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THE INDECOMPOSABLE K, OF FIELDS (*)

BY MARC LEVINE

Introduction

In this paper, we extend the theorem of Merkurjev-Suslin (Hilberfs Theorem 90
forKz) to the relative^ of semi-local principal ideal rings (PIR) containing a field.
Most of the results Suslin proves for K^ of fields in [S] then carry over to the relative
K^ of a semi-local PIR, e. g. computation of the torsion subgroup, and the isomorphism
K^(F)/n->fljt (F, n®2). Applying this to the semi-local ring of {0, 1} in A^, for a
field E, gives a computation of the torsion and co-torsion in K^(E)ind:=K^(E)/K^(E)dec,
where K.3 (E)^0 is the subgroup of K.3 (E) generated by products from Ki (E). Specifically
we show

1. The (-primary torsion subgroup of K^E)""* is H°(E, Q,/Z,(2)) for
(;, char(E)) = 1; K;3 (E)"^ has no ̂ -torsion if char(E) =p > 0.

2. K3(E; Z/ny^H^E, ̂ 2) for (n, char(E))=l, so ImK^EW^H^E, Z,(2))

for ; ̂  char (E).
3. K^E)11"1 satisfies Galois descent for extensions of degree prime to char(E).
4. Bloch's group B(E) is uniquely (-divisible if E contains an algebraically closed field,

and /^char(E).
Let F be a number field, I an odd prime number, S the set of places of F lying over ?,

and ^s ^e ring of S-integers in F. Quillen (see [Li2]) has conjectured
(Q) There are isomorphisms

^.2: K^-^s^Z^H^Spec^s, Z^(q))

c,,i:^2,-i W ® Z, ̂  H1 (Spec ̂  ^i Q?)).

(*) Partially supported by the N.S.F.
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256 M. LEVINE

Borel [Borel] has computed the ranks of the K-groups K^ (Op) as

1^(^)8)0=0; for q^\
^2q-l^F)®Q=Qr2', tor q=2n, n^\

K24-l(^F)(x)Q=Q r l+ r2; for q=2n+\, n ̂  1.

Quillen [Q3] has shown that the groups K^(^p) are finitely generated. Soule [So] has
constructed Chern classes

^ 2: K,,_, (^, Z/D -. H2 (Spec (9^ (n^)

^.i: K^_i(^, Z/Q-^H^Spec^ (M04),

for any set of places S" containing S, and has verified the surjectivity part of the conjecture
(Q), at least for ; > q, as well as the injectivity modulo torsion.

Soule has also shown that ^2q-l(¥)=K2q-l(^F) for q ̂  2; it is easily seen that the
natural map H^Spec^ Z^^-^H^F, Z,(^)) is an isomorphism for q ̂  2. Bass and
Tate ([B—T]) have computed the Milnor K-groups of number fields; they show in
particular that K^(E) is W2Y\. This, together with (1) and (2), proves Quillen's conjec-
ture for K.3. In fact, for all prime ;, (1) and (2) imply that the Chern class

^2,1: I^F^^Z^H^F.Z^))

is an isomorphism.
For the case F=Q this gives a new proof of the result of Lee and Szczarba [L-S] that

K3(Z)=Z/48. Indeed, it follows from our results that K^Q^^Z/^; to complete the
computation one need only show that the symbol { — 1 , —1, —1} of K^(R) is non-zero
and divisible by 2 in K^Z). This is done, for example, in [Igusa]. More generally, this
gives the complete determination of K^^p), F a number field, as

5. K^^K^^eZ^;

[(Z/^i-^Z^w^F); i f r , > 0
Z/2w^(F); i f r , = 0K3(^F)tor=

where w^(F) denotes the order of the group H^ (F, Q/Z(q)).
Lichtenbaum [Li2] has conjectured that, for F a totally real number field, and q a

positive even number,

(LI) ^(l-^)=#(K^-2(^F))/#(K^-i(^)),

at least up to powers of 2. This follows from the conjecture (Q), and the conjecture of
Lichtenbaum [Li2]:
(Li2) Let F be a totally real number field, I an odd prime, q an even positive number.
Then

(i) the groups H1 (Spec ̂  7* Q(/Z, (q)) and H° (Spec ̂  7* QI/Z, (q)) are finite

4® SfeRIE — TOME 22 — 1989 — N° 2



THE INDECOMPOSABLE Ks OF FIELDS 257

(ii) the groups H^Spec^ J* Qj/^jO?)) are zero for k ^ 2.
(iii) | ̂ (1 -^) [^ #(H1 (Spec ̂  7* Q^, Q?))/#(H° (Spec ̂  7 ^ Q^ 0?)).

Here | — |; denotes the (-primary part of a rational number, and j: Spec F -> Spec (9^ is
the inclusion.

Here is a brief history of this conjecture and its proof:
Birch and Tate ([B], [T2]) conjectured that, for all totally real fields F,

(BT) #(K,(^))=W2(F)i;F(-l).

Tate's computation of K^^p) IT] shows this is equivalent to (Li2)(iii) for ^=2. Coates
and Lichtenbaum ([Li] and [C-L]) then showed conjecture (Li2) follows from the Main
Conjecture in Iwasawa theory relating the /?-adic interpolation of classical L-functions
with Iwasawa's /?-adic L-functions constructed from Galois representations arising from
the cyclotomic J-p extension of F. They also verified the Main Conjecture in some cases.
Mazur and Wiles ([M-W]) proved the Main Conjecture (for odd primes) for abelian
number fields. Recent work of Wiles has extended this to all totally real fields, completing
the proof of (Li2).

Our formula (1) shows that ^^(V)=#(^(V)m\^ which proves (Lil) for q=2. We
can also write this as

(6) ^(-l)=2?#(K,(^))/#(K3(F)ind).

The work of Serre [Se] shows that the exponent ? is non-negative; ? has been shown
by Hurrelbrink and Kolster [H-K] to be 0 for the fields

(i) Q ( /3), d = 2, p, or 2p with p prime, p = + 3 mod 8
(ii) Q( /3), d=pq, with p and q distinct primes p, q=3 mod 8, or d=p with p prime,

p=u2—2w2, u > 0, M=3mod4, w=0mod4
(iii) Q^^
(iv) CHy^, if p and q=(p—l)/2 are prime, and 2 is a primitive root mod q,
The conjectures of Lichtenbaum and Quillen were made "up to powers of 2". From

(1) we see that the "correct" group for q=2 having a good relation with Galois
cohomology, including the prime 2, is K^E)*"4. Let gr^ denote the associated graded
with respect to the gamma filtration. As K^ (^g) agrees with the gr^ K.2 (^g) and ̂  W^
agrees with gr^ 103(6^), at least up to 2-torsion, our results suggest that (Lil) should
perhaps be weakened as follows: for F totally real, the value ^(1—q) is given by the
formula

2q-l

(**) W-q)=a,. ft #(gr?K^(^))(-1)"

where Oq is a rational number involving only primes less than 2q—l. More optimistically,
Lichtenbaum [Li3] and Beilinson [Be] conjecture the existence of a "bigraded arithmetic
cohomology theory over Z", H^(—, J-(q)\ which computes gr^K^.p, up to primes
less than 2q—p, and which has a precise relationship with Galois cohomology. This
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258 M. LEVINE

cohomology theory arises as the hypercohomology of a complex of sheaves T(q) (for
the etale topology in Lichtenbaum's theory, for the Zariski topology in Beilinson's). The
value ^(1—q) should then given as the Euler characteristic

^(\-q)=n#(w^J.(q))rl)p.

This is the motivation for the formula (ick)'
Lichtenbaum [Li4] has constructed the weight two arithmetic complex F(2) for fields,

which gives

H^(F,Z(2))=K,(F)

H^(F, Z(2))=[K3(F,)ind]Gal(FS/F).

From (3), we have H^(F, Z(2))=K3(F)ind, at least after inverting char(F). This gives
some evidence for the interpretation of ^{\—q) as an Euler characteristic. One can
also unite our results, the Merkurjev-Suslin theorem for K^, and Suslin's computation
of the torsion in K^ in a way that is suggestive of an arithmetic cohomology theory. In
fact, we have the exact sequence

O^He^E, ^2)^K3(E) ind^K3(E)md^HA(E, n02)

^ K^ (E) ̂  K^ (E) ̂  H^ (E, n02) -^ 0
xn

where E is an arbitrary field, and n is prime to the characteristic of E. This exact
sequence arises from the exact triangle

F(2)^r(2)
\ ^
n®2
r-n

together with the computation of H^(E, Z(2)) above. This formulation was pointed
out to me by Bruno Kahn.

The proof of Hilbert's Theorem 90 is a modification of the proof used by Suslin in
[S]. The analysis of the H1 (X, Jf^) for x a Brauer-Severi scheme over a (equicharacteris-
tic) semi-local PIR R is essentially the same as in the case R a field. Suppose R contains
H,. Let a be a unit in R, R" the extension R [Xl/X^-a, or the extension R [X]/X^-X -a
if ?=char(R), and J" the Jacobson radical of R". The next step is to show the relation

(*) {^, 1-Norm (x)} e (1 - a) K^ (R01; J01)
iv

for .^(l+J01)^ Norm (x) ^ 1. This is done by the "generic element" method first,
where one can assume that R is local, in which case the relative K^ is a subgroup of the
usual K.2. One then makes a specialization argument, which is the main technical
difficulty. After this point, the proof proceeds essentially as in [S].
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THE INDECOMPOSABLE Ks OF FIELDS 259

The first chapter gives a discussion of the properties of relative K-theory. This is
essentially an extension of most of the results of Quillen's Higher Algebraic K-theory I
to the setting of relative K-theory. Most of this chapter is quite straightforward, but as
there is no reference for the material in the literature we include it here. The second
chapter gives a description of relative K^ via the symbols of Keune and Loday, and the
symbols of Bloch. We also prove some preliminary results required for the construction
of the specialization subgroup and homomorphism, which is the main technical construc-
tion of the chapter. In chapter three, we apply the generic element method to get the
relation described above. We also get simplified generators for K^ (R01, J"), assuming as
in [S] that R has no prime to I extensions and that the norm map N: (1 H-I")* -^ (1 +J)*
is surjective. In chapter four we prove Hilberfs Theorem 90 for relative K^, and the
other results above. In chapter five, we use the continuous cohomology of Jannsen to
extend the results of Tate and Merkurjev-Suslin on Galois symbols to the case of
relative K^.

