 h all ^ and

Horn,, (V^, Vi)°Homfc (V^ V^) g Hom^ (V^, V^), etc.,

and this implies for example that

(Horn, (V^, V,) 0 ̂ ). X,-x g Horn, (¥2, V,) 0 ̂ -2 .

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



242 L. MORRIS

4.13. The next result in the analogue for the filtrations we have constructed, of [H],
Lemma 6, [M], Lemma 2.28. To avoid stating and proving a proposition for each of
the filtration types we have constructed (case where each E^ is unramified over k, case
where at least one is ramified over k) we adopt the following conventions. If A is
unramified with lattice chain of period 2 we set ̂  = ̂ l; if the period is 1 we shall set
^^^^^ii-i- When quoting results for each case, we shall give those for the
ramified case first, followed by the unramified case in parentheses. We shall employ
these conventions whenever it is appropriate, throughout the remainder of the paper. Now,
let X be as in 4.12 (4.6). In particular, Xe^^-^m+r

PROPOSITION. — X + ̂  = Ad (Pi - 2 m) (x + ̂ 7x) tf l > 2 m-

Proof. — Let TeX+^~'. By proposition 4.10 (4.5) we may write

T=X+^+z;, ^e^x ve^l~,x'

By Proposition 4.12 (4.6) we can find z e ̂ i-\ m, x? sucn tnat ^ = ad (X) (z ' ) . From this
point onward, the argument follows the proof of Lemma 2.8 of [M].

4.14. As shown in [M], Sections 2.30-2.34, Proposition 4.10 (4.5) has a number of
group theoretic implications. The basis for such results is the existence of a filtration
satisfying (a weaker form of) FI-F IV of [Ml], the Cayley transform, and the decomposi-
tion provided in 4.10 (4.5).

We shall summarize these results, without providing proofs, which can be found in
loc. cit. (with the appropriate changes).

First we remind the reader [cf. Theorem 2.13 (c)] that the Cayley map C is defined
on Lie (G) C\ {X | det (1 + x) ̂  0} by the rule C (x) = (1 - x) (1 + x) ~1. The image of this
map lies in G; if jce^i (cf. the conventions of 4.13) then ( l+x)~ 1 is given by the
convergent power series 1 — x + x2 — x3 + . . . and C (x) exists. We then have a bijection
[2.13(c)]

c: ^7-^p,, ;>o
with inverse given by p \—> (1 —p) (1 -\-p) ~1: p — 1 e ̂ , and 2 e ̂ * so that (1 +p) ~1 is given
by a convergent power series.

Set H, == ZG (X) U Pp and define

EQ,7)= {^ePj^-le^mod^,}

where

(4.14.1) 2 ;^ /^z^ l

LEMMA. — E (;', j) is a subgroup ofP^ which normalized by H= P C\ ZQ (X).

Proof. — That E (f, j) is a group follows directly from the definitions and the fact that
C: ̂ ~ -> ?i is a bijection [Theorem 2.13 (c)]. Moreover, in the unramified case one can
show that H normalizes E(;',7') just as in the proof of Lemma 2.33 of [M]. For the
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SUPERCUSPIDAL REPRESENTATIONS OF CLASSICAL GROUPS 243

ramified case, we can also copy the proof of loc. cit. once we have shown that P
normalizes ^\-. To see this, note that

^'l r^ ^'flp=^rwnG, ^:

hence P normalizes ^21 .^^ P ^ 2 i P ~ l = ^ 2 ^ a^ ^eP. If i is odd, then
^l=^2m+l : = = (^(-e-m)2)*? ^d tor any 7, (x^^.x^.x^x"1 which implies the result
in this case as well.

4.15. The next result is proved using Proposition 4.10 (4.5), the Cayley map, and
approximation arguments, cf. [M], 2.32-2.34.

PROPOSITION:
(a) ?i = E (;', 7) H^ (semi-direct product), assuming (4.14.1).
(&) H, 0 E 0,7) = H,, assuming (4.14.1).

4.16. Henceforth, unless otherwise stated, whenever we refer to Pf/Pj or (E(/,7') it will
be tacitly assumed that the conditions (4.14.1) hold.

4.17. The remainder of this section is concerned with the dual of Pi/Pp and the
isotropy subgroups of appropriate characters in this dual.

Recall that a | k= OQ, and that the fixed field of (JQ is k^ so that k is a Galois extension
of ko of degree 1 or 2. We remind the reader that OQ, ^o? Ko^ • • ' denote the obvious
objects.

Let tro denote the composition

Trace tr^

Endfc(V)—-^ -> ko

For brevity we write tr for Trace^n^ (Y)-
If L is an (9 lattice in End^ (V) [hence an ^o-lattice in End^ (V)] we define its complemen-

tary/dual lattice to be

U = [x e Endfe (V) | tro (x L) E ̂ 0}

Then (c/. [M], 3.2), Ltf is an ^-lattice as well. Recall that

L*= {xeEnd,(V)|tr(xL)^}

The relationship between L» and L* is easily explained since tro = tr^ ° tr. Indeed, let
CQ be the ramification degree of k over A:o. Since 2e^*, k is tamely ramified over ^o?
and the inverse different of k is just ^l~eo. Then

L<=^|tr^(tr(^L))g6?o}
= {^Itr^L)^^1"6 0}
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We can apply these remarks to the filtration by « 0-bimodules ^.. It follows
that

=^)l-eo^*=^l-eo^_^ _ ^

= ̂
—l-s i - i+s id-eo)

where s, is an integer given by the lemma below, which we shall refer to henceforth as
the modified period of s / ,

LEMMA:

2 e in the ramified case, where e = period of ^ ' or ^"
s^ = 2e m the unramified case, of period e = 1

^=2 in the unramified case, of period ^==2.

Proof. - Straightforward exercise. We note that in the ramified case, Ie need not be
the period of ^ ' C\ ̂ " .

4.18. The ideals ^,, are or-stable by construction, and we have

via

X+CTX x—ax
X=—————-h—————, 26<P*

This is a sum of ^o-vector spaces, orthogonal with respect to tro, since

^tr^o011'

and

^k/ko (tr (xy)) = tr,/^ (GO tr (a (xy))) = tr,/^ (tr (a (x^))) = - tr^ (tr (x^))

if x = a x, y == - CT^, which implies tro (jcy) = 0 since 2 e ̂ *.
Define

(^ = {^End,(V)--Lie(G)|tro(x^-)s^}

The remarks above tell us that

(^-)<=W

We summarize all this in the following lemma.

LEMMA. — There is a linear function

^: Z^Z

ih->\-s^eo-i
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such that

^-^(O

(^=^"(0

In particular, 'k is order reversing, ^(;+ l)=^(f)— 1, a^zrf ^(0 ^ ^z^ (r̂ p. oAf) if and
only if i is odd (resp. even).

4.19. Let Q be a character of the additive group k^ which has conductor QQ.
The map

End^Vr-^End^V)-)"
xh->Q(tro(x_))

is an isomorphism of abelian groups, where we denote by " A " the Pontrjagin
dual. Given an (Po-lattice L in Endfc(V)~ we set

L^xeCEnd^Vn-lx^EEl}

The identification above enables us to identify L^ with L»; if L^L^ then

(L,/L,)^L^/L^Ls/Lt

Together with Lemma 4.18 and Theorem 2.13 (rf), these observations imply the
following lemma.

LEMMA. — Under the conditions (4.14.1) there is a P-equivariant {via Ad, Ad* respec-
tively) isomorphism of abelian groups

H: ^/^-^(P^/P,)-

b + ̂ MQ ̂  (P ̂  Q (^o (b (P - 1))))

4.20. Conventions. — (i) We shall frequently write s/~ (j) in place of^J", and ja^x (/)»
etc. in place of^x? etc-

(ii) If ^(P^/P^ is such that v|/=H(^+j^~(^(f))) we shall say that b represents v|/,
and we write \|/ = \|/^.

4.21. Now let ceA~. In the unramified case we suppose that c has been chosen as
the X in 4.6 i.e., ceC^. In the ramified case we assume c has the form (0, 0, . . ., c,.)
where Cy e C^, Cy + a,. ̂  = 0.

In all cases we fix a positive integer 7, and we suppose that
ce^~ (^ (/'))—^~ (^(/—1)). To avoid any confusion later, we remind the reader of
what this means in the various cases:

Ramified case (4.12). - We have ^~ = ̂ ~ (i) [4.20 (i)]. From Proposition 3.11 (c)
we know that ^ = ̂  (2 i) 0 End^ (V^) == ̂  (2;- 1) U End^ (V^), and 3.11 (7?) says that
J?2 is a (two-sided) principal ideal generated by n\. It follows that in this case X,(j) is
even (j odd 4.18) and c represents a character \|/^ on ^".^/^"^P^JP^.. Note that
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\|/^ is trivial on j^^^_i, so that it can also be defined by taking the character
\|/^ on ^^ (j— 1) and extending is trivially. In particular, \|/^ will be trivial on
^c, (J~ !) (^ 1). in the notation of 3.12.

Unramified case (period 2). — In this case ^=j^(z)=^1 by definition, where ^
denotes the Jacobson radical. From Lemma 3.4 we know that ^2lC}A=^2l~l^}A
for any i, so that in this case as well, X(/) must be even, and c represents \|/^ on
^7-i/^7 ̂ j-il^p and ^c wiu be trivial on ̂ -l(/- 1).

Unramified case (period 1). — According to the conventions of 4.13 we have defined
^2i=^li-\=^\ whence again ^(/) must be even, and the same remarks hold as in the
case just discussed.

