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EXTREMAL RAYS ON SMOOTH THREEFOLDS

BY JANOS KOLLAR

1. Introduction

In [M2] Mori proved a structure theorem for threefolds whose canonical class is not
nef. His proof had two parts.

First he investigated the cone of effective curves and proved that part of it is locally
polyhedral. This is first proved in positive characteristic and then "lifted back" to
characteristic zero by a nontrivial argument.

The second part of his proof is the description of extremal rays on a threefold in
characteristic zero. This description relies on very delicate applications of Kodaira's
vanishing theorem, and therefore it is not applicable in positive characteristic.

Later development of the theory relied even more on vanishing theorems that are not
available (and frequently false) in positive characteristic.

The aim of this article is to develop a method that relies less on vanishing theorems.
The emphasis here is on studying the deformation theory of curves in smooth threefolds.
This approach is rather independent of the characteristic, and thus leads to the following
generalization of [M2], Theorems 3.1-3.

(1.1) MAIN THEOREM. — Let X be a smooth projectile threefold over an algebraically
closed field k of any characteristic. Let R be an extremal ray of the closed cone of
curves. Then

(1.1.1) There is a normal projectile variety Y and a surjective map f: X —> Y such that
an irreducible curve CcX is mapped to a point by f iff[C]eR. One can always assume
that f^ (9^= ̂ Y ana tnen ̂  and f are unique up to isomorphism.

The following is a list of all the possibilities for f and \.
(1.1.2) First case: f is birational.
Let Ec=X be the exceptional set off. One has the following possibilities for E, Y andf:
(\ A .1 .\) E is a smooth minimal ruled surface with typical fiber C and C. E= — 1. Y

is smooth andf is the inverse of the blowing up of a smooth curve in Y.
(1 .1 .2 .2) E ̂  P2 and its normal bundle is (9 (— 1). Y is smooth and f is the inverse of

the blowing up of a point in Y.
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340 J. KOLLAR

In the remaining cases Y has exactly one singular point P and f is the inverse of the
blowing up of? in Y. Let Sp y be the completion of the local ring ofPeY.

(1.1.2.3) E ̂  P2 and its normal bundle is 0 (- 2). O^^^k [[x2, y2, z2, xy, y z , zx]].
(1.1.2.4)E^Q w/^r^ Q is a quadric cone in P3 and its normal bundle is

^3(-1)[Q. ^p,Y^[[x,^,z, ^/(xy-z2-^3).
(1.1.2.5) E^Q where Q ^ <7 smooth quadric surface in P3, ̂  ^wo families of lines

on Q are numerically equivalent in X and its normal bundle is ^ ip3 (—l) ]Q .
S ) p ^ ^ k [ [ x , y , z , t ] ] l ( x y - z t ) .

(1.1.3) Second case: f is not birational.
Then we have one of the following cases:
(1.1.3.1) dimY=2. Then Y is smooth and f is a flat conic bundle (i.e. every fiber is

isomorphic to a conic in P2). If the characteristic is different from two, the general fiber
is smooth.

(1.1.3.2) dimY= 1. Then Y is a smooth curve and every fiber offis irreducible. Any
fiber with reduced scheme structure is a {possibly nonnormal) Del Pezzo surface.

(1.1.3.3) dimY=0. Then X is a Fano variety (i. e. —Kx is ample).

(1.2) Remarks. — (1.2.1) In case (1.1.3.2) I can not prove that all fibers are reduced
or that the generic fiber is normal. The situation seems fairly complicated, especially in
characteristic two.

(1.2.2) It will be clear that the methods give very little information about Fano
varieties. However the result should be very useful in their study. For instance, the
results of [N] should imply that if X is a Fano threefold over a field of any characteristic
with Picard number at least 6 then X has an extremal face of type (1.1.3.1) or
(1.1.3.2).

The original goal I had in mind was to obtain a more direct way of finding extremal
rays. The idea is the following. Assume that a threefold X contains a rational curve
Co such that Co.Kx<0. By [Ml], Proposition 3, one can deform Co keeping it
rational. It may degenerate and then we get an algebraic equivalence Co^C^UDi
where C^ is a rational curve such that Ci.Kx<0. Now continue the procedure with
C^. If X is projective then finally we must get a rational curve C^ which deforms but
stays irreducible all the time. Since this C^ is not algebraically equivalent to the sum of
other curves in any obvious way, one could hope that it generates an extremal ray. This
is false if X itself is uniruled, but is very close to being true otherwise. The following
result is proved in Chapter 2:

(1.3) THEOREM. — Let X be a smooth projective threefold over an algebraically closed
field of any characteristic and let C^ be as before. Assume that K(X)^O. Then the
deformations ofCj^ sweep out a surface EcX which is one of those listed ^(1.1.2.1-4).

The new method works very efficiently to describe an extremal ray R on a threefold
X in two cases:

first, if there is a surface Ec=X such that R. E<0 (this is done in Chapter 2);
second, if the curves in R cover X (this is done in Chapter 4).

4° SERIE - TOME 24 - 1991 - N° 3



EXTREMAL RAYS ON SMOOTH THREEFOLDS 341

The weakness of the method is that at the moment it does not imply that there are
no other cases. Fortunalety this follows from a result of Miyaoka-Mori [MM] (see
Chapter 3).

Some of the above results have analogs for nonprojective threefolds as well. One
such example is worked out in Chapter 5. This requires a nonprojective version of a
lemma of Ein [E].

It would be very interesting to generalize these results to threefolds with terminal
singularities. Mori's original approach to the cone theorem works for threefolds with
isolated hypersurface singularities. Almost all of (1.1) can be generalized to threefolds
with isolated factorial hypersurface singularities; there are slight problems with (1.1.2.1)
and (1.1.3.1). It is interesting to note that rationality of the singularities plays no
role; the nonrational singularities will not occur on the exceptional loci.

I am very grateful for the comments and criticism received from S. Mori, D. Morrison
and the referee.

Partial financial support was provided by the NSF under grant numbers DMS-8707320
and DMS-8946082 and by an A. P. Sloan Research Fellowship.

Notation

(N.I) For a variety X the R-vectorspace of 1-cycles modulo numerical equivalence will
be denoted by N(X). If F<=N(X) then we will say that a curve C is in F if its class is
in F.

(N.2) NE(X)c=N(X) will denote the convex cone generated by the classes of effective
curves. Its closure in the Eucledean topology of N(X) will be denoted by NE(X).

(N.3) Assume that Kx is Q-Cartier. A ray R= ̂ + [C]c:'NE(X) is called an extremal
ray if [C]. Kx < 0 and if u, v e NE(X) and u + v e R imply that u, v e R.