This work was done while I was visiting the M.S. R.I. in Berkeley during the fall of
'86; I would like to thank the M.S. R.I. for their hospitality, support and encouragement
during my stay. I would especially like to thank Rick Jardine for his help on the
topological aspects of K-theory, and Florence Lecomte, Wayne Raskind, Shuji Saito and
Christophe Soule for patiently listening. Altha Blanchet contributed her expertise in
central simple algebras. Esther Beneish and David Saltman helped a great deal by finally
convincing me that an earlier approach of mine was doomed to failure. Dan Grayson
and Dinakar Ramakrishnan went through many of the details of an earlier version of
this work; the referee did an exceedingly thorough job of going through the manuscript
and gave many valuable suggestions; whatever clarity exists in this version is due to their
help.

Hilbert's theorem 90 for relative K^, and its consequences for K3 have been proven
independently by Merkurjev and Suslin [M-S2]. Their approach differs from ours in
that they derive the behavior of the relative K^ under extension by a Brauer-Severi
scheme by the Galois-theoretic properties of K^, rather than redoing the argument for
fields in the relative case, as we have done. They also acheive some simplification by a
judicious use of Karoubi-Villamayor K-theory to define norms. Finally, they prove the
relation (^) by a more direct method, avoiding our use of specialization. In addition to
the results given here, they show that K3(E)lnd is uniquely /^-divisible in characteristic
p > 0, and they prove a part of a conjecture of Milnor on the relation between Milnor
K-theory and the Witt ring of a field.

1. Relative K-theory

1.1. Here we recall the definition and some basic properties of relative K-theory. For
a more detailed discussion, see [Coombes].

Let /: ̂  -> SS be an exact functor on exact categories ^ and ^. Define (K(/), *)
to be the homotopy fiber of BQ/: BQe^-^BQ^ with basepoint * coming from the
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260 M. LEVINE

zero objects of ^ and ^?. The K-groups of/are then the homotopy groups of K(/):

K,(/):=T^(K(/),*).

One gets a long exact sequence

- K,(/) - K,(^) -> K,W -. K,., (/) -

from the fibration K(/) -> BQ^ -» BQ^.
Let /o: e^o -)> ̂ o be another exact functor on exact categories. Suppose we have a

pair of exact functor G: j^o "-̂  ̂  H: ^?o -̂ , and a natural isomorphism
9:/G-^H/o. Then 9 induces a homotopy BQ9 between BQ/°BQG and
BQH°BQ/o, hence the triple (G, H, 9) gives a map BQ(G, H, 9): K(fo)->K(f). This
induces a homomorphism (G, H, 9) ^: Kp(fo) -> Kp(/), and a commutative ladder

-^ K^ (/o) ̂  K^ (J?o) ̂  K^ (^/o) -^^p-i (/o) ̂

(G. H. 8)* [ G* [ H* [ (G. H. 6)* [

^K,(f) -^K^)^K^) ^K,_,(/)^

Now let X be a scheme over a ring R, Y a closed subscheme jy: Y -^ X the inclusion.
Let ^x (resp. ^y) be the exact category of locally free sheaves on X (resp. Y) of finite
rank. Then 7$: ^x^^Y ls exact; let K(X, Y) denote the homotopy fiber K(/Y)» and
Kp(X, Y) the K-group Kp(/$). Kp(X, Y) is called the pth K-group of X relative to Y.
One defines a relative K/ similarly: let e^x, Y) be the exact subcategory of coherent
sheaves on X, M^, consisting of sheaves ^ with TorfX(^, (9^)=Q for i > 0. Then
7?: ̂ x. Y) ̂  <^y is exact. We let K'(X, Y) denote K(/$: ^x, Y) -> ̂ \ and K;(X, Y)
the pth K-group of j^: «^x. Y) -> ^Y- The inclusions fx : ^x ^^ ̂ x, Y)» ^Y : ̂ Y "̂  •̂ ^
induce i: K^(X, Y) -^ K^,(X, Y), and we have the commutative ladder

^K^(X,Y)^K^(X)^K^(Y)^

I I I
^K;(X,Y)^K;(X)^K;(Y)^

Thus, if X and Y are regular, the resolution theorem shows that Kp(X, Y) -^Kp(X, Y)
is an isomorphism. Similarly, if (9^ has finite Tor dimension over ^x (e- §• X regular or
Y locally principal) the resolution theorem shows that the inclusion e^x, Y) ~^ ̂ x induces
an isomorphism Kp(e^x,Y)) "̂  ̂ p(^x)'

Let h: X'-^X be a morphism of schemes, and let Y7 be a closed subscheme of X'
contained in ft"1 (Y). Then the pair of exact functors (h*, h [yQ; (^x» ^v) -^ (^x'» ^Y')»
together with the natural isomorphism 9 (h*): j^. °h* ->h 1$' °JY? gives a map
(fc*, ^IY', 9 (h*)): K^(X, Y) -^^(X', Y'). We denote this map by A*. If h is Hat, we get
a similar functorial pull-back h*: Kp(X, Y^K^X', Y'). The functoriality of h* is
rather difficult to show directly; we briefly describe the method used in [Coombes], as
this will also be applicable when we discuss multiply-relative K-theory.
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THE INDECOMPOSABLE Ks OF FIELDS 261

Let ^ be a small category. For an object c of ^, we let/c denote the category of
objects over c, i. e. objects are morphisms f: c' -^cin^ and morphisms are commutative
triangles and X: ^ -> Schemes a functor, so {X (c) | ce^} is a set of schemes indexes by
the category (€. Let ^/X (c) be the category in which an object is a set indexed by/c:

{P(/, 0 in Obj (^x(c')) | f ' ' c' -> c is a morphism in ^}

together with a choice of isomorphism j^\ P(/, G')-^(/^(P^, c")) for each
h: (f, c')->(f\ c"). In addition, we require for each fc: (c', /) -> (c" f) and
fc: (c'\ D ̂  (c-, ///) the diagram

x WOfc)
X (hr P(//, c") ——. X (h)* X (k)* P(/-, c-)

^ T T Nat

P(/,O —^ x^^p^-,^)
Jkh

commutes.
Morphisms in ^ are maps g(f, c'): P(/, c/)-^Q(/, c') so that the obvious diagram

commutes. Given a morphism g : b -> c in ^, we get a functor

^*: ^/X(c)^^/X(fc)

by restricting to the subcategory / b of /c. Coombes then shows that (gh)*=h*g*, and
that the projection ̂ /X (c) -^ ^x(c) is an equivalence of categories. In addition, enlarging
the indexing category is compatible with this equivalence. Thus, replacing the spaces
KQ^xcc) with BQ^/X (c), we get a functor from ̂  to Top, which makes that functoriality
of the homotopy fibers obvious. To avoid overburdening the notation, we will hence
forth assume that we have made this construction wherever necessary. A similar
construction works for the categories e^x-

If g: (X', Y') -)-(X, Y) is finite and Y'^'^Y), using the above construction defines
a functorial g^: K;(X', Y') -^K;(X, Y). Given such a g, and a Hat map
h: (Z, W)^(X, Y) with W contained in fc-^Y), let Z^ZxxX', W=WxyY\ and
form the cartesian square

(Z'.WQ^X'.Y')

^ I I »

(Z,W)^(X,Y)

Then /I'-^Y') contains W, and ^(^N^W, so h^: K;(X', YQ-^K^Z', W) and
g^: Kp(Z\ W) ̂ K;(Z, W) are defined and the diagram

K^X'.Y^K^ZYWQ
^ i i <^

K;(X,Y)->K;(Z,W)
commutes. If X, Y, Z, and W are smooth, we get a similar commutative diagram for
the relative K-theories, for g finite as above, and h an arbitrary morphism. To see this,
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262 M. LEVINE

let e^(X, Y) be the subcategory of e^x, Y) consisting of sheaves ^ such that
Torfx(^ ^)=Torfx(^-, ^)=0 for f > 0, and similarly let M\ be the subcategory of
.̂ Y consisting of sheaves ^ such that Torfv (^, 6^) =0 for i > 0. Then
7v: ^(x. Y) -^ -^Y restricts to jy,: ̂ , Y) -> ̂  and ^*: (^ ^Y') -^ (-^ ^y) factors
through ( ,̂, ^v). Letting K^(X, Y) be the homotopy group ^+i(K(/^)), we get as
above a commutative diagram

K^Z.W^K^W')
I ^ I ^

K^(X,Y)^K;(Z,W)

? T . ? T

K,(X,Y)-.K,(Z,W)

where the bottom two isomorphisms come from the resolution theorem, and the five
lemma.

1.2. ADDITIVITY FOR RELATIVE K-THEORY. — The additivity theorem of Quillen for an
exact sequence of exact functors extends to relative K-theory. To see this, it is convenient
to use Waldhausen's [W] construction of the homotopy fiber of an exact functor
/: ̂  -> ̂ . This is the simplicial set F. (/), with n-simplices

Fn(/)={(Ao^ . . . ^A^, Bo^ . . . ̂ , o))}

where the A^'s are objects of j^, the B/s are objects of ^, and co is an isomorphism

co: / (Ai /Ao^. . . ^AJAo)-^(Bo^.. . i-^B^).