LEMMA. — Let S, T e (c + ̂  ~ (k (j-1))) 0 ̂  [c\. Suppose that geG satisfies Ad (g) T = S.
ThengeZQ(c).

Proof. — We consider the ramified case first. In block form (c/. 4.12) we can write

T = ( r l ° V S e [sl I, where T^, S^ lie in Endp, (V^),
\ ^ T^/ \ 0 S^/

.-̂ , c^»}

We first show that g e End^ (V^CEnd^ (V^). Let /= g. c. d. (X (j)/2, e (^')). Then S^,
j-e/f ^ ^ c k ( j ) / 2 f ) ̂ ^ ^^ ^g again conjugate by g. We assume until the end of this
paragraph therefore that S, Tej^, and then j^/^^ja/ii/^n ©^22/^22- ^e a!50 know
that ^'a is the stabilizer of a lattice chain with Jacobson radical ̂  (see Lemma 3.13). It
follows that s/^/^ii is the Levi component of a parabolic subalgebra of Endp (V^) where
Vf is a finite dimensional F^-vector space which can be taken to be L^/TiL^. for some
suitable lattice L^.cV,(f=l, 2). Our description of S, T implies that S, T each have
characteristic polynomials of the form fp(f) where r=dimLi/7rLi, and p(f) has degree
dimV-dimVi^dimV-r, (t,p{t))=\. Then S, T each have characteristic polynomial
of the form q(f)p(t) where q{f)=f,p(t) lifts p(f) and of course p(f), q{f)e(9[t}\ this
follows from HensePs lemma, and the remarks above. Moreover (p(t), q(t))= 1. Since
Ad(g)T=S, it follows that g takes the rational Jordan decomposition of V as a T-
module into the corresponding one for S. Since {p(t), q{t))= 1 we see that this implies
g preserves Vi and V^.

Thus in block form we have g= ( 1 ) where ^eAu4(V,)(z'= 1, 2), and we must
\0 gj

show that g^eEnd^^^^). To do this we shall argue as in [H] Lemma 8.
To save notational burden we drop the subscripts "r" and "2" in what follows. Then

c^T, c~ ̂ £(1+^(1)) which implies that (c - lT)w=c - mTW-> 1 as m -> oo, and simi-
larly, (c-^sy^i.

Now C/<( n ) = CE^./( 7i) is a finite group consisting of elements of order prime to /?.
Let / be the order of c in this group, then there is some p1' (r ̂  0) and infinitely many
elements //ll (in the sequence {p^me^} sucn th^ /^^T^mod/. Without loss we may
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assume n^r, and then pni~r=lmodl. Thus there is an infinite sequence m^-> oo with
c1"^^^1, for some sequence ^. We then have TT^S^, TT^T^-^C, and since n is a
scalar, Ad (g) (n^ T^) = n^ S^. Thus Ad (g) c = c, as desired, and we are done with the
ramified case.

The unramified case can be proved by adapting the second part of the proof above,
and we leave it to the reader.

4.22. Let (p be a character on Pi/Pj (conditions 4.14.1) which restricts to \|/^ on
P^-i/P^. With the notation of Lemma 4.19 this means that if (p=(pT=^i(T), then
T-ce^-(^a-l)).

We now state some results which pertain to this situation; rather than give the proofs
in complete detail we shall simply say in each case how to adapt the corresponding
proofs in [M] by using the appropriate results proved in this section.

LEMMA. — Let (p be as above. Then
(a) Ad* Pi ((p) contains an element (p7 which is represented by an element of^[c}~.
(b) Suppose (p is represented by T e ̂  [c]-. The stabilizer of (p in P is in the subgroup

H.Pj-i [where H=PnZo(c), cf. (4.14)].

Proof. — Apply the proof of Lemma 3.11 in [M]. In place of Lemma 3.10 of [M],
one uses Lemma 4.21 above. In place of Propositions 2.21, 2.28 of [M], one uses 4.5
(4.10) and 4.13 respectively. We remind the reader that ^(/), j— 1 are even in all the
discussions that take place here and below.

4.23. Suppose now that (pi, (p^ are characters of Pf/Pj (conditions 4.14.1) with
^=(PT,(/= 1,2), where T^(c+^-(^a-l)))nW

Recall that geG intertwines (p^ with (pi if ^cp2=(pi on g?ig~1 OPr In terms of
cosets this means that Ti—^T^"1 es/~ Q^(i))-\-g^~ (^(0)^~1.

LEMMA. — With the notation and assumptions as above, ifg intertwines (p^ with (p^ then
^eP,_,ZG(c)P,_,

Proof. — The proof is similar to that of Lemma 3.13 of [M], but it is relatively short,
and since this lemma plays an important role in Section 7 below we give the proof.

The remarks above imply that ^ ^ — g r T ^ e ^ / ~ (k(l))J^g ^~ (X(Q) so that we can write
TI-^-SI-^ where S,(/= 1, 2)e^-(^(Q). Thus T^-S^^T^-S^) where
TI, T^ec+j^" (X(7—1)). Applying Proposition 4.13 to T^, T^, we see that
T^-S^==Ad(^(T;) where ^eP^.(/= 1, 2), and T;eT^+j<~ (^(0). But then we can
apply Lemma 4.21 to conclude that k^1 gk^eZQ^c).

4.24. Now set H^P nZ^(c) in the ramified case, and set H2=H=P HZ^c)
otherwise. There is a commutative diagram (condition 4.14.1).

^-/^PA
T -> T

^-/^~^H^,/H,,,
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where we have put ^=(Endp (E^)O^(O in the ramified case (c/. Proposition 3.11),
J^ = End^. W ̂  Ja^ (0 m ̂  unramified case. Note that we are assuming that j is odd
(4.18, 4.21) and that ^^ == End, (E^) H ̂  is a principal order by Proposition 3.11.
Afortiori, ^ C\ End^(E,.) is a principal order as well.

We define

^*={/eEnd^(E,)|Tro(/^)^^o}

W^{xeEnd^r\XW==\}

in the ramified case, and

^=={/eEnd^(V)|Tro(/^,)^^o}

(^^{xeEnd^^-lx^,)^!}

in the unramified case. In the former case we obtain a commutative diagram of abelian
groups

End (̂E,) ^ Endp^E,)-

i- T'
Endfc(V) -> Endfe(V)A

»(Tro( , ))

where T is restriction and K is the composition

Endp^ (E,) ̂  End, (E,) -^ End, (V,) © End, (V^)

i
End,(V)

(E,=V2 by definition).
The composition To^(Tro(K_, )) is none other than the map Endp^(E^) -^Endp (E^)"

which is induced by Tr^, so that via these identifications

( î/H^r
^- (^ 0)) n End^ (E,)/̂ - (^ (0) 0 End^ (E,)

[ ̂ - (X 0)) H End^ (V)/^- (^ (0) n End^ (V)

in the ramified (resp. unramified) case [condition (4.14.1)].
Warning. — We remind the reader that while ^ C\ Endp (E^) is a principal order with

radical ^i ==^, the two sided ideal Sl^S- in general: ̂  ̂ ^^^ ,_i . There are similar
reservations in the unramified case.

4.25. Returning to the framework of 4.21, we know that c represents a character
v|/==\|/^ of P^._i/Py, and furthermore c represents a character (po of Pi/Pj which lies over
(restricts to) \|/ on Pj.JP^.. If we combine our discussion in 4.24 with the results in
4.21 and 4.22 we obtain the following proposition.
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PROPOSITION:

(a) (po is the extension of a character (po ofH^ ^/H^ ^.
(Z?) (po is represented by c.
(c) The isotropy group o/(po under Ad*(P) is H.P^.
(d) (po is stabilized by Ad* (H).

5. Inducing representations: unramified case

5.1. In this section, and the next, we shall define some data which provide finite
dimensional representations of compact mod center subgroups of G. When induced to
G, the resulting representations will be shown to be irreducible and supercuspidal. We
shall construct these representations in the unramified case in this section. The assertions
and proofs are quite similar to those in Section 4 of [M] to which we shall frequently
refer the reader; thus, we shall be relatively brief in this section.

5.2. We begin by recalling the framework of Section 3.1. Thus A is a commutative
semi-simple algebra with a non-degenerate (c, <7o) sesquilinear form

A: AxA^k.

We set G==U(/A, A)==U(/, V), and we suppose in this section that A is a direct sum of
separable field extensions E, over k, each of which is unramified over k.

In Section 3.4 we constructed a lattice chain ̂  = J^, and corresponding hereditary
order ^ with Jacobson radical ^, parahoric subgroup P and congruence subgroups P^.
Recall that eW=e(^,)=\ or 2: if^)=2, then A^.-^ ^ A^.-i-A^.; if^)=i,
then A.2j-2^ ^j-i^ ^ij^^^ij-i where A^^OA (c/. [M],3.9 Remark, and
Lemma 3.4 above).

We remind the reader of the conventions introduced in Section 4.13: if e(^/)=2, we
set ^,=S\ otherwise we set ,̂ ;=^= ̂ i-r lt is appropriate at this point to also
remind the reader of the duality of 4.17:

' l - s i - i+s id-eo)

where s^ = 2.

