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1. Introduction

In this paper we prove the existence of a Banach density of the set of rational and
integral points on subvarieties of abelian varieties (or more generally, commutative
group schemes) over algebraic number fields and algebraic function fields of arbitrary
characteristic. We state in this introduction some of the main results for the simplest
case where k is a global field (i.e. a finite extension of Q or a function field of
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136 M. L. BROWN

transcendence degree 1 over a finite field). We have (cf. Theorem 4.5, Corollary 4.6):

THEOREM 1.1. — Let A/k be a smooth commutative group scheme, \/k a closed subsch-
eme, and Y a finitely generated subgroup of the group of k-rational points A (k). Then
there are a finite number of translates A^ contained in V, of algebraic subgroups of A
such that

m

rnv= u(rnA,)us,

where the density dy (S) is zero. In particular, the (BanacK) density dy (T H V) of Y 0 V
in r exists and is a rational number.

Indeed, we prove an ^-estimate for size of the exceptional set S of this theorem, which
immediately implies zero density. An application of the sharper 0-estimate is the
following: with A, V, k as in Theorem 1.1, assume further that A/A: is an abelian variety
and let ^ be an ample line bundle on V. Define the Dirichlet series

Z(^;V,/^)= ^ ^(x)-5

x e V (k)

where h^ is a global (logarithmic) Well height on V associated to ^ and the sum runs
over the all but finitely many xeV(fe) with h^(x)>0. We have (cf. Theorem 4.20):

THEOREM 1.2. — The Dirichlet series Z(s; V, h^) has a meromorphic continuation to
the half plane Re s > rank A (k)/2 — s, for some £>0, such that the only singularity in this
half plane is a possible simple pole at s= rank A (k)/2. Further, a simple pole occurs at
s = rank A (k)jl if and only if A contains an irreducible component of the Zariski closure
of A (k) and A (k) is infinite.

Lang ([24]; cf. Conjecture 4.1 below) conjectured that ifk has characteristic zero and
A/k is a semi-abelian variety then the exceptional set S of Theorem 1.1 is empty. This
conjecture has been proved in various cases (listed at the beginning of Section 4 below)
and supersede Theorem 1.1 when they apply. This higher dimensional generalisation of
MordelPs conjecture would become false over fields of positive characteristic.

Suppose now that A/k is an abelian variety and k' is a finite field extension of k. The
group A(k') is finitely generated, by the Mordell-Weil theorem; hence by Theorem 1.1
the density d^ ̂  (V (k')) of the set V(^), of ^-rational points of V, in A(k') is a well
defined rational number in the interval [0, 1]. One may ask for the variation of this
quantity as the field k' varies. We prove (cf. Theorem 4.12):

THEOREM 1.3. — If char. k = 0, then the subset ofQ H [0, 1] given by

{ ^A (fc') (V (k1))', k' a finite extension field of k}

omits infinitely many rational numbers in Q 0 [0, 1].
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RATIONAL POINTS 137

As for integral points, we have (cf. Theorems 5.6 and 5.7):

THEOREM 1.4. — Let D be an ample divisor on the abelian variety A/k. If I is a D-
integral subset of A (A:), then I is either finite or of density

^AW(I)=O.

Lang conjectured ([24]; cf. Conjecture 5.5 below) that if the field k is a finitely
generated extension of Q then a D-integral subset of A(fe) is finite. When k is a
number field, the conjecture has been proved by Fallings ([12], [46]) and this supersedes
Theorem 1.4 in characteristic zero. Again in positive characteristic, this conjecture
would become false.

The main technique we use is the Masser-Wiistholz zero estimates (cf. § 2) of transcen-
dental number theory ([28], [30]), for ground fields of arbitrary characteristic, combined
with a combinatorial theorem (§ 3, Theorem 3.1) on "large" subsets of abelian
groups. For the question of integral points, we consider the distribution of the values
of local Neron heights on abelian varieties (§ 5) by means of these zero estimates as well
as special considerations of locally compact valuations.

The methods of this paper can be contrasted with those of Faltings's paper [12]. Both
use some techniques of diophantine approximation; roughly speaking, the main difference
is that we consider the "spatial distribution" of rational points and show that they
cannot be "dense" whereas Fallings shows, under restrictions, that one cannot have long
finite chains of rational points with rapidly increasing heights.

Some of the main results of this paper were announced in [5]. Prof. D. Masser
remarked to me that the zero density results could be improved to (9-estimates by slightly
sharpening the zero estimates and using the combinatorial Theorem 3.1, in place of a
deep theorem of Furstenberg; I thank him very much for his suggestions. It is a pleasure
also to thank my colleagues at Orsay for their kind hospitatility, with especial thanks to
Prof. L. Illusie.

2. Zero estimates

We state here a slight extension of the zero estimates of Masser and Wustholz for
commutative algebraic groups (without multiplicities). We refer the reader to [2] for a
survey of zero estimates and their applications to transcendental number theory.

Let k be a field of arbitrary characteristic and G/k a smooth connected commutative
group scheme of finite type. Let F be a finitely generated subgroup of G(k).

Let G -> P^ be an embedding of G, as a locally closed subscheme, into projective
space over k. Then the degree deg (X) of a closed subscheme X of G is then defined
via this embedding.

THEOREM 2.1. — Let r\, . . .,F^ be finite subsets of G(k), where d=dimG. Suppose
that the restriction to G of the section seV(P^ ^(w)), w>0, is not identically zero and
vanishes on the set of points r\+ . . . +F^ in G(k). Then there is a connected algebraic
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138 M. L. BROWN

subgroup H ofG, H^G, and an integer i such that

I ^G/H (F.) |. deg (H) ̂  deg (G). (am)^ G/H,

where a>0 is a constant depending only on G and its embedding in P^, and KQ^ is the
projection G —> G/H.

The proof of Theorem 2.1 (which we omit) is similar to the proof of Theoreme 2 of
[2]. It differs only in that the field k has arbitrary characteristic (the hypothesis
char. A: =0 in [2] is superfluous for the zero estimates without multiplicities, see [8], [5],
[36]) and that the section s vanishes on a set of points of the form 1̂  + . . . + F^.

3. A combinatorial theorem

The main result of this section (Theorem 3.1) asserts that a sufficiently large subset of
a finitely generated abelian group contains a set of "well-spaced" elements. It is similar
to, but effective and much easier to prove than, the following famous theorem of
Furstenberg [14]:

THEOREM (Furstenberg). — Let S be a subset of Z" mth positive upper (Banach)
density. Let Q be a finite subset of Z". Then there is an integer a^O and an element
b e Z" such that

^Q+Z?cS.

Furstenberg's theorem can be used in place of Theorem 3.1 to obtain many of the
zero density results of this paper (cf. the remark after Theorem 4.4); but, for the sharper
0-estimates, we require Theorem 3.1.

3.1. DENSITIES AND RANKS. - Let A be a finitely generated abelian group and let A^
denote the torsion subgroup of A. Let a^ . . ., ̂ eA be a set of generators of A.

If S is a subset of A, we define for every real number X > 0

f r 1S(X)=^eS;^= ^ oc^,, -X^a^X,a,eZ,forainy.
[ i=l J

The upper (Banach) density d* (S) [respectively, the lower density d^ (S)] of S is defined
to be

rf*(S)=limsup|S(X)|/|A(X)|
X -^ oo

[resp.

^(S)=liminf|S(X)|/|A(X)|].
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RATIONAL POINTS 139

If J* (S) = d^ (S), one calls the common value the density d^ (S) of S in A. If A is finite,
then d^(S) exists and is equal to |S|/|A|. In general, the quantities dfS, d^S, d^S
depend on the choice of generators of F; but there are important cases where they are
independent of the choice: (a) if df S = 0; (b) if S is a coset of a subgroup of F; (c) if S is
obtained from a finite number of sets of types {a) or (b) by the operations of union and
intersection. This applies particularly to all the density results of this paper; we shall
therefore not usually specify any generators.

The rank (or logarithmic upper density) rank(S) of a subset S of A is defined
analogously to be

rank (S) = lim sup log | S (X) |/log X.
X -- oo

If S is a subgroup of A, then rank (S) is equal to the rational rank of S (hence there is
no contradiction in terminology). Clearly, if S c: A has rank (S) < rank A then d^ (S) = 0.

It is convenient to fix a particular set of elements of A: let a^ . . .,^ be linearly
independent elements of A so that

A=(©^Z^)®A^,

Let N be a positive integer. A subset ScA is called ^-special (with respect to
a^ . . ., a,,) if there are subsets F^cZ, i= 1, . . ., k, with

|FJ=N, for all?,
k

S=^+ ^ F^,
1=1

for some aeA.
If S is N-special, then we have | S | = N\ The main property of N-special sets is their

"rigidity" under group homomorphism (cf. Lemma 3.3).

3.2. STATEMENT OF THE THEOREM. - Let A, a^, . . .,^ be as above. Fix a finite set of
generators of A by adjoining torsion elements ^+1, . . . to the set a^ . . .,^.

THEOREM 3.1. — For any pair of integers N, n^ 1, there is a real number e>0 mth the
following property. Let M>0 be any integer and let ScA be a subset satisfying

\imsup\S(X)\|Xk~e=+oo
X -> oo

[in particular, ;yrank(S)>A:—s]. Then there are ^-special subsets U^, . . .,U^c:A and a
subset S' c: S mth \ S' \ = M so that

n

s=s'+ ^ u,.
1=1

Remarks. — 1) The proof below shows that we may take s to be

e(N, n, A:)=(N+2)-"fcmin(A:, N+2),

but this is unlikely to be best possible.
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140 M. L. BROWN

2) The above theorem suffices for our application but in fact the proof gives the
following stronger assertion: Assume S satisfies (for fixed N, n and suitable s>0)

limsuplSCX^X^-^+oo.
X -C 00

Given a sufficiently large integer X>0, there is a subset S'c:S(X) satisfying, as in the
theorem above,

and

S =3 S' + ^ U,, and U, is N - special for all f,

\S'\^ X5,

where 8 > 0 depends only on s, N, n, k.
3) For A=Z2 , k=2, N=2, ^==1, Theorem 3.1 has the following geometric interpret-

ation: If a subset S c= Z2 satisfies

limsup^X^/X^/^+oo
X -- oo

then S contains a rectangle.