Included in this is the data of compatible choices of the quotients A^/A^. and B,/B .̂ for
i >j. The boundary maps d^ are "omit the f-th term" for i ̂  1, and do is "mod out by
Ao(resp. Bo)". Given an exact functor fo'.^o-^^o. a pair of exact functors
G: ^/Q -> ̂ /, H: ^o ~^ ^» and a natural isomorphism 9: f° G -> H o /o, we get a map
of simplicial sets

(G,H,9):F.(/o)^F.(/)
by

(G, H, 9) ((A, B, co))=(G(A), H(B), H((o)o9(doA)).

In addition, Waldhausen shows that QBQF.(/) is a natural model for the homotopy
fiber of BQ/: BQ^ -> BQ^?. We now show

PROPOSITION 1.1. — Let fo: ^o -> ̂ o, /: ̂  -> ̂  he exact functors, and let

0 -> (G\ H\ 9') -> (G' H7 9) -> (G", H", 9") ̂  0

be an exact sequence of functors from (^o» ^o) to (^ ̂ \ ^ith compatible natural
isomorphisms. Then

(G, H, 9)*=(G7, H', 9/)*+(G//, H", 9")*

asmapsK,(f^^K,(f).
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THE INDECOMPOSABLE K.3 OF FIELDS 263

Proof. — Let E (/) be the simplicial set with E^(/) consisting of short exact sequences
EinF,(/).- E=O^E^E^E^O.

The exact functor (s, q): E^(/) ̂ (F^(/))2 induces by [Quillen] a homotopy equivalence
Q(s, q): QE^(/)-^Q(F^(/))2, hence a homotopy equivalnce BQE.(/)^(BQF.(/))2.
Let ©^BQF^^BQE^) be the section (P, Q) -^(0-^P->P©Q-^Q-^0) to
(s, ^). An exact sequence of pairs of exact functors with compatible natural isomorphisms

0 ̂  (G', IT, 9') -^ (G' IT 9) -> (G", H", 9") -> 0

from (^/o, ^So) to (^/, ^) gives an exact functor a: F.(/^)-^E.(/). A choice of
homotopy from idBQE.(/) to Q°(s,q) gives a homotopy from BQ(G, H, 9) to
BQ(G', H', 9') © BQCG", H", 9"). This gives the desired additivity. D

1.3. PRODUCTS. — In [Weibel] products in relative K-theory are constructed using the
Waldhausen construction above. More specifically, there are functorial products

U: K^(X,Y)®K,(X)^K^(X,Y).

Moreover, if /: X' -> X is a finite morphism with (9^. projective as an (9^ module, and
Y^/'^Y), then we have the projection formulae:

(14) f^U/*(P))=^(oOUP; oceK^X', Y'), ReKJX)
l^(/*(a)UP)=aU/^(P); OC€K^(X,Y), peK,(X').

1.4. The five lemma gives the homotopy property: Let 71: A^ ->X be the projection, Y a
closed subscheme of X with ^y having finite Tor dimension over ^x- Then
TC*: Kp(X, Y)^Kp(A^, A^) is an isomorphism. If X and Y are smooth, then
7t*: Kp(X, Y) -> Kp(A^, A^) is an isomorphism.

1.5. THE LOCALIZATION SEQUENCE. — Let (X, Y) be as above with (Py of finite Tor
dimension over (9^. Let Z be a closed subscheme of X with (9^ in e^x, Y)- Let U=X —Z,
YU=YOU, YZ=YOZ. By the resolution theorem, the inclusions e^x, Y) ~'̂  ^x»
^(u. Yrj)-> ^u? an(l ^(z, Y ) ~^ ̂ z induce homotopy equivalences on the Q constructions.
In addition, the localization theorem of Quillen shows that

K'(Z,Yz) ^K^X.Y) ^K'(U,YJ
i I I

BQ e^z, Yz) —^ ®Q ̂ (x. Y) ~^ ®Q ̂ (u, Yu)
i i i

BQ ̂ .z -̂  BQ ̂  -̂  BQ ̂ u

is a commutative diagram of homotopy fiber sequences. The Quetzlcoati lemma then
shows that the natural map

K^Z, Yz) -. fiber (K'(X, Y) ^K'QJ, Yy))
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264 M. LEVINE

is a homotopy equivalence. This gives a long exact localization sequence

(1.5) -^ K;(Z, Yz) ̂  K;(X, Y) -. K;(U, Yy) -5. K,_, (Z, Y^) .̂

Swan has shown in [Swan] that the localization sequence for K' theory is natural; the
same argument applied to the Waldhausen construction for K'(X, Y), K'(U, Yy) and
^(^ ^z) shows that (1.5) is natural for pullbacks by flat maps, and pushforward for
finite maps.

1.6. QUILLEN SPECTRAL SEQUENCE. — In this section we suppose that Y is a locally
principal subscheme of X, defined locally by a non zero-divisor. Then Mr^ Y) is just the
category of coherent sheaves having no ^y-toTsion, In particular, if Z is a reduced closed
subscheme, then 0^ is in e^x. Y) if and only if Z intersects Y properly. Furthermore, if
3F is in M^ Y)? ^en supp(^) intersects Y properly.

Let ^;x,Y) be the subcategory of ^(X,Y) of sheaves ^ with codinix supp (^) ^ i.
Then 7$ maps ;̂x, Y) to ^\\ let K^X1', Y1) be the homotopy fiber of
BQj'Y: ̂ x, Y) -^ <^Y- By ihe remarks above, the map

(1.6) lim K' (Z, Zy) -> K' (X1, Y1)

z <= x
Z reduced, closed

subscheme of
codim ^ i with

Z intersecting Y
properly.

is a homotopy equivalence. Let ^Jx, Y) be the direct limit

^[x,^)^' ^lm ^pC-Z, Y-Z)

Z <= X,
Z intersecting

Y properly
codimx Z ^ k

and let M^ be the direct limit

^iYk= lim e^Y-z

Z <= Y
codimY Z ^ k

Let K^X'/*, Y^) be the homotopy fiber of BQ^^y^BQ^*. Then (1.5), (1.6),
and a limit argument shows that

K^X*, Y^K^X', Y'^K^X^, Y'7*)
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is a homotopy fiber sequence. Let

K;(X'/\ Y^^i^X^, Y1/*)),

Ko (X'/*, Y'^) = Im (Ko (X', Y^ ̂  Ko (X'7*, Y'7*)),

KO (<^(x, Y)) = lm (^O (^^(X, Y)) "~^ ^O (•^(X, Y)))*

The method of the exact couple gives a spectral sequence

E?^(X,Y) => K^.,(X,Y),

K-.^.^X^^, Y^^); -^-q > 0, p ^ dimY.
(1.7) E^(X | Y)= K^X^-'1, Y^1); -p-q=0.

0; otherwise

The filtration on K^(X, Y) is the "topologicaF filtration:

F^K^X, Y)=Im(K^(X^, Y^K^X, Y)).

We denote F^K^X, Y) by K^(X, Y^ and the E^ term Gr^K^X, Y) by
K^Y)^-^.

We can similarly form an E^ spectral sequence converging to K^(X):

E?^(X|Y) =^ K'_,_,(X),

K-p-,(e^fx^)1); -^-^ > 0, p ^ dimY
(1.8) E^(X|Y)= Ko(^fx^)1); -p-^=0,

0; otherwise,

and an Ei spectral sequence converging to K^(Y):

E?^(Y) ^ K^-^Y),

E?^(Y)=K^^(^^+1).

If the maps K^X^, Y^ -^ KoCX^-'1, Y^4-1) and Ko(^fx. Y)) -* Ko(^fx^)1) are surjec-
tive for p=0, .. ., dimY, then we get a long exa6t sequence of Ei terms:

_, E^ ^-1 (Y) ̂  E?'^(X, Y) -^ E^'^X | Y) -> E?' ^(Y) ->

compatible with the differentials. We also have the usual Quillen spectral sequence on
X:

E^(X) ^ K'.^.JX),

E;^(X)=K^.,(^^+1).

The inclusion ̂ ^\\ -^ ̂ ^+ x gives a map of E^ terms compatible with the differentials.
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LEMMA 1.2. — Suppose X is quasi-projective over a Noetherian ring, and regular in a
neighborhood o/Y. Then the mapping Ox-v)*: ̂ x^ -^ •^x^Y1 induces an isomorphism

Ko (^x^) ̂  Ko (^x^1) ̂  © Z
^(X-Y)^

Zn addition, ifX is a scheme over afield k, then Q'x-y)* S^s rise to short exact sequences
(q ̂  I):

0 - K, (^Y)1) - K, (^!1) ̂  K,_, (^/p+1) -. 0

. T . 1
©K,(fe(x)) ®^_,(k<j))

X6(X-Y)P yeYP

Here, 8 is the composition
inc 9 Proj

K/^Y1) ̂  K,^^^^2) ̂  K,_, (^+1/^2) ̂  K,., (^+1)

^ T < T < T < T
©K,(k(x)) ©K,(fe(x)) ©K,(fe(x)) ©K,(k(j))
jce(X-Y)P xeXP xeXP-^ 1 ygYP

Proo/- For Z a closed subset of X, let ̂ (z) denote the category of (9^ modules ^
with supp(^) c: Z. Let ̂ fv1 be the direct limit

M^\y= lim ^x-w(Z-W)

W <= Z <= X
codimx Z = p

codimx W = p +1
W, Z intersect Y properly

The resolution theorem [Quillen] shows that Q^fx^'v)1 -^Q^x^Y1 ls a homotopy
equivalence. Indeed, given ^ in ^x-w(Z—W)» with Z, W as above, we can find a
closed subscheme S c X—W, with codimx -^3£-=p, and fi^ having no ^y torsion, such
that SF is an ^P^ module. Take a surjection

0-^K^(^(N))n->^^^0,

then K is also ^y torsion free, hence K and (^(N))" determine elements of ^^\\,
and the hypotheses of the resolution theorem are satisfied.