5.3. Next, we recall the notion of a cuspidal datum of rank n, introduced in
Sections 3.18-3.19 of [M], in this framework. By a cuspidal datum of rank n (associated
with T, ̂ , P) we mean the following set of objects:

(a) a sequence/i >/^ > . . . >/„ of positive integers.
(b) i^^L a sequence c^, c^ . . ., c^eC; such that A:c:A^c=A^c= . . . c=A^=A and

linear characters v|/, of Z^^(c,) where G^Z^(^), Go==G, \^l^n such that
v|/jT^_i==Q(tro(c,)) and c^^- (UA)-^~ (M/,- 1)). Moreover, Z^(^)=T.
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(c) In case/^^1, we again take a sequence c^, . . ., c^.^eC^ with the properties of
Ci, . . ., c^_i above. In addition, T is unramified, and we take Tc=P(^— I )=PO G^_i
to fix a unique vertex in the affine building associated to G^_i (cf. [T], 3.6, and the
canonical construction of J^==J^y given in Section 3 above). Let P(n— 1) be the Levi
component of P(n— 1); it is the group of F^-rational points of a reductive group defined
over F^. We let P(n— 1)° be the group of rational points of the identity component of
this reductive group. We take T 0 P(n— 1)° to be a minisotropic torus in P(n— 1)° and
an irreducible cuspidal representation a of P( /2—l)° which is fixed by no element of
P (n - 1)/P (n - 1)°. Here P (n - 1)° is the inverse image in P (n - 1) of P (n - 1)°.]

(d) For each linear character v|/^ of Zo^-i (A) as above, an element c[ of A" such that

^|P,,nG,=Q(Tro(4))

where 4 = [ (A + 1)/2]. Note that 4 ^eed not be Cj,.

Remarks:
(i) The groups G^ are products of "genuine" unitary groups over field extensions F;

of k, where each F^ is furnished with a non-trivial involution a^ (this follows from the
fact that c^eC^, so none of its components are zero) cf. [M], 1.18; ;. e. each of the
component groups is a unitary group of an s — a .̂ sesquilinear form where a^ 1. Such
a unitary group U(/^, F^) has a non-trivial determinant to the elements of norm 1
in F^. (Here the norm refers to the fixed field P[ of F^ with respect to the
involution a^.) By a linear character we mean one which arises via factorization through
determinants, followed by products of characters of the groups of elements of norm 1
inF,.

(ii) As we have remarked above, G^ is a product of unitary groups (of skew hermitian
forms): Gj = ZG^ (cj) = ZG (c^) acts on the vector space V, and the lattice chain ^fy is
afortiori an d^-chain, where (9^ is the unique maximal order in A^. One then sees that
P (/) = Gi F} P inherits all the arithmetic structure that arises from T; we shall frequently
use properties for (Gj, T, . . .) that have been proved for (G, T, . . .) without further
comment.

5.4. Assume until further notice that /„>!, and let ^(T, (\|/i, c^ ^,/i),
(\|/2, c^ c'^f^), . . .) be a cuspidal datum of rank n. As above, we set

G,=ZO^(C,), p(o=po-i)nG-pnG,
and P (0) = P. The open compact subgroup which will be of interest to us is constructed
as follows. First let ^[A/2] (note that i^i^f^ always). We start by taking
P^=P^(0). This is normal in P, so we can form PiO)?^ and then P^(1)P^(0).
Suppose at stage k we have formed

P^-1)...P,,(1)P^(0).

Then P^^(A:)^=P(A:— 1), . . ., P(0) so normalizes the group above and we can form

^.i^iW1^-1) • • • iV1)1^0)-
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At the nth stage we form

P.p=P^=TiP^-l) • • • Pf,(l)P4(0).

This is defined since Tc=P(/), each /.
We also define P^=Ti P^(n- 1) • . • P^+i (0. and set
L y ^ = { 1}, so that Py=P^Q=P^L^ for O^l^n, where we define P^=T^.
Suppose fi is even. Then ^ = i\ =/i/2, and on P^ (/), \|̂  is represented by the element

c\ via \|^(x)=Q(Tro(^(x-l))). On the other hand ^^-i^ . . . ̂ 'i. It follows that
\|/j defines a character of Ly^ via the definition v|/^ (x) = Q (Tro (c\ (x — 1))). We then obtain
a character, also denoted by \|̂ , on TPxp=TP^Lx^. (On TP^c=G(/), it is defined
by vM

LEMMA. — If ft is even, the character \|/^ extends to a characrer of TPy. On Lxp^ ;7 is
given by the rule

x^Q(Tro(^(x-l)))

5.5. We are going to form a representation

P Y = P n ® " ' ® P l OfTPy=Pxp

Vfi is even, we define p^ to be the character \[/j of Lemma 5.4.
The case offi odd is a little more involved. We shall describe the construction, and

refer the reader to [M], Section 4 for the proofs, which are the same.

5.6. Suppose fi = 2 ii +1 so that [fi/2]=i^ i'i=ii~^ 1. Define a subgroup P^_^ as
follows

P^=T,P^-1)...P^(/)P,(/-1)
=P^P,(/-1)

On TPy^ we have the character \|̂  as before. We extend it to P^(/-l) by the rule
x->• Q (Tr^ (c'i (x— 1))). By restriction, this gives a character (pj on P^_^.

LEMMA:
(a) ker (pj ^ normal in TPxp^;
(6) P^_^, P^-i are normal in TP^_^
(c) P^_^/ker(pj ^ central in P^_^/ker(p^.

Proof. — See Lemmas 4.5, 4.6, 4.7, respectively of [M].

5.7. Next consider the map induced by commutators

P,(/-l)xp^(/-l)-^(/-l)=P^(/-l)

Composing this with the character map (p^ as we may, we obtain a map
< , > : P,^ (/- 1) x P^ (/- 1) -> S1 (unit circle) with image the additive group Fp.
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Define ^\ - P^i/ker ̂  S\ = P^/ker (p,.
Since the second group is central in the first, and P^^==P<p P,'(/-l), we obtain a

map < , > : Jf; x jf; ̂  s1 as well.
Following [M], 4.9, we can use the results of 4.15 (or rather, variants of them) to

write

IV^P^O'^I)

where "E/' means that the "E" in questions is for P(/)c:P(/~ 1). Let ̂  be the image
of E^ (^, fi - 1) in ^f;, and let S^ == 3f\ U ̂ .

LEMMA:

(a) < , ^ factors to anon degenerate ske\v symmetric Vp'bilinear form on ̂ il^i^^ ilS i
with image isomorphic to F .

(&) Every element of ^i has order p.

Proof. - Lemmas 4.8, 4.9 of [M].

5.8. Lemmas 5.6, 5.7, imply that ̂  is a Heisenberg group: a nilpotent group of
exponent p such that ^==(Jf^, Jf^). The group TPy^ ^ acts on Jf; by conjugation.
Lemma 5.6 (c) implies that Px^ acts trivially, while Lemmas 5.6 (a), (&) imply that T
preserves < , ), so acts through the symplectic group.

It follows from the theory of the oscillator representation that there is a unique
representation 8j of Jf^ which is parametrized by (pj on J^, and this representation
extends in a unique way to an irreducible representation Sj of TPxp .

To complete the construction of p^ when fi is odd, we extend Sj as before to Ly via
xh-»Q(Tro(^(x- 1))) and denote the resulting representation ofTPy by p^.

5.9. Suppose that /„ == 1. We define ;„ == 1, and

P^T.PJ^l)...?,^/)

By definition a is an irreducible cuspidal representation of P°(n- l)/Pi (n-\) which
induces to an irreducible representation of P(n- l)/Pi {n-1) by part (c) of 5.3. This
representation then inflates to one on P(n- 1). We extend it to P(n- l)Pxp by defining
it to be trivial on Lxp^^. This defines a representation ?„ on P(n~ l)P»p _ .

Suppose that /^=2^+ 1 is odd. In place of TPy^ ^ we use P(n" 1)P^ _ ^ , and P^_^
is defined just as before: the subgroups P^_^, PY(_I are normal in P(^-1)P^ ^ [note
that ^=1, so that these subgroups contain P^ (n- 1)]. We can then define the character
(pj on P^_^ and obtain the Heisenberg group ̂  on which P(^—l)Pxp acts as a
group of automorphisms. Proceeding as before we obtain an irreducible representation
pt of P(n- l)Pxp==Py. We should note that P(n- 1) acts via the symplectic group on
e^ because it stabilizes (p^, and moreover, under this action P^ (n- 1) acts trivially; this
follows from lemmas corresponding to 5.6, 5.7.
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The even case (fi == 2 ii) is carried out just as before, but with the group

P(7Z-1)P^.

6. Inducing representations: general case

6.1. In this section we shall construct inducing representations in case T has a ramified
part. As one might expect, the definition of the inducing data is rather involved. We
first remind the reader of the framework. Next, we provide a heuristic picture for
the definition that follows. Finally, using the definition, we construct the inducing
representations.

6.2. We begin by reminding the reader of the framework that we have developed in
earlier sections. To begin as in 13.1, we have a commutative semi-simple algebra
A == EI © .. . @E^®E^ i © . . . @E, with the non degenerate form f^f^: A x A -> k, and

r

/= ^ fi where each/^ is not degenerate on E^. We have G==U(/A? A)===U(/, V) where
1=1

V == A as vector space.
Assume as in 13.5 that E^, . . . , Ej are unramified over k while e(V.i/k)> 1 if i>l. We

/ i
put Vy==Ay== ® E^.,/^= © f^ There is an embedding

1=1 i= i
r

U(/»,V,)x f[ U(/,,E,)-U(/,V).
i = f + l

In 13.5 we constructed a self dual lattice chain

^=^-^_i©^=(^_2©^-i)e^;
inductively we had J^==j5^_i®^,7^1-h/, J^J^. Associated to J2f,==J^, we had
the hereditary orders ^(0), ^/(0), ^//(0).