(N.4) Let E be a Cartier divisor on X and let R be an extremal ray. If Cc=X is a
curve such that [C] e R then the sign of the intersection product C. E depends only on E
and R. Thus the notation R.E<0 (resp. =0 etc.) makes sense. The ray R is called
net if R. E ̂  0 for every effective divisor E.

(N.5) An extremal ray R is said to cover X if through every point xeX there is a
curve C^ in R. If R covers X then it is obviously nef.

(N.6) NS(X) denotes the Neron-Severi group ofX; NS(Q>(X)=Q(g)NS(X).

(N.7) Algebraic equivalence of cycles will be denoted by %.

(N.8) We say that a surface X is a (possibly nonnormal) Del Pezzo surface, if X is a
reduced, irreducible Gorenstein surface such that Ox1 is ample.
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342 J. KOLLAR

2. Divisorial Contractions

The main result of this chapter is the following:

(2.1) THEOREM. — Let X be a three dimensional smooth algebraic space resp. a three
dimensional complex manifold. Let S be a proper smooth minimal ruled surface with
typical fiber F. Let f\ S —^X be a morphism. Its image is denoted by E and the image
ofF by C. Assume that

(2.1.1.1)dimE=2;
(2.1.1 .2)C.Kx<0;
(2 .1 .1 .3)C.E<0.
Then we have one of the following situations:
(2.1.2.1) E is a smooth minimal ruled surface with typical fiber C and C. E = — 1.
(2.1.2.2) E ̂  P2 and its normal bundle is (9 (- 1).
(2.1.2.3) E ̂  P2 and its normal bundle is (9 (- 2).
(2 .1 .2 .4)E^Q where Q is a quadric cone in P3 and its normal bundle is

^p3(-l)|Q.

(2.2) Remarks. - (2.2.1) (2.1.1.2) implies (2.1.1.3) if K(X)^O.
(2.2.2) In cases (2.1.2.2-4) the curve C can be complicated. Indeed, there are

complete families of large degree planar rational curves.

(2. 3) THEOREM.—Let X be a smooth projective threefold. Let R be an extremal
ray. Assume that there is an irreducible surface Ec=X such that R.E<0. Then the
collection of all curves in R covers the surface E and we have one of the following situations:

(2. 3 .1) E is a smooth minimal ruled surface with typical fiber C and C. E= — 1. Only
the fibers of E are in R.

(2. 3 .2) E ̂  P2 and its normal bundle is (9 (- 1).
(2. 3 .3) E ̂  P2 and its normal bundle is (9 (- 2).
(2.3.4) E^Q where Q is a quadric cone in P3 and its normal bundle is ^Pp3 (— 1) | Q.
(2.3.5) E^Q where Q is a smooth quadric surface in P3 and its normal bundle is

<Pp3 (— 1) | Q. Every curve in E is in R.

Proof. — Let us fix an ample divisor H on X. By [M2, 1.4] there is a rational curve
g: P1 ->X in R. Choose g such that deg(g*Kx)<0 is maximal. Since deg(^*Kx)<0,
by [Ml], Proposition 3, there is a nontrivial deformation G°: P^D0-^. We can
complete this to a map G: S -> X where S is a not necessarily minimal ruled surface
over D and G does not contract any (— l)-curve contained in a fiber of S/D.

If S is not minimal then there is a reducible fiber F=^CfcF^. Thus
^(P^^Z^GKFfe). [G(Ffe)]eR since R is extremal; in particular, G(F^.Kx<0. Since
^(^(F^.K^^P^.KX, this implies that g(P l).Kx<G(Ffc).Kx, which contradicts
the choice of g. Thus S is minimal and (2.1) applies. The only missing piece of
information is to show that if E is ruled and if every curve in E is in R then we have
(2.3.5).
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EXTREMAL RAYS ON SMOOTH THREEFOLDS 343

If every curve in E is in R then both — E | E and — K x | E are ample, thus
—KE= — E | E — K x [ E is also ample. —Kg is ample only for E^P1 x p1 and for the
one point blow-up of P2. The second case is impossible because there —Kg is not the
sum of two ample divisors.

(2.4) Proofof'(2.1). — Let us start with the following auxiliary

(2.4.1) LEMMA. —Let g: T—^ B be a not necessarily minimal smooth proper ruled
surface with general fiber C. Let L be a line bundle on T such that

(2.4.1.1) L.C=1,
(2.4.1.2) ;/ D c: T is a curve contained in a fiber then L. D ̂  0 and
(2.4.1.3) ;/ D c= T is a (— l)-curve contained in a fiber then L. D > 0.
Then T is a minimal ruled surface over B.

Proof. — Let ^^D^ be a singular fiber. Since L.C=L.^^D^= 1, we conclude that
every singular fiber contains at most one (— l)-curve (even counted with multiplicity). It
is easy to see that there is no such singular fiber. This shows the result.

(2.4.2) Now let us consider/: S -> E. We can factor it through the normalization E
of E to get/: S -> E. Since/(F) moves in E,/(F) ./(F) ̂  0 (here we use the intersection
theory of [Mu, II(&)]. We will consider separately the following alternatives:

(2.4.2.1)7(F)./(F)=0, i.e. for any two fibers F^ and F^ of S, either 7(Fi)=7(F2)
(as sets) or they are disjoint.

(2.4.2.2)7(F).7(F)>0.
(2.4.3) Assume that we have the alternative (2.4.2.1). Then E is covered by a

family ofpairwise disjoint rational curves 7(F<)- For generic t the curves 7(F<) have the
same Hilbert polynomial, thus there is a one dimensional closed irreducible subset of the
Hilbert scheme of E which generically parametrizes the curves 7(Ff)- Let B be the
normalization of this subset and let U -> B be the normalization of the universal family
over B. The natural morphism u: U -> E is finite and generically one-to-one. Therefore
it is everywhere one-to-one. In characteristic zero this implies that u is an isomorphism
and thus we obtain a morphism E -> B. In positive characteristic u factors through a
power of the Frobenius, thus again we obtain a morphism E -> B. In both cases the set
theoretic fibers are precisely the curves/(Fy).

Let p : T -> E -> E be the minimal desingularization of E. C - the proper transform of
C—is the general fiber of T/B. Since

KT^/?*KE— (effective divisor),

we get that

-KT.C^-KE.C=-E.C-KX.C>O.

In particular, T/B is a ruled surface. Therefore -KT.C=2 and -Kx.C= -E.C= 1.
Let L= —j9*Kx. L satisfies (2.4.1.1). If D^czT is a component of a fiber then either
p (n.) = (point), or p(T>i)wC. In both cases L.D^O. Furthermore a (-l)-curve can
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not be mapped to a point by p since the resolution is minimal. Thus by (2.4.1) T
itself is minimal.