The localization theorem [Quillen] shows that

(*) Q^^' -^Q^fY1 -^Q^X^Y1

is a homotopy fiber sequence. On the other hand, let x be a generic point of a
codimension p irreducible subscheme of Y. Take a closed codimension p reduced
irreducible subscheme D of X such that D contains x, D is regular at x, and D intersects
Y properly. Ler R be the semi-local ring of D 0 Y in D, R1^ the normalization of R.
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Then R1'4 is regular, semi-local, and one dimensional, hence a PIR. In particular, the
inclusion map x -> Spec(RN) induces the 0 map

Z ^ Ko (k (x)) -^ Ko (R^ ̂  Ko (R).

Thus Ko^Y^^) -^Ko^x^Y1) is the zero map. This, together with the localization
sequence derived from (^), shows that the map Ko (^^f?1) -^ Ko (^X^Y^ ^ an iso-
morphism, which proves the first assertion.

For the second, as X is a scheme over a field, the ring R^^ is regular, semi-local, and
contains a field. Thus, by Gersten's conjecture (proved by Quillen [Quillen] in this case),
the map

K,(k(x))^K,(R^^K,(R)

is the zero map. Thus KJ^^1) -> K^^fy1) is the zero map, and the sequence

0 -^ K, (^fy ̂  ̂  K, (^y) ̂  K,_ i (^+1) -^ 0

< T
K,(^fx^)1)

derived from (^) is exact. This proves the second assertion. D

LEMMA 1.3. — Suppose X is quasi-projective over a Noetherian ring and regular in a
neighborhood ofY. Then the map

Ko (e^fx, Y)) ̂  Ko (^fx^)1); 0 ̂  p ^ dim Y

fs surjective. J/Y is regular, then the map

K'o (X^, Y^) ̂  Ko (X^1, Y^/^1); 0 ̂  ̂  ̂  dim Y

is surjective.
Proof. — By the previous lemma, we have

Ko(^fx^)1)^ e z^ e Ko(fe(x)).
xeCX-Y)1 ' xeCX-Y)^

Similarly,

Ko^Y7^1)^ © Z^ © Ko(k0)).
y 6 Y^ y e Y^

In the commutative ladder with exact rows

^Ko(X^,Y^) ^Ko(^fx.Y)) ^Ko(^)
(*) i « i P i

^ Ko (X^/^1, Y^) ̂  Ko (^Y)1) -> Ko (^/p+1)
yP/P+l
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we have compatible splittings 5(x, Y) anc! Sy to a and P, where s^ y) ls defined by
sending the vector space of rankn over k(x\ for x in (X—Y)^ to the free rank n(9^
module; s^ is defined similarly. This proves the first assertion.

We have the exact relativization sequence

-> KI (e^fx^) -^ KI (^p+l) -> K^x^-^, y p / p + l ) ->
® k(yr

yeY^

Given ^ in Y^ chose a reduced irreducible subscheme D containing y as in lemma 1.2.
We retain the notations of that lemma. Given a in k (y)*, we can find a unit u in the
semi-local ring R such that u restrict to a at y, and u restrict to 1 at all other closed
points of Spec(R). This shows that the map K^e^ffx^) -^K^e^^'*'1) is surjective,
and the map y in (*) is injective. The second assertion follows from this and the existence
of the splittings s^ y) an(! Sy. D

As a consequence of the lemmas above, if X is quasi-projective, and regular in a
neighborhood of Y, and Y is regular, then the E?' -p terms in the spectral sequences
defined above are

E?' ~P(X, Y)^^^^, Y^-")

E^-^Xl^^^fx^).

To end this section, we consider an important case of the above. Let R be a semi-
local PIR containing a field ko. Let I = (t) R be the Jacobson radical of R, R = R/I. If
g: T-^Spec(R) is an R-scheme, we let T denote the fiber g-l(Spec(R)). R(T) with
denote the semi-local ring of T in T, I(T) the ideal (QR(T). We will occasionally abuse
standard terminology and refer to the total quotient ring of R as the quotient field of R.

LEMMA 1.4. — Suppose that X is a quasi-projective R-scheme, smooth over R, and
Y=X. Then the map E^(X [ Y) -> E^(X) is an isomorphism.

Proof. - We apply lemma 1.2 to describe the Ei term E?^(X [ Y):

O^E^(X[Y) -^ ® K.,_,(fe(x))^ ® K^_,_i(fc 00)^0.
^(X-Y)^ yeY^

From this it follows that the E^ term is given by

ker[ ® K^_,(fe(x))^ ® ^-p-,-i (k(x))]
gp. q^ \ Y) = x^(X-Y)P_____________xeXP+l________________

2 I a[ker( ® K^_,^(^(x))-^ © ^-p-,(k(y))]
xe(X-Y)p~l 8 yeY^"1
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Similarly, the E^ term E^(X) is given by

ker[ © K_^(fe(x))^ © K_^_,(fe(x))]
E^' ^ (X) = xexp_________xexp+l_________

3[ © K_,_^(fe(x))]
X6X^- 1

Let ^ be a class in E^(X). Represent ^ by z,

ze © K_^(fe(;c)).
X6X^

We write z as

^ Z ^ ^eK_^(fc(x)).
X€XP

If x is a codimension /?-! point of Y with z^O, the take D containing x as in
lemma 2.1. By Gersten's conjecture applied to the regular ring I^D)^ we can find n in
K-p-^i(feo(D))with

- ari=z^+T; T= ^ T^,
x € \P n D

so that T,=O for all y in Y^-1. Then z7: =z-ar| is a new representative for ̂  repeating
this for all x in Y^ 1 with z^ ^ 0, we see that ^ is in the image of E^(X | Y). This
proves surjectivity; the proof of injectivity is similar and will be left to the reader. D

1.7. RELATIVE K-THEORY OF PROJECTIVE SPACES. - Let S be a scheme, S a closed
subscheme, V a locally free sheaf of rank n on S, f the restriction to S, X=P(^),
X = P (Y^). The pair of exact functors

(F,,F,): (^^s)-^(^x^x)

(^, <?)-^(x)6?x(-0, <?8)^x(-0),

together with the natural isomorphism

9,(<T): ^(^ ® ̂ x(-O) ̂  ̂ W ® ̂ x(-0

gives for each i a homomorphism

(F.,F,,9,)^: K^(S,S)^K^(X,X).

Since the maps

n-l n-1

E F,,: ©K^S)-^(X),
1=0 i=o
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and

^ F,.: ® K^(S)^K^(X)
1=0 i=o

are isomorphisms, we get the following computation of K^(P(^), P(^)):
n-l n-1

(1-9) E (F,, F,, 6,)^: © K^(S, S) -^(P(r'), P(r-)) is an isomorphism.
1=0 i=o

Now suppose S=Spec(R), where R is a semi-local PIR containing an infinite field feo.
We retain the notations of the end of the previous section. C. Sherman [Sherman] has
shown that the Quillen spectral sequence converging to K^(P^) degenerates at E^ for k
a field or a semi-local ring; we now prove an analogue for the relative situation.

PROPOSITION 1.5. — Let -r=Rn+l. Let (X, X)^?^), P(^)). The spectral sequence

E^(PCr), P(^)) => K_^(POQ, P(^))

degenerates at E^. The E^ term is given by

E^(POT), POT)) ^ K_^_,(R, R).

The isomorphism above is given by the composition

K_,_,(R, R^K.^O?^ P-^-K^.^^^x)1),
^p

where P""^ is any codimension p linear subspace of P(Y^), and

Tip: P"-p-^Spec(R)

is the projection. Finally, let y be the class of (P^(—l) in K()(X). Then the topological
filtration on K^ (X, X) is given by

K,(X,X)^= ^ (l-Y)^U7i*(K,(R,R)).
j ^ p

Proof. - We denote P(RS+1) by P5; similarly denote the affine space
Spec(R [Xi, . . ., XJ) by A5. We first prove the following

CLAIM. — Let Z be a reduced closed codimension p subscheme ofX, flat over R. Then

Im(K^(Z, Z^K^X^-1, X^-1)) crIn^K^P"-^ P"-^-^K^X^-1, X^-1)),

w^r^ p""^ f5 any codimension p linear subspace ofP".

Proof of claim. — Take a codimension 1 linear subspace P"~1 of P" such that no
component of Z is contained in P""1. Let p be an R-valued point of P^-Z. Then
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projection from p defines a linear map fp

f^ p^-pH-i^A"-1.

A"

In addition, letting Z° be the intersection Z 0 A", the restriction

f^:Z0^^

is a finite morphism. Let T| be in K^(Z, Z), r|°=reszo(r|) in K^(Z°, 2°). We have the
diagram

A"<-A"x^-iZ°^AzO
i ^p .i T .

