
ANNALES SCIENTIFIQUES DE L’É.N.S.

DEANE YANG
Convergence of riemannian manifolds with integral bounds on curvature. II

Annales scientifiques de l’É.N.S. 4e série, tome 25, no 2 (1992), p. 179-199
<http://www.numdam.org/item?id=ASENS_1992_4_25_2_179_0>

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1992, tous droits réservés.

L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www.
elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ASENS_1992_4_25_2_179_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. sclent. EC. Norm. Sup.,
46 serie,t. 25, 1992, p. 179 a 199.

CONVERGENCE OF RIEMANNIAN MANIFOLDS
WITH INTEGRAL BOUNDS ON CURVATURE. II

BY DEANE YANG

1. Introduction

In this paper I obtain the existence of harmonic co-ordinates on a geodesic ball of a
given radius in a Riemannian manifold satisfying certain assumptions described
below. In particular, the results here generalize those obtained by L. Z. Gao [4]. More
recently, M. Anderson [1] has also generalized Gao's results.

Both Gao and Anderson proceed by blow-up arguments and use convergence
theorems. Although the estimates obtained here are similar to those in [4], the proof
given here is more direct and uses the local Ricci flow studied in [11] instead of a
convergence theorem.

Combining the harmonic co-ordinates with the results in [11] yields a stronger version
of Gao's Lipschitz convergence theorem ([5], [4], [1]). In particular, weaker assumptions
on the Ricci curvature are needed in the version here. On the other hand, the approach
taken in [I], combined with the isoperimetric inequality proved in [11] and the estimate
described in Appendix D, also yields the convergence theorem presented here.

Various pinching theorems can be obtained as corollaries of the convergence
theorem. I describe only one here, an almost-Einstein pinching theorem. Unlike pinch-
ing theorems obtained by others, it requires no pointwise curvature bound or diameter
bound.

The notation in this paper follows [11].

In the appendices I have included standard formulas satisfied by harmonic functions
on a Riemannian manifold and various versions of standard \J3 estimates for elliptic
equations. Most of the elliptic estimates are obtained by Moser iteration, which is
convenient because it does not require the use of co-ordinates. These estimates suffice
if the dimension of the manifold is 4 or larger. To obtain optimal regularity for the
metric in dimension 3, it is necessary to use a little bit of harmonic analysis.
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2. Ideas

Given a Riemannian manifold M, co-ordinates X1, . . ., x" on some open set are called
harmonic co-ordinates if each x1 is a harmonic function, i. e.

A^x^O, ;'=1, . . ., n.

To obtain harmonic co-ordinates, we start by applying results developed in [11]. First,
we can obtain a geodesic ball on which there are bounds on the Sobolev constant, on
the 17 norm of Ricci curvature, and on the L^2 norm of Riemann curvature. Therefore,
we can solve the local Ricci flow with a uniform time estimate. Restricting to a smaller
ball, we obtain a 1-parameter family of metrics g(t), O^^T, solving the Ricci flow.

Bounds on the Sobolev constant and on the sectional curvature then imply a lower
bound on the injectivity radius of g (T), on a smaller ball. Restricting to an even smaller
ball if necessary, we apply results of Jost-Karcher [7] to obtain harmonic co-ordinates
with respect to g(T).

Using the harmonic co-ordinates for g(T) as Dirichlet boundary data, we obtain for
each /, n functions that are harmonic with respect to g(t). To show that the functions
are co-ordinates, we apply standard elliptic estimates (see Appendix) to the derivative
with respect to time of the gradients of the functions. The elliptic estimates also yield
the expected regularity for the metric tensor written with respect to harmonic co-
ordinates.

Using the regularity of the metric in harmonic co-ordinates, it follows that the Riemann
curvature tensor is bounded in 17. Moreover, the Sobolev constant is bounded. The
Lipschitz convergence theorem now follows from an 17 convergence theorem proven in
[11].