We remark (again) that this construction depends on proceeding through the
Ej+i, . . ., E^ in that order.

Again, associated to J^,_i we have ^/(1), ^'/(1), ^(1). We shall write P^ for the
parahoric subgroup associated to ^(0), and P^ for that associated to ^(1).
Proposition 3.14 tells us that

pd)^p(O) ̂  u(/i® . . . ®/^i, Ei®. . . ®E,_i).

A little more generally, we have P^ associated to J^._^ and then

p<^p(-i)nu(/i®.. .®/^, EI®. . .®E^).
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We shall write Py, ̂  for the objects associated to J^y (which do not depend on a
chosen order in the same way that the P^, ja^do).

6.3. It might be helpful to have a brief guide to the somewhat lengthy construction
that follows. Suppose for example that G=Sp(V), V^A=A^®E^i©. . . ©E^.
In [M], 2.14 it is implicitly shown how to choose Witt bases for each of the pairs
(A^/J, (E^,/f)/<^r. (For simple examples, see 13.9.) This enables one to realize
the embedding

u a, A,) x . . . x u a,jy - sp (/, v)
in matrix form as blocks.

[/A

Vyj

SS
S

>.':^k\\

y/\

M
Here the four outer corners represent U (^, E,.), the next four represent

U(/.-i, Er-i)» • • • The innermost square represents U(/^, Ay).
Consider P^QU^, E,). According to Proposition 3.11 of I the filtration of P^

corresponds to that given by a principal order in GL^(E^) (;. ^., it collapses to
that). Moreover the norm 1 elements in E* with respect to the given involution on E,.
are the Appoints of a compact maximal torus in U (fy, E^). If we were just dealing with
this group we could proceed as in [M], Section 4 to construct an irreducible supercuspidal
representation by providing data which enables one to perform an analogue of the Howe
construction for GL^(E^). The problem is that we must ultimately deal with G, not
Ua,E,).

We begin by starting from data ^(0) which is the analogue on U (fy, E^) of the Howe
factorization for GLfc(E^). Since the filtration on P^ is so well behaved with respect to
U(/^, E^) we can use this data to construct (6.7-6.14 below) a finite dimensional
representation py(0) on a certain compact open subgroup Py (see 6.6 below) of G. We
then move to P^, U(/i®. . . ®/,-i, Ay®Ei®. . . ©E^_i)~and analogous data to that
above, but for U(/^_i, E^_i). Using this data (denoted ^(1)), we construct a second
representation pxpd) on Pxp. If we continue this process we end up with a sequence of
finite dimensional representations pxp(o), pxpd), . . ., pxy on Py. We denote their tensor
product by pip; in Section 7 we show that c—Ind^y is an irreducible supercuspidal
representation of G.

The totality of data that we use for the construction of py we call a cuspidal datum ^F;
its definition is given in Sections 6.4-6.5 below.

For the method that we have outlined above to work successfully, some compatibility
conditions must be satisfied. First, the group Py is defined as a product of subgroups
Fxp(o), Pyd), . . . Fy^. This definition uses 13.14 in an essential way (see 6.6
below). Secondly, the representation pxp(o) mentioned above is itself a tensor product of
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representations p^, . . ., p^ which a priori are defined on (subgroups of) Pvp(o). To
extend them (see 6.8, 6.15 below) to Pxp, the condition 6.5 (7?) is used. Similar remarks
apply to the other pxp(o, while condition 6.5 (c) is used in an analogous fashion for py^.

Condition 6.5 (d) is imposed to help guarantee that the induced representation will be
irreducible; it is used in the proof of Lemma 7.4. It is a very mild condition; to assist
the reader we examine it for the case of example I3.9(&) (i) (where G==Sp4) in the
remark following the enunciation of the condition.

We remark that if one performed this construction in a different order on the blocks,
one would obtain in general different representations n of G. This corresponds to which
congruence subgroups are "seen first" by the representation TT, and is related to the
notion of fundamental G-strata.

Finally, we note that at level 1, we allow ourselves cuspidal representations of finite
reductive groups which do not necessarily come from T. This is unlike the construction
for GL^.

6.4. We now begin the definition of cuspidal datum. Since it is defined inductively,
we give it in two steps.

Let <7^ denote the (non-trivial) involution on E* which is inherited from the involution
on Endfe(V) corresponding to/(f. <?., a^ corresponds to/,.), and let

T(° )={xeE* |xcr ,x==l} .

This is a compact maximal torus in U (/, E,.), corresponding to the embedding of E* in
GL^E,). In addition, we have ^(0), P^ [not a subgroup of U(/,, E,)], which lie in
Endfc (V), G respectively.

According to Proposition 13.11, ^(0) 0 End^ (E,) is a principal order, with Jacobson
radical ^(0) generated by Ky (a uniformizing element for ^^=E,.).

We shall write C^ for the group denoted C,=CE, in Section 4.1. This is in keeping
with our notation above.

Now suppose we are given the data below
(a) A sequence f^ >f^ > . . . >/^ ̂  1 of integers.
(A) If/^>l a sequence c^, . . ., c^eC^-. We define F^fe^), F^F^^),

^o^;>l, and we assume F^=E^.
Define

G^O^U^E,)
G^^ZG^.,^), n^l^l

and suppose

G^o)^^

The group G^^l) is a unitary group on the vector space E, viewed as a F^-vector
space. The field F^ is furnished with a non trivial involution coming from Oy (it
contains c^), with fixed field F^'. As algebraic group, G^^l) is defined over Fj0^.
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There is a determinant map

G^CO-^F^)*

By a Z^ar character on G^/), we shall mean a character G^fT)-^1 (unit circle),
which factors through the determinant map above [cf. 5.3 Remarks (i)].

We assume the existence of linear characters i)/^ of G^ (/) such that

v|/S°>|T^,=^(tro(cn)

where c^ e ̂ (0) - (k (f^)) - ̂ (0) - (k (f^ - 1)).
Here we write

^~{i) for ^(OHEnd^E,)-,

cf. 13.11 {b) and the notation introduced in 4.20. We remark that tro is still with
respect to ^o. We also remind the reader of Proposition 13.11 (b) and (c), as well as
the statements made in Section 4.18, 4.21.

Finally, for each linear ^{0) as above we assume an element c\(0) e E," (not necessarily
in C^) such that

<) P^nG^(/)=Q(troC;^))

where by definition i\(0) == [(/^ + 1)/2], and/w=^SO)+^; (o).

(c) Suppose on the other hand that /^) = 1. We again take a sequence
^\ . . ., ̂ -i, ̂ ^ • . ., ̂ i, ^i0^ . . ., ̂ -i. Just as above and satisfying the same
conditions. We shall suppose that

p^o-^p^nG^o-i)
fixes a unique vertex in the affine building that is associated to G^^o—l). [We
note that P^^P^O G^/) is always the stabilizer of an ^-lattice chain in G°(/),
namely the one defined by powers of the prime ideal in E^.] Write P^^—l)
for its Levi component; this is the group of rational points of a reductive group
defined over ^y-i/^^i. Write P^^o-l) for its identity component, and
P^^friQ—l) for its inverse image in P^^o—l). Our final piece of data will be
an irreducible cuspidal representation a^ of P^0^— 1) which is fixed by no element
ofP^o-lVP^0^)-!).

DEFINITION. — By a T^-cuspidal datum ̂  (relative to P^, {P^^n^i) of rank n^
we mean a set of objects as just described satisfying the conditions above. We shall
denote it by

;/f(0) f(0)\ / (0) .(0)\ / .(0) '(0)\ A((0) ilrWM
t U 1 -> ' ' ' •> J no ̂  V6! ' • • • ' S) ^ V6! ? • • • •> ^no ^ V^l » • • • • > Wno ) J

= { /-(O) -(0) ,/ (0) j,(0) )
fJ i ? S- ? ^ ? Yi h^i^nQ
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or by

( [ /'(0) ^(0) C ' (0) \1/(0)} fT<°^\\J i -> ^i •> f-i ? ^i Jl^i^o-15 ""O^9

as the case may be.

6.5. We are now ready to define a cuspidal datum for T. We need one more piece
of notation: write T^'^TxT^, so that ^-^T is a compact maximal torus in the

F1 r-l \group U ©/„ © E, .
<i=l i=l

DEFINITION. - By a T-cuspidal datum relative to P^, {P^}^) we mean the follow-
ing.

(a) A T^-cuspidal datum ̂  (relative to P^, {P^}^) of rank n^
(b) If r> /+ l , ^-^ T-cuspidal datum relative to (P^, {P^}^i) such that if we

define f^^i^+i'^ as usual [c/. 6.4(^) above], then
(i) ker(Q(tro(cn))3P^)3P(^o)_,nU(/l©. ..©/,_,);
(ii) ^D 3^o))- U End,(Ei© . . . ©E,_,).
(c) If r = / + l , a cuspidal datum of rank n,_^ for the torus T^gU(/^ A^) as in

definition 5.3 such that
(i) i f /^>l , then the appropriate versions of conditions (i) and (ii) as in (b) above

hold [with(l) replaced by " u " throughout];
(ii) if/^1, then P^^P^OUO,, A,).
[We remind the reader that P^ is the parahoric subgroup constructed from the lattice

chain J^,_i, while f^>fy> . . . >/^ is the sequence corresponding to the T^-cuspidal
datum implicit in the definition in part (b). Similarly P^ is the parahoric subgroup
constructed from J^. . . ]

There is one more condition that we require of a T-cuspidal datum. To describe
it, we remark that explicitly, a T-cuspidal datum consists of an (r-/+l)-tuple
CF^, ^F^, . . . . ^-^^TJ where each ̂  is a T^-cuspidal datum of rank n, relative
to P^, {P^}^i satisfying conditions (b) (c) above [namely: replace (0), (1) by (Q, (/+ 1),
respectively in condition (b), unless ^+ 1 =r-/, in which case replace (0) in condition (c)
by (/)]. Conditions 6.5(Z?), (c) can be viewed as saying that a certain conductor has to
be "shallower" than its predecessor.