Theorem 3.1 is proved inductively from the following technical lemma.

LEMMA 3.2. — Let N>0 be an integer. Then there is a constant c^ >0, depending only
on A and N, with the following property. Let S be a subset of A; let r, a be real numbers
with r>0, 0<a<l , and^>0 an integer satisfying

1) ^(X)^^-",
2) X>(N4 f c + l |A^|/r)Xa>l.
Then there are subsets S^ c: S, F c: Z with | F | = N and
(a) ̂ X^r^c^X)^^,
(b) Si+F^cS.

We prove Theorem 3.1 in Section 3.4 and Lemma 3.2 in the next section.

3.3. PROOF OF LEMMA 3.2. - We have the decomposition

A==(@^Z^)©A^.

Let L be the real number

(3.1) L=(N4k+l |A^|/r)Xa;

then

(3.2) X>L^1

4eSERIE - TOME 25 - 1992 - N° 2



RATIONAL POINTS 141

by hypothesis (2) of the lemma. Put

(3.3) Y=[X/L],

where [n] denotes the greatest integer ̂ n.
Let x be an element of (®^i Z^.©A^rs)(X) and let y be an integer

with - Y ̂  y ̂  Y. Define

(3.4) I (x; jO={^;?ieLyL,(^+l)L]}©xcA.

Call the interval I (x; jQ good if it contains at least N +1 elements of S, bad
otherwise. Let G(X), B(X), respectively, be the number of good and bad intervals
I (x; y). Since (Y + 1) L > X [from (3.2)] we see that

A(X)cUI(x;jQ,
x, y

s(x)c=u(i(x;jons).(3.5)

Every interval I (x; y) contains L +1 elements; in particular, each of the good intervals
contains at most L+ 1 elements of S. By definition, each of the bad intervals contains
at most N elements of S. Comparing cardinalities in (3.5) gives

(3.6) S(X)|^(L+1)G(X)+NB(X).

The total number of intervals I (x; y) is at most

(3.7) |A^|(2X+l) f e- l(2Y+l)^|A^|(2X+l) f c- l(2X+L)/L^|A^|4 f eX f c /L,

as L<X, by (3.2). In particular, \A^\4kXk/L is an upper bound for B(X). Hence
from (3.6) we have

(3.8) G(X)^,^(|S(X)|-N|A,J4 fcX fc/L)^———(|S(X)|-rXk-a/4),
(L+ 1) U ^ 1 1)

using (3.1). It follows this and hypothesis (1) of the lemma that

(3.9) G(X)^(l/(L+l))(rX fe-a-rX fc-a/4)^(3/(4L+4))rX fc-a.

As L ̂  1, from (3.2), we have

(3.10) G(X)^(l/8L)rX f c - a=C2r2Xk-2 a ,

where c^ = 1/(8 N4^11 A^rs |), from (3.1). Roughly speaking, this shows that there are
"many" good intervals.

Let T be the number of subsets with N elements of the set { x e Z ; O^x^L} and let
F^, . . ., FT be these distinct subsets. One then has

T^-).
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142 M. L. BROWN

For each m= 1, . . ., T define

(3.12) S,={^eS;^+F^cS}.

As a good interval I(x; y) contains at least N + l elements of S, there is a subset Pp
1 ̂ /^T, and an element s (x; y) e I (x; .y) 0 S with

^(x;^)+F,^c:I(x;^)nS.

It follows that each good interval I (x; y) contains an element s (x; y) such that
[from (3.4)]

s(x;y)e U S,(X+L)=defU(X+L).
7=1

As an element s (x; j0 belongs to at most two distinct good intervals, it follows from
(3.10) that

lUCX+L^GCX^^X^-201, C3=C2/2>0.

Hence for some w, 1 ̂  m ̂  T, we have

(3.13) IS^X+m.^X^/T.

From (3.11) we have the elementary estimate

T^L^/N!.

Hence from (3.1) we obtain

(3.14) T^(4N/N!)(N4fe+l|A^|Xa/r)N^C4r-NXNOt

where

^N^^IA^/N^O.

Combining (3.13) and (3.14) gives that for some suitable m we have

IS^X+L)!^/^)^2^^2)01

As X>L [by (3.2)], this gives

is^x)!^/^)^2^-^2^

and the lemma follows from this and (3.12) by taking

^-^/(^X).

Remark. - The proof of the lemma shows that one can take c^ to be

^N^-^^-^N-^IA^I-^1.
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3.4. PROOF OF THEOREM 3.1. — Fix integers N, n^l. Let c^>0 be the constant
given by Lemma 3.2 applied to A and N. Put

C^N^IA^I.

Define recursively the functions f^ of the real variable q by:

fo(q)=q,
fi^^c^q)^2. ^0,1, . . .(3.15)

Clearly, f, (q) -> oo, as q -> oo, for all f=0, 1, . . . Let s be any real number satisfying

(3.16) 0<s^(N+2)-nfc min (k, N+2).

With M>0 an integer as in the theorem, select a real number q>0 so large that

(3.17) fnk(q)W'

We may then select an integer X>0 so large that

(3.18) 2 lX>(c2//;•to))(2 iX)(N+2)i£>l, for all ;=0, 1, . . ., nk-\.

This choice of X is possible because the exponents (N + 2)1 e satisfy

(3.19) (^(N+2)1^!, foralH=0, . . .,^-1,

from (3.16).
Put So=S. For any integer ?', we may uniquely write i=sk+t, where 1 ̂ t^k and s,

teZ.
We may then inductively construct subsets S^c:S^_i, i= 1, . . ., nk, and subsets F^c:Z

with |F,J=N, l^s^n, l^t^k, such that
(a\ |S,(2iX)|>/,te)(2iX)fe-<N+2)l£,
(&),S,+^^c=S,_i, i=sk+t, \^t^k.
For this, assume that (a),, (b), are true and apply Lemma 3.2 to S^ where r=fi(q\

a==(N+2) l8. This gives a subset S^+i satisfying (^)i+i and (&)i+i provided the hypo-
theses of the lemma are satisfied; but hypothesis (1) for S, is simply (a), and hypothesis (2)
is given by (3.18).

The hypotheses (Z?)i, . . ., {b)^ now g^6

n k

s,k+ Z E F,^c:So=s.
s=l (=1

Furthermore, the hypothesis (a\k gives

|S„(2"fcX)|>/„(^)(2nfcX)fc-(N+2^£^,(^)^M,

by (3.16) and (3.17). This proves the theorem.
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144 M. L. BROWN

3.5. A LEMMA. - The next lemma is the main property of N-special sets.

LEMMA 3.3. — Let A, a^ . . ., a^ be as above. Let S be an ̂ -special subset of A mth
respect to a^ . . ., a^ and let H be a subgroup of A of rank r. Let n: A -> A/H be the
natural surjection. Then we have

71(8)1^-''.

k

Proof. - Let S=fl+ ^ F^. As it suffices to prove the lemma for the translate
1=1

k

^ F^ of S, and as ^, . . ., a^ generate a torsion free subgroup of A which containsI
1=1
this translate, we may reduce to the case where A itself is free with basis a^ . . ., a^

As rank A/H=A;-r, the images of some subset of k-r elements of a^ . . ., ̂
generate a free subgroup of A/H. By reindexing we may suppose these elements are
^ i , . . . , ^_ , . Put

k-r

S'= EF^CS.
1 = 1

Then the elements of S' remain distinct under n hence | n (S ' ) | =N f c~ r , whence the result.

4. Rational points on subvarieties of commutative group schemes

Let G/k be a commutative group scheme of finite type over a field k. Let k be an
algebraic closure of k. Let F be a subgroup of G (k) of finite rank i. e. F®z Q is a finite
dimensional Q-vector space. Lang [24], combining conjectures of Chabauty, Manin and
Mumford, proposed the following higher dimensional analogue of MordelFs conjecture.

CONJECTURE 4.1.- Suppose that G/k is a semi-abelian variety (i.e. an extension of an
abelian variety by a linear torus) and that char. fe=0. Let V/fe be a closed subscheme of
Gjk. Then there are a finite number of translates H^, i= 1, . . ., w, of algebraic subgroups
of G contained in V such that

m.

rnv(fe)= UFUH^).1=1
This conjecture has been proved in the following cases:
1) \lk is a curve, G/k is an abelian variety and char. k=Q (Raynaud [38] and

Fallings [11]);
2) r is the full torsion subgroup of G(k), char. k=0 (Raynaud [38], extended by

Hindry [18]);
3) G/k is a linear torus, char. k=Q (Laurent [26]);
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4) A; is a function field over a number field k^ G/k is an abelian variety with
Tr^(G)=0, and V contains no translate of a sub-abelian variety (Raynaud [39]);

5) k is a number field, G/k is an abelian variety, F is finitely generated, and V contains
no translate of a sub-abelian variety (Fallings [12], [46]).

This conjecture would become false for an arbitrary commutative group scheme;
furthermore, it would become false in characteristic p > 0 (e. g. the counterexamples to
MordelFs conjecture in positive characteristic). Nevertheless, one of the main results of
this section (Theorem 4.5) shows that when F is finitely generated and G is any commu-
tative group scheme of finite type over a field k this conjecture is true up to subsets of F
of lower rank, in particular, up to subsets of density zero.

In particular, this theorem shows that the density of F 0 V in F is well-defined
(Corollary 4.6). A sharper result (Theorem 4.7) is proved for the special case where G
is a semi-abelian variety, by using the results of Section 4.1 on tori contained in semi-
abelian varieties. The variation of the density with the ground field is examined in
Section 4.3. Subgroups of finite rank of abelian varieties are considered in Section 4.4
and in fact we prove the Conjecture 4.1 (cf. Theorem 4.17) for the case where V is a
curve by a reduction to the Mordell conjecture. In Section 4.6, we give an application
to the meromorphic continuation of certain zeta functions.

4.1. TORI IN SEMI-ABELIAN VARIETIES. — We begin by extending some results of
Bogomolov [3] to the case of semi-abelian varieties.

Let G/k be a semi-abelian variety. Let H be an algebraic subgroup of G. By a torus
of type H we mean a translate of H by x e G (K). The set of tori of type H is parametrised
by the scheme G/H. The torus lying over the point teG/H (or passing through teG)
is written H(.