Now we can replace S by T and we can thus assume that S is the normalization of
E. We can write

Kg % /* (E + Kx) - (Conductor of/).

Since F. Kg = — 2 and F ./* E and F ./* Kx are both negative, this implies that
F./*E=F./*Kx= — 1 and that the conductor is contained in the union of some fibers
of S. In particular this implies that C^P1. Let Q be the (set theoretic) image of any
of the fibers F(. I claim that Q is also smooth. Since C(.KX<O, by (5.1) there is a
deformation of C, which does not have redC^ as its component. Let C be a generic
deformation of C^. We may assume that it has no common components with the
conductor of/. Since G( . E < 0, C is contained in E. Let G c: S be the proper transform
of C. As C specializes to Cp C specializes to a curve G,c:S. By construction,
/(C() = Q. Therefore G( is contained in F( U (conductor of/), hence it is a union of some
fibers of S. Consequently, C is a union of some fibers of S, hence C^C. Therefore
X (Q) = X (c) ̂  L This shows that C^ P1.

The above argument also shows that if D is a subscheme of X whose support is Cy
and D, is a deformation of D then the one dimensional part of the support of D, is a
union of curves C^.

(2.4.4) CLAIM. - Let I be the ideal sheaf of C^ P1. Then I/I2 ̂  (9 + (9 (1).

Proof. — Since C^ is smooth, rational and C^. Kx = — 1 we known that
I/P^^-^+^+l) for some^O.

Let J be the ideal sheaf generated by I2 and by the (9(a-^-\) factor of the above
decomposition. Then D = Spec (9^/S has support on C^ and satisfies D. Kx = — 2 and
^(D)=2—a. By (5.1), D has a two dimensional family of deformations. Let D, be
any deformation of D. If D, is disconnected then D^ == C^ U C^, hence ̂  (D) = ̂  (Dg) = 2.
Thus a=0. If every deformation D, of D is connected then suppD,=C^ for some
^. D has a two parameter family of deformations and C^ is a one parameter family,
therefore D has a nontrivial deformation which leaves the support unchanged. Hence
there is a one parameter family of maps

I/l2^(-^)+^(a+l)->^+l).

This is impossible, hence the claim.
Thus we see that E itself is a smooth minimal surface. This completes the first case.
(2.4.5) Assume that we have the alternative (2.4.2.2). Then for any fiber F^ of S

we have that /(F^) H/^) 7^0. Therefore /^/(F^cS has an irreducible component
Z' which is a (possibly multiple) section of S. Therefore by (4.4) we see that N(E) is
generated by the classes of7(Z') =/(Fi) and by7(F,). Thus dim N (E) = 1. Let p: T -^ E
be the minimal desingularization of E and let C be the proper transform of C in T. As
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EXTREMAL RAYS ON SMOOTH THREEFOLDS 345

in (2 ^ 4.3) we get that K^. C < 0, thus T is birationally ruled. Therefore T is either P2

or it is ruled over a curve B. We ignore the first case for the moment.
Let L= -/?* KX. L is nef, it intersects all (- l)-curves positively and L. C= 1 since

-2=KT.C=Kx.C+E.C-(effective divisor).C.

Thus by (2.4_ 1) we see that T is minimal. T can not be the normalization of E since
it has dim N (E) = 1. Thus p must contract some curve.

(2.4.6) LEMMA. — Let T be a smooth minimal ruled surface and let D c: T be a
contractible curve. Then D is irreducible.

Proof. - The components ofD are linearly independent in N(T), hence D is irreducible
since dimN(T)=2.

(2.4.7) As we saw, T is either P2 or it is minimal ruled over a curve B. In the latter
case p contracts an irreducible curve DcT. As before we have the adjunction formula

(2.4.7.1) - KT = -p* (E) -p* (Kx) + (effective curve).

C is either a line in P2 or a fiber of T/B. Taking intersection numbers with C in the
above formula we obtain

, , f 3 if T^P2,f l+&+c= <
[2 if T is minimal ruled,

where a= -/?* (E). C, b = -/?* (Kx). C are positive integers and c= (effective curve). C is
a nonnegative integer.

IfT^P2 then there are three numerical possibilities:
(2.4.8.1) a=l, b=2 and c=0. In this case E^P2 with normal bundle 0(-\).
(2.4.8.2) a=2, b=\ and c=0. In this case E^P2 with normal bundle ^P(-2).
(2.4.8.3)^=1, b=\ and c = = l . We will exclude this case. From Riemann-Roch

we get that

X(^(E|E))= E- (E^KE) +x(^)= J +^),

which is impossible.
If T is is a minimal ruled surface then a=b= 1 and c=0. Thus

KT =p* (E + Kx) - (some fibers of T/B).

Therefore

2p, (D) - 2 = D. (D + KT) = D2 - D. (some fibers of T/B).

Since D is contractible, D2 < 0. This implies that ̂  (D) =0. If D2 = - 1 then p: T -^ E
factors through P2, which impossible since p is the minimal resolution. Thus D2^ -2
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hence D2 = — 2 and we obtain the last case:
(2.4.8 .4) E is the quadric cone.
This completes the proof of (2.1).

(2.5) COMPLEMENT. — Assumptions and notation as in (2.3). There is a contraction
map f: X -> Y onto a three dimensional normal projective variety Y such that an irreducible
curve Dc=X is contracted to a point iff D is in R. / can be described case by case as
follows:

(2.5.1) Y is smooth and f is the inverse of the blowing up of a smooth curve in Y.
(2. 5.2) Y is smooth and f is the inverse of the blowing up of a point in Y.
In the remaining cases Y has exactly one singular point P and f is the inverse of the

blowing up of P in Y. The singularity at P is formally equivalent to the following
singularities:

(2.5.3) Specfe[[x2, y\ z2, xy, yz, zx}}.
(2.5.4) Spec k [[x, y, z, t]\/ (xy -z2-t3).
(2.5.5)Spec/c[[x,^,z,r]]/(^-zO.
Proof. — First we prove that the contraction map /: X -> Y exists. This will be done

using the method of Castelnuovo (c/. [H, V. 5.7]).
Let F be the fiber of E in case (2.3.1) and any line on E in the other cases. Let M

be a very ample line bundle on X. If necessary we replace M with a suitable multiple
and then we can consider the following new line bundle

M=M(S(()(-M1F^\
\ E.F )

We claim that M is generated by global sections and that the Stein factorization of the
resulting morphism is exactly/. As in [H, V. 5 .7], this follows once we know that

M F
(2.5.6) H^E, M(x)^(-cE)|E)=0 for 0^c<-——,

E. F

and M | E is generated by global sections. The second condition is clear in the cases
(2.3.2-5) and (2.5.6) follows from

H^E,^))^ for n>0.