A"-1 ^ Z°
/piz°

where 5 is the section induced by the inclusion i of Z° in A". Since A^o is the trivial line
bundle over Z°, we can find a regular function / on A^o with s(Z°) defined by the
ideal (/). Let W° be the image ^(A^o). Then, letting" denote reduction modr, we
have the exact sequences of functors

0 -> q^g* -^ q^g* ̂  q^s^ -^ 0; q^s^=i^

and

_ - _ - x 7 _ - _ _ -
0 ^ q ^ g * ^ q ^ g * - ^ q ^ s ^ - ^ 0 ; q^s^=i^

from ^zo, z°) to «^w°, w°) an(l from My to e^y0 respectively. This, together with the
natural isomorphisms

9 ' ' J^° ° (q^ g*) -> (q^ g*) °Jl°

and

^'' ^oo^-^^07zo

gives an exact sequence
x (f,f)

0 - (^ q^, 6) —^ (^^, ̂ ^, 9) - (^ ̂  9-) - 0

of pairs of functors with compatible natural isomorphisms. Thus

i°,: K^ (Z°, Z°) ̂  K^ (W°, W°);

f0 : Z° -^W° the inclusion, is the zero map, by Proposition 1.1.
Let W be the closure of W° in P". From the localization sequence

^ K;, (w n P"" \ w n P"" l) -> K^ (w, w) -^ K^ (w°, w0) -^,
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we see that ^(r|) in K^(W, W) is the image of a class ^ of K^(Wn P"-1, WO P""1).
By induction on n, there is a P"^ in Xi^P""1, and an element a of K^P""^ P""^)
with the image of ^ in K^X?-2, X;~2)) equal to the image of a in K^(X?-2, X?-2)).
Thus, the image of ^ in K'^X^-1, X^-1)) equals the image of a in K^X^-1, X^-1)).

On the other hand, if Y and Y' are two P^-^s contained in a P^P-H^Y", then the
exact sequences

0 -^ A- -^ ̂ v" -^ ^v ̂  0Y —^ U/Y" " " '-'Y '

and
0 -> JS--^ ̂ v- -^ ̂ v ̂  0.Y^;—^ ^Y" ' v/\' '

together^ with the isomorphisms ^ ^ (9^" (-1) ^ ^Y'» and the isomorphism
K^ (P4, ?<») ̂  [K^ (R, R)]^1, shows that.

Im [K^ (P^, P"-^)) -^ K^ (X^-1, X^-1)]

is independent of the choice of the P"^m P". This proves the claim. D
Next, we note that i^: K^ (P"-^ P"-^) -> K^ (P", P") is injective for all linear subspaces

;: p"-p -^ p". indeed, we have the localization sequence

-^(P"-1, P^-^^K^tP", F^-^K^tA", A")-^
^ ^ < T"5

K^(R,R)
so 7* is split by TC$ (7t$) ~1, and f^ is thus injective. The general case follows by induction.
As a consequence, the map

(*) K^X^, X^) ̂  Im [K^X^^2, X^2) ̂  K^X^^1, X^^1)]

is surjective. Jndeed, let r} be in K^X^2, X^4'2). Take ^ to be the element 8(r\) in
K^.^X^'^2, X^2), where 5 is th^ boundary in the localization sequence

K^, X^) -^ K^X^-'2, X^-^2) -^ K,_i (X^-^2, X^-"2) ̂
, . " ^ •

Then ^ goes to zero in K^^X^, X^); on the other hand, we can find a T in
K^^^-1'-2,?"-1'-2)^^ J

Im R ̂  K,_, (X^1, X^ ̂ ] - Im [T -^ K,_ ^ (X^1, X^1)].

As K^.^P^-^-2, P"-^-2)-^.^^ X^ is injective, this forces T to be zero, hence ^
goes to zero in K,_ i (X^ \ X^^1). Let 6 be the boundary in the localization sequence

K^X^, X^K^X^1, X^1)-5^-^^1, X^1)-^,

and let ^ be the image of n in K^X^-'1, X^-'1). Then the element S^') of
K^^X^''1, ̂ p+l) is the image of ,̂ hence 8(r|)=0. Thus there is a o in K^(XP, XP)
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with

Imta-^K^X^1, X^1)]^',

hence (^) is surjective, as claimed.
An immediate consequence of the surjectivity of (^) is the degeneration of our spectral

sequence at E^. In addition, the surjectivity of (^), together with the claim proved
above, shows that the map

s ' K flP""^ P"~^ —^ F P ' ^ — V P , 9" P ' ^-p-q^ » " / ' I - / 2 —^oo

is surjective. Since the subgroup ^(K.p.JP""^"1, P"-^-1)) of K^^P""^ P""^)
clearly goes to zero under Sp, for any hyperplane i: p"-^-1-^?"-^ this proves the
statement about the topological filtration on K^(P", P"). Finally, let i : P""^^ P" be
the inclusion, Kp: P"^ -^ Spec(R) the projection. Since

i>^(a)=(l-Y)^mod ^ (l-^UK^R, R)
J > P

for a in K^(R, R), we see that fp*7^(a)=0 implies a=0, so Sp is an isomorphism, which
completes the proof. D

COROLLARY 1.6. — The sequence

O^K^R, R) ̂ K^P"), R^P")) -> K^lOP71)1/2, (P")1/2)
f t .Odl.

is exact.
Proof:

ker(rff '°)=E^0

—C*,0
"-^oo

=K^(Pn, P")0/1.

On the other hand,

n-l

K^P", P")0/^ ® y^U^K^R, R)/(l-y)U7r*K^(R, R)
1=0

^7i*K^(R,R). D

1.8. RELATIVE Ki. - We return briefly to a more general setting. Let X be a smooth
scheme over a field fe, Y a locally principal closed subscheme of X. We want to compute
K^X^1, Y^1).

LEMMA 1.8. — Let Z be a reduced semi-local k-scheme of (Krull) dimension one, Z a
principal closed subscheme defined by a non zero divisor. IfZ^ is an irreducible component
of Z, let Z, denote Z, 0 Z. Suppose for each closed point z of Z, there is an irreducible

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



274 M. LEVINE

component Z^ of Z with localization Z^ ̂  o/ Z^ at z isomorphic to Spec (fe (z)). Then the
two sequences

0 -. KI (Z, Z) -> KI (Z) -^ Ki (Z) -^ 0

and

0-^ Ko(Z, Z) ̂  Ko(Z) ̂  Ko(Z)-^ 0

ar^ exact.

Proof: We need only show that K^(Z) ->• K^(Z) is surjective for i= 1, 2. By devissage,

K^Z)^ © K,(k(z)).
Z € Z

The assumption Z, ̂  ̂  Spec (fe (z)) implies that the composition

Ki(Z,)^Kl(Z)^Ki(fe(z))

is just the restriction map

r(z,,^)-^fe(z)*.

The result for K\ now follows from the Chinese remainder theorem. Since K^(k(z)) is
generated by symbols, a similar argument proves surjectivity for K^, completing the
proof. D

COROLLARY 1.9. — Let X be a smooth scheme over k, Y a locally principal closed
subscheme. Then the sequence

0 -. K^X^/^1, y P / P + l ) -^ K,(^fx^)1) -> K,^^1) -^ 0

fs exact for i = 0, 1. In addition, we have the exact sequence

O-^Ki^fx^)1)-^ © fe(x)*-^ © Z-^0
^(X-Y)^ yeY^

and an isomorphism

Ko(^fx^)1)^ © Z.
^(X-Y)^

Proo/. — The first statement follows from lemma 1.8 and a limit argument; the second
is a special case of lemma 1.2. D

46 SERIE - TOME 22 - 1989 - N° 2



THE INDECOMPOSABLE K^ OF FIELDS 275

Remark. — One important consequence of corollary 1.9 is encapsulated in the commu-
tative diagram:

K'2 (X^- l /p, Y^- l fp) ̂  9 K^ (fe (x))
xeXP- 1

. I 8 I ^T

0 ̂  KI (X^ S Y^1) -^ ® KI (fe (x))
xeXP

where T is the usual tame symbol map. In words, for T| in K^X^"1^, Y^"!^), we can
compute 5(r|) as the tame symbol T^'), where TI' is the image of TI in © K^ (k (x)).

x e X P - 1

We also have

COROLLARY 1.10. — We retain the conventions immediately preceding lemma 1.4. Let
S=Spec(R), where R is a semi-local PIR with infinite residue fields, n: A^ -»-S the affine
line over S. Let s: S -> A^ b^ a section to n, B (te semi-local ring of s(S) fn A^, and kt
L=R(A^) fc^ t/i6? semi-local ring o/A^ m A^. T^n ̂  wa/?

K,(B,B)^K2(L,L)

induced by the inclusion B —> L fs infective.

Proof. — Let U be an open subset of A^ containing each generic point of A^. Then
there is a section a: S -»• U to n |u. Since

7i*: K^R^K^A^As1)

is an isomorphism by the homotopy property (§1.4), it follows that the map
K,(A;|, A;j) -> Kf(U, U) is injective. Passing to a suitable limit, we see that the maps

K^ (Ai, Ai) ̂  K^ (B, B); K^ (Ai, Ai) ̂  K^ (L, L)

are injective.

Let IL, IB be the index sets

IL={Z c: A^ | Z is reduced, closed, codimZ=l, Z is flat over S}

lB={Z<=As1 |ZelLandZns(S)=0}.

We have the compatible localization sequences:

0 -. K^ (As1, As1) -^ K^ (L, L) ̂  lim K^ (Z, Z) ̂  0
II t Z6IL tII a T P T

0 -̂  K2 (Ag1, Ag1) -̂  K2 (B, B) ̂  lim K\ (Z, Z) -̂  0
Z e i a
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We can restrict the limits to be over Z's which satisfy the hypotheses of lemma 1.8. If
Z is of this type, the argument of lemma 1.8 shows that the map

Kl(Z)^K,(k(Z))=fe(Z)*

is injective. Thus the map P is injective, hence a is injective, as desired. D

1.9 RELATIVE K-THEORYOF BRAUER-SEVERI SCHEMES. - Let R be as in § 1.7, with Jacobson
radical (t) R, and let 2 be an Azumaya algebra over R. Let S = Spec(R), and let n: X -^ S
be the Brauer-Severi scheme associatied with 3>. Quillen's computation of the K-theory
of X gives pairs of functors

(G,, G,): (̂ >., ̂  0 ̂  (^ ^x)

by

G,(^)=j^®^®f^; G,(<?)=J(8)^®,<?,

where ^ is a certain vector bundle on X, J the restriction to X. Letting 6, be the usual
natural isomorphism, we get maps

(G,, G,, 9,)^: K,(^l, ̂  l) ̂  K,(X, X).