Let X/k be a closed subscheme of G. A torus H^cX is maximal if it is not properly
contained in a torus H^cX. Note that more than one maximal torus may pass through
a given point of X. Let

p: G -> G/H

be the projection and let p ' be the restriction of p to X. Then the subset

MHC=X(Q

of points of X having maximal torus of type H is contained in the closed subscheme M^
of X whose set of ^-valued points is

^^[xeX^p'^p'W^].

Let MH be the Zariski closure of M^, which is a closed subscheme of M^; it is clear that
if MH 7^ 0, then MH is a component of M^.

PROPOSITION 4.2. — A closed subscheme X/k of G contains only a finite number of
types of maximal tori.
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Proof. — Let G' be the Serre compactification of G (see [7]) i. e. G' is an irreducible
projective A:-scheme containing G as an open subscheme and equipped with an action
by G as a group scheme of operators

GxQ'^G'

extending that of G on itself. If V is a subvariety of G, we denote by V the Zariski
closure of V in G\ Fix some projective embedding of G'.

We can choose a set of points oc^ e H (fe) of cardinality at most dim X +1 such that
(where X^ denotes the translate a+X" ofX')

HX^MH.
«i

This can be done by using a sufficently general set of elements oc^. Hence computing
degrees with respect to the fixed projective embedding of G', we have

degMn^deg M^(deg XT1"11^1.

Now, x e MH has maximal torus H^ if and only if p ' (x) has trivial maximal torus in
//(M^). Therefore there exists a set of elements P^eG(^) of cardinality at most dim
p ' (M^) such that

HM
j

H' Pj

is the union of a finite number of the H^ and is not empty. As

deg H; ̂  deg (U MH, ̂  ̂  (deg M^"" pf (MH) ̂  (deg X)^1"1 x+1) dim pf ̂
j

we have that the degree of H is bounded. Hence the image H* of H in the abelian
variety G/P, where P is the maximal linear connected algebraic subgroup of G, has
bounded degree; therefore, there are only finitely many possibilities for the subgroup H*
of G/P. Furthermore, the subgroup HOP has bounded degree in P; hence there are
only finitely many possibilities for HOP. Hence there are only a finite number of such
subgroups H. This proves the proposition.

Recall that the logarithmic Kodaira dimension K(V) of a separated irreducible and
reduced ^-scheme of finite type V, where A: is a field of characteristic zero, is defined as
follows (see [20]). By a theorem of Nagata, there is a complete algebraic variety V/A:
which contains V as an open subscheme; further, by Hironaka there is a smooth complete
variety V* and a birational morphism

a: V* -> V
so that

D^*-^-1^)
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is a divisor with normal crossings. Then
00

K(V)=tr. deg,, e H°(V*, (Kv.(x)^(D))01)- 1
i=o

where Ky* is the canonical line bundle on V*. The logarithmic Kodaira dimension
K(V) is independent of the choices of compactification and desingularisation ofV
(see [20]); if V is complete, it coincides with the usual Kodaira dimension K (V) of V.

COROLLARY 4.3. — Suppose that X/k is a closed subscheme of Gjk.
(i) For any algebraic subgroup H of G, the subset M^cX^) is the set of k-rational

points of a locally closed subscheme (also written M^) ofX.
(ii) There is a unique decomposition into non-empty locally closed subschemes

X = M ^ U M ^ U . . . U M H ,

where the H^ are distinct algebraic subgroups of G.
(iii) Assume that X is absolutely irreductible and that char. k=0. IfM^ is dense in X,

then

K (X) ̂  dim MH - dim H.

Equality holds here in the following cases: (a) G/k is an abelian variety; (b) G/k is a linear
torus; or (c) K (X) = 0.

Proof. - We may immediately reduce to the case where X is absolutely irreducible.
(i) Proposition 4.2 gives the decompositions

X ( £ ) = M H , U M ^ U . . . U M H , ,

X = M H , U M H , U . . . U M H ,

As X is irreductible, X = M^. for some /. It follows that an element x e M^ (k) belongs
to M^ if and only if there is no H^H,, H^H, with xeM^.. Hence M^ is an open
subset of MH.(^) for the Zariski topology, with corresponding open subscheme also
denoted by M^. Put X7=X\M^. Then dim X'<dim X and the proof may now be
completed by induction on dim X.

(ii) This follows immediately from (i) and Proposition 4.2.
(iii) The torus H is a subgroup of the automorphism group of X; as X is a closed

subscheme of the semi-abelian variety G, we have K(X)^O [20], Theorem 4. Hence we
have

dimH^dimX-K(X)

by [20], Theorem 7; the first part follows.
For the last part, for each case (a), (b), (c), we have by [20], [21], [22], respectively,

that X is stabilised by a sub-algebraic group of G of dimension equal to dim X — K (X);
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let H be the connected component of the identity of this stabiliser. We then have

K (X) = dim MH — dim H,

as required.
This completes the proof.

Remark. - 1) I understand from litaka that one may have strict inequality in
Corollary 4.3 (iii) for general semi-abelian varieties.

4.2. RANKS OF SETS OF RATIONAL POINTS. - We combine the combinatorial theorem of
Section 3 with the zero estimates of Section 2 to prove the next theorem.

THEOREM 4.4. — Suppose that G/k is a smooth connected commutative group scheme
of dimension > 0 over a field k. Let G -> P^ be a projectile embedding of G. Let V be
a finitely generated subgroup of G (k) whose Zariski closure in G is equal to G. Then
there is a real number £>0 such that for any section ser(¥^ ^(m)\ w>0, whose
restriction to G is not identically zero, we have

rank { y e F; s (y) = 0 } ̂  rank F — s.

Proof. — For any integer N^ 1, let s(N)>0 be the real number given by Theorem 3.1
applied to A=r, a fixed set of suitable elements y^, . . ., y^ of F, fe=rank F, and the
integer n = dim G [one can take

£(^=(N+2)-^ min (fe, N+2)

by Remark 1 after Theorem 3.1]. Put

S={yer ;^ (y )=0} .

Assume that for all integers N^ 1, we have

(4.1) rank S > rank F - s (N).

By Theorem 3.1, there are N-special subsets U^, . . ., U^cF and an element ueS with
nS^M+ ^ n.1=1

By Theorem 2.1, there is a connected algebraic subgroup Hc=G, H^G, an integer ;',
l^i^n, and a constant a>0, depending only on G and the projective embedding, such
that

Lemma 3.3 shows that

I^G/H^I^CdegG)^)^0/"

I ^G/H (H-) | ̂  N""̂  r - rank (rnH);
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hence we have

(4.2) N^ r -rank (rnH) ̂  (deg G) (ani)^ G "1.

As the Zariski closure of F does not consist of a finite number of translates of H in G,
we have

rank(rnH)^rankF-l.

It follows that (4.2) is violated for all

^>(degGUam)dimG~l.

Hence (4.1) is false for all sufficiently large N, whence the result.

Remarks. - 2) In [5], the above Theorem 4.4 is stated with the weaker conclusion
that d* {y e F; s (y) = 0 } = 0; in place of Theorem 3.1, the proof there used a theorem of
Furstenberg [14] (cf. the beginning of Section 3).

3) The above proof and Remark 1 of Section 3 show that the real number s in
Theorem 4.4 can be taken to be

(^(^-^r^^minfrank F, d (aw)"-1+2),

where n= dim G, d=deg G, and a depends only on the projective embedding ofG. In
particular, for a fixed G and fixed projective embedding, e depends only on the rank
of r and m.

We now come to the main result of this section:

THEOREM 4.5. —Let G/k be a commutative group scheme of finite type and V / k a
closed subscheme. Let V be a finitely generated subgroup of G {k) and let H be the
connected component of the identity of the Zariski closure of Y in G. Then there is a
subset ScF C\^(k) and a finite number of translates H^ o/H such that H^ is contained in
^red f01" au l an(^

n

rnV(fe)= U(H,nr)US, rankS<rankr.
1=1

Remark. - 4) The known instances of Lang's Conjecture 4.1 (listed at the beginning
of Section 4) supersede Theorem 4.5 when they apply.

Proof. - By [15], VII^, Prop. 8.3, there is a finite local (in particular, purely
inseparable over k) closed characterized subgroup F / k of G such that G/F is a smooth
A:-group scheme. By taking the image of V in G/F we may reduce to the case where
G/fc is smooth. Furthermore, as G is a finite disjoint union of principal homogeneous
spaces over the connected component of the identity of G, we may reduce to the case
where G/k is connected and smooth. Let F^FOR, a subgroup of F of finite
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index. Let y^, . . ., y^eF be coset representatives of r° in F. The decomposition

vnr== u {r°-yju u vn{H-y,}n{r°-yj
H-Yi^V H-y^V

shows that we may reduce to be case where H = G.
We may assume that V^G else the theorem is obvious. We may then select a

sufficiently small open quasi-affine subscheme U of G\V such that there is a closed
subscheme X of G, pure of codimension 1, for which

Vc=Xc:G\U.

Let D the divisor given by the sum over all the irreducible components of G\U of
codimension 1 in G. Then [37], Theoreme VI. 2.3, the sheaf 0(D) is ample on G and
has a non-zero section vanishing along V. Take the projective embedding G -> P^ given
by d)(nD), for some integer n>0 so large that (^(nD) is very ample. Then there is a
section ser(P^ (^(m)), for some m>0, whose restriction to G is not identically zero
and which vanishes along V.

By Theorem 4.4, we then have

rank{mV(^)}^rank{yer; ^(y)=0}^rank F-£

for some c>0, and the result follows.

Remark. - 5) By Remark 2 above, one can write the conclusion of the theorem above
as: rank Shrank F-s for some £>0 depending only on the morphism V-^G, rank F
and the Zariski closure of F in G.

COROLLARY 4 .6 .—Le t G, V, k, Y be as in Theorem 4.5. Then the density
dy (F C\ V (k)) exists and is the rational number

^(rnv(fc))= m
[r:mH]

where H is the connected component of the identity of the Zariski closure of Y and m is
the number of distinct translates of H by Y which lie in V.