We require the following condition as well
(d) For a given t<r-l, or t==r-l sind n^=n,_i=n^>\

P^p^nu (/i ©...©/,-,)
for all s<t.

Remarks:

(i) Condition (d) is not covered by proposition 13.14; indeed, that proposition is false
if one replaces "eS/" by "^" (or by "^2") throughout.
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Example. — To see what condition 6.5 (d) says, consider the example 3.9 (b) (i)
again. Then r==2, /= 1, and we take 5=0, ^= 1.

The definition of P^ implies that after the obvious identifications, PW^^\J(f^)
consists of 2 x 2 matrices of the form

/1+^ ^ \
^ ^ 1+^7

which lie in Sp2^U(/i).
On the other hand P ( l )=Sp2(^), and the filtration is the standard one arising from

the lattice chain

. . . :^(?2©^(?3=)^2©^3=) . . .

It follows that P^gP^ n U(/i), provided that ̂  1.

6.6. Next, we define the open compact subgroup that will play an important role
shortly. Indeed let

x¥=(^o\ ..^x¥(r~l)(=x¥,)))

be a T-cuspidal datum.
We begin by defining a sequence of subgroups Py ̂  each of which has the property

that Pxp^+i) normalizes Pxp^). In fact, Pxp^ will be a subgroup of P^. By proposition
13.14,

p^gp^ n u(/i©... e/.-^i), ̂ i©... ©E.-(^I))
so that Pxp((+i) will normalize P^, and more generally Pxy^+i) will normalize P^0. Our
construction will proceed by pasting smaller subgroups onto P^ for a suitable n.

Indeed let /(0 > . . . >f^ be the sequence of integers associated to ^F^, and for each j
put if = L/^/2]. (If if = W + 1)/2L then ̂  + ̂  =/^.)

Since we are going to work with a fixed superscript t>r—l for the moment,
we shall drop it when possible, to alleviate the notation. Thus we shall write ^¥ in
place of ^F^, etc., and in particular we have the family {^., Cp c\, v|^}i^^ or
({/„ c^ c\, v|/Ji^^^-i, On) according to whether f^> 1 or/^= 1, respectively.

We define G(0)=U(/,_,, E,_,), P(0)=Pa)(0)=Pa)=P, and inductively define

G(W)=ZG^(CJ [c/:6.4(^)],

P^(m)=P(m)=P(m-l)nZG(,_^(cJ for m^\.

Now suppose for the time being that/^> 1, so that

T^^G^)

The group Py^ is constructed as follows. To start, we take P^=P^) which is normal
in P^P^, so it is normalized by P^(l) in particular, and we can form the group
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P^(1)P^. Suppose we have constructed

L^)=L^==P^-1)...P^(1)P^

Then P^^^(k)^P(k)==P(k— 1) ^^(k-D^k)^ • • • ^P so normalizes Lxp^, and we can
form

^i^^iW1-^ (and let ^1=^1)

[We remind the reader that the congruence subgroups Pn(k) are defined to be
P^-l)nZ^-i)(c,), cf. I, Proposition 3.11.]

At the /2(-stage form

L^=P^-1)...P^(1)P^.

and put P^^T^L^, P^-T^P^.
At each stage we also have the groups

^
P^-T^P^- 1). . .P^^G(k)

and
p —^(r) p —TW p
£^- l l ? ^o ^ • • •^1

so that

^y (0 :== ^^Pfe • ^fe5 — — ̂ t

This last definition also makes sense for ^==0 if we define L^= { 1 } .
On the other hand suppose that/^= 1. Now define i^= 1, and define Pxp(o, Pip^, Ly^,

just as before. The group Pxp (^ is defined as

P^^P^-OP^^P^-l)?^(t)"1-^ ^^^O)"1- V^ ^^^(t)

We must show that P^a+i) normalizes Pxp^. By construction, each of these groups
is a subgroup of P^^, P^ respectively. Now we can write

p _p( t+ l ) T , , , , - p O + l ) p0+l)r x F((+l ) — r y( t + l ) L 4 x ( t + l ) — r y( t + l ) - - ^ ^ + 1 )

P^^= . . .=P^)y .P^)

Observe that
p(t+l) p( t+l ) 1 1 ^ ^ n P ( t + l )^xp(t+i), ^ i i ^ + i ) lie in r'

which by definition is a subgroup of U(/i@ . . . @fr-(t+i)^ Ei@ . . . @E^_y_i ) . On the
other hand P^(og=U(/,_p E^), by definition, so that

Py ((+1) normalizes P S^o
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But P^> is a normal subgroup ofP" and P^DgpM whence Py^, normalizes P%.
The argument for P^((+I), Py^ is the same (modulo the definitions). We'put

P == P i5 IS ^ s.
Fw Fw. . . . twmlw/rn .y I-x^. . .^»p(l)ry^.

6.7. We now proceed to define the representations of interest to us. Let us start
with the groups Py^, Py^. We have

P^-T^P^o-l). . .P^-l). . .P^OP^).

while

p 4 T<°)P^(/^>1) ,
v(o) lP (o )(^-l)P.(0)(^=l)^

We are going to construct a representation p^)- P^®. . . Op^ on P^, which can
be extended to Py. To do this we shall proceed in a manner analogous to [M], § 4.
Suppose until further notice that /^ > 1.

6.8. Suppose that /w = 2 4^ is even. This implies k > 1 : see the T^ww* in the proof
of lemma 6.10 below. We can define a one dimensional representation pj^ on Py^. in
the following way.

Write

Py (0)=: T^ Pxp (o) = T^ Py(o) Ly(o)

The character vj/j^ restricts to a character on

P^O)C:G<°^)

On P^), ̂  is represented by ^(tro^)) by definition. (Note that ^A0^ so
that P<°)<-p(0) >» v fc - fc+l ,mat r^(o)£:r^o) .)

Since i^^^^ . . . ̂ 4°\ we can extend ^0) to a character of L^O) by the definition

^Q(tro(c,<°))(x-l)))

It follows that ^0) gives rise to a character on the group Py^ by the rules above,
provided that/j^ is even. We take this character to be pj^ in this case. It remains to
show that pjW can be extended to the group Py=P^. . .P^^P^o). For this we must
refer to some facts which were proved in I, Section 3.

Note that in any case, P^. . .Py^ is a subgroup of

u(/i€... e/,-i, E i ® . . . ©E,^),
so that

(F^. . .F<P(I)) nP<p(o))sP^nu(/,©.. .©/^, Ei©. . .©E,.,)
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On P(CO), p^ is defined via ^(tro^^—)). If we apply the block decomposition of
13.12 we see that Q (ti-o (4(0) -)) is trivial on

Pfy» H U( / i@. . . ©/,-i, EI© . . . ©E,_O.

In particular, we may extend pj^ by defining it to be trivial on Pxp". . .Fyd).

6.9. Suppose now that/w = 2 ̂  + 1 is odd, so that ^0)=40)+1. To construct p^
we shall use the theory of the Heisenberg group. The construction itself is actually
quite similar in spirit to that carried out in Section 5, and [M], Section 4, so we shall
sketch it, and refer the reader to [M], Section 4 for the proofs, when appropriate. We
shall concentrate on the necessary modifications, and the problem of extending pj^ to
all of Pxp. This will occupy sections 6.10-6.14 below.

6.10. First, define P^=P^o)P^+i (k- l)gP^. (Note: we are writing P for P^
throughout our discussion.) This is a subgroup of Pxp(o) . As in 6.8 we can define a
character on

T^P^O)

and extend it to P^+i(A:-l), via Q (tro (c^)) again. By restriction, we obtain a
character (pj^, on Pxp(o) .

We now state and prove a lemma which has a number of useful corollaries.

LEMMA. — The commutator

(T^P^P;^),

is contained in ker (pj^.

Proof. - We can write T^PyW = T^ Pxp(o) P^ (A: -1). The first thing to note is
that on T^ P^yp), (pj^ is the restriction of a linear character of

G<°)(^)=G(^)

so it is trivial on commutators.
Secondly, if k> 1, we can write

P^O) ^ = P^O) P^O) (k) E, (4°\ yr - D = P.f) E. (4°\ /w -1)
(since ^^^i) where we use "E^ to denote that the "E" in question is for the group
P (k) ̂  P (k - 1). This assertion is essentially [M], 2.32.

On the other hand, if k= 1, then 4.15 tells us that

P^O) = P^O) (P^O) n (A © ...©/.-1)) p.y) (i) EI (^ /^ -1).
Suppose that k > 1. Then

p^P^n0^)
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Thus if p ' 6P>p<o), ypePyW)Pi(o)+^(k—l) we have

^0) (P' (yP)P' ~1) = (P^ 0'' ̂ ' -1) ̂  (tro (c^V ̂  - l)p' -1))

= (pjW (^ 0 (tro (4<°y ̂  - l)p' -1)),

by the first remark above

=^(yWt^(c'm(p-l))\

since p1, c'^ commute with each other,

=^°\yp)

If A:= 1, a similar result holds with respect to

p ' e PS?A)) (P^O) U U (A ©...©/,- 0) P,y) (1).