We have to be more careful in case (2.3.1). The Neron-Severi group of E is generated
by F and a section S. One can easily see that there is a constant k such that

(2.5.7) H^E, ^(wS+7iF))=0 for n>k(m^\); w^O.

Now let E [ E^ (- S+rfF) and M [ E^0 (aS+AF). (2.5.7) implies (2.5.6) if

(2.5.8) ^|rf[+2fc,
a
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EXTREMAL RAYS ON SMOOTH THREEFOLDS 347

which is of course not necessarily satisfied. Here we have to use that F generates an
extremal ray. Choose a line bundle H which is a supporting function of [F] [cf. (3.1)].
Then H|E^(^F) for some e>0. Thus if we replace M be M®H5 for s sufficiently
large then (2.5.8) becomes true and M [ E is generated by global sections. This proves
the existence of/: X -> Y.

The description of/is well known for (2.3.1-2) thus we concentrate on the remaining
cases. First one verifies by explicit computation that by blowing-up the singularities
given in (2. 5.3-5) we get a smooth threefold with the required exceptional divisor. Now
we need to see that a formal neighbourhood of E is isomorphic to the one we obtained by
blowing-up. This is done using [M2, (3.33)] (see also [HR], Lemma 9). The required
computations are very similar to those done at the end of [M2], section 7. Only the
case (2.5.4) needs extra care. Here there can be two different infinitesimal extensions
of ̂  by (9^ (1) because of the singular point of E. However one of them has embedding
dimension 4 at the singular point. Therefore we have the other extension on both
threefolds.

3. Division into cases

(3.1) DEFINITION. - Let R be an extremal ray on a variety X. A divisor H (or more
precisely, its class [H]eNS<Q(X)) is called a supporting function o f R i f z . H ^ O f o r every
zeNE and z .H=0 iffzeR.

(3.2) PROPOSITION ([M2, 3.15]). — Let X be a projective variety of dimension n with
Q-factorial singularities and let R be an extremal ray with supporting function H. The
following two statements are equivalent:

(3.2.1)H">0;
(3.2.2) there is an irreducible divisor D c: X such that D. R < 0.

Proof. — One only has to note that in Mori's original proof the use of Kodaira's
vanishing was not essential. If H">0 then some multiple of H defines a birational map
(cf. [F, 6.5]). Thus if M is ample on X then there is an effective divisor
D' ̂  k H — M. Since D\ R < 0, some irreducible component D of D' will serve.

If D.R<0 then fcH-D is ample for k»Q by [M2,3.7]. Thus
h°(m(kH-D))^h°(m(kH)) grows as m\ hence W>Q.

The following is a slightly different version of the main result of [MM].

(3 . 3) PROPOSITION ([MM]). — Let X be a smooth projective variety of dimension n. Let
D be a smooth proper curve and let f: D -> X be a nonconstant map. Let M be an ample
divisor on X. Assume that —Kx.D>0. Then through every point xef(D) there is a
rational curve L c X such that

M.L^2(n+l ) M t D .
-Kx.D
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Proof. - This is proved in [MM] if/(D) is not rational. (In [MM] the existence of
such a curve is claimed only for general points of/(D). Once L exists for general
points, we can specialize to any point of /(D).) Let us assume then that /(D) is
rational. Let fe=deg(D//(D)). If

^^-D

- 2Qz+l)

then let L=/(D) with reduced scheme structure. Thus

M.L^ l̂)̂ .
k -KX.D

Otherwise

^r^.
- 2Qz+l)

Assume furthermore that the ground field has positive characteristic p. Let /,: D -> X
be the composition of / with the sth power of the Frobenius map. As in [MM],
Theorem 5, the deformation space of the map /, Fixing the images of b different points
of D has dimension at least

ps(-K^.D)+n(\-g(D))-nb.

The space of deformations whose image is/(D) has dimension at most 2deg/,=2/?sfe.
Therefore, if

^(-Kx.D)+^(l-g(D))-^-2^^K^>0,

then we can deform /, in a one parameter family in such a way that the image of the
family is a surface in X. The assumption that /(D) is nonrational is used in [MM],
Theorem 4, only to ensure the validity of the last claim. Thus we can use [MM],
Theorem 4, to find a rational curve L which satisfies

M.L^-^.
b

As in [MM], choosing b as large as possible and letting s go to infinity gives the result.
The characteristic zero case can be reduced to the positive characteristic case as in

[MM].
The following result should be viewed as a weak version of the Contraction Theorem.

(3.4) THEOREM. — Let X be a smooth projectile variety of dimension n. Let R be an
extremal ray o/X. Then exactly one of the following conditions is satisfied:

(3.4.1) There is an irreducible divisor EcX such that R.E<0 (hence R covers at
most E).
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(3.4.2) R covers X.

Proof. — Pick a curve C which is in R and any point xeX—C. Blow up x
and consider the new smooth variety /?:Y=B^X-^X. Let FcY be the exceptional
divisor. I f /?*H—cFis nef, where H is a supporting function of R, then

O^O^H-eFy^IP-e".

Thus H">0 and by (3.2) there is a divisor Ec=X such that E.C<0.
If /?*H—sF is not nef then there is a curve DcY such that /?*H.D^sF.D. Let

D=/?(D) and let M be a very ample divisor on X. The previous inequality now gives

H.D^e.mult^D^eM.D.

The function max{—Kx.Z, H .Z} is strictly positive on NE(X), thus there is a 8>0
such that

max{-Kx.Z, H.Z}^8M.Z.

If e < 5 then these two inequalities imply that — Kx. D ̂  (8/c) H. D. Thus by choosing £
small enough, we can assume that

-Kx.D^402+l)H.D.

Apply (3.3) with the ample divisor M +kH. Thus we find a rational curve L through
xeDcX such that

M.L^H.L<2(^l)MtD^HtD=2(^l)^D-^.
-Kx.D -Kx.D 2

For k large this implies that H. L = 0, i.e. L is R. Since x was arbitrary, this completes
the proof.

4. Covering Case

In this section we describe those extremal rays that cover X. It is natural to look at
the more general situation of having a covering family of curves, not necessarily one
that comes from an extremal ray. Much of the theory will be valid with few assumptions.

(4.1) BASIC SET-UP. — (4.1.1) We will consider diagrams as follows:

IJ -^X
"iz

(4.1.2) Here X is our threefold which for the moment we only assume to be normal
and projective. Z is an irreducible normal surface, p : U -»Z is a proper (not necessarily
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flat) morphism with one dimensional fibers whose generic fiber is an irreducible and
reduced curve. Finally we assume that F is surjective, i.e. U is a covering family of
curves.