Proof. — Take the densities of
n

F U V(^)= U (H, U F) U S, rank S<rank F.
i= i

We have ^r(S)=0 and

dr( u (H^nr)us = ̂  ^r(H,nr),

whence the result.
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4.3. SEMI-ABELIAN VARIETIES OVER NUMBER FIELDS. — Let k be an algebraic number
field. We have the following strengthening of Theorem 4.5, which is an immediate
consequence of that theorem and Corollary 4.3:

THEOREM 4.7. — Let V/fe be a closed subscheme of a semi-abelian variety A/k. Then
there are a finite number of semi-abelian sub-varieties A^ of A with the following
property. Let k ' / k be a finite extension field and Y a finitely generated subgroup of
A(k'). Then V contains a finite number of translates B^ of the A,, for all i, such that

rnv=u(rnB,,)us
i j

where

rank S< rank r.

Remark. - 6) The following conjecture is a strengthening of a similar conjecture of
Bombieri:

CONJECTURE 4.8 (S. Lang). - Let X/k be an irreducible projective k-scheme of general
type. Then there is a closed sub-variety Zc=X, Z^X, such that for every finite extension
field k' ofk the open subscheme X\Z has only finitely many k'-rational points.

We consider this conjecture for the case of an irreducible projective ^-scheme V of
general type which is embeddable in some abelian variety A/k. By Corollary 4.3, there
is a non-empty open subscheme U of V of the form M^ for some algebraic subgroup H
of A defined over some finite extension of k. By Corollary 4.3 (iii), we have

dimH=dimV-K(V)=0.

(i) Conjecture 4.1 implies that U(^) is a finite set for all finite extension fields k' of
k, verifying Conjecture 4.8 in this case. [Conversely, in [6] it is proved that Conjecture
4.8 implies Conjecture 4.1 for the case where F is finitely generated and A/k is an
abelian variety.]

(ii) Theorem 4.7 implies that for every finite extension field k ' / k , either U(fc') is finite
or it has density zero in A(k').

Vp/qeQ, p, qeZ, (p, q)= 1, we write

denom ( p / q ) = \ q |, num ( p / q ) = \p |,

height (piq) = max (| p |, | q |).

For the above purpose, we shall agree to write 0 as 0/1.

THEOREM 4.9. — Let V / k be a closed subscheme of a semi-abelian variety A/k. Let
m (A, V) be the number of types of maximal tori contained in V (cf Proposition 4.2). Then
there are non-negative real constants c^ (A, V, k\ c^ (dim A), c^ (A, V) with the following
property. For all finite extension fields k' of k, and any finitely generated subgroup Y of
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A (A:'), there are non-negative rational numbers o^, . . ., a^ ^c/? r/z^r
w

^WV(^'))=Ea.
1=1

denom (a,) ̂  Ci [k' : k] '2, for all f,

num(o^)^C3, for all i.

Remark. — 7) An optimistic conjecture is that if B is an abelian variety defined over
k then |B(A/)tors| ^ bounded by a function depending only on dim B and [k' : k]. This
conjecture would imply that in Theorem 4.9, denom (o^) is bounded by a function
depending only on dim A and [k' : k].

Proof. - (i) Let

X=MH,UMH,U...UMH,, m=m(A,V),

be the decomposition of V into locally closed subschemes given by Corollary 4.3 (ii),
where the H^ are distinct algebraic subgroups of G. Each quotient variety M^./H^ is a
locally closed subscheme of A/H^ and which contains only finitely many points of
(A/H^) (^)tors? by Raynaud's theorem (generalised in [18], Theoreme 2). Put

(4.3) c, (A, V) = max | MH/H, 0 (A/H,) (^ |.
i

By Lemma 4.10 below, there are positive real constants c^ ̂ (A/Hp k), c^i(dim A/H^.)
such that for any finite extension field k' of k we have

(4.4) | (A/H,) (k'\^ | ̂  c^, [̂  : /;]̂  s for all /,

where if A/H^ is not defined over k' then (A/H^.) (/dorsls taken to be empty.
Let k' be a finite extension field of k. Let B the connected component of the identity

of the Zariski closure of Y c= A ( k ' ) and let

{H^-el}

be the set of those H^s which contain B. By an elementary combinatorial argument (as
I is finite), we may construct locally closed subschemes V^ of M^, for all ;el, such that
the VH^ are disjoint and

UVH,=UMH,.

By Corollary 4.6, we have

^(rnv)-^(rn uM^^ro uv^)
ie l ie!

= ̂  dr (r n VH.) = S dy/r r. H,, (r n VH,/H,).
i e I i e I
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But each F/F 0 H^ is a finite group, for all z, hence by (4.3) and (4.4) we have

denom(^r/rnH,)(rnV^/H,))^Ci^[^ : fe]^, for all z,

num (^/r n H.) (F 0 VH/H,))^ €3.

The result follows by taking

Ci(A, V, /0=maxc^,
i

c^ (dim A) = max c^ i.
i

LEMMA 4.10. — Let A/k be a semi-abelian variety. There are positive real constants
Ci (A, fe), c^ (dim A) such that for any finite extension field k' ofk we have

\A(kf\^c,[kf:k^.

Proof. — The semi-abelian variety A is an extension of an abelian variety B/k by a
linear torus L/k. We have

|A(/:/)^|=|B(^)^|.|L(n„|.

Hence we only need prove the bound of the lemma for the two cases of abelian varieties
and linear tori. For the former case, the lemma is a theorem of Serre [42], Theoreme
4. For the latter case, the lemma follows from the isotriviality of linear tori and
elementary bounds for the degrees of cyclotomic extensions of number fields.

Remark. — 8) With reference to Lemma 4.10, the referee has pointed out that Masser
[29] has obtained effective bounds of the form 0([k' : k]^) for the order of a torsion
point of A (k'), when A/A: is an abelian variety.

COROLLARY 4.11. — Let d>0 be an integer. There is a set R^ of at most €4 d05 rational
numbers, for some constants c^ (A, V, k), c^ (A, V, fe)>0, with the following property. If
k' \k is a finite field extension where [k' : k] ̂  d and F is a finitely generated subgroup of
A(fc') then

^(rnv)eR,.
Proof. — Let m be the number of types of maximal tori in V. The number of rational

numbers Pe[0, 1] of the form
m

P= ̂  ̂  oc^O
1=1

where

denom (o^) ̂  c^ ^c2, for all ;,

num (o^) ̂  €3, for all f,
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is at most (03 c^ rf02)"". The result now follows from Theorem 4.9.

Theorem 4.9 gives an arithmetic restriction on the rational numbers which are
densities. With A, V, and k as in Theorem 4.9, let S be the subset of Q C\ [0, 1] given
by

S = { d^ (V P| F); k ' / k a finite field extension, F a subgroup of A (k')}.

For X a positive real number, write

S(X)={aeS;height(a)^X}.

THEOREM 4.12. — 1) The set S omits a set of rational numbers of positive density in
QH[0, 1].

2) Suppose that V contains at most two types of maximal tori. Then for some constant
c>0, we have

\S(X)\^Xl+c/loglosx, as X^oo.

In particular, almost all rational numbers (in the sense of density) in the interval [0, 1] are
not in S.

Proof. - Let p / q e S, where p, q e Z, gcd (p, q) = 1. By Theorem 4.9 we have

(4.5)
p / q = ^ o^i/Pp m= number of types of maximal tori in V,

a,, P,eZ, gcd(^, P,)=l, a,, P^O, for ;=1, . . ., m,
O^a^, . . ., a^^C, for some integer constant C=C(A, V).

1) Reordering the o^/P^, we may assume that

(4.6) p^...^?,.

m

We consider the maximum value of the quantity M = ^ oc^/P^ subject to the restrictions

(4.5), (4.6) and that

m

M = E O ^ < I .

This extremal problem has no interior critical point. It follows that the values of the o^-
are extremal and therefore

oci= . . .=o^=C
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and the Pf's are such that

j
v .^ a^/P^ is maximum for all 7= 1, . . ., m.

1=1

Taking j= 1, this gives

ai/Pi=C/(C+l), P ,=C+1 .

Taking j =2, we have

a,/P,=C/P,<l-C/(C+l);

hence we obtain

P^C^C+l.

And one checks by induction that

Pf=/f(C), ? = 1 , . . . ,m,

where ̂ .(C) is a monic polynomial in C with positive integer coefficients, constant term 1,
and of degree 21"1. Whence the maximum value of M is given by

m

M=Za,/P,=l-C/(^^(C)-l).
1= 1

In conclusion, S omits the set of all rational numbers in the open interval
(1 -C/C/^+i (C)- 1), 1), whence the result.

2) We consider the conditions (4.5) with m = 2.
Let h = gcd (Pi, P^), P? = P.//?, for ;•= 1, 2. Then we have

^iJ^+^'L1 ^iP^o^i
q h[y, pj h P-iP,

where

gcdCx^+^Pl.P^P^l.

Hence we have ^\ P^ | q. Let

/^gcd^/PIP;), /?=/^.

Then we have

__?_04P,+a,|31
J f Q' 0' 1 " 1 —— '
^ Pi P2 ^
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and

^loc^+a^.

As p and q are coprime, we must then have

/^TiPi^ 0^04, oc^c,
(4.7) _ai (32+0^1

/z"

In particular, for a given integer q ̂  0 the possible numerators /? of /?/^ e S must satisfy
the restrictions (4.7). We shall estimate the number of such numerators in terms of q.

Let Z be the set of pairs of positive integers (P^, P^) satisfying P' lP^I^. Then we
have | Z | = D (q\ where D (n) is the arithmetic function

D(n)=^d(m)
m \ n

d(n) being the number of divisiors of n. An elementary estimate for d(n) is [17],
Theorem 317

log rf (X) log log ̂lim sup —-——=log 2.
n ^ oo log n

Whence for some constant c^ >0 we have

DOz^^OO^exp^i log nl\Qg\ogn).

The number N (q) of possible integers p satisfying the conditions (4.7), for a fixed q,
is clearly at most

S E ^P.+oc^).
0^a i , a2^C (p^ p2 )eZ

It follows that

N (q) ̂  D (^) C2 exp (c^ log 2 C <y/log log 2 C q) <^ exp (c^ log q/\og log ^).