From Quillen's computation of K^(X) and K^(X), together with the five lemma, the
map

dim X dimg X

S (G,, G,, 9,)^: © K,(^ \ ̂  i) -^ K,(X, X)

is an isomorphism.
The explicit discription of K^ (3)®i) as Q®i^ \ Q®i] shows that the restriction map

Ki^01)-^^01)

is surjective. This gives the exact sequence

O^Ko(X,X) ^ Ko(X) ^ Ko(X)

d**"SX ' ? dimgX v ? dimsX T

0 -^ © KQ (^\ ̂ i) ̂  © Ko (^el) ̂  © Ko (^0i)

1=0 1=0 i=o

If ^<8> l is split, it is easy to see that the map

K^01)^!^^1)
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is also surjective, giving the exact sequence
O ^ K i ( X , X ) -^ Ki(X) -> Ki(X)-^0

dimgX T dimgX " dimgX T

0 -^ © Ki (^0l, ^(8>l) ̂  © KI (^0l) -^ © KI (^(8>i) -^ 0
i=0 i=0 1=0

As the 2®l are semi-local, the map

Ko^^Ko^01)

is injective, hence Ko(X, X)=0. We now show a similar vanishing of the E2 terms in
the Quillen spectral sequence for relative K^ (X, X).

Let CH^X, X): =E^ "^(X, X). The maps on the E^ terms give a complex

CH^X, X) -^ E^' -^(X | X) -> E^ -^(X).

By lemma 1.4, and a quick look at the E^ terms, this is

CW(X, X) -> CHP(X) -^ CHP(X).

LEMMA 1.11. — If 2 is split, then CH^X, X) -> CIP(X) is injective.
Proof. — This is obvious for p=0, so assume that p ^ 1. Let z be in

K^X^'^1, X^^), L^. z is a codimension p cycle on X, flat over R, with z .X=0 as a
cycle on X. Suppose the class of z in E^' "^(X | X), [z], is zero, i. e.

z=^d^(fi)
i

with the fi in k (D;)* for codimension /? — 1 subvarieties D; of X, flat over R. Specializing
the collection ^(yi, D,) to X gives an element ^(^? Di)

^aD,)e © k(x)*.
xeX^

Since

Sdiv(7;)=(Sdiv(y,)).X=z.X=0,

^(J;., D,) determines an element ^ of E^ "^(X). We note that E^' ~P~1(X) is the
cohomology group H^X, JTp+i). Since ^ is split, X is justPRn-i [n=rankR(^)], and
H^X, JTp+i) is isomorphic to the group of units R*. Let u be the element of R*
corresponding to ^, and lift M t o u i n R * . We may replace ^(/i, D;) with ̂ (u~1 /„ D^),
so we may assume that ^=0 in H^(X, Jfp+i); thus i f / ? ^ 2 w e can find a reduced closed
subscheme E of X of codimension p—2, and TI in K^(k(E)) with

T(TI) =E(^ Of) (T=tame symbol).
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After adding components to E, and extending rj by 1 on these additional components,
we may assume there is a reduced closed subscheme E of X, flat over R, with E=E 0 X.
Let R (E) denote the semi-local ring of E in E. Since since K^ (fe (E)) is generated by
symbols, we can lift (rj, E) to (r|, E), r|eK:2(R(E)), with E Hat over R, and of codimen-
sion p-2 on X. Modify Y,{u~1 f,, D,) by T(ri) to get ^(//, D,). If p= 1, then our
element ^(/p D,) is just an element / of fe(X)*, and we take f^u'^f. Then
^(//, D^) gives an element of Ki^^1), i.e., ^(//,D9 gives an element T of
KI (X^ + \ X^F +1) with div (r) = z. Thus

[z]=0 in CH^X, X)

as desired. D

COROLLARY 1.12. — IfS is split, and 2 has prime rank I over R, then CI-P(X, X)=0
for all p ^ 0.

Proof. — Let h: T -> S be a finite degree ; cover splitting Q\ we may assume that T is
etale over S. Since dim(X)=;, CH^X) [!/(;-1)!] injects into Ko(X) [!/(;-1)!], which
injects into K()(XT) [!/(<-1)!]. Since the kernel of

/!*: CHP(X)->CHP(X^)

is J-torsion, h* is thus injective. Thus

h*: CH^X.X^CH^XT)

is injective, with /^(CH^X, X)) contained in the kernel of

;*: CH^XT^CH^XT).

Since Xy is a projective space over T, i* is injective, hence CH^X^)^, as
claimed. D

COROLLARY 1.13. — Assume that Q) is split, and Q) has prime rank I over R. Suppose
further that R contains an infinite field feo. Let h: S' -> S be a finite etale cover. Then

Ei'-^X.X^Ei'-^Xs.XsO

is injective.

Proof. _- Since CH^X, X)=E^' ~P(X, X)=0, the differentials going out of
E^f~2(X, X) are all zero for r ^ 2. There are no differentials going into E^'"2 by
reasons of dimension, so

Ei' -^X, X)=E^ -\X, X)=K,(X, X)1/2,

and similarly for (Xy, Xy). We may assume that S' splits 2, i.e. Xy is P^71. By the
computation of K^(Xg', Xy) in paragraph 1.7, we have

1 - 1
R^XS,:^®^^*^;

1=0
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Ig. the Jacobson radical of Rs-: =r(S', Oy)'
By the sequence (1.10)', the map K^(X, X) ^Ki(Xg', Xy) is injective. Let N be the

subgroup of R^ of reduced norms from 2. Similarly define N as the group of reduced
norms from S. Then N is isomorphic to K^ (^), N is isomorphic to K^ (S), the kernel
N° of N -^ N is isomorphic to K^ (^, ^). Thus N° is the subgroup of N of reduced
norms z=Nrd(x) from 2 with z=l mod(Q. Furthermore, we can identify K^(X, X)
with the subgroup

<-i
(1+4)*® ©N°.y1

1=1
i-i

of © [Rs^y^K^XsO.
1=0

The topological filtration on K^ (Xg., Xy) is given by
/<-!K^x^xsO^fzo-yy^i+isr)
\i=P )

SO
l-l

K,(X^ Xs^HK^X, X)= ^ (l-yy.N0.
i=2

Take a in N°, so a=Nrd(x) for some x in Q). Since fco ls infinite, and ^ is split,
there is an element y of Q) with Nrd(j)==l (i.e. ̂ eSLj(R)), such that the characteristic
polynomial of x^ is separable over R. Since ^ is in the commutator subgroup of ^*,
we can lift y to an element y of Q) with Nrd(y)=l. Then xy is separable over the
quotient field K of R; thus we may assume that x is separable over K. Let E be a
maximal separable subfield of ̂  containing x. Let € be the integral closure of R in E,
so we get a finite ring extension R -> S. Let S be the integral closure of R in the Galois
closure E of E over K. Then G:=Gal(^/R) is a subgroup of £;, and has a subgroup
H, corresponding to E, of index ;. Thus there is a non-trivial (-Sylow subgroup G, ̂  Z/l
in G. Let <^ be the subring of S fixed by G,, giving a diagram

^
^ \

^ ^
\ ^

R

As [^i: R] is prime to (, E and ̂  ®RK are disjoint over fe, so x has the same conjugates
over R and over <^,. Thus

a = Nmg/K (^) = Nm^ (x).

By applying Hubert's theorem 90 (see lemma 1.14 below) we can modify x by an element
y of S * of norm 1 so that

x e <^, x = 1 mod (().
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In addition, we have
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Nm;/R (x) = ad with d\(l-1)!.

Let g: Spec(<T) -^ Spec(R), ^: Xg -> X be the covering maps. Then x lifts to an element
x of KI (^, <f/(r)) with

g^)=^

and

(l-Y^^ftl-Yy.jc).

Thus (l-y)1.^ is in j^(Ki(5^, X^1), which is a subgroup of Ki(X,X)1, hence
(1 -y)1. ̂  is in KI (X, X)2 for i ̂  2. Thus

K,(Xs, Xs^tl^-l^nK^X, X)[l/(;-l)!]=Ki(X, X)2 [l/(l-1)!],

hence the kernel of the map Ki(X, X)172 ->K^(Xy, X^2 is (;-!)! primary torsion.
Since we can split ̂  by a degree I cover, the above kernel must also be (-primary torsion,
hence the map

K^X.X^^K^Xs.XsO172

is injective, as desired. D

LEMMA 1.14. — Let T be a semi-local PIR containing an infinite field fco- L^ T ->- T'
be a cyclic extension of degree 1. Let I be the Jacobson radical of T, K the quotient field
o/T, K' the quotient field ofT. Suppose ae(l +1) is a norm:

^=NKVKM, X€:K\

Then

a=N^T<jO

for some y in (1 +IT).

Proof. — This is an easy consequence of Hilbert's theorem 90 (for K^); we leave the
details to the reader.

1.10. RESTRICTIONS AND NORMS. — We consider the functorial properties of relative
K-theory in some greater detail.

Let /: T-^S be a map of schemes § c: S a closed subscheme. Let rT=f~l(^), and
T c: T an closed subscheme. The map /* is exact on ^g and ^s so the pa^ of functors

(/*,7*): (^s^s)^(^T^f)
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together with the usual natural isomorphism 9 determines the pull back
/*: K^(S, S) -^ K,(T, T). Similarly, the diagram

X T T
^T ~^ ̂ f

I I i-T-T

^^^f
X T T

commutes (up to a natural isomorphism), so we get a homorphism

reS(T.T): K,(T,T)-K,(T,t).