In typical examples Z is a closed subset of a Hilbert scheme or a Chow variety and U
is the corresponding universal family.

(4.1.3) C^ will denote the fiber of p over z e Z with reduced scheme structure and D^
will be the set theoretic image of C^. For zeZ sufficiently general we will also write
Cgen resp. Dg,,.

(4.1.4) We will also assume that the covering is generically minimal in the weak sense
that:

(4.1.4.1) for sufficiently general z, C^ -> D^ is birational, and
(4.1.4.2) for sufficiently general z, D^=D^ implies that z=z\
The notation and assumptions of (4.1) remain in force for the rest of the section.

(4.2) LEMMA. — Notation as in (4.1). Then either:
(4.2.1) D intersects infinitely many other curves D ;̂

or:
(4.2.2) Dggn does not intersect any other curve D .̂

Proof. - If F is generically k\ 1 and k>\ then through a general point there are at
least k different D^ thus we have the first case. If F is 1:1 then for every xeX the
fiber ¥ ~ l ( x ) is connected. Thus if D^ and D^ pass through a point x then there are
infinitely many other such.

(4.3) FURTHER ASSUMPTIONS. — Assume also that
(4.3.1) Cgen is rational;
(4.3.2) For every z, every component of D^ is numerically equivalent to a multiple

ofD^;
(4.3.3) Xis Q-factorial.
Before describing the cases satisfying (4.2.1) we need a simple lemma:

(4.4) LEMMA. — Let f: W -> Z be a proper surjective morphism between algebraic
varieties. Assume that every fiber is one dimensional and that the generic fiber is a rational
curve. Let i : Z' c; W be a closed sub-variety such thai f: T -> Z is surjective. Then

N (W) = ( components of fibers, i^ N (Z7)).

Proof. - Let Cc=W be any curve. Then/"1 (/(C)) is a possibly reducible surface
whose general fiber over/(C) is a connected curve with rational components. It is clear
that on this surface any (possibly multiple) section [e.g. Z ' ( ^ f ~ 1 (f(C))} and the
components of fibers generate the set of curves modulo algebraic equivalence.

(4.5) THEOREM.—Notation and assumptions as in (4.1) and (4.3). Assume that
F: U -. X satisfies (4.2.1). Then
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either:
(4.5.1) dim N (X) = 1; in particular X is Fano if Dg^. Kx < 0;

or:
(4.5.2) dim N (X) = 2 and there is a map q: X —> E onto a smooth curve E such that

every D^ is contained in a fiber of q. The fibers ofq are all irreducible. T^X has isolated
singularities and Dggn • K-x < 0 then the general fiber is a (possibly nonnormal) Del Pezzo
surface.

Proof. —By (4.2.1) there is an irreducible curve Ac=F~1 (DggJ such that p (A) is one
dimensional. Let S = F (p~1 (p (A))) c=X. Apply (4.4) with W = S, T = A, Z =p (A) and
(4.3.2) to conclude that every curve in S is numerically equivalent to a multiple of Dggn.

Now assume that the intersection number Dg^. S is positive. Then S intersects every
curve D^. Again apply (4.4) setting

W=Ux^F- l (S ) ,Z=Z

and

Z7 == { a suitable irreducible component of F~1 (S)}

to conclude that dim N (X) = 1.
Now assume that Dgen.S=0. Thus for any D^ either D^cS or they are disjoint.

Letting Dgen vary we get a family of disjoint surfaces that cover X. As in (2.4.3) this
gives rise to the required map q: X -> E. By construction every D^ is contained in a
fiber of q. If there is a reducible fiber g~1 (e)=S^ U S^ then we can find a component
DI of some D^ such that D^cSi and D^ intersects 82. In particular, D^ .S2>0. On
the other hand, Dgen is disjoint from S^, thus Dg^.S^O. This contradicts (4.3.2).

(4.6) THEOREM.—Notation and assumptions as in (4.1) and (4.3). Assume that
F: U -> X satisfies (4.2.2). Then there is a morphism g: X -» Y onto a normal projective
surface Y such that g^ Qy^O^ an(^ the fibers ofg are precisely the curves D^ (at least set
theoretically).

7/'Dgen.Kx<0 and the characteristic is different from two then g is generically a P1

bundle (in the etale topology). In characteristic two the generic fiber can also be a planar
double line.

The proof will rest on the following:

(4.7) LEMMA.—Notation and assumptions as in (4.1) and (4.3). Assume that
F: U -> X satisfies (4.2.2). Then

(4.7.1) If AczX is an irreducible curve which is numerically equivalent to a multiple of
D then A is a component of some D^.

(4.7.2) IfD^ and D^ intersect then they are equal.

Proof. — In the first case, if A is not a component of some D^ the curves D^ that
intersect A sweep out a surface S c: X. In the second case let x e D^ 0 D^. Since F ~1 (x)
is connected, the curves D^/ passing through x sweep out a surface S c=X. Applying (4.4)
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to W=p~1 (p(F~1 (x))), Z /=F~ l(x) we see that in both cases every curve in S is
numerically equivalent to a multiple of Dggn.

Pick a point seS and a general curve ^eGcX. The curves Dg that intersect G sweep
out a surface TcX. We can take a curve .s-eBcS which is not contained in T.
Therefore B. T > 0. On the other hand, Dggn. T = 0 since they are disjoint. This contra-
dicts the assertion that B is numerically equivalent to a multiple of Dg^.

(4.8) CONSTRUCTION OF g. - Consider the Chow variety of curves of X[HP, X.8].
Let Zgen be the point corresponding to Dggn and let Z' be the closure of Zggn. By (4.7)
the variety Z' parametrizes certain 1-cycles whose support is always a curve of the form
D^. Let p ' : IT -> T be the universal family and let F: IT -^ X be the natural map. All
the above considerations apply for the new covering family.

I claim that F' is 1:1 on closed points. Any curve C^ maps injectively by the definition
of the Chow variety. By (4.7.2), if D^ and D^ intersect then they are equal. Therefore
the cycles corresponding to z and z ' have the same support, but the multiplicities of the
components may be different. However, as we observed above, this implies that there
is a one parameter family z^ e Z such that the cycles parametrised by z^ all have the same
support. The multiplicity is a discrete invariant, so this leads to a contradiction. Thus
F' is 1:1 on closed points.

If the characteristic is zero, this implies that F7 is an isomorphism. Thus we can take
Y=Z\

In positive characteristic the map F' is purely inseparable hence it factors through a
power of the Frobenius. Thus we still get a map X -^ Z7. Take Stein factorization to
get^X^Y.