Whence we obtain

|S(X)|^ ^ N(^)^Xexp(c2 log X/log log X),
q^X

as required.
For the last part, note that the number of rational numbers a, O^a^l , with

height (a) ̂ X is

-(S/Ti^X2, asX-^oo.

Hence S omits almost all rational numbers in the interval [0, I], as required.
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As to the existence of varieties with given density of rational points, we have (I thank
0. Debarre for some help with this construction):

THEOREM 4.13. — Let ae[0, 1] be a rational number. Then there are irreducible pro-
jectile varieties V/Q contained in abelian varieties A/Q where

(i) ^A(Q)(V(Q))=OC;
(ii) V/Q is smooth and of general type;
(iii) rankA(Q)=l;
(iv) V is of arbitrarily high dimension.

Remark. — 9) If V and A are such that the denominator of d^ (Q) (V (Q)) is divisible
by a prime number > 7 then A is not Q-isogenous to a direct product of elliptic curves.

[For if A were Q-isogenous to a direct product of elliptic curves, each factor in a
Jordan-Holder decomposition of A/Q would be an elliptic curve E over Q. The torsion
group E(Q)^g of such a factor would then have order ^10 or 12 or 16, by a theorem
of Mazur [31], Introduction, Theorem 8. Hence |A(Q)^rs| would be divisible only by
the prime numbers among 2, 3, 5, 7 whence denom (^ (Q) (V (Q))) would be an integer
of the same form (by the proof of Theorem 4.9, for example), as required.]

Indeed, the conjecture mentioned in Remark 7 following Theorem 4.9 would imply
that the dim A (resp. the maximal dimension of a Q-simple Jordan-Holder factor
of A/Q) tends to infinity as denom (^ (Q) (V (Q))) (resp. the greatest prime factor of
denom (d^ (Q) (V (Q)))) tends to infinity.

Proof of Theorem 4.13. — Let

J=J(Xo(N))/Q

be the jacobian of the modular curve Xg (N), which classifies the pairs (E, C^) where E
is an elliptic curve and C^ is a cyclic subgroup of E of order N. Let J be the Eisenstein
quotient [31] of J. This is an abelian variety over Q with the following properties, in
the case where N is a prime number (at least):

1) J(Q)^Z/^Z, where ^=num((N- 1)/12) (cf. [31], Introduction, Theorem 4).
2) If p\n, then J contains absolutely simple factors of dimension (cf. [31], Chapt. Ill,

Proposition 7.2)

^log^/2(log(l+21/2)).

To prove the theorem, let M ̂ 2 be a positive integer and let ae[0, 1] be a rational
number. Write a = a/b, a, b e N, (a, b) = 1. Select p to be any prime number such that

;^(1+21/2)2M.

Choose, by Dirichlefs theorem, a prime number N such that

N=1 mod \lpb.
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It follows from 1) that the Eisenstein quotient J of J(N) satisfies

J(Q)^Z/m^Z,

for some integer m^ 1, and (2) shows that

dimJ^log^/2(log(l+21/2))^M.

We may then select a finite set of points

Sc=J(Q)

such that

dj^(S)=a/b.

Let C/Q be the elliptic curve given by the Weierstrass equation

y2=x3-6x2-^\^x.
Then

C(Q)^Z/2Z©Z

(see [44], p. 303, Example 4.10). Let A/Q be the abelian variety C x J. Then A satisfies
(iii) and dimA>M.

Let Z/Q be the smooth closed subscheme of A given by

z= u cx {p } .
P 6 S

As

codiniA Z = dim J > M > 2,

there is a Q-rational ample divisor D on A whose support contains Z. Let

i: A-^A

be the blowing up of A along Z. Let E be the exceptional divisor of i. For n ^> 0, the
linear system

|r^D-E|

has no base points on A and has dimension ̂ 2. Hence for a suitable n I> 0, Bertini's
theorem gives a Q-rational section H of | ;'* n D — E | which is smooth, as a closed
subscheme, meets every fibre of E -> Z, and which does not properly contain any of the
finitely many elliptic curves in A which are the lifts of the C x { P}, for all PeJ(Q)\S.

Let V the closed subscheme ^ H of A [i. e. the Zariski closure of ;(H\E) in A]. Then
V is a smooth subscheme of A which contains Z and such that V C\ (C x { p }), for all
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PeJ(Q)\S, is at most a finite set. Hence we have

V(Q)=Z(Q)UT

where T is a finite set of points. The canonical line bundle on V is just the restriction
of (9 (n D) to V; hence it is ample and V is of general type. Furthermore, we have

dimV=dimA-l^M.

As rankA(Q)= 1, we conclude that

^A(Q)(V(Q))=^(Q)(Z(Q))=|S|/|J(Q)|=a

and the properties (i)-(iv) then hold.

4.4. GROUPS OF POINTS OF FINITE RANK. — Conjecture 4.1 has been proved by
Raynaud [38] when G/k is an abelian variety and F is the full torsion subgroup; this
was extended to semi-abelian varieties by Hindry [18]. The results of Fallings ([12], [46])
and Raynaud [39] combine to prove the conjecture for F of finite rank when G/k is an
abelian variety and V contains no translate of a sub-abelian variety.

The next theorem is a density version of this conjecture for abelian varieties and
groups of finite rank.

THEOREM 4.14. — Let k be a number field and A/k an abelian variety. Let Fc:A(fc)
be a subgroup of finite rank. Let V / k be a closed subscheme of A. Then there are a
finite number of sub-abelian varieties Bp f = l , . . .,w, of A and subsets S^, ;==1, . . .,w,
contained in a finitely generated subgroup ofY such that

m

i) rnv= u(u (^+B,)nr);
i= l seSf

2) ^+B,c=V,/br all second all i;
3) rank S^ < rank F, for all i= 1, . . ., m.

We shall use the following lemma, which is a consequence of results of Serre, Faltings
and Ribet on Galois action on abelian varieties (for the proof, see [18], Theoreme 4).

LEMMA 4.15. — Let V, A, k be as in Theorem 4.14. Then there is a finitely generated
subgroup T ' a F such that F/F" is a torsion group and the following property holds: if
P e F P| V (k) then one of the following is true:

1) PeF'nV^);
2) there is a sub-abelian variety B of A of dimension > 0 such that P + B c V.

Proof of Theorem 4.14. — By induction on dimV. By an easy reduction, we may
assume that V is reduced and irreducible. Assume that the theorem is true for all sub-
varieties of dimension < dim V of abelian varieties over number fields. By Corollary 4.3,
there is a decomposition

V=MH,UMH,U...UMH,,
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where H^ c . . . c=H^ are sub-abelian varieties of A and where

dimHi=dimV-K(V).

Case 1. — V is of general type.
We have dimHi=0. The above Lemma 4.15 gives a finitely generated subgroup Y ' of

r such that

ruM^ruM^.
Write

Z-VYM^,

which is a closed subscheme ofV with dimZ<dimV. We have

rnv=(rnz)u(rnMH,)
=(mz)u(rnv).

We may now apply Theorem 4.5 to P 0 V and apply the induction hypothesis to r n Z
to complete the proof of the theorem in this case.

Case 2. — V is not of general type.
Hence

dimHi=dimV-K(V)^l

and Hi lies in the stabiliser of V. Let

p : A -> A/Hi

be the natural projection. Then p(V) is a closed sub variety of A/H^ of
dimension < dim V. Applying the induction hypothesis to p(T) F^(V) gives

t
/?(r)n^(v)= u u {^+B,n^(r)}

j = l seSj

where SjC-p(F) are subsets contained in a finitely generated subgroup A of p(T), the B^
are sub-abelian varieties ofA/H^ such that

^+B,cV/Hi

for all seSi and all f, and with

rank Sj < rank p (T), for all j.

Let A" be a finitely generated subgroup of F such that p (A7) = A. By taking a splitting
of the surjection of the finitely generated torsion free abelian groups

AVA^-A/A^,

4° SERIE - TOME 25 - 1992 - N° 2



RATIONAL POINTS 161

one can find subsets S^.czA' with

p (S'j) = Sj and rank S} < rank A, for all j.

We then have

rnv=u u {^-^B^nr},J=l S6S}
where p ~ 1 (Qj) are sub-abelian varieties of A such that

s +/? -1 (Qj) (= V, for all s e S;. and all 7,
and

rank S'j < rank A ̂  rank/? (P) ̂  rank r, for all j.

This proves the theorem.

4.5. CURVES IN COMMUTATIVE GROUP SCHEMES. — Let G be a commutative group scheme
of finite type over a field k of arbitrary characteristic. Let V/fc be a curve {i.e. an
irreducible and reduced 1-dimensional ^-scheme) contained in G and let Y be a finitely
generated subgroup of G(k). The next result immediately follows from Theorem 4.4.

THEOREM 4.16. — Suppose that V is not k-isomorphic to G^ G^ or a complete elliptic
curve over k. Then

rank r n V < rank r.

Remarks. — 10) This result is not entirely superseded by MordelPs Conjecture (proved
by Faltings [II], for the case where char. k=0, and Manin-Grauert-Samuel [40], for the
case where char.fe>0) because of the phenomenon of lowering of the genus of a curve
under a finite extension of the ground field (necessarily of positive characteristic). For
non-singular curves V/A: of arithmetic genus ̂  2 but geometric genus ̂  1 the nature of
the set C (k) appears to be unknown (see the concluding remarks of [40]).

11) Mumford [32] proved that on a curve of geometric genus ̂ 2 over a global field
the (logarithmic) heights of the rational points grow at least exponentially rapidly. This
result is qualitatively similar to, but quantitatively much stronger than. Theorem 4.16.

We prove Conjecture 4.1 for curves over fields of characteristic zero by a reduction to
MordelFs Conjecture:

THEOREM 4.17. — Let G/k be a semi-abelian variety over afield k of characteristic zero
and let T be a subgroup of G (k) of finite rank. Let \fk be a closed irreducible subscheme
of G of dimension 1. Then V H F is a finite set unless V is a translate of an algebraic
subgroup ofG.

Two lemmas are required for the proof of this theorem. The first is well known.

LEMMA 4.18 (Hermite-Minkowski). — There are only finitely many field extensions of
a number field of bounded degree and unramified outside a given set of primes.
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The second is a refinement of the Chevalley-Weil theorem.