3. Lipschitz convergence theorem

The following theorem has the same assumptions as in Theorem 2.1 in [II], but
obtains a stronger conclusion.
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CONVERGENCE OF RIEMANNIAN MANIFOLDS. II 181

THEOREM 3.1. — Let n^3, p>njl, and 0<r|<l. There exist constants £ (/?)>() and
K(^, p, T|)>O such that the following hold:

Let Mi, . . . be a sequence of complete n-dimensional Riemannian manifolds, Q^c=M^
open subsets, andD, p>0, K^O constants satisfying the following:

(3.2) vol (B (x, p)) ̂  T|" ̂  -1 op", x e Q,

(3.3) diam(Q,)<D

(3.4) llRmll^B^^ri2^

(3.5) p^^llRcll^KO^ri)2

Given e>0, assume that there is a v>Q such that vol(Q^g)>^. Then there exists a
subsequence Q., g and diffeomorphisms 0, : Q ̂  Q^ g such that the sequence O* g, of Rieman-
nian metrics converge uniformly. Moreover, given any xeQ, the 0, can be defined so that
there exists a ball B containing x on which the metrics <D* g^ converge weakly in L^.

Proof. - By Theorem 7.1 each manifold M^ can be covered by a fixed number N of
balls on which there are harmonic co-ordinates. The estimates for the metric and its
derivatives up to second order imply an L^ bound on the Riemann curvature on each
ball and therefore on the entire manifold. The local Sobolev constants can also be
patched together to yield a global Sobolev inequality. The theorem then follows from
Theorem 12.1 of [11]. The L^ convergence is obtained by simply defining 0^ so that
there is a fixed set of co-ordinates on B that are harmonic for each <D* gi. D

Remark. - The general discussion on Lipschitz convergence of Riemannian manifolds
given in the beginning of [2] shows that the diffeomorphisms 0^ can be chosen so that
the metrics <D* g^ converge weakly in U; globally on Q.

Corollary 2.6 of [11] also has a corresponding version here.
Any number of pinching theorems can be inferred from Theorem 3.1. Unlike earlier

pinching theorems such as those in [9], no pointwise curvature bound is needed at
all. One such corollary is the following:

COROLLARY 3 .6 .—Le t n^3, p>nl2, A)>I, O<T|<I , s>0. Then there exists
S(n, p, PQ, T|, s)>Q such that any complete, connected n-dimensional Riemannian manifold
satisfying for some p>0

vol(B(x, p^ri"^"1®?", xeQ.

1 1 R ml I <p^^rt2^'1 '1)ll^^ln^B^p)^8^1!

p2-(n/p)||Rc||^K(^,T|)2

p2-(n/po) Rc-1^ ^(n.p.p^.S)

p2-" ScN,>s
JM
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182 D.YANG

where e(n) and K(n, p, T|) are as in Theorem 3.1, is compact and admits an Einstein
metric with positive scalar curvature.

Sketch of proof. — The proof is by now a standard one. Assume that no such 5>0
exists. Then there exists a sequence of complete Riemannian manifolds M, satisfying
the assumptions above and

p2-" Rcfe)-^)^ ,^0

but not admitting an Einstein metric with positive scalar curvature. In each manifold
M, fix an exhaustion ^ ^ of the manifold by bounded open sets such that
diam (^ j) ̂ j. For each j pass to a convergent subsequence, using Theorem 3.1. Now
taking the limit of a subsequence of the diagonal sequence, we obtain a manifold with a
complete Einstein metric with positive scalar curvature. By Myers' theorem the limiting
manifold has bounded diameter. Therefore, for sufficiently large y, Theorem 3.1 implies
that some of the Q^ are diffeomorphic to the limiting manifold. This contradicts the
definition of the sequence and the non-existence of 8>0. D

We leave as a trivial exercise the statements and proofs of analogous pinching theorems
for space forms and almost flat manifolds.

4. Estimates for harmonic co-ordinates on a geodesic ball with bounded curvature

Let B=B(X(), p) be a geodesic ball such that the sectional curvature K is bounded,
| K | ̂  K2. Assume that p ̂  inj (B).

We shall fix a constant s(^)>0 satisfying conditions described in the proof below and
assume that Kp^e(/2).

First, choose s so that

^e^sin9^sinh9^29, O^G^e.

It follows from the Bishop-Gromov volume comparison theorem [3] that

2-M+l^r^vol(B(xo,r))^2n-Sorn,

where VQ is the volume of a flat ball with unit radius.
It also follows that

C,(B)^A(^)

for some constant A(TZ)>O.
Let r=d(x, Xo).
Following [8], let u be a unit vector field on B that is parallel along geodesies passing

through XQ and / its associated almost linear function. In other words, ify : ( — p , p) ->B
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CONVERGENCE OF RIEMANNIAN MANIFOLDS. II 183

is the unique geodesic passing through XQ such that Y (0) = u (xo), then

_d(x^(-r(x)))2-^^(r(x))Y
l(x)=-

4r(x)

By Theorem 2.6.1 of [8], there exists a constant C (n) such that the following estimates
hold:

Iv/oo-^ool^c^K^2

Iv^Cxtl^cooK2^

Let s < 1/(2 C Q2)). It follows that

|/|^2r.