(4.9) THE GENERIC STRUCTURE OF g. — Consider any irreducible curve BcY and let
Fc=g~1 (B) be a reduced surface. Assume that F is locally principal except possibly at
finitely many points. For beB let C(,C:F be an irreducible component of g~1 (b). Let
n:¥ ->¥ be the normalization of F. Let C^cF be the proper transform of C^. For
sufficiently general b, the surface F is smooth along C^ and we have the following
adjunction formula:

- Kp. Q, = - Kx. C(, - F. Cb + (conductor of n). Q,.

Note that -Kx.Q,>0, -F.C^O and (conductor of n).C^O. Therefore
— KF . C(, > 0, hence F is a ruled surface with typical fiber C^,. In particular
— KF . C ,̂ = 2. Thus we have to consider three cases:

(4.9.1) General case. — Kx.Cb=2. Then the conductor does not intersect C^,
hence n is an isomorphism near C^. In particular C^P1. By the adjunction formula
its normal bundle has degree zero, hence is of the form (9(0)-^ (9 (~a). On the other
hand its normal bundle inside F is (9, thus 0 is a subbundle of ^(^)+<P(-^). This
implies that a=0. Therefore C^ is the whole fiber and we conclude that the general
fiber ofg is P1 and it has trivial normal bundle. Thus g is generically a P^bundle.
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(4.9.2) Special case. — Kx.Q,==l, —F.Q,==0. Then the conductor intersects Q,
transversally at a single point. Therefore n \ Q, is an isomorphism. Thus C^ P1.

Assume now in addition that B is a general member of a very ample linear system; in
particular ¥=g~1 (B) is itself reduced and the general fiber of F -> B is irreducible. Let
I be the ideal sheaf of C^, in d?p. Let I^ be the k-th symbolic power of I and let
g^T^jWyT^+i) gr^i is a rank one torsion free sheaf on Q,, hence it is locally free and
gr^I^C^-^) for some e^ Let I be the ideal sheaf of Q, in ^p- This is locally
free. Let P be the A;-th power of I and let gr^P/P^. Note that gr^T^. We
have a natural map g^I -> ^gr^T^gr^T^^ which is generically an isomorphism since n
is generically an isomorphism along C^,. Thus the numbers e^ are nonnegative.

Let E <= F be the fiber of g over b. Then (9^ = (Pp/1^ for some t and I^ is generated
by one section. Thus gr^I has a section. Since it has nonpositive degree, we obtain
that gr^I^. Also, ̂ /^-^^p/l^ thus the sequence e, is periodic with period t.

Sine E is a fiber, its normal bundle is trivial, hence CDg ̂  ©x | E. Therefore

X (OE) = X (^E) + ̂ i (G)x) [E]== 7 (^E) +1 ' c , (cox) [red E] = x (^) - ̂ .

On the other hand, /(o)E)= ""^(^E)' Therefore we obtain that

t r- l

(4 .9 .2 .1 ) X(^E)=" I (l-^)-
^ 1=0

Let P = { z e f ^ | ^ = 0 } . The existence of the multiplication map gr'I^gr1! -^gr1^!
implies that P is closed under addition. By (4.9.3) P has density 1/2, thus P consists
of all even numbers. Hence ^ = 0 if; is even and ^ = 1 if / is odd.

This implies that

AW-X^E)-^

Since E is the general fiber, h°((Pf)== 1 and we get r=2. Thus (9^ is an extension

0 -^ ^pi (- 1) -> ^E -^ ^p1 -^ 0.

Such extensions are classified by H1 (P1, Tpi (-1))=0 (cf. [H], III. 4.10 Exercise).
Therefore g is a conic bundle whose general fiber is a planar double line. The double
line is regular only in characteristic two, therefore the special case can occur only in
characteristic two.

(4.9.3) Reducible case. - Kx.C^l, -F.C^=1. Then the conductor does not
intersect Q. Therefore n is an isomorphism near C^,. Thus Q,^P1 and its normal
bundle is ^+^(-1). Since F.Q,=-1, C ,̂ can not be the support of a whole
fiber. This can not occur over a general point of Y.

(4.10) THEOREM. —Let X be a normal threefold with Q-factorial singularities. Let
Rc=NE(X) be an extremal ray and assume that the rational curves in R cover X. Then
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we have one of the following cases:
(4.10.1) dim N (X) = 1; in particular X is Fano.
(4.10.2) dim N (X) = 2 and there is a map g : X ->E onto a smooth curve E such that if

C c= X is an irreducible curve then [C] e R iffg (C) = point. The fibers ofg are all irreducible.
(4.10.3) There is a morphism g: X -> Y onto a normal projective surface Y such that if

Cc=X is an irreducible curve then [C]eR iff g(C)= point. If the characteristic is different
from two then g is generically a P1 bundle (in the etale topology). In characteristic two
the generic fiber can also be a planar double line.

Proof. — There are only countably many maximal families of rational curves
on X. By assumption there is one family whose members are in R and cover X. Let
CgendX be the generic curve of this family. Let Zg^eHilbX be the corresponding
point of the Hilbert scheme. Let Z'cHilbX be the closure of Zg^. In general Z' has
dimension larger than two, so let ZczZ" be a sufficiently general two dimensional closed
subvariety. Let p '. U -> Z be the universal family over Z and let F: U -> X be the natural
map.

F is surjective since R covers X and Z is sufficiently general. (4.1.4) is satisfied since
Z is a subset of the Hilbert scheme. (4.3.2) is satisfied since R is an extremal ray. The
other assumptions are clear from the construction. Thus (4.5) and (4.6) imply (4.10).

(4.11) COMPLEMENT. - Let g: X -> Y be as in (4.10.3). Then
(4.11.1) IfX has only finitely many singular points then there is a finite set ScY such

that

g: X-^-^S^Y-S

is aflat conic bundle.
(4.11.2) T^X is smooth then Y is smooth and g is a flat conic bundle.

Proof. - Let

S = { y : some component of g~1 (y) is not smooth } U {Sing Y } U g { Sing X}.