LEMMA 4.19. — Let G/k be a smooth group scheme over a number field k and let
r c= G (k) be a finitely generated subgroup. Let f : X —> G be a finite etale covering of k-
schemes. Then there is a finite field extension k' ofk such that r<^f(X(k')). If further,
f is a homomorphism of group schemes over k, then V af ( V ' ) for some finitely generated
subgroup V of~X(A/).

Proof of Lemma 4.19. — Let R be the ring of integers of k. For any finite subset S
of R\{0}, let Rs be the ring of S-integers in k. We may write k as a direct limit of
subrings Rg where S runs over all the finite subsets of R\{0}, ordered by
inclusion. General results on the projective limits of schemes of finite presentation
[15], IV, § 8 then show that for some sufficiently large S there is a smooth group scheme
G/RS and a finitely generated subgroup Fc=G(Rs) whose generic fibres are G/k and F
respectively. As X/k and/are of finite type, then, possibly by enlarging S,/extends to
a finite etale covering of Rs-schemes of finite type /: X -> G. Let x e F and let x e F be
the corresponding element of F. We construct the pullback diagram

X ^ G
T _ T-

Spec Rs x a X-^Spec Rg

Now

SpecRsX^X

is a finite etale covering of Spec Rs of degree ̂  deg/. Hence Spec Rg x ^ X is affine,
equal to SpecB, say, where B is a finite etale Rg-algebra. The generic residue fields of
B are then finite field extensions of k of degree^ deg/and unramified outside S. It
follows from the Lemma 4.18 that there is a finite field extension k' Ik which contains all
finite field extensions of k of degrees/and unramified outside S. Hence B®RgA: is a
direct product of field extensions of k contained in k\ Therefore xef(X(k')), for all
xeF as required. For the last part, one may take V to be the subgroup of X(k')
generated by a finite set of elements of X^') whose images in G generate r.

Proof of Theorem 4.17. — First, [18], Appendix 1, Proposition C, shows that it suffices
to prove the theorem for the case where k is a number field and F is a finitely generated
subgroup of G(k).

Let g be the geometric genus of \jk i. e. the genus of a smooth complete model V/A:
of V/fe. Let T be a maximal linear torus contained in G; thus G/T = A is an abelian
variety over k.

If g ' ^ 2 then V(fe) is finite, by Faltings [II], and hence V 0 F is finite, as required.
If the image of V in A is reduced to a point then by translation we may assume that

V is contained in T. But Laurenfs proof [26] of Lang's Conjecture 4.1 for linear tori
completes the proof of the theorem in this case.
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Hence we may assume that g= 1, the image of V in A is not reduced to a point, \jk
is smooth and is not a translate of an algebraic subgroup of G. We may also assume
that V (k) is not empty and hence there is a ^-rational open immersion

a: V^V

from V to its jacobian. We then have a commutative diagram

0-^T-^ G -^ A -^0
T - T.

v ^ v

where ; is a closed immersion. As V is not a translate of an algebraic subgroup of G,
T is not reduced to a point. By translating V in G, we may assume that j is a non-zero
homorphism of abelian varieties.

Let G' be the pullback G x ^ V. Then G ' / k is a semi-abelian variety, an extension of
V by T, and which contains V as a closed subscheme. It is a finite etale covering of a
subgroup scheme G" of G containing V and so V is a subgroup of G' if and only if it is
a subgroup of G. Applying Lemma 4.19 to G' —> G" and the subgroup F n G" of
G" (k), we may therefore reduce to the case where G=G' and j is the identity morphism.

As G can be regarded as a fibre bundle over V locally trivial for the Zariski topology
and with fibres isomorphic to T, the function field of G is the compositum k (V). k (T)
where k (V), k (T) are the function fields of V and T, respectively.

Suppose first that the restrictions to V of all elements of A:(T), as a subfield of k(G),
to V are constant. Then we must have that V is complete and hence the map a is an
isomorphism. The inverse of a then gives a splitting of G and hence the group scheme
G is a direct product T x V; whence V is a translate of an algebraic subgroup of G,
which is a contradiction. Therefore there is a non-constant element / e k (T) which is a
unit on G and has a non-constant restriction to V.

Let Z^ be the normalisation of G in the field k(G)(fl/m), and

^ Z.-G

the normalisation map. As/is a unit on G, n^ is etale. Hence the pullback V^ of V
under n^ is a curve, etale over V. For some sufficiently large m^ l , all the geometric
components ofV^ have genus ̂  2, by the Hurwitz genus formula. By Lemma 4.19, we have

rc=7r,(Z,(D)

for some finite field extension k ' / k . Hence we have

rnvc=7r,(v,(/Q).
But V^(^) is finite, by Faltings [II], and thus F F|V is finite.

4.6. APPLICATION TO ZETA FUNCTIONS. — Let A: be a global field (i. e. an algebraic
number field or a function field of transcendence degree 1 over a finite field). Let V be
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an irreducible and reduced projective fe-scheme which is embeddable as a closed subsch-
eme in an abelian variety A/k. Let ^ be an ample line bundle on V and let h^ be a
(logarithmic) Well height on V associated to J^f, with respect to a proper set of valuations
of k equipped with a product formula (cf. [9], [24], [43]). The function

h^\ V(A:)-^R

is determined uniquely by ^ up to the addition of a bounded function.
Define the Dirichlet series

(4.8) Z(^;V,/^)= F h^(x)-\
x e V (k)

where s is a complex variable. The sign ^/ means that the sum is over all points
xeV(fe) for which h^(x)>0, this excludes only finitely many points of V(A:) by
Northcott's finiteness theorem.

A related Dirichlet series, with h^, replaced by the exponential height exp/z^, has been
considered by Franke, Manin and Tschinkel [13] for Fano varieties. For special choices
of heights on homogeneous spaces of parabolic subgroups of semi-simple algebraic
groups over number fields (generalised flag manifolds), they showed that their Dirichlet
series has a meromorphic continuation to the whole complex plane.

In this section, we prove the following theorem.

THEOREM 4.20.—For some 8>0, the Dirichlet series Z(^; V, h^) can be continued
meromorphically to a half plane

Re5'>r/2—s, where r= rank A (k),

such that the only singularity ofZ(s; V, h^) in this half plane is a possible simple pole at
s==r/2. The residue ofZ(s, V, h^) at s==r/2 is equal to

iBoWtorsl^r^)-1^-1/2

where the sum ranges over the finitely many distinct k-rational translates B^ O/BQ contained
in V and where

BQ=the connected component of the identity of the Zariski closure of \(k);
Di=the discriminant of the quadratic part of the Neron-Tate height on B^.(A:) associated

to the ample line bundle induced on B^ by J^f.

We first take the case where V=A and h^, is the Neron-Tate height on A associated
to ̂ .

LEMMA 4.21. — The Dirichlet series Z(s; A, h^), where h^ is the Neron-Tate height on
A associated to ^f, can be continued meromorphically to the whole complex plane. Its
only singularity is a possible simple pole at s=r/2, where r= rank A (k), with residue

\A(k\^\Kri2D-l/2^(r|2rl
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where D is the discriminant of the quadratic part of h^ on A (k)/A (k\^.

Proof of Lemma 4.21. - As A (A:) is a finitely generated group, this lemma follows
from the meromorphic continuation of the Epstein function of a quadratic form (cf.
[25], pp. 250-253, [35]. Theorem, p. xiii and Proposition 23, p. VI-10).

Proof of Theorem 4.20. - Fix a symmetric ample line bundle ^" on A/k and let h^.
be the corresponding Neron-Tate on A/k, which is a quadratic form on
A(k)/A(k\^. Then there are real constants

oc>0, P, y>0, 8

such that

a/z^ Iv+P^^^y^' y+8.

By comparison with the series for Z (^; A, /^), it easily follows that the Dirichlet series
for Z(s; V, h^) converges absolutely to an analytic function in the half plane Re s>r/2.

By Theorem 4.5, we have a disjoint decomposition

\(k)= UB,(fe)US
1=1

where

rank S < rank A (k)

and the B^ are translates, contained in V, of the connected component of the identity Bo
of the Zariski closure of A (k). Let h^ be the Neron-Tate height on the translated abelian
variety B^ associated to the induced ample line bundle ^ \^ let D^ be the discriminant
of the quadratic part of h^ on B^(A:).

If h' and h" are logarithmic Well heights associated to the same ample line bundle on
V then h' — h" is a bounded function on V; simple estimates then show that the difference

Z(^V,/Q-Z(^V,/n

extends holomorphically to the half plane

Re^>r/2- l .

Hence it suffices to prove the theorem for a particular height h^, in the equivalence class
of heights associated to ^. As the B^ are disjoint, we may and do choose a height h^
on V associated to J^f which restricts to h^ on B; for all i.

We then have
m

Z(s; V, h^)= ^ Zfe B,, /^)+ ^ h^W.
i = l xeS
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By Lemma 4.21, Z(s~, B^, /^) is a meromorphic function of 5' whose only singularity is a
simple pole at

and with residue

Hence

s = r/2, where r = rank A (k\

iBo^LjTr^D^r^)-1.

m

£ Z(^B,^)

is a meromorphic function of 5' whose only singularity is a possible simple pole at s=r/2
and with residue precisely that given in the theorem.

For any real number X, put

/(X)=|{xeS;Mx)^X}|.

As rank S<rank A (A:), we have, by comparing h^> and h^^

f(X')=0(\{xeS,h^(x)^X}\)=0(X^-e), asX^oo,

for some c>0. The tail of the series

£ h^(x)~\ s=a^it,
xeS

is then bounded above in absolute value by

E (/(^)-/(^-i))/^= -/(N-IVN^ £ /(^(i/^-i/^+in
n^N,neZ n^N,n6Z

^(N^2-6-^ ^ a/(72)/^+l=<9(Nr/2-e-(T), asN^oo.
n^N, n e Z

Hence the series

£ ^W
^6S

converges absolutely to an analytic function in the half plane Re s>r/2-&, whence the
result.

Remark. - 12) Let k be an algebraic number field and let A, V, ^ be as in
Theorem 4.20.