To complete the proof we must show that the commutator of an element of
EfcO^,/^- 1) with an element of P^O) lies in the kernel of (pj^.

We shall compute this when /:== 1; the case k> 1 is similar but easier, and in fact has
been done in principle in [M], Lemma 4.5; i. e. it is a calculation within a "block" and
is covered by loc. cit.

Let 1+a+^eEiO^, /^-l), l+^ePy(o) where ^e^rofro) , be^J^)_^ (using the
notation of 4.14).

Moreover, assumption 6.4(^), and the construction of Pxp(o), guarantee that
^e^(o) i, at least [we do not need 6.5(d) here, since we are climbing up within a
"block"].

[Remark. — By the ramified construction (cf. 4.21),/(jf) is odd, always. This implies
first that whenever we cross a block, a Heisenberg construction will ensue. Secondly
/^-l is even, in particular, so that B^O'^,/^- 1) is defined (by the conditions
4.14.1).]

Now we compute the commutator

( l+a+6, 1+jQ.

To do this, set a^=a+b, (\+a^~l=(\Jta'\ and ( l+^) - l=l+/ .
Then

a^ + a' + a^ a' = a^ + a' + ̂ / ̂  = 0,

and

^+y+jy=j;+/+/j;=o
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and we find

(\^a^(\^y)(\-^a')(\-^y)=l\^ya'J^ya'y^a'y'^a^a'y'Jra^ya'^a^ya'y'

=l+^(-^-^?)+^((a+^)2-(^+^)3+ . . .)+^/
+(-(^+&)(-^+/- . . .^(a+b)\-y^y\. .)+ . . .)

+ a^ a' y + a^ yd + a^ yd' y

We now see that the assumptions on y, a^=a+b imply that this commutator lies in
P^+i so that we can apply Q (tr (c^)) to compute it (observe also that P^+^P^O)).
Moreover note that these same assumptions imply that a ^ y a ' y ' , a^d y ' , a, y a ' e ^ / f ( p ) so
that these terms contribute nothing when we compute the character. This leaves us to
compute

0(tro(cr0^+^y+^y)))

In computing this we only need to compute those terms arising from the contribution
of -{a+b\ -y in the expansions for a\ y respectively (for the same reason as
above). Thus we must compute

Q(tro(cf)(-^(a+fc)+(^+&)/+^(^+&)^)))

Since be^f(o)_^, ye^^ n^[c]~ (at least), we may ignore the terms involving b, so
we are left with

Q(tro(cr(^-^+^)))=^(tro({^/^-^^3;+J;^

The term in braces belongs to ^[c], while ae^[c}1; thus t ro ({ . . .}^)=0, and the
character is trivial.

6.11. COROLLARY:
(a) ker (pj^ is a normal subgroup of T^ Pxp^o) ̂
(b) P^(O) , P^(O) , are normal subgroups o/T^Pyjp^.
(c) P^(O) /kercpj^ is central in Pxp(o) /kercp^.

Proof. - Part (a), and the first assertion in {b) follow immediately from Lemma
6.10. The second assertion is proved by a calculation similar to the first part of the
proof of Lemma 6.10 [i.e., the part not involving E^Q^,/^- I): one only has to show
that T^ normalizes Pxp(o) and T^ commutes with c'^}. Part (c) is trivial, given
part (a).

6.12. We may now imitate [M], 4.8 to form J^ which by definition is
P^/ker<\ and ̂  =?;;;,_,/ker <\

Let Jffc denote the image of E^^^./^-l) in ^, and let ^=^0^. An
argument similar to that in [M], 4.8-4.9 then implies the following result.

LEMMA. — Jffc is a Heisenberg group: every element has order p, and
j^ = (e^ffc, ^ffc). Furthermore T^ Pxp(o) acts on J^\ via conjugation, and this action factors
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through the action of the symplectic group (defined over Vp) that is associated to ^^
Furthermore Pxpp) acts trivially by conjugation.

We remind the reader that the form on e^/^ is inherited from the map

^P^)(k- 1) x PiW(k- 1) -> Pf^)-i (k- 1) -^ S1

where the first map is the commutator map.

6.13. From the theory of the Well representation, there is a unique irreducible
representation o^ of J^ which is parametrized by (p^ on <^, and o^ extends in a
unique way to an irreducible representation Sj^ of T^ PvyW .

To complete the construction of pj^ on Py ̂  we extend it, via

x^QOro^^-l))),

to Lxy(o) just as before. (Note that f^ _ ^ >f^ so 4 -1 ̂  h + 1 •)

6.14. We want to extend pj^C/^ odd) to all of Pxp=P^. . .Py(i)Pxp(o) ' Again, we
have

(P^. . .p^)npy(o)^P^)nu(/i@. ..©/,-i, E i © . . .©E,_,).
Suppose that A: = 1. The Heisenberg construction above was constructed on a quotient

of EiO'^,/^-1), and the intersection of this with PUZ^C^) is P/w-i) UZo^)
by 4.15(&); the representation pj^ is given by the character 0. (trp (c^ — —)) on this
group. But this character is trivial on

(P^O)_, nz^))nu(/i©. ..©/,-i, E, © . . .©E,_,)

sincere Lie U(/,, E,).
It follows that pj^ can be extended to Py in a trivial manner.

6.15. The construction of pj^ is similar to that of pj^, when/^°> 1. The new problem
that arises is to show that the representation p^° extends on P y ^ _ i ) . . .Pxp(o)- For this
we make use of definition 6.5 (b).

We know that

(P^. . .py(o) n P^-D^P^) n u(/i©.. . ©/,_„ EI © . . . ©E,_,)
By assumption, ker (^(troCc^)))^?^!)-! U U(/i©. . . ©/,_() [assumption 6.5 (&) (i)].

The ramified filtration on P^"^ implies that P^'-^/P0^1-^)-! is abelian. Now, on
P^o, p^ is defined by the character Q (tro (c'/^)). By1 assumption 6.5 (A) (ii) and Lemma
I 3.12, and the duality lemma 4.19 and theorem I 2.13 (iv), it follows that we can
extend p^ to P ^ ^ - I ) ^a the character ^(tro^)).
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The extension to the groups Pxpd-2). . .Pxp^o) now follows, because for example we
have

(P^. . .p^-i))np^-2)^p^-2)nu(/i@.. .©/,_^)
and the right hand group lies in P^-I)C:P^-I) since ^ - l )^^ ( r - l ) always (since/^'^ is
odd, this inequality is strict), cf. 6.5(7?) (ii).

The extension pj^, A:> 1, is similar. Indeed by assumption

p(0 —,p(0 .--.j p(0 -^p(0 -.p(f)^j-(o3r^ (o, and r^o ̂  r^o ̂  r^o

so one can extend by the character Q (tro (c^0)), as usual.
6.16. So far we have assumed that/^> 1.
We now indicate how to modify the construction in case /^) is equal to 1, when

t>r-l.
First, we use Pxp as constructed in 6.6: that is

Pxp = Pxp . . . Pxp(O)

where

P^t)=P(t)(n,-l)P^t)

To construct the representation p^ we take the cuspidal representation o-^ of
P^0^- 1) which by definition is trivial on P^O^- 1). The assumptions on the action
of P^O^-l)/?^0^-!) on a^ ensure that this representation induces irreducibly to
P^ (n, - l)/?^ (n, - 1) to that by inflation we obtain a representation of P^ (n, - 1). This
representation is trivial on P^(^- 1) hence extends trivially to P^(O by defining it to be
trivial on Lxpjp _ ^ . The extension to Pxp(y- i ) . . .P^(O) is clear since the representation is
trivial on anything below level 1.

The rest of the construction is similar to what has gone before. If/j^ is even, it is
the same. If /j^ is odd one proceeds as before, but now one uses the fact that
P^^, ̂ i0-! are normal subgroups of P^OZ^- l)P^o ^, via an easy variant of Lemma
6.10.

This gives rise to a Heisenberg group ̂  on which P^^- I)P^(O_ acts as a group
of automorphisms via conjugation. Under this action, P^f/^-l) acts trivially, and
P^O^- 1) acts through the symplectic group since it stabilizes the character cpj^.

6.17. Suppose that t=r-l. If n^>\ we simply take the construction given in
Section 5 on Pxp^, and extend the resulting representation to Pxp in the same way as 6.16
above.

On the other hand, if ^=1 and f\=\, we construct p^ just as in 6.16: it is
trivial on P^ i. By assumption 6.5(c) (ii), we can extend this representation to
Pxp(r-!-i)=Py(t-i), and using 6.5 (b) (ii) as we already have earlier, we can extend p^ to
all of Pxp : p^ = py^ in this case.
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6.18. We have defined finite dimensional irreducible representations py(o, pxp , on Pxp.
We can take their tensor product pxp ®. . . (x)pxy(i)®pxp(o) as well.

DEFINITION. — Given a T-cuspidal datum ^CF^, . . .XF(r~o= lFJ we define the
representation pxp on Py by

pxp = pxp (x). . . ®pxp(i)(x)pxp(o).

6.19. The reader may wonder if the apparent asymmetry in our construction with
respect to (non) ramification is necessary, The answer is that in the framework we have
established, it is; the reason lies in 12.14-2.15. Namely if we attempt to form ^@' ̂
then ^@M in case Ji has period 1, we must take ^©'^=0^®^ and the resulting
filtration must be the one arising from powers of the Jacobson radical. This filtration
only has the kind of properties we want for our construction with respect to a compact
maximal torus T, when T is unramified (i.e., the extensions E^ are unramified
over k). Otherwise one finds that if one attempts to use this filtration to look at an
unramified part of a compact maximal torus first, it is quite unnatural. One can see this
by looking at examples in Sp6(A=Ei©E2 where E^ is quartic ramified over k, E^ is
quadratic unramified over k).