This set is finite by (4.9). Since X—^'^S) and Y — S are smooth, g is flat over
Y—S. For j ^ e Y — S the fiber g^Cy) has no embedded points, g'1^).}^^ — 2 and
X (§~1 (y)) = 1 • Therefore we have the following possibilities for g ~ 1 (y):

(4.11.3.1) g ~ 1 (y) is reduced and irreducible. Then g~1 (y) ̂  P1.
(4.11.3.2) g ' ^ ^ y ) is reduced and reducible. Then g ~ l ( y ) has two components

intersecting transversally: two lines intersecting in the plane.
(4.11.3.3) g ' ^ ^ y ) is nonreduced and irreducible. Then g ' ^ ^ y ) is an infinitesimal

extension of P1 with a line bundle of degree — 1. This is a planar double line.
This proves (4.11.1).
Now assume that X is smooth. If Cy is a component of g ~ 1 (y) then by (5.1) Cy

deforms in a flat family. A general deformation is a component of a fiber over Y — S
hence a smooth rational curve. Therefore Cy^P1.
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Next I want to prove that g is flat. Let H be the normalization of the component of
the Hilbert scheme of X which parametrises the fibers of g over Y — S and their
specializations. Let/: U -> H be the universal family. We have the following commuta-
tive diagram:

U -^ X
(4.11.4)

H -^ Y

Both p and q are isomorphisms over Y—S. U is reduced and irreducible over Y — S
and / is flat, thus U is reduced and irreducible. In particular p is an isomorphism if it
is one-to-one. Therefore, if q is an isomorphism then so is p.

Let Dy be the reduced fiber of g over y e Y. We want to show that there is exactly
one 1-cycle Ey in H whose support is in Dy. We have two cases:

(4.11.5.1) Dy. Kx = - 2. Then Dy = Ey is the only possibility.
(4.11.5.2) Dy .Kx=-L ThenD^P1.
Let I be the ideal sheaf of Dy. Since Dy ̂  P1 we can decompose I/I2 ̂  (9^ (- a) + (9^ {a + 1).

We will prove that a~= 1.
Let Cgen be the generic fiber of g. By (4.10.3) 7 (Cgen) = 1 and C^. Kx = - 2 (Cg^

may not be reduced). We can specialize this curve to a one dimensional connected
subscheme CcX such that suppC'=Dy. In general C' may have some embedded
points; let C" be the scheme obtained by removing them. C". Kx = — 2, thus the ideal
sheaf J of C" satisfies I2 c: J c: I and I/J has rank one. Also, 1 = ̂  (C') ̂  x (C") = 1 + X (I/J)-
This implies that deg (I/J) ̂  -1. Therefore a ̂  1.

If a>\ then let J ' be the ideal sheaf of (9^ generated by I2 and by the (9^(a+\)
summand of I/I2. Let D = Spec O^IY. Note that % (D) = 2 - a. D. Kx = - 2 hence by
(5.1) D moves in an at least two dimensional family. If D, is a deformation of D then
every component of D, is a component of a fiber of g, thus it is a smooth rational
curve. D^ can not have two connected components, since this would give
^ (D) = ̂  (D,) = 2. ^s can not be contained in the open set where X is a P ̂ bundle (or
a double line bundle in characteristic two) since there every curve D' whose support is a
single fiber and which satisfies D'. Kx = — 2 always has x (D7) ̂  1. Therefore supp D^
moves in a one dimensional family only. Thus there has to be a one dimensional
family of deformations keeping the support fixed. This is impossible since the (9^(a-\-\)
summand is unique. This proves that we must have a= 1 and E=Spec^x/J ls tne ^V
possibility for E.

This proves that ^==/is flat. Now Y is smooth by [Ma], 21 .D, and as before we see
that g is a conic bundle.

(4.12) Example. — In characteristic two it is possible that every fiber is a double
line. For example, in P2 x P2 with homogeneous coordinates ( x ' . y ' . z , u:v:w) consider
the smooth hypersurface X=(xu2-{-yv2^-zw2=0). Projection to the first factor makes
it into a conic bundle and every fiber is a double line.
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We can also get an example of a threefold Z in characteristic two which has Kodaira
dimension — oo and even satisfies condition (NC) of [MM] but Z is not separably
uniruled. The example is a special case of a recent construction of E. Sato [S].

Using X one can easily construct a threefold Z which is a conic bundle over a
nonuniruled smooth surface S such that the general fiber is a double line. Clearly
K(Z)= -oo.

Let T be the component of the Hilbert scheme of Z parametrising the reduced fibers
of Z. It is easy to see that the natural map T -> S is purely inseparable of degree 4. (In
the example of X the function field of T is k( /x/z, /y/z).) Let U -> T be the universal
family. The natural map U -> Z is also purely inseparable of degree 4.

Assume that Z is separably uniruled. Then there is a surface F and a separable
dominant rational map

Fxp1——-^.

By the assumption on S and the definition of U -> T we get the following diagram

pxp^U-^Z
(4.12.1) I [ I

F -^T-^S

This contradicts the assumption that F x p l - - - - - > Z i s separable.

(4.13) Remark. - (4.13.1) Let g : X-^Y be as in (4.11.1). The surface Y can
have only very special singularities. Indeed, for yeY let x e g ~ 1 (y) be a smooth point
of X. Let x e H <= X be a general smooth surface germ. Then g : (x, H) -> (y, Y) is finite
and surjective. In characteristic zero this implies that (j7, Y) is a quotient singularity
[B, 2.8]. In positive characteristic the situation is less clear.

(4.13.2) If X has only hypersurface singularities and the characteristic is different
from two then one can prove that Y is smooth and g is flat. I don't know how to
prove this in characteristic two.

5. The nonprojective case

(5.1) BIN'S DEFORMATION LEMMA. — Let X be a three dimensional smooth algebraic
space resp. a three dimensional complex manifold. Let C c X be a one dimensional proper
subscheme "without embedded points. Then the dimension of any component of the Hilbert
(resp. Douady) scheme containing [C] is at least — C. K^.

Remark. — This is proved in [E], Lemma 5, for X= P3, for X= P3. The same proof
works for any projective X, but needs some changes in general.

Proof. - Before we get into the general case, let us review the case when X is
projective.

4eSERIE - TOME 24 - 1991 - N° 3



EXTREMAL RAYS ON SMOOTH THREEFOLDS 357

Let I be the ideal sheaf of C. I has a length two resolution by locally free sheaves

(5.1.1) 0-^F-^E->I-^0.

First Horn it into (9^ to get

(5.1.2) O^Hom(I, ̂ ) -^ E* -^ F* -^ Ext1 (I, ^x)-^0,

and note that

(5•1-3) Ext1 (I, ̂ ^Exi2^, ^x)^c®c0x1.

Next Horn (5.1.1) into (9^ to get

(5.1.4) 0 -^ Horn (I, (9^ -> E* | C -> F* | C -^ j2 -^ 0.

From (5.1.2) we see that J^c0c®c0x1. Also note that Horn (I, ^c)^ Horn (I/I2, ^).
Thus we have the following exact sequence:

(5.1.5) 0 -. Horn (I/I2, ^) -> E* | C -. F* | C -^ o)c®(0x ' ̂  0.