Lang's Conjecture 4.1 implies (e.g. by Lemma 4.21) that for some logarithmic height
h^ on V associated to ^f, the Dirichlet series Z (s; V, h^) would extend meromorphically
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to the whole complex plane and the only singularities would be possible simple poles at

s= 1/2, 1, 3/2, 2, . . ., rank A(k)/2.

Indeed, a simple pole would then occur at s=n\l, ̂ >0, if and only if the Zariski closure
of V (k) has an irreducible component which is an abelian variety B/A: with rank B (k) = n.

Over global ground fields k of positive characteristic, a meromorphic continuation of
the zeta function Z (s; V, h^) may well have infinitely many simple poles on the line
Re s=Q e.g. if \jk is an isotrivial curve of genus ^2 with infinitely many /^-rational
points.

5. Local Neron heights and integral points

We now turn to the distribution of values of local Neron heights on abelian
varieties. This has an application to the question of the distribution of integral points
on an abelian variety, relative to an ample divisor.

In Section 5.1 some basic facts about local Neron heights are summarised. Then we
determine the asymptotic behaviour of the cumulative frequency of the values of local
Neron heights for archimedean and non-archimedian valuations in Sections 5.2 and 5 .3
respectively. This is applied to the distribution of integral points on abelian varieties in
Section 5.4.

5.1 GENERALITIES ON LOCAL NERON HEIGHTS. - Let A be an abelian variety defined
over a field k equipped with a proper absolute value v. Let Div (A)^ be the group of
divisors on A rational over k. Let ZQ (A (k)) be the group of zero cycles on A of degree
zero generated by the elements of A (k). Then there is a pairing

Div(A)feXZo(A(AO)-^R

(D,^<D,^\

which is well-defined whenever D and a have disjoint supports. The pairing has the
following properties:

(i) ( D, a )y is bilinear;
(ii) ifD=(/) is a principal divisor, then <D, a}^=v(f(d))\
(iii) <D, ^)y is invariant under translation: <D, a\=(D^ a^)^ for ue\(k),
(iv) let xeA(^)\D. Then the map x-^ <D, (x)-(xo)>^ is bounded on every

radically bounded subset ofA(/c-)\D.
[If A (k) is dense in A, then the pairing < , >y is uniquely defined by these properties.]
Let F be a finitely generated subgroup of A (A:). Let D be an effective divisor on A/k

such that O^Supp D. For any real number a, we write for any subset Xc=r

S,(oc, D, X)={PeX; <D, (P)-(0)>,^
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for this purpose, we shall agree to define

<D,(P)-(9)>,=+oo, if PeSuppD.
Write

^r,.,D(oO==^rS,(oc,D,r).

The quantity ^r, v, D (°0 ls a cumulative frequency of the value of ( D, (P) — (0) )y as P
runs over the elements of F; it is, roughly speaking, the density (if it exists) of the set of
points PeF whose ^-distance from Supp D is at most ^-c(l;)a [for some c(z;)>0].

5.2. THE CASE OF AN ARCHIMEDIAN VALUATION. — Let A: be a field equipped with an
archimedean valuation v. Denote by

r a finitely generated subgroup of A (k),
D a ^-rational effective divisor on A such that 0 ̂  Supp D;
r the Zariski closure of F in A;
TQ the connected component of the identity of T.

The asymptotic estimate below for ^r.u.oC^ ls founded on Kronecker's theorem on
uniform distribution.

THEOREM 5.1. — The quantity ^r, v, D (a) exists for all a e R and we have the asymptotic
expansion, for constants a^ e R,

2d-l

^r,.,D(a)~ ——— + E E a]k exp (-/a/N)^, as a -> + oo,
L1 :1 OJ J'eN* k = 0

where
N>0 is an integer;
d==dim A;
m= number of irreducible components ofT contained in Supp D.

Proof. — There is an embedding k -> C such that the restriction of — log | x , where
| . | is the usual absolute value on C, to k is just v. Associated to the embedding k -> C
we have a complex analytic isomorphism

v|/: OVA-^A(C)

where A is a lattice in Cd. There is a normalised theta function 6(z) on C^, such that
9(0)= 1, whose corresponding divisor is \|/~1 (D). The functional equation of 9 is

9(z+?i)=9(z) exp OT/?(Z, X)+7r/2/?(^, \) + 2 n i K (\))

where h (w, z) is a hermitian quadratic form on C^ and K (k) is real valued. Then for
all zeC^ one has (see [33])

<D, (^(z))-(9)>,= -log |9(z)|+7r/2^(z, z).
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The right hand side of this equation depends only on z mod A L e. only on \|/ (z), as one
sees from the functional equation of 9. Hence

F(z)=exp(-2<D,(v[/(z))-(0)>,)

is a real analytic function on C^/A.
Let T be a translate of a real sub-torus of the real torus

C'/^R^/A.

For s>0, put

V^)={zeT;F(z)^}.

Let (o-r be a Haar measure (a volume form) on T normalised so that

(\=1.
JT

Let F,, s e R, denote the fibre of the map F |-r: T -> R over s. Then we have

d f r ,— (OT= ©
^Jvr(s) JF,

for some real analytic form CD' on T.
By a theorem of H. M. Maire (see [27]; for the complex analytic analogue, see [1];

both results depend on Hironaka's resolution of singularities), o/ has an asymptotic
^s

expansion as s ->• 0 of the form

^ 2d-l

^ S ^ ^H-^TaogH)^
Jps j e N * k = 0

for some constants c^ and a suitable integer NT>O. It follows that

/. 2d-l

(5.1) ^T ̂  E Z ^k ex? (-7 a/Ny) a\ as a ̂  oo.
JVrCe"2") J'eN* k=0

Kronecker's theorem on uniform distribution of sequences implies that there are a
finite number of disjoint translates of real sub-tori

T,, ; = l , . . . , r ,

of the real torus R^/A such that F is dense in U T, and F H T, is uniformly distributed
i

in Ti for all i. It follows from the property of uniform distribution and (5.1) that we
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have

^r,.,D(oO= S ^S.(oc,D,rnT,)=l/r ^ f c ,̂
^l i= l JVT^e"2")

2d-l

-———+ ^ ^ ^exp^'a/N)^, asa-^oo,
[i '' 1 OJ J e N* k = 0

for a suitable integer N > 0 and where m is the number of components of T contained
in D. This is the desired result.

5.3. THE CASE OF A NON-ARCHIMEDIAN VALUATION. — Let A: be a field equipped with a
discrete valuation v. Denote by

R the ring of valuation integers of k,
K a uniformising parameter of R;
K the residue field of R;
A/k an abelian variety;
D an effective ^-rational divisor on A such that 0 ̂  Supp D;
A/R the Neron model of A/k;
A°/K the closed fibre of A/R;
A^, 7=0, . . ., t, the connected components of A°/K (where A^j is the connected

component of the identity);
D the thickening (cf. [24], p. 287) of D in A (defined by linearity after taking the

thickening of a prime divisor of A to be its Zariski closure in A);
D° the pullback of D to the closed fibre A°;
r a finitely generated subgroup of A (k);
r° the subgroup of A° (K) induced by F;
r, r° the Zariski closure of F in A, resp. r° in A°;
FO, r^ the connected component of the identity of F, resp. r°;
[F: Fo] == number of distinct irreducible components of F;
m= number of irreducible components of F contained in D.

The subscript v added to one of the above symbols denotes that it is relative to the
valuation v, if more than one valuation is being considered.

The local Neron height ( D, (P) — (0) )y can be interpreted as an intersection multiplicity
as follows. If Per, denote by P° the induced element of r°. There is a constant
y^.eR such that for all PeA(^)\D, and P°eA9(K), one has (cf. [24], Chap. 11, § 5)

(5.2) ' < D, (P) - (0) >, =; (D, P), + y,,

where ;(D, P\ is the intersection multiplicity of P and D at v(i.e. deg P*D). Further,
we may normalise the local Neron height so that JQ == 0.
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THEOREM 5.2. — Suppose that rank F^l and r° ffo^y ̂  /z^^ an irreducible com-
ponent contained in D°. Then ^r,t;,D(°0 exists for all a, W ^ M/^r semi-continuous
and locally constant. Further, we have :

(i) ^^D^etA^Aa-1^
(ii) rank S,(a, D, r)<rank Y.for all a^O.

Proof. - If PeF, write P° for its image in r°. Let Y(j) be the set of PeF such
that P°eA^(K). Then T(j) is a coset of the subgroup F(0) or is empty; further, the
index [F: Y (0)] divides [A°: A^]. For P e F (/), we have from (5.2), as D is effective,

/ - . . ( < D, (P) - (0) >, > y,, if P° e Supp D°,
( 5 ' ^ \ =y,, if P^SuppD0.

Applying Theorem 4.5 to r° and D°, we have from (5.3)

(5.4) rank{Per(/) ;<D,(P)-(0)>,>y,}<rankr.

When r (/') is non-empty, we conclude that

^ S, (a, D, r (/•)) = l/[r: r (0)], if a ̂  y,,
=0, if a>y,.(5.5)

As

(5.6) ^r,., D (a) = Z ^r S. (a, D, F 0)),

it follows that ^r, y, D (oc) exists and is upper semi-continuous, decreasing, and locally
constant. Part (ii) follows from (5.4) and part (i) from (5.5) and (5.6).

When K is a finite field, we have a more precise result:

THEOREM 5.3. — Suppose that K is finite. Then ^r, v, D (°0 exists for all a.
(i) cellar. k>0 then

^r,..D(a)=^/[r:ro]+^(l), ^a^+co .

(ii) Tfchar. k=0 then/or any integer N>0, the Poincare series (which has only a finite
number of negative powers oft)

+ 00

PN(O- Z (l-^r,.,D<J/N))^
J=-00

is a rational function of t. Further, for some constant c>0, we have

^n^D^-w/tr : ro]+0(exp(-coc)), asa^ +00.
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Remark. - The constants y, of (5.2) (c/.[24], Chapter 11, Theorem 5.2, p. 289) have
the following rationality property:

'-'[^W2- f°^a"/
The locally constant function QSy y p (a) is therefore recoverable from the Poincare series
^0:^(0.

Proof. — Let ^ be the z^-adic completion of k.