Let h (x) be the unique solution to

AA=0, h\^=l.

By the Hopf maximum principle [6], h achieves its extreme values on the boundary of B
and therefore

IHkoo^PllB.oo^P

Next, we want to estimate the gradient of h. First,

A(/z- /)=-A/, (^-/) |BB=O

Integrating by parts,

f iv^-oi^L-oA/
JB J

=(||/z||,+||/||J||A/||,vol(B)
^C^KV^

Now observe that

A[V(/z-/)]=Rc(V(/z-/))+V(A/)

Applying Theorem C. 7 and setting B' = B (xo, (1/2) p),

llv^-ollB^^c^tp^+K^iiv^-ollB^+c^tp^+K2]-1/2!!^!^,
^C(^)Kp

It follows that

(4.1) ||V/Z-^,^C(/2)Kp

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



184 D.YANG

From this we obtain harmonic co-ordinates (compare with Theorem 2.8.1 in [7]):

THEOREM 4.2. — Let p, K>O, and B=B(xo, p) be a geodesic ball such that p<inj(B)
and the sectional curvature K ofB is bounded, K<K2 .

Then there exists £ (n) > 0 such that given 0 < 8 < 1, ;/

Kp < £ (n) 8

then there exist harmonic co-ordinates h1, . . ., h" on B'=B(XQ, (1/2) p) such that the
metric g=g^dh^ ah3 and its Christoffel symbols F^ satisfy the following bounds on B':

l-8^[g,,]^l+8

||r}j^c(^)p-1

Proof. — Let M1, . . ., u" an orthonormal frame of unit vector fields on B that are
parallel along radial geodesies; /1, . . . , / " the corresponding almost linear functions; and
h1, . . ., h" the corresponding harmonic functions.

The bound on the metric follows directly from setting e (n) sufficiently small and using
(4.1). To bound the Christoffel symbols, it suffices to bound the Hessian of each
harmonic function. First, by integrating by parts, we show that on

r
V2 (h-l) ^C^K2?".

JB (XQ, (3/4) p), 2jB(xo,(3/4.)p),2

It follows that

IIV^II^^p^C^Kp^

Now apply Theorem C. 7 to (A. 4) to obtain the desired estimate. D

5. Bounds on harmonic functions on a geodesic ball with L^ bounds on curvature

Fix q>n and ^4. Let B=B(X(), p) be a geodesic ball such that

C,(B)^A(^)

oc(^)r"^vol(B(xo, r))^(n)r\ O^r^p

||Rm||^^£(n, q)A~1

llRcll^a2?-2^

Let h be a harmonic function on B such that the following bounds hold:

IHIco^p
||Vh\\^C(n, q)
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Multiply (A. 3) by ^V/z, where ^ is an appropriately chosen cut off function and
integrate by parts to obtain

f IV^I^f lVAl. lV^I+f lRcl . V/z |
JB' P JB JB

72h\2^-\ |VA | . |V 2 / ^ | + |Rc|. V/z|2

JB' P JB JB

where B^BQco, (3/4) p). Applying Holder's inequality and the bound for V/z then
yields

[ [V^I^Cp^O+a2)
JB'

Let

2n-q

and set s(^, q) sufficiently small so that we can apply Theorem C.10 to (A. 4) and
obtain

llv2/^ ^coz, ̂ [T^^-^llv2^!^^2^^2^-^!!^!!,/^^^^^\\q-^\'^

where

T^C02,^)p2

Therefore,

(5.1) | |V2/l| |,^C(^^)p (n /<^ ' )- l(l+a2)

6. Bounds on the variation of a harmonic function under the Ricci flow

Let g(f), O^^T satisfy the Ricci flow on B. Let h(t) solve

A^/i(Q=0, h(t)\^=l,

where / is a fixed function independent of t. Let

^w
8t

Then h satisfies

A/^-lVCRc+V2/!), h\ss=0.