Since I is the ideal sheaf of a curve on a threefold, its first Chern class is zero. Therefore
c, (E) = c, (F). Now we can calculate / (Horn (I/I2, ^)) from the sequence (5.1.5) and
we obtain that

X (Horn (I/I2, ^c))=-C.Kx.

A curve in a smooth threefold has no local deformation obstructions, thus the above ^
is a lower bound for the dimension of the Hilbert scheme at [C] (see [G], VI. 5).

If X is not quasi-projective then the resolution (5.1.1) need not exist. However we
will be able to mimick the above proof.

First choose n sufficiently large such that for any local section fe F (U, (9^)

(5.1.6) /.Ic=I(") => /el.

Now let nC=SpecW\ the n-th order thickening of C. This is one dimensional,
hence projective. We have the following partial analog of the free resolution (5.1.1):

( 5 > 1 - 7 ) O^F,^E^I®^c^O.

Here we can choose E^ to be locally free but F^ will not be locally free. Locally in the
etale or Eucledean topology on X we can lift the above complex to a free resolution as
follows. Let UcX be a sufficiently small open set. Then we can have

(5.1.8) O ^ F u - > E u - I u ^ O

such that Eu® ̂  c ̂  E^. Tensoring (5.1.8) by ̂  c we obtain

(5.1.9) O^Tor^(I,^)^Fu®^c^EjU^®^^0.
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Note that Tor1 (I, ̂ c^Tor2^ ^c). m particular it is killed by I. By (5.1.6) this
implies that

(5.1.10) im[Tor^(I, ^c^UFu®^)-

Therefore

(5.1.11) Homu(F^, ^c^Ho^Fue^no ^c).

Next Horn (5.1.7) into ^c to g^

(5.1.12) 0 -^ Hom^ c (I/I2, ^c) ̂  Ho^ c (En, ^c) ^ Horn, c (F,, ^c)
^Ext^c(I®^o^c)^0.

This is the sequence we will use as a replacement for (5.1.5). By the above remarks
locally on U this sequence is isomorphic to

(5.1.13) 0 -> Homu (I/I2, ^c) -^ n011^ (EU, ^c) -^ Homu (FU, ^c) -^ Ex^ (/. ^c) -^ 0-

This gives canonical local isomorphisms

(5.1.14) Ext^a®^ ^c)|U^Ext^(I, ^^^c^cOx'IU.

The two sides of (5.1.14) are defined on n C, thus they are globally isomorphic over n C.
Next we need that c, (Hom(E^, ^c))=^i (Hom(F^c))- This follows from local

considerations again. If we restrict (5.1.8) to U - C then we get

(5.1.15) 0 -^ Fu-c -^ EU-C ̂  Iu-c ̂  0-

Since lu-c^^u-c we nave a canonical isomorphism

detEu-c^det-tpu-c^^u-c-

Since C has codimension two, this extends to an isomorphism

detEu^det^Fu^u-

This will give us a canonical isomorphism

(5.1.16) det(Hom(E,, ^))®det-1 (Hom(F^, ^c))^detFu®det-1 EjC^c-

The two sides again are defined globally over n C hence they are isomorphic. Now we
get the same formula for ^ (Horn (I/I2, ^c)) as before.

(5.2) COROLLARY. — Let C<=X be as in (5.1). Let X i , . . . , x ^ e C .
Let Def(C)^ ^ denote those deformations of C that pass through all the points
X i , . . . , x ^ . Then

dimDef(C)^. . . , ^-C.K^-2n.
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I/there is a surface Cc=Sc=X such that every deformation ofC is contained in S then

dim Def(C)^. . . ,^ - C. K^ - n.

Proof. — In the first case, it is two conditions to pass through a given point x,, in the
second case only one condition.

As an application of the nonprojective case of (5.1) we prove a variant of (2.3) for
nonprojective threefolds.

(5.3) THEOREM. — Let X be a three dimensional smooth proper algebraic space resp. a
three dimensional compact complex manifold. Assume that X contains a rational curve
"which has negative intersection with the canonical class. Assume furthermore that
K (X) ̂  0. Then one of the following holds:

(5.3.1) either X contains rational curves B^ such that ]^B^ is algebraically equivalent to
zero;

(5.3.2) or X contains a surface E which is one of those listed in (2.1.2.1-4).

Remark. — Algebraic equivalence is usually not defined for nonalgebraic manifolds. It
will become clear from the proof that the usual notion makes sense in our case.

Proof. — Since K(X)^O, there is a pluricanonical divisor D. Let/^: P1 -> C\ be the
required rational curve. Since Ci.Kx<0, C\cD. There is a nontrivial deformation
/i, t °f fi anc! a^ ^e images/i ,(P1) are contained in D. Let D^ be the irreducible
component of D that contains all these curves.

We claim that D^ is an algebraic space. Indeed, its desingularization contains infinitely
many rational curves. Therefore it can not have algebraic dimension zero [BPV], p. 129,
and it also can not be elliptic without sections.

Thus, as in (2.3) we get a morphism from a not necessarily minimal ruled surface Z
to X which does not contract components of fibers. If Z is minimal then (2.1) applies
and we get the second alternative.

Otherwise there is a reducible fiber and so C^ is algebraically equivalent to C^+B^.
Here C^.K^<0 and B^ is nonempty (possibly C^=B^). Continuing in this manner we
get a series of curves and algebraic equivalences

C^C^+B,^.

If we ever stop then we get the second possibility. Otherwise we have an infinite
sequence of curves as above. I claim that there must be repetitions in the sequence C,.
If Q = Cj and j> i then

E B^O.
k = i + 1

This is the first possibility.
The singular locus of D contains only finitely many irreducible curves. Thus we have

a repetition if infinitely many of the Q are contained in the singular locus of D.
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Therefore it is sufficient to treat the case when none of the Q are contained in the
singular locus of D. If C^ is contained in the (unique) irreducible component D^, then
the above deformation must happen in D^. The same argument applies for C^, thus
we get that every deformation happens inside D^. Moreover, if D^ is the normalization
of DI then we can lift the curves Q and all the deformations to D^.

Thus we have the following situation:
DI is a normal, proper two dimensional algebraic space. It contains two infinite

sequences of nonzero effective curves Q and B^ such that

C^C^i+B^.

Let ^ :Di-^Di be a desingularization and let H be an ample divisor on D^. Let
H=g^(H). This H is of course not necessarily Cartier, but one can define intersection
numbers of effective curves and of H. These are always positive rational numbers
since H is ample. The possible denominators depend only on the singularities of the
surface, hence they form a bounded set. Therefore the equality

j

H.C\=H.C,+ ^ H.B,
i==2

leads to a contradiction for larger. This proves the theorem.
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