Special case. — T == A.
Assume that char. k>0. We only have to show that

^r, v, D (°0 -)> O? as a -^ + oo.

This is an immediate consequence of the monotone convergence theorem, where we
equip A (k) with a z;-adic Haar measure.

Assume that char. k=0. Let R be the ring of z;-adic integers of k. The Carder
divisor D on A is represented by a finite set of pairs

(u,,y,), /ei,
where the U. form a Zariski open covering of A and/,er(U^, ^Py) fo1' a^ / suc^ ^at
/, /,-1 e F (U H U,, (9^ , .̂) for all /, ye I.

As A x ^ R/R is the Neron model of A x ^k, we have a bijection

A(^A(R),
Ph-^P.

The local Neron height is then given by

<D, (P)-(0)>^(D, P)+y,.=^(/,(P))+y,, PeA(^),

where f is such that P e U^.
The exponential map of the Lie algebra of A(^) gives an analytic isomorphism of

groups

exp : R^W, ^==dimA,

where W is a z;-adic open subgroup of A(k) (cf. [4], Chap. Ill, §7, No. 2, Prop. 3). As
row has finite index in F, by covering A (k) with finitely many translates of W we
may reduce to the case where F c W, because of the additivity of the density 0)^ v D anc!
of the Poincare series PN(O.

The pairs (exp^U^/^exp) form an analytic Carder divisor exp*D on the analytic
space R^. By refining the open cover {exp^Uj.gi, we may assume that exp*D is
given by a finite set of pairs (B,, f, ° exp), where each B, is an open ball in R^ whose
image in A° is contained in a single connected component. As each B, is then homothetic
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to R4, we may reduce, again by the additivity of the density ^r, v, D ^d the series PN (0,
to the case where the divisor exp* D is given by one pah^R^,/).

We may identify F with a subgroup of R^ via the exponential map. The z^adic closure
r of r is then a subgroup of R^ isomorphic to R'1 for some d ' ^ d . Therefore for an
appropriate constant y we have

^{Per;<D,(P)-(0)>^a-y}

=^{P£^;^(/(P))^a}=|{xeRd77T aRdV(x)=Omod7^ a}| /^ ' .

In particular, this density exists. The theorem now follows from the conclusions of
Lemma 5.4 below.

General case. — We reduce this to the special case above. The connected component
of the identity TQ of T is a sub-abelian variety of A and T is a finite disjoint union of
translates TQ ̂  of To. If some translate TQ ̂  lies in SuppD, then for all points PeFo ̂
we have < D, (P) — (0) )y = + oo and hence

S, (a, D, r) ̂  FQ, „ for all a e R.

We then have

^r,.,D(oc)=m/[r:ro]+ E ^(s.(oc,D,ro^nr));
ro,^D

hence to prove the theorem we need only consider those translates F^ ^ not contained in
SuppD. The divisor D then induces an ample divisor on such a translate; by the
functoriality of Neron heights, we then reduce to the case where F = A: this is the special
case above.

LEMMA 5.4.—Assume that char. A: =0 and ^ = | K | < O O . Let /7^0 be a convergent
power series on R^, i. e . / e R { { z i , . . ., z ^ ] ] . Put

Yn=[xe R^/TT" R^; / (x) == 0 mod TC" }.

Then for some £ > 0, we have

lYj^Of^-^), asn-^ +00.

00

Indeed, the Poincare series ^ |Yj f is a rational function of t.
n=0

Proof of Lemma 5 . 4 . — The 0-estimate can be proved in an elementary way by using
the Weierstrass preparation theorem and induction on the number d of variables (we
omit the details).

The rationality of the Poincare series ^|Y^ t" can be proved as in Igusa[19], who
proved the same result for the special case where / is a polynomial by using Hironaka's
resolution of singularities; the latter is applicable in the more general case here of a
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convergent power series because the ring R { { z i , . . ., z^}} is excellent. {See also [19],
[34], [41] for related results.)

5.4. INTEGRAL POINTS. - Let k be an algebraic number field or a function field over
a subfield ko (i. e. k/ko is a finitely generated field extension in which ko is algebraically
closed) and let R be a Z-algebra (or ^o-algebra) of finite type whose field of fractions is
k.

Let D be a fe-rational ample divisor on a projective variety V / k . Let n>0 be an
integer so large that nD is very ample. Let XQ= 1, x^ . . ., x^ be a basis over k of
vector space of global sections r(V, d^D)). One says that a subset Ic=V(^) is D-
integral with respect to R if there is deR-[0] such that <^(P)eR for al l /=1, . . ., m
and all Pel. The D-integrality of I is independent of the choice of integer n and basis
X07 ' ' ' •> xm'

Let A/k be an abelian variety and D be an ample divisor on A. In the case where
k/ko is a function field, let(B, r) be a k\ko-trace of A/k i.e. B/ko is an abelian variety
and T : B -> A is a homomorphism of ^o-group schemes with an appropriate universal
property (c/.[23], p. 138). Lang[24] conjectured:

CONJECTURE 5.5.- Let k be a number field (respectively, a function field over a field
ko of characteristic zero). Then all ^-integral subsets of A/k with respect to R are finite
(respectively, fall into a finite number of cosets of^B(ko) in A(k)).

For the case of an elliptic curve over a number field, this is a theorem of Siegel and
Mahler and can be proved using Diophantine approximation or Faltings's proof of
MordelFs conjecture. The conjecture has been proved for abelian varieties over number
fields by Fallings ([12], [46]) and this supersedes Theorem 5.6 below in characteristic
zero. Silverman [44] proved that, for abelian surfaces over number fields, a set of D-
integral points is "widely spaced". For a discussion of this conjecture and its relation
with other Diophantine conjectures, ^^[10].

THEOREM 5.6. — Suppose that k is a global field. Let D be a k-rational ample divisor
on A/k and let I be a ̂ -integral subset of A(k\ with respect to the subring R ofk. Then
I either has density zero in the finitely generated group A (k) or is finite.

In the case where k is a function field over a field ko, let M^ be an associated proper
set of valuations on k satisfying a product formula (cf. [24], [43]).

THEOREM 5.7. — Suppose that k is an algebraic function field over a field ko. Let S
be a finite subset of M^ and R the finitely generated ko-algebra which is the ring of S-
integers ofk. Let D be a k-rational ample divisor on A/k. Assume that:

1) Tr^(A)=0;
2) For all veS, D^ contains no irreducible component of the Zariski closure of A(k)°

(in particular, ift)°, contains no translate of an algebraic subgroup of A°, for all veS).
Let I be a D-integral subset of A (k), with respect to R. Then either I is finite or we

have

rank I < rank A(k).
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Remark. - For a global field k of characteristic j^>0, Lang's Conjecture 5.5 would
become false: Let A/k be an abelian variety definable over a finite subfield /:o of k and
let D be an ample feo-rational divisor on A. Suppose P e A (k) is not definable over any
finite field. Then the set of iterates of P under the Frobenius of k^ is an infinite D-
integral set of points, with respect to a suitable finitely generated ^o-subalgebra of k.

Proof of Theorems 5.6 and 5.7. - By translation, we may assume that
O^SuppD. Select an integer n>Q so large that the divisor nD is very
ample. Then F (A, ^P(^D)) gives a projective embedding A-»P^. We may choose
homogeneous coordinates Xg, . . ., X^ on A, which are restrictions of homogeneous
coordinates on P^, such that O^SuppX, for all / and XQ=O cuts out the divisor nD on
A; put

x,=X,/Xo, for all ;=0, . . . . m.

Let R be a finitely generated Z-subalgebra (respectively, finitely generated /^-^balgebra,
in the function field case) of k with tract (R) = k. Let I be a D-integral set of points,
with respect to R, of the finitely generated group A (k).

We may select a proper set M of well-behaved valuations on k satisfying a product
formula (see [24]); for the function field case, we take M=M^. For all points
PeA(A;)\SuppD we have

v (x, (P)) = < X, (P) - (0) \ - < Xo, (P) - (0) >, for all v e M.

Furthermore, the D-integrality of I implies that there is a finite subset S of M, containing
all the archimedean valuations of M, such that

z;(x,(P))^0, for all Pel, for all ;= 1, . . . . w, and all^eM\S.

Hence we have

(5.7) sup - v (x, (P)) ̂  0, for all P e I and for all v e M\S.
1 ^ f ̂  n

On the other hand, we have

(5.8) sup -z;(x,(P))=<Xo,(P)-(0)>,+ sup -<X,,(P)-(0)>,
l^i^n l^i'^w

where, in the terminology of Neron (c/. [33] or [9]),

y(P,zQ= sup -<X,(P)-(0)>,
1 ^i^n

is a bounded quasi-function. Let S' be the finite set of valuations

S'^^eM; there is PeA(^) such that y(P, zQ^O}.

It follows from (5.7) and (5.8) that

(5.9) < Xo, (P) - (0) >, ̂  0, for all P e I and for all v e M\(S7 U S);
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and there is a constant C ̂  0 such that

(5.10) < Xo, (P) - (0) >, ̂  C, for all P e I and all v e S ' .

Hence the global Neron-Tate height

<Xo,(P)-(0)>= ̂  <Xo,(P)-(0)>,
veM

satisfies the inequality [by (5.9) and (5.10)]

<Xo,(P)-(0)>^<Xo,(P)-(0)\+C S-l, foral lPeI .
veS

For any real number a, we then have

(5.11) {Pel ; <Xo,(P)-(0)>^a}c= U S/0'",^8^ D, A(k)\
veS \ |°| /

The group A (k) is finitely generated, under the hypotheses of either of the
Theorems 5.6 and 5.7. Hence if k is a global field, we have by Theorems 5.1, and
5.3, either thatA(fe) is finite or that

(5.12) ^w(US,(oc,D,A(A:)))^0, asa-^+oo.
v eS

If k/ko is a function field and the hypotheses of Theorem 5.7 are satisfied, then
Theorem 5.2 gives either that A (k) is finite or that

(5.13) rank U S^ (a, D, A (k)) < rank A (k\ for a I> 0.
v eS

The Theorems 5.6 and 5.7 now follow from (5.11), (5.12), and (5.13) as the set

{PeI ;<Xo, (P) - (0 )><a}

is finite for all a, from the non-degeneracy of the global Neron height.
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