The composition gives a pullback

/*: K,(S,S)-K,(T,T).

These constructions are just special cases of the pullback discussed in paragraph 1.1,
hence they are functorial.

We now suppose that /: T -»- S is finite and flat. Restriction of scalars then gives
commutative diagrams (up to natural isomorphisms):

X T - T X T T
y-Y -*• ̂ f ^T. f) -> •̂ f

^i /^ ^1 ^i

^S^S ^(S.S)-^
x ^ S x ^ S

inducing/^: K,(T, T) ^K,(S, S) and/,,: K,(T, T) ^K,(S, S).
We now suppose further that T, S, T and S are regular. Write S as a union of

connected components

s=us.,
and let T1' \ . . ., T1'^' be the components of T lying over S,. We also assume that each
Sf and T{ are principal:

I(S,)=(u,); I(T^)=(r,,),

and that T is a thickening of T with components T^,

HT^^, ^>0.

Let e=(6?n, .. ., e,p . . . ) . We call e the total ramification index.
Let ©,: ̂ f-^^ be the functor whose restriction to ^fy is M-^M)^. Given a

module M in ^fu, we form the filtration

F^M): 0=Moc(ry- l)Mc . . . <=(r,,)McM.
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Since M is a projective T^ module, the graded quotients (t^M/^f/^M are each
isomorphic to M/(ty) M by the map

m -> t^. m mod (r?/1) M.

The "natural filtration" theorem of Quillen then gives a homotopy H between the two
maps

BQrf:BQ^f -^ BQe^r;

rf: ^f -> «^f the natural inclusion and

BQ(©e°(-XTt)):BQ^T^BQ^.

We get a similar homotopy H' between the two maps

and

BQ(rf°(- XTT)): BQ^f-^BQ^

BQ(©e°(- XTt)): BQ^f^BQ^.

In fact, replace — X T T with the composition ( — X f T ) o ( — x-rT), then we can take H'
t obeHoBQ(-XTT) .

We thus get a diagram

(A) K^T) -. BQ^/ L 'BQ^

( ^ 11 . T T r T ^
"-•®.)[ K(T,T) - BQ ,̂ ^ BQ ,̂ I®.

[ (id, - X T T ) || l-^T-f
X T T

K(T, T) -» BQ^»T. ->. BQ^-
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Here we suppress some of the BQ's, and the natural isomorphisms used to get the maps
on the homotopy fibers. Since the two homotopies H and H" are compatible, the triangle

(id. rf)

K(T,T) -> K'Cr.T)

(id. x^ f ) \ ^ (id,®.)

K(T, T)
commutes, up to homotopy, inducing a commutative triangle

K^(T,T) ^ K^(T,T)

res(f.f) \ ^ (^c)"

K^(T,T)

Since S and S are smooth, we have the commutative diagram

K^(T,T) -. K^(T,T)

f ^ [ t ^ l
K^(S,S) ^ K,. (S,S)

'•S

Define/^: K^(T, T) ^K^(S, S) to be the composition

/^(^-^/^(ec)11.
Let

( x j : K,(T)^K^(T)

be the map restricting to x e^\ K^(TlJ) -> K^(TlJ) on each factor K^T'7). Let

(/^^K^TQ-K^S1)

be the restriction of scalars. Then

^ o(Xe)=®(x^)7 l J .
i,J

PROPOSITION 1.15. — The ladder

-.K^(T,t)-K,(T)^K,(t)-

1 /j? J, /* j, (f^o(x^=eeijfiJ

-K,(S,S)-K,(S)-K,(S)-

is commutative. Suppose that (9^ is a free (9^ module (e.g. (9^ semi-local), of rank n. Then
the composition

K^(S,§)^K^(T,T)^K^(S,S)
r /$
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is multiplication by n.
Proof. — We have the diagram

K^(S,S)^K^ (T,T/-.K;,(T,T)

(1(r) ^ ^ r e s ^ (©^H

K^(T,T)
with all triangles commuting. Suppose that (9^ ^ (^s)"- Then the composite

(^ ^s) ——> (^ ^f) ——> (^ ^f) ——> (^ ^s)
(f\f*) (id.rf) (f\f*)

sends (M, M) to (M", M"), hence induces multiplication by n

xn: K^(S,S)-^K^(S,S)^K^(S,S).

Thus the composite

K^ (S, S) ̂  K, (T, T) ̂  K,. (S, S) - K, (S, S)
f* f.

is multiplication by n. The second assertion follows from this and the commutativity
of (*).

For the first assertion, note that ©„: ^f -^ ̂  induces x e under the composition
devissage

(®e)*

K^f)-^(^) ^ K^(^).

Since the ladder
^ K,. (T, T) ̂  K^(T) ̂  K,. (T) ̂

i^ I / , i/.

^K^(S,S)^K^(S)^K^(S)^

is commutative, the result follows from (A), (^), and our definitions. D

PROPOSITION 1.16.—Suppose f: T-^S is Galois with group G. Then there is a
homomorphism

/„: K^(T,t)[l/|G|]-K,(S,S)[l/|G|]
satisfying

(i)/^(^)=^(Tl);Ti€K^(T,T)
(ii) the ladder

^K^(T,t)[l/ |G|]-K^T)[l/ |G|]^K^(t)[l/[G|]-
_ i / . [ f . [ f .

^K,(S,S)[1/|G|]^K^(S)[1/|G|]^K,(S)[1/|G|]^
is commutative
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(iii) f*°W= Z T}" in K^(T. T), /or TI in K,(T, t)
oeG

(iv) if (Pf is a free (9^ module, then

/,/*: K, (S, S) [1/[ G |] - K, (S, S) [I/) G |]

is multiplication by | G |.
Proof. — The pair of functors (id, ©J, together with the homotopy H gives the

commutative ladder
-^K^ (T, T) ̂  K,(T) ̂  K,(T) ̂

^e .H || ^ x ,
^ K^, (T, T) ̂  K,(T) ̂  K,(T) ̂

As T -^ S is Galois, the ramification indices e^ all divide [ G |, so ©? is an isomorphism.
Symmetrizing ©^ with respect to G gives the map h:

^=1/|G|. E (©^CT

<T€G

and a commutative G-equivariant ladder

^K;^(T,T)[1/|G|]^K,(T)[1/|G|]-.K,(T)[1/|G|]^
T * || t".

- K,^ (T, t) [1/| G [] ̂  K, (T) [1/| G |]-> K, (T) [1/| G |]-^

Define /„ to be the composition of h with f^: K,(T, T) [1/| G |] -» K,(S, S) [1/| G []. Then
(i) and (ii) are clear; (iii) follows from the isomorphisms

M®^-^ © M°; M®^<Pf-^ © M".
oeG oeG

The statement (iv) follows from Proposition 1.15. D

COROLLARY 1.17. — Suppose T, S and S" are semi-local, one dimensional regular schemes.
f: T -^ S a Galois cover mth group G, and p: S' -^ S ^ak. L^r /': T -^ S' ̂  ^^ ^frer
product T x g S7, te

/,: K,(T,T)[1/|G|]-.K,(S,S)[1/|G|]

and

/,: K^ (T, t) [1/| G |] - K^ (S', SQ [1/| G |]

be given by Proposition 1.16, ^here T and T' are the respective reduced schems T^d ^d
T;ed. ^^

^^: K, (S-, S') [1/| G |] ̂  K, (S, S) [1/| G |]
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and

p^. K^(T,T)[1/|G|] ^ K*(T,T)[1/|G|]

the usual pushfor^ard. Then

P^f^f^P^

Proof. - Since/*: K^(S, S)-^K^(T, T) has |G| torsion kernel, it suffices to show
that

f^p^f^f^f^p^
We have /* °/^ =p^ o f / *, hence we need only show that

^0(//*0/;)=(/*%)0^.

This follows from Proposition 1.16(iii). D

1.11. ITERATED RELATIVE K-THEORY. — As if life weren't bad enough already, one can
iterate the relativization of K-theory we have considered so far. More precisely, let X
be a scheme, Yi and ¥3 closed subschemes with inclusions f i : Y^ -»• X, ^: Y^ -^ X. Let
Yi2 be the intersection Y^ 0 Y^, i^: Yi2 -> Yi the inclusion. The restriction map

(^^2): (^X^Yi)-^(^Y2^Yj

together with the natural isomorphism O^ gives a map of homotopy fibers

i*: K(X,Y,)^K(Y2,Y^).

We let K(X, Yi, Y2) be the homotopy fiber of f*. Similarly, let K(X, Y^, Yi) be the
homotopy fiber of f*: K(X, Y2) -> K(X, Y^). The Quetzlcoati lemma shows

(a) K(X, YI, Y2) and K(X, Y2, Yi) are naturally homeomorphic;
(b) if Yi 0 Y2=0, then K(X, Y^, Y2) is naturally homeomorphic to K(X, Yi U Y2).
We let K^(X, Y^, Y2) be the homotopy group 7^+1 (K(X, Yi, Y2), *). From (a), we

get a commutative diagram
[ I I

^K^(X, Yi, Y,) ^K^(X, Yi) ^K^(Y,, Y^) ̂

1 i 1
^ K^(X,Y;) ^ K^(X) ^ K^Y^) ^

1 1 ^
^ K^(Yi,Y,) ^ K^(Yi) ^ K^(Y^) ^

i 1 1

If one wants to iterate this, one runs into trouble with compatibilities between the
homotopies; we therefore use the approach of paragraph 1.1 to replace the categories

^X. ^Yi. ̂  ^Yi2' etc-
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with equivalent categories so that the appropriate diagram commutes exactly, not just
up to homotopy. In this case the homotopy fibers are again functorial, which enables
one to define K^(X, Y^, Y^, . . ., ¥„) inductively as the homotopy fiber of

K(X, Y,, Y,, . . ., Y^)-.K(Y, Y,, Y,, . . , Y^)
Y,=Y,nY,

The groups one gets are independent of the order of the Y,, and there is an isomor-

phism K^ (X, YI, Y^ . . ., Y^) ̂  K^ (X, U Y,) if the Y;'s are pairwise disjoint. There is
an n-dimensional commutative diagram generalizing the two dimensional diagram above.