Therefore, integrating by parts yields

fiV/il^llV/ilUlRcll^llV/;!!^-^
J
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implying that

||VA||^Kip"/2

Now apply Theorem C. 10 to (A. 6) to obtain the following estimate on B (xy, (1/2) p):

llv/ill^c^MT-^llv/^
+ II Re ||,^_^ || V2 h || ,„„„_„ (T<1/2^) + T<1/2)-^ po-/2)-^))]

where

O^T^C^^p^l+or2^-^]"1

Therefore, on B(xo, (1/2) p)

(6.1) IIV^II^^C^^^p-^l+a2^-"^4

+1| Re ||̂ _,, p-2^) (1 + a2) (!+(!+ a2^-"))^-^)]

7. Constructing harmonic co-ordinates

THEOREM 7.1.—Gn^ <7>n, there exists constants c(n), a (n, q)>0 such that if a
geodesic ball B = B (x, 2 p) satisfies

C,(B)||Rm||^8(^)
p2-(2n/,) || ̂  11^^ ̂  ̂  ̂ ^ ^2 ̂  (^)-(^) 5

where 0<8<1, ^^2 B(.X(), (l/2)p) admits harmonic co-ordinates h1, . . ., h" satisfying the
following bounds:

II^M2p

llv^.v^-s^ll^s
Moreover, with respect to these co-ordinates, the metric

g=g„dhidh^

satisfies

| |^2 || <C(n n\ ̂ \~2(<l~(nlq^ iRpl l
|| 0 §ij \\q/2, B (XQ, P/4) s L- W ̂  P | Kc ||^/2, B (XQ, p/2)

where ll^g^-Hp ̂ 2 denotes L^ ^orm o/^ Hessian of g^ with respect to the standard flat
metric defined by the co-ordinates.

Proof. — First, solve the local Ricci flow on B(X(), 2p) so that on B(X(), p) we obtain
a smooth family of metrics g(t), O^^T, that satisfies the standard Ricci Flow

^=-2RcQKO)
of

4eSERIE - TOME 25 - 1992 - N° 2
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By Theorem 9.1 of [11], we can take

T=p2 min(\, C(n, ̂ A-^-^a2 B)-^"^)

By choosing <7 sufficiently small, we can assume that T= p2.
Also, by Theorem 9.1 of [11], we find that

llRm^T))!!^2^^)^)

and

\g^g{t)^lg^ O^T

187

It follows that B (XQ, p) is contained inside a geodesically convex ball for g (T) and that
there exist constants A(^), a (n), P(^)>0 such that with respect to each metric g(t),
O^^T,

Cs(2?(xo,p))^A(^)

a(^)r"^vol(B(xo, r)^P(^)r", O^r^p

Also, by Theorem 4.2 there exist harmonic co-ordinates h1 (T), . . ., /z"(T) on B(xo, p)
with respect to the metric g(T).

Now for each O^^T, let ^(Q, 1 ̂ '^, satisfy

A^^^Q^O, /^Boco,^1

where /l is defined with respect to the metric g (T) as described in the proof of Theorem
4.2. We want to show that h1 (Q, . . ., ^(t) remain co-ordinates for all O^^T. To
do this it suffices to choose 5 sufficiently small in Theorem 4.2 and to show that if 5
here is sufficiently small, then

| -^V^O) dt
Jo 8t

is also small.
On the other hand, note that

-v/^o-v/;1,
8t

where

^-8h'w=-
8t
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188 D.YANG

Applying the estimates in [11] yields

II RcQKO) ||̂ -^c (̂  ^) ̂ 2)-^) p^T2 8

Substiting this into (6.1) yields

IIV^II^^C^^T^tp-'+p-^^^^^-^2^]

Integrating, we get

riiv^ii^^c^^s
Jo

Therefore, by setting x(n, q)>0 sufficiently small, we obtain the desired conclusion.

Remark. - The L°° bound for V/z can still be obtained when q<4 by using L^ bounds
on Rc(^(Q) and V2/?1^), /?^2, 0<t<rT. This leads to the existence of harmonic co-
ordinates in dimension 3, even when q<4.

The L^2 bound on the second derivatives of g, q>n, follow by applying Lemma D.I ,
with

^=^•-5^

to the equation

^f) r) a^=& p-^P n +2R1-7
6 ^p^qS topq & 1 prA ^s • -rv

which is a rewritten version of

A(V/^ l.V/^J)=2V2/^ i.V2/^J+2Rc(V/^ l, V/?7)

In dimensions 4 or larger, these bounds on the metric also follow easily from the L^
bound on V2 h\ which is obtained from Moser iteration. D

APPENDIX A

BASIC FORMULAS FOR HARMONIC FUNCTIONS AND THEIR
VARIATIONS

Given te[0, T], let g ^ g ( t ) be a smooth 1-parameter family of Riemannian metrics on
a smooth manifold M. Let V denote covariant differentiation with respect to g and
A = — V* V the corresponding Laplace-Beltrami operator.