We remark also that in the calculations in [Mo2] (reference in I) for GSp4 one does
not need to look at E^QE^ (E^ ramified, E^ unramified) by examining E^ first. Indeed
the supercuspidal representations that arise from the associated tori can always be
detected by means of a character on E^ first.

7. The main theorem

7.1. In the preceding two sections, given a T-cuspidal datum ^F, we showed how to
construct a finite dimensional representation py of a certain open compact
subgroup Py. In this section we show if pxp is suitably induced up to G, the result is
an irreducible supercuspidal representation of G.

7.2. We begin by recalling some facts about representations of locally compact totally
disconnected unimodular groups. If H is closed, unimodular, and p: H -> V is a smooth
representation of H, then we can define

c-Indg(p)

to be the representation of G whose space is the space of functions

/: G-.V

such that
(i) f(hg)=p(h)f(g), all /zeH, geG.

(ii) there exists a compact open subgroup Ky such that/(A:g)==/(g), all keKj-, geG;
(iii) /has compact support modulo H.
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We note that if H is open compact, then condition (ii) is implied by condition (i),
while if G/H is compact, condition (iii) is satisfied.

In any case, the action of G on this space is via right translations, and the resulting
representation is smooth.

Suppose that H is open, and compact mod centre. It is known (see [Bl], theorem 1)
that if c-Indg(p) is admissible, then it is a finite sum of irreducible supercuspidal
representations of G. It is also known that if c-Ind^(p) is irreducible, then it is
admissible, and hence supercuspidal, since it plainly has compactly supported matrix
coefficients. (For a proof of this, see [C], Section 1.)

7.3. We are going to show that c-Ind^ppy) is irreducible. For this it is enough to
show that the only intertwining operators are scalars. (For a proof of this, see loc. cit.).
The preceding remarks then imply a f onion that it is supercuspidal.

Recall (loc. cit., or [Ml], 4.2) that

Endo (c - Indgp (py)) ̂  ® Honip^p^ (py,g^)
P<y\G/Py

Since x? is fixed throughout the discussion that follows we shall omit it as a subscript,
to alleviate notation.

Suppose that S intertwines p, ^p on P 0 ̂ P. Observe that

P= Py,® . . . (Spyd)®?^® . . . (^P^.

Thus S intertwines p, g? on P^ H ̂ ^(Q) as welL The construction of Section 6
implies that p[ = p^ | P^O) is always a character, and moreover that on P^O) H ^P^m)
the representations p'l, Vi are multiples of 0 (tro (c^)). 50, ^Q (tro (c^)). ̂  respectively,
where % is a character represented by an element of ^[c^]". Applying Lemma 4.23
we see that

.,/-p(0) 7 //.(0)\p(0)gey^)LG(c\ ̂ F^O).

7.4 Assume for the time being that f\>\. Consider the subgroup P'=P^ ,'^(u).
P^r-1?). . .P^D.P^O). (This is a subgroup, by the same sort of argument that was
used in Section 6.6.) We can consider p'= p^® . . . OOp^®?^ restricted to this group;
we note that p' is a character.

LEMMA. — P^) stabilizes p7.

Proof. - We show that the commutator of an element of P' with an element k of
P^), lies in the kernel of p7.

To start, consider an element y of P^O). Then (k, ̂ eP^o). By construction, P^O)
is contained in the kernel of p'. 1 l
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Next, consider an element of P^D, which we denote by 1+^, where y e ^ / ^ ' . We
can write, by 4.15,

p^=(p^nu(/,©...6^-i))P^(i)E,(^v^>-i)
since Zo(c^)=U(/,@ . . . ©/,_,) x Zu^^).

Now P^) (1) acts trivially on P^DCUCA® . . . ®/,-i) and the left most group in the
decomposition above is contained in P^D, by 6.5 (b).

Then regardless of whether ^(1) is even or odd, we have (P^I), P^OCP^VI) which is
contained in the kernel of p^®. . .®^\ On the other hand p^ acts on P^(I) via a
linear character, so it is trivial on commutators.

We are left with showing that the commutator of an element of E^ (^0), /w — 1) with
(1+^) lies in the kernel of p7. Let 1 +a-^beE^ O^,/^ - 1) where ae ̂  [c ]̂1 U ^TO),
^e^(o)_i.

We may write b==b^^ +^12+^21 +^22 (c/- I 3.12) where b^e^Jw^^ (i,j) (notation of
toe. c?7.). In particular, b^, b^ e^tc^]1, while ^11^=^11 =0.

Set a^==a+b, and let (1+^), (1+V) denote the inverses of \-\-a^ \-^y respectively.
We find

(1+^, 1+^)=(1+^)(1+^)(1+^)(1+/)

==(l+^l+^+^^)( l+a / +^+<3 / / )

= 1 -^-ya' +ya' y ' +0' y ' + a ^ a ' y ' + a ^ y a ' - ^ - a ^ y a ' y '

since a^-\-a-\-a^a'^=0, ^+y+^y=0.
Before going any further we pause to take note of the fact that by assumption 6.5 (d),

P^D^F^ H U(/i® . . . ©/^-i). In general the same result holds if we replace (1) and
(0) by (s\ (t) respectively where s>t, and similarly if we replace P by s^~ throughout.

Applying these remarks to the calculation above, we find that

(IWKl+jOeP^)),

at least which means that in terms of p^ we can compute its kernel via Q (tr^ (^(0))).
The same is true for the p^0, t>0, because on P^P^O) they are defined in terms of
representatives which lie in ^[c^]" as well.

Next, observe that b^, b^ (in the decomposition above) lie in ^[c^]1, and also that
^iiV^y^n^^ ^or ^y mteger n^ 1.

We have a^ y y ' e J^^Q), by the assumption remarked upon above, and similarly with
a^ y a ' . This leaves us with 1 + y a ' + ya' y ' + a^ y ' + a^ y y ' . Now

a'= -(^+&)+(^+6)2-(a+&)3+ . . .

fli^^+^fl-h^4 '^! + ^ l l+^22 = ^2 + ^ l l + ^22•
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By the remark above concerning Z?n, we can drop the term in &^, so that we can
replace a by - (^ + ^22) + (^2 + b 22) 2 . . . and ̂  by ̂  + ^22- Then we fmd

1 +ya' +ya' y + a ^ y ' + Oi yd

is equal to

1+(-^2-^22+J(^2+^22)2). • .)+^(-^2-^22+(^2+^22)2- • •)/

+(^2+^22)(/)+^2+^22)Jy

^ X - y a ^ a ^ - y a ^ y ^ a ^ y y ' - y b ^ - y b ^ y ^ b ^ y ^ r b ^ y ' y m o d ^ w

Subtracting 1, and applying tr^c^) we see that all terms involving a^ will vanish, since
a^e^ [c^]1 and c^, y, /e^ [c^]. On the other hand, all terms involving ^22 wm lie

in ^wo) sincefi
ye^^^^- [by(6.5(^)]

Thus we have shown that the said commutator lies in ker p^. It also lies in ker p^0

for ̂  1 since (i) by assumption 6.5 (b) P^o^kerp^ (and the construction in Section 6),
and (ii) on P^P^O), p^ is defined by a ̂ representative from ^[c^r, so that exactly
the same reasoning as above applies to p^0 as well,

Passing to P^), we again write

p^=(p^nu(/,e.. .©/.-i)) p^(l)E,or,/(lo)-l)
As before, we can ignore P^) (1). The same calculation as before works for
EiO'^,/^-1). As for the leftmost group in the decomposition above, by assump-
tion 6.5 (b) it is contained in P^I), so we may compute as above, replacing P^), by
P^I). The result follows in this case. The general case is now clear, and we leave it to
the reader.

7.5. Recall the situation in 7.3: we have:

^eP^Zo(^)P^

We also know that P^) stabilizes p', that is P^) normalizes P'/ker p7 and stabilizes p7

under this action. If we' write g =p^ zp^ where z e ZQ (^0)), p, e P^) (i =1,2), this implies
that z also interwines p'.

We can write

zeU(/,©. . .®/.-l)xZ^^^(40))==ZG(40))

Consider the representation p'7 within the block U(/^, E,) given by p^®. . .OOp^
restricted to the group P^(O)(^- 1). . .P^(O)(I) (where again we assume f^> 1).

We always have ^(lo)^40)= • • • ̂ ^) so tnat tne commutator of an element of P^J) with
an element of P^O)(I- 1) for (/^2) always lies in P^JO). By construction (6.8, <L 13),
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P^O) lies in the kernel of p^ restricted to P^o^o-1). • .P^O)^-1), while on
P^o)(/—2). . .P^oO), p^ is the composition with a determinant which is trivial on
commutators. It follows that P^) stabilizes p".

Thus z=Q?i, g-i) intertwines this, and g^ acts trivially. We can then argue as in [M],
Section 5 to conclude that g^ e T^, modulo (double cosets of) congruence subgroups. If
/no= 1, we can adapt the argument of [M], 5 to show that g^eP(nQ—l) modulo other
congruence subgroups.

As for g^, we can now treat it the same way g was treated, to reduce it further within
U(/i® . . . ©y^-i). We conclude that if SeHonip^p^(p,9 p) then gePxp, hence S is a
scalar.