We shall denote differentiation of a function/with respect to t by/.
Fix local co-ordinates x1, . . ., x". Then the Christoffel symbols are denoted

r^^^g^s^-s^
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The Riemann curvature tensor will be denoted

Rm(g)=R^(Jx1 A dx3)^ A dx\

the Ricci curvature

Rc(g)=R,,^W,

and the scalar curvature S^g^R^ The Einstein or gravitational tensor will be denoted

G^R.-^'

Raising and lowering indices is always done with respect to the metric. Indices that
are being contracted will usually be denoted p or q, while the free indices will usually be
fj, k, I.

LEMMA A . I .

r^l^^^+v.^-v,^,).

Therefore, ifg= -2Rcfe),

^=0.

Now we consider harmonic functions:

LEMMA A. 2. — Given h : M x [0, T] -> R such that A/?=0 for all te[0, T], h satisfies
the following equations:

(A.3) A(V,/0=R^V^
(A. 4) A (V, V, h) = 2 RV V^ V, h + V, (R^ V^ /Q + V, (R,̂  V^ /Q - V^ (R,, V^ /z)

T/?^ variation of h, h, satisfies the following equations:

(A. 5) A/^^V^G^V^^R^V^
(A. 6) AV, h = R,̂  ̂ p h - 2 V, (R^ V^ V, A)

APPENDIX B

MOSER ITERATION FOR A HOMOGENEOUS ELLIPTIC DIFFERENTIAL
EQUATION

THEOREM B.I. — Let M be an open Riemannian manifold such that

a \(n-2)/n p

l/l2^-2) ^A |V/2 ,
A J JM

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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foranyf-^C^(M).
Let u and b be nonnegative functions on M satisfying the following elliptic inequality:

—Au^bu.

Then given PQ> 1, q>n, and a compactly supported, nonnegative Lip schitz function 7,

\^u(x) ^CKAll^-^II^U-^+AllVxIl^r^oll^ll^

where C depends only on n, RQ and q.

Proof. — Throughout this proof C is a constant that may change from line to line
and depends only on n, PQ, and q.

First, integration by parts and the Cauchy-Schwartz inequality leads to the following:

LEMMA B. 2. — Given p > 1, (p e C? (M), / e C°° (M), /^ 0,

JlV(,p/.")|.^J<pV'--(-A/).[l^]jlV,|^.

Given p ' ^ 0 , P^=Po^ ll ^en follows that

flv(xp'+l^/2)^^,/—fx2p'+2^p+(^+l)2^l+^^
J 2(p-\)j L { P ~ [ ) JJ

^ \ 2/q / r \ 1 - (n/q) / r \((n- 2)/n) (n/q)

^c x'""^2) ( x2^^) ( a2^2^"2^/ \«/ / \*) /
+(^+l)2C||Vx||2»fx2p'«;'

^ e1 -W9) A f| V (/"^1 y"/2) |2 + C [e-^ (p2 || x2 (1 "^^ ̂  IL^""'0

+^'+l)2||Vx||2Jfx2p'"p.

Setting

e=(2A)-»/<9-"),

and applying the Sobolev inequality once more, we obtain

rr noî /n
(B.3) (^'''^M1')'1^"^

^C[(p2A||x2(l-<"/'!)^|L2)9/(g-»)+(p'+l)2A||Vx||2Jfx2p'"p.
J
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CONVERGENCE OF RIEMANNIAN MANIFOLDS. II 191

Now for each k^O set

/ n Y
A==A)——. ;\n-l}

^•-
/ r ,. y/pk

H^Nx^^l .
\«/ /

From (B. 3) it follows that

H^ ̂  [CA ((/?, || x2 (1 -(nAZ)) ̂  ll^^ ̂ l(q~n) + (^ + I)2 I I V X ||2)]1^^) H,

/ ^ \(2^/(4-n))(fc/(Pfe+i))
^(^-) [C^Allx^^^^ll^^-^+AllVxIl2,)]1^-^,.
\n-1}

Iterating this, we obtain

/ n \ (2q/(q - n)) (c^/po)
H,^ ^-) [C^^II^^-^^IL^-^+AllVxIl^^o^

\^-27

where

' (n-lV , ^ (n-l\
^ = S — — ; ^ = S 7 — — •j=i\ n ) ;=i \ n )

Letting k -> oo, we obtain the desired estimate. D
The estimate for the nonlinear elliptic equation is now easily derived:

THEOREM B.4.—Given the same setup as in Theorem B . I , let u be a nonnegative
function and c>0 a constant satisfying

— ^u^cu2.

Then if

Hl̂ 20^2^)-

there exists a constant c (n) such that if x is a compact supported, nonnegative Lipschitz
function,

Ix^^^l^c^AllVxIlill^ll^.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Proof. — Applying Lemma B. 2,

f f(X2 Mn/2)n/("-2))(n-2)/n^A f|V(x u^) |2
\J J

^^^Jx^^^+A^+^-iyjJiVxl2^2

w2 r A /F \("-2)/n /•

^——^—llMll^^kx2^2)''""-2^ +CA||Vx||2J""/2.

Therefore,

|| 2n/(n-2) || < ̂ PA II V V II2 ^2/" II 77 II|| X ^lln2/^^-!))^^^!! y X H o o ^ ll^lln^'

The theorem now follows by from Theorem C by setting

n2 n
^=——^ P o = ^ ' n

n-2 2

APPENDIX C

MOSER ITERATION FOR AN INHOMOGENEOUS ELLIPTIC EQUATION

Let B be an ^-dimensional open Riemannian manifold and A > 0 be such that

/ f \(n-2)/n r(c.i) 1/r01-2^ ^A iv/i2,
forany/eCy(M).

We wish to study the following elliptic inequality:

-AM^M+V./,

where u, b are nonnegative functions and/is a vector-valued function.
To simplify matters, we shall assume that b = 0, so that the equation is

-AM^V./.

The estimate for the general equation can then be obtained by combining the estimates
obtained in Section B with those given below.

Let q>2n/(n-^-2), l^p^^p, p ' ^ O , and q'>n. The constant C will depend only on
n, q, q\ and po, and may change from line to line.
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CONVERGENCE OF RIEMANNIAN MANIFOLDS. II 193

We begin with some general estimates. Given p ' ̂  0, p ̂  2, apply Lemma B. 2, integra-
tion by parts, and the Cauchy-Schwartz inequality to obtain

fivoc^1^2)!2^ p2 fx2p'+2^~ lv./+co/+l)2 fivxiy^
J 2(/?-1)J J

^^+1) fx2 p '+ l^- lVx./+^ fx^^^Va^1^2)./
^-1 J J

+C(7/+l)2f |Vx|2X2^

^ L2p^2^-2^]2+lf]v^+l^/2)]2+C(^+l)2 [IVXFX2^

J z J •/

It follows that

(c.2) [ivoc^1^2)!2^?2 fx^'^^^l/^+c^+i)2 fivxl2/2^.

THEOREM C.3. — G^^ po^q>n and q'>n, there exists a constant C(n, q, q\ po)
such that for any nonnegative compactly supported Lip schitz function ̂  and

0<T^[||Vx||2,+A^'-n)||x2(l-w)^||y-n)]-l,

| x (x^o u (x) | ̂  C [(A T- y2^ || M ||̂  + T1 /2 (T A)^ II x1 -^^^o) /1| J

Proof. - Applying Holder's inequality, (C.I), and the following basic inequality,

^ l& l-^^+&, a,b^0, 0<^<1,
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to the first term on the righthand side of (C. 2), we obtain

r r r ii-w^+a"-2)/?)^2 ^2p'+2^-2y2^ ^-i^3(l-(^)+((n-2)/p))-l L2p' ̂

r / r \(n-2)/n~\(n/q)-(n/p)
E( (X2^2^""^

L \J / _J

[ / r \p/<i~~\2/p
X ^(p/2)(l-(n/q)+(n/2)-l ^-(n/2) ((p/q)-1) y-(p/2)( y4-"+4 ((2p'+n)/p) pr )

U / J
[ r -|(P/(P-2))(l-(n/q)+((n-2)/p)

<2 ^- ln3( l-(n/^+((n-2)/P))-l V2^'^

r / r \(n-2)/n~}(p/(p-2))((n/q)-(n/p))x pj (x^^2^)^"^)
I— \*/ / Ja \^

_F^(p/2)( l - (n/^)+(n/2)- lg-(n/2)((p/4)- l )y-(p/2) yq-n+q ((2p' +n)/p) rq •[

/

^2T-1^3(l-(^)+((n-2)/p))- l j /^'^+sA fiV^'''1^2)!2

J J a \P/q
^ ^ ^ ( P / 2 ) ( l - ( n / q ) + ( n / 2 ) - l - ( n / 2 ) ( ( p / q ) - l ) - ( p / 2 ) q - n + q ( ( 2 p ' + n ) / p ) ^q \