7.6. To complete our discussion, we must deal with the case where f\ = 1.
If T is unramified, one applies [M], 5.3 directly. If not, consider

P^,®??"^®. . ̂ P^ restricted to the group P^P^J^. . .P^^P^.We call
this representation p' and write it as p»py®p'i. Suppose then that S intertwines p, g? (as
in 7.3). The same argument as in 7. 3t(implies that g e P^ Z^ (c^) P^).

Now consider P^) and pxy^p'i. A variant of Lemma 7.4 implies that P^)) stabi-
lizes p[. It also stabilizes py ; this follows from the definition of the extension of p^°
to py^ [and implicitly, the assumption 6.5 (c) (ii)]. This means that we may assume
geZc^), just as before. Thus g can be written as g=(g^ gz) where g^eV(f^ A^),
^eUC/i®. . . ©/,., Ej+i , © . . . ®E^). As before, one deduces that g^ lies in a product
of compact tori times parahoric subgroups (of centralizers). Since g^ acts trivially on
U (/y, Ay) we can confine our attention to g^ and argue as in [M], 5.3 to deduce that
^ePy, where Py is the parahoric subgroup in U(/y, AJ that stabilizes the lattice chain
constructed in I 3.4.

8. Afterword

8.1. The representations that we have constructed are not the most general that can
be produced using the ideas in this, and the previous paper I. In this section we
shall indicate how to modify the earlier constructions and definitions to produce other
supercuspidal representations; for simplicity we have avoided incorporating this into the
main body of the paper. We shall simply indicate the ideas, and the changes that must
be made to the key definitions; the interested reader can either await further details, or
supply them.

The idea is quite simple. Suppose that T is a compact maximal torus associated to
A=EI© . . . ©E^©E^+i©. . . ©E^, ^ traceE^O^o^) as in 13.1. Suppose that say

E^ , . . . , Ey have the same ramification degree e> 1, and that

max {ord^ (u,)} ̂  min, {ordg^. (u,)} + 1; m^i^r.

4eSERIE - TOME 25 - 1992 - N° 3



SUPERCUSPIDAL REPRESENTATIONS OF CLASSICAL GROUPS 271

Then E^©. . . @E^ behaves sufficiently like a field that we can imitate the constructions
in this paper and I, on replacing E^ by E^© . . . ©E^.

8.2. We begin with the filtrations associated to compact maximal tori described in I,
Section 3; in particular we use the notation of that paper freely. Suppose then that T
is the compact maximal torus associated with A = E ^ © . . . ©E(©E^I© . . . ©E^,
^traceE^O^a^).

Assume for the time being that /==0 (no unramifled extensions). We denote by (9^. . .
the ring of integers... associated to E^. Let ^ be the E^-valuation of p,p ^ the ramification
degree of E^ over k. Suppose that e^ = . . . =e^=e, say.

Let ^ A = © ^ P ^ A = © ^r Then ^=K(9^ so that {^ l}nez defines an ^-lattice
i i

chain J^f in A (henceforth identified with V).The dual lattice chain ̂  has been computed
in [M], 2.3; it is simply the chain {^ - 1 ̂ \~e~n}nez where we write ^==(j^, . . ., ^).

LEMMA. — ^f U ̂  is a lattice chain if and only if the following condition is satisfied:
Let v=msiX {v^ . . ., ^}. Then for each i,

v ̂  v^ v — 1 .

Proof. — Suppose v=v^, then 1 —n—e—v^=mm[ 1 —n—e—v^ for a given n. It
follows that

^\~n~e~v^^~l ^{~e~n.

Now ^\-n-e-vv g j^f; if ^ \j ^* is a lattice chain we must have

^l-n-e-v^-^^-l ^l-e-n-^^2-n-e-v^

which is equivalent to the condition in the statement of the lemma. The converse is
easy.

8.3. In [M], we began by considering the case where z^e{0 , 1} in 8.2. But the
essential feature for many of the arithmetic constructions of Sections 2 and 3 of [M], is
the existence of a principal hereditary order A associated to a lattice chain ^f, such that
j^=Ar^crA is a hereditary order as well (with lattice chain J^f U ^fl), whose Jacobson
radical ^ has the property that either ̂  or ^2 is principal.

If we take the lattice chain ^f in 8.1, the associated hereditary order A is principal,
for its Jacobson radical is generated by ^=(71:1, . . ., TC,.) (see e.g., [M], 2.3). Thus, if
the condition of Lemma 8.2 is satisfied, then ^ U ̂  is a self dual lattice chain with
associated order ^ = A C\ <7 A where A is a principal order.

Furthermore ^ = ̂ ^ is principal or ^^ is principal. Indeed, in Lemma 8.2, let
^=min { l — e — n — V i ] = 1 —e—n—msix ^= 1 —e—n—v. We see that ^ ,+^^n—l

i i

always, and it follows immediately that if S9 is not principal, then ̂  is principal, and
it is generated, by n^.
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Following [M], 2.7 we set P=j^HG, P = { x e P | x = l mod ^n} when w is a positive
integer. One sees immediately that Propositions 2.11 (approximation theorem) and
2.12, together with their proofs, hold in this framework.

8.4. The other key feature in [M], is the notion of principal element; this too, is easily
defined in our context. Namely let X e A, and write Ax for the algebra generated by X;
it is a direct sum of subfields of the E^, and we let (9^ be the obvious order in Ax, with
radical ^x- Now assume that there is an integer e^\ such that ^^==n(9^. Using
this property, and the fact that A is principal one sees that Proposition 2.21 of [M] (the
analogue of 4.10) holds. Let C^ be the group defined in [M], 2.23 (cf. 4.1).

DEFINITION. — We say that X e A is a principal element if the following conditions
hold:

(i) X+aX=0;
(ii) ^x^^x;
(iii) XeC^.
For such elements one finds that the results in [M], 2.24-2.33 are valid. (The proofs

are exactly the same.) In particular, 2.24, 2.28, 2.32 of [M], are the analogues of
4.12, 4.13, 4.14, respectively, in this framework.

8.5. We return to the situation of an arbitrary compact maximal torus T arising from
A=EI@ . . . @E^©E;+i© . . . ©E,.,^ tmce^(^ixiaiyi)• Suppose that we can write

i

A=A^®A^i©. . .©A,, where A^=Ei©. . . ©E^ audit/+1^/^,

A,.=E,^©...©E,,

where E^ i, . . ., E^ ^ . have the same ramification degree, and (with the obvious notation)
the elements Vj ̂ , . . ., v^ ^. satisfy the property of Lemma 8.2. We warn the reader that
Aj need not consist of all fields with the same ramification degree (and satisfying
condition 8.2).

Associated to Ay, A ^ + ^ , . . ., A^ we have the lattice chains o^fy, ^j-^, . . ., My Here
J^fy is the same as 13.5, and c^+i, . . ., Ji^ are the chains associated to A^+i , . . ., A,
by 8.2 above. We can now form the chains £^^=^Q= . . . =^; ^^^^©^i+i.
J^+2==c^+l©^+25 • • • ^s^^s-iQ^s by the summing procedure of I Section 2.
We note in passing that I considered the case where each Aj(j>l) consisted of precisely
one field.

It is routine to check that Proposition 3.11 remains true except that ̂  is not necess-
arily principal, generated by n^ in this situation. Lemmas 3.12, 3.13 and 3.14 remain
true (and their proofs remain the same) in this more general situation.

8.6. The definitions imply that if ^2 ls not principal then ^j is principal, and is
generated K^. (One simply checks the description of M^ as given by 8.1-8.2.) If
c,eA, is principal, then ^=71^ A, where b={b^^ . . ., b^,) and each A, ,.. is a root of
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unity of order prime to p (see [M], 2.23). This means that if ^2 is not principal then

c, e ̂ 2m == ̂ 12m 0 ̂ "2m 0 Endfc (V^)
= ̂ nO End, (V^)

If ^2 is principal, then as before c^^=^^C\ End^V^).

With these remarks made, one sees that the appropriate variant of Section 4 remains
valid, when one replaces c^ by c, throughout, given the last assertion of 8.4.

This brings us to the definition of cuspidal datum. For the unramified case (Section 5)
this is just as before. For the ramified case (6.4-6.5) we proceed as follows. First, in
lieu of definition 6.4 we use definition 3.18 of[M]. Secondly, with this done, we
proceed as before with definition 6.5, with the proviso that any c^ that appears (impli-
citly or explicitly) is to be a principal element, unless it is associated to A^, in which case
it has already been defined in Section 5.

One can then carry through the constructions and results of Sections 6 and 7.

8.7. Example. - We return to the example 3.9 (b) (ii) of I. In that example we saw
that the torus T embedded in the parahoric subgroup whose associated order consisted
of matrices of the form

( 0 (9 (9 (9\
K (9 (9 (9 \

n 0 (9 (9 j
K K n (9 /

and the filtration was the same as that of 3.9 (b) (i).

On the other hand a glance at the definitions tells us that for this torus (associated to
A=Ei©E2 in the notation of the example) the condition 8.1 is satisfied. Carrying out
the definitions we see that T embeds in the parahoric subgroup whose associated order
has the 2 x 2 block form

( ( 9 (9\
[n ( 9 )

and the filtration is the period 2 filtration arising from powers of the Jacobson radical.

Both of these parahorics, and the corresponding filtrations, occur in the construction
of supercuspidal representations for Sp4 arising from T. Indeed, one can see why by
considering a character X = Xi x X2 on T! x TY- If Xi and ̂  have conductors of differing
levels, one would be led to the constructions of Sections 6 and 7. If they have conductors
of the same level, one is led to the constructions sketched in this section.
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