" j ) '
Setting

8=(4A)-1,

we get

(C.4) f|V(xp'+1^2)|2^CT-1^3< l-^+«n-2^)- l+(^+l)2||Vx||2J^^

^ ^1(1
_p4^(p/2) (1 -(n/^)+(n/2)- 1 y - ( p / 2 ) ̂  ^\(n/2) ( ( p / q ) - 1) yq-n+q ( ( 2 p ' +n)/p) rq •[

/

Now let

H^,^)-^'^
J

Applying (C.I) one more time and setting

n
v=——

n-1

we obtain

H(^v, (^+l)v) (n-2)/M^CA[T-1^3(l- (^ )+(<"-2^)- l+(^+l)2 | |Vx||2o]H(^^)a \p/q
_p4^(p/2) (1 -(n/^)+(n/2)- 1 y - ( p / 2 ) ̂  ^\(n/2) ( ( p / q ) - 1) yq-n+q ((2p' +n)/p) rq \

j ) '
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Now set

Pk^Po^

^EV^V-I]
j= i 2

<^=H(^^)1^

.——z-
^-^2

It follows that

0^ i ̂  v^o) w^) c1/^ A^ET- 1 +1| V x p^ Ofe

+^-(fe/2)^/2cl/^^-^(4A)-T-2)/2p^(l/2)(l~(n/€))(4^)n/2'l

The desired estimate then follows from lemma:

LEMMA C. 5. — Let a^ b^ ̂  be nonnegative sequences satisfying the following inequality

<^+i^o^+bfe.

Then
00 00 00

lim a^ao Y\ ̂ 4- ^ ̂  ]~\ .̂.
f e ^ o o fe=0 k=0 j=fe+l

This lemma is easily proven by induction. D
When q<n, we get only an integral bound:

THEOREM C.6. — Given l^q<n, q^po^qn/(n- q\ q'>n, and

0<T^[||Vx||2J+A^ /-n)||x2(l-(n/g^lly-")]- l '

there exists a constant C(n, q, q\ po)>Q such that the following estimate holds:

II^^+I-^^II^^^CKAT-T^^^'^^^'^II^IL

proof^ - Let 0^5^ 2. Observe that (C.4) still holds under the assumptions of
Theorem C. 6. Thus,

/ (• \(n-5)/n
/ ^2p-+8^/(n-6)J

/ f \l-(8/2)r /r \(n-2)/n-|8/2

^((T^A)8/2 X^'"") (T-1^-1^6/2 ' X2"'^"^"-2^
\ J / L \^ / -1

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



196 D. YANG

^(T^A)8/2 f/2P't(''+Tl-(s/2)A8/2 fiV^"^^"/2)!2

J J

^c^^^^i+TllvxII ' j fx^^
/ / f \pA?

4 / ^ - 1 ^-((n-5)/2)/^(1/2) (4-n)^n/2 / ,yg-n+4 ((2p'+n)/p) ̂  )

This time, let

nv=-
n-6

Pk^Po^

P'A EV^V-I)1 j-i z

0,=H(7^)1^

Choose 8 so that for some positive integer K,

PK +1= •n-q

The desired estimate then follows by iterating the estimates for O^, 1^A:^K+1. D
Next, we derive the estimates for p^ < q\

THEOREM C.7 .—Le t 2 ̂ PQ ̂  2 n/(n — 2) ^^J ^, q>n. Then there exists a constant
C(n, q, q ' , po) such that for any compactly supported Lipschitz function % and

0<T^[||Vx||2,+A"^-M)||x2(l-(^)^||^'~n)]-l,
(C.8) IxW^^Wl^CKT^Ar^oll^l^

^ _ ^ l / 2 ^ - l ^ \ n / 2 q \ \ l - ( n / q ) + ( n / p o ) r n + ^1/2 /^- 1 ̂ \n/4. I I (n/po)-("/2)+ 1 / ' I I -[

THEOREM C. 9. — Let l^q<n. Then for any T satisfying (C. 8),

|| y(n/po)+l-(n/q) \\ <(^^^Ar - lyn /2)<( l^o)-( l /^+( l /")) | |^y | |
I I X ^ l lqnAn-^^^L^ 1 >» " l l ^ l l p o

_^^1/2/11 (n/po)-(»/4)+l f\\ _ (_ /^ - l ^ \ - (n /2 ) ( ( l / 2 ) - ( l / q f ) ) l l ( n /po ) - ( " /2 )+ l /'|1 M

Proof of both theorems. — We shall do a finite number of iterative estimates to obtain
a bound for \\u\\q in terms of HM| |^ . Theorem C.7 will then follow from Theorem
C.3. The second theorem follows directly from the estimates below.

As before the crucial term is the first one on the righthand side of (C. 2). First,

P fx2^2^-2/2^-1 f^'M^^T^-1 [x2^/^

4eSERIE - TOME 25 - 1992 - N° 2



CONVERGENCE OF RIEMANNIAN MANIFOLDS. II 197

Next, we estimate the second term:

(• / r \(q-P)/(q-2)
^(P/2)-l y2p'+p ^p<(^-( l - (2/p))((n/2)- l ) \ y ( 2 / p ) ( 2 p ' + n ) - n + 2 ^ p \

J \ v /

/ r \(p-2)/(q-2)
X ( ^.(l/2)(q-n)+(q/p)((n/2)-l) yq-n+(q/p) ( 2 p ' + n ) rq \

V J' )
Let 0^8^ 2. Using the same estimates as in Theorem C.6, we obtain

/ (* \(n-8)/n F

( X2"' + 5 ̂ T^ ~5) ) ^ C (T - 1 A)572 X2"' ̂
\J / ^

/ r \plq
_^ ̂  - 1 ̂ \ - ((n - 5)/2) ( ^(q - n)/2 ^n/2 \ ^q - n + q ((2p' + n ) / p ) j-q \

\ J /

/ r \p/2
_p/^-l^\-((n-S)/2)( ^l-(n/2)^n/2 y2 -n+2 ((2p' +n)/p) j " l \

\ J /

Define v, p^ pi ^ as in Theorem C.6. Then iterate the estimates for 0^ until
pk>q' Then apply Theorem C.3 to obtain Theorem C.7 and apply Theorem C.6 to
obtain the other theorem. D

Using the same arguments as above, we also have the following:

THEOREM C. 10. — Let 2 ̂ po ̂  2 nl(n - 2) and 2 ̂  q < n. Assume that

ii^^X1-^)-
Then given any

O^T^C(^)p2

u satisfies the estimate given in Theorem C.9.

APPENDIX D

REGULARITY FOR A NONLINEAR ELLIPTIC PDE

Throught this section B denotes on open ball in R", 8 represents partial differentiation
with respect to the standard co-ordinates x\ . . ., x", all norms use the standard inner
product and volume form on R". Let Ao denote the flat Laplacian.

The following is a standard result in nonlinear elliptic PDE:

LEMMA D.I . — Let u and f be smooth functions on B satisfying

-a^SiSjU^b^SkUSiU+f
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where

c

Ik^Mo^-. \^iJ^n
n

Then given p> 1, ^r^ <?x;^ 8(/2, p, c)>0 andC(n, p, 8)>0 ^c/z ^/^ ;/

|H|oo|N|oo<8(A^ S)

^77 ^7'z^ a^ smooth compactly supported function %,

llx^^ll^c^^^tdiBxII^+II^^VII^II.+llx2/!!,]
Proo/. - First, by the Calderon-Zygmund inequality ([6], [10])

lia^^^ll^c^llAoa2^!!,
We also need the following interpolation inequality:

LEMMA D.2. — Given p>\ there exists a constant C{p)>0 such that for any smooth
function u and smooth, compactly supported function ̂

llxa^llj^c^ll^ll^llx^^lL+IKax)2^!,]
In particular, given T > 0,

llx^ll.^c^tTllx^^ll.+d-^Tllaxll^ll^llJ
The lemma is proved by integrating by parts and applying Holder's ine-
quality. Therefore,

||x2a2^||^||a2(x2^)||,+4||Bx||,J|xB^||^+||B2a2)|U|^||,
^c(^)||Aoa2^)||,+4||ax|^||^^|^+||a2te2)||J|^||,

^c^^tllaxl^llx^l^+sllx^^ll.+II^IJI/a^^+llxV^
^c^^KTilaxl^+s+II^LhIIJllx^^lL
+(^l+T||3x||j,+||^||J|^||J|ax||j,+||a2a2)y||^||,+||x2/|L]

Choosing T | 8^ \\2p>Q sufficiently small yields the desired conclusion. D
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