Returning to the case n=2, we have the diagram

^Y u Y'

K(X, Y U YQ ̂  BQ^x ̂  BQ^y ^ y'
(^x.*Y) 1 || [ i^ \ ,

l'Y J ^ '
K(X,Y) -. BQ^x^BQ^y /

(^ ̂  n Y') i .Y' \ *Y n Y' \^ (/Y' : Y/ ̂  Y u Y/ the inclusion)

K(\\ Y 0 Y') ̂  BQ^, ̂  BQ^ , y,

The map 7$' gives a contraction of the composition

(4', '̂Y u Y') ° O^x, ^): K (X, Y U YQ ̂  K (Y', Y n Y'),

hence a lifting of (id^, if) to a map

© Y U Y ^ K(X ,YUY / ) ^K(X,Y ,Y / ) .

Similarly, we get a map

®i. . .n: K ( X , Y , U . . . U Y ^ K ( X , Y , , . . . ,Y^) ,

inducing

® i . . . n : K,(X, Y, U . . . UYn) -K,(X, Y,, . . ., Y^)

which is an isomorphism if the Y^.'s are pairwise disjoint.

1.12. CHERN CLASSES. - In this section, we recall Gillet's construction of Chern classes
[Gillet] and indicate how one constructs Chern classes for relative K-theory. In fact,
Gillet has already given the details for the contruction of "Chern classes with support",5

which is nothing more than Chern classes for the homotopy fiber of 7*: BQ^x -> BQ^ \
where 7 : U - ^ X i s a n open subset of X. As there is no essential difference between the
cases of the open immersion and the closed embedding, we will be somewhat sketchy.

We first recall some notions from the theory of sheaves of simplicial sets. We use the
notations of [Gillet]; for details we refer the reader to section 1 of that work. For a
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complex of sheaves of abelian groups F* on S^ ,̂ we let K(F*, n) be the Dold-Puppe
construction on F*. If y is a sheaf of simplicial sets on S .̂, there is the notion of the
generalized cohomology groups of y defined by

H-P(X,^):=^(R^(X,^))

where R F is the functor described in section 1 of [Gillet]. In particular, we have

W(X, K(F*, n))=H^?(X, F*).

Let F(*) be a twisted duality theory in the sense of [Bloch-Ogus] for schemes over a
base scheme S. There is an injective complex of sheaves ?"(*) on the big Zariski site
over S such that for each S-scheme X, we h^ve

H^(X,r(^))-Ml^(X,r*(4)).

Let SS^l be the sheaf of simplicial sets associated the presheaf

U^BGl,(r(U,^).

Gillet constructs a map of sheaves of simplicial sets

c,: z,^^-z,K(r*te),^);
d= 1 or 2, depending on r(-) which gives rise to the Chern class

c^: K^_^X)^W(X,r(4))
by the composition

K2,-p(X) ̂  H^(X, Z^^l) -^ H^-^(X, Z^K(r*(q), dq))
^p ^ H

H^(X,r^)) ^ "^(X,^^)).
Now suppose we have a closed subscheme r :Y-^X of an S-scheme X. Replacing the
appropriate simplicial sheaves with weakly equivalent sheaves, we may assume that the
horizontal maps in the commutative square

f*: Z^^X^^ZOO^^Y.
c'^ / ^

i*: z,K(r*(^,4^^z^^
are global fibrations, and all the simplicial shelves ar^ flasque. Let JT(X, Y) be the
fiber (hence homotopy fiber) of the first f*, and let Z^K(r*(X, Y)(^), dq) be the fiber
(hence homotopy fiber) of the second i*. Let, '

Then
r*(X, Y)(^Cone(^: r*(q)^^i^(q\)[-l].

H^(X, Z,K(r*(X, Y)(g), dq))^H^(X, r*(X, Y)^))
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and

IP(X, Y, r(^))=H^(X, r*(X, Y)(^)).

Cq lifts to a map

C,: JT (X, Y) ̂  Z, K (F* (X, Y) (q), dq\

This defines as above the Chern class Cq p by the composition

K^(X, Y) ̂  H^(X, JT(X, Y)) ̂  H^(X, Z,K(r*(X, Y)(^), ̂ ))

c^ II
H^(X, Y, F(q)) = H^(X, r*(X, Y) (q)).

From this construction, we see that the Chern classes are compatible with the long exact
relativization sequence and the long exact cohomology sequence for the pair (X, Y):

-.K^(X,Y) -. K^.,(X) ^ K^_,(Y) -. K^_,_,(X,Y)^
^p [ ^p I ^ p [ c^^i [

^ff(X, Y, r(q))^W(X, r(q))^W(Y, ̂ (q))^W+l(X, Y, F(q))-.

Let x be in K^(X, Y), y in K^(X). The formula for c^p(xy) in terms of the Chern
classes of x [in H*(X, Y, r(*))] and the Chern classes of y [in H*(X, r(*)] is formally
the same as given by the product formula for the absolute Chern classes, using the
structure of H*(X, Y, r(*)) as a module over H*(X, r(*)). The proof is the same as
in the case of Chern classes with support, and we refer the reader (6 [Gillet] for details.

Soule [So] has defined Chern classes for K-theory with coefficients. Specifically, let n
be a positive integer, and X an affine scheme over Z [1/n]. Then there are Chern classes

c,.,: K,,_,(X, Z/n) ̂  H?, (X, (nj^),

compatible with Gillet's Chern classes

c,,,: K^-,(X)-.H?,(X,(^)^)

via the natural map K^.^X) ̂ K^-^X; Z/n).

2. Specialization in relative K^

2.1. SYMBOLS FOR RELATIVE K^. - We first recall the work of Dennis-Stein, Keune
and Loday on K^ (A, I). Let A be a ring (with unit), I c: A an ideal. Keune and Loday
define a relative Steinberg group St(A, I), and group of elementary matices E(A, I) with
a surjection

St(A,I)-^E(A,I)-^l .
n

K:2(A, I) is then defined to be the kernel of TC. St(A, I) and E(A, I) maps to the usual
St(A) and E(A), and the resulting map of K^A, I) to K^(A) fits into a long exact
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sequence

K3 (A) ̂  K3 (A/I) -> K^ (A, I) -^ K^ (A) -^ K^ (A/I) -^ K^ (A, I) ̂  K, (A) ̂  K^ (A/I)

Here Ki(A, I)=ker(Gl(A) -̂  G1(A/I))/E(A, I).
Loday [Loday] has shown that there are natural isomorphisms of the K,.(A, I) defined

above with the groups K,(A, A/I) defined earlier via homotopy theory, so that the maps
in the above sequence correspond with the long exact homotopy sequence for relative
K-theory.

Keune [Keune] constructs certain explicit elements in K^(A, I) analogous to the
symbols {a, b} in K^ of a field. Let D (A, I) be the group with generators

<a, b>, with (a, b)eA xl UIxA.andl+f l fceA*.

and relations

(Dl) < a , f c > = < - f c , -a>-1

(D2) <a, & > < a , c>=<a , fo+c+afcc>
(D3) < a, be > = < a&, c > < ac, b > if a, b, or c is in I.

There is a functorial group homomorphism

<DA,I: D(A,I)^K^A,I);

if A -> B is a homomorphism of A to a ring B in which b is a unit, then 0« a, fc » goes
to the symbol {1+afc, fo} in K^B). We will often denote 0«a, fc» by <a, f c > if there
is no cause for confusion. Keune has shown the following result:

THEOREM. — Let A be commutative ring. Suppose I c: A is a radical ideal (I c Jac(A)).
Then

<DA.I: D(A,I)-K,(A,I)

15 an isomorphism.

2.2. BLOCK'S SYMBOLS FOR RELATIVE K^. — Suppose now that A is a commutative ring
without nilpotents, I an ideal of A, and let L be the quotient field of A. Let K^ (A, I)
be the group

K,(A,I)=(l+I)*^L*/{/(g)(l-/) |/6(l+I)*,/^l}.

We denote the image of a ® b in K^ (A, I) by {a, b}. Bloch has defined a map

V|/A.I: D(A,I )^K2(A,I )

by

^^{^^ for w

[ 0 if b=0.

4s SERIE — TOME 22 — 1989 — N° 2



THE INDECOMPOSABLE Ks OF FIELDS 291

Weibel [W2] has constructed an inverse to vj/^, i in certain cases, which include the case

(2.1) A a semi-local PIR, I = Jac (A).

Our purpose here is to analyze the case where A is regular and semi-local, and

^fn^j^A)
\ » = i /

with the ideals (^) relatively prime. We first assume that A contains a field of characteris-
tic zero; the case of positive characteristic is actually easier to handle.

We will not show that \|/A,I is an isomorphism, rather we content ourselves with
exhibiting a specific element of D(A, I) mapping to certain symbols {a, b}, with suitable
conditions on a and b. This lifting will be compatible with the inverse to \|/A i given by
Weibel if (A, I) satisfies (2.1).

By the Chinese Remainder Theorem, we may choose the t^s so that

ti = 1 mod t^ for i -^ j.

Let

^=n^ ^=n ^
J ^ i

and let a be in A. Then 1+sa is in (1+1)*. Fix an i, and let q=q^ t=t,, etc. Then
V-\-qas is in (1+1)* and

(l+as)(l-{-e~lqas)~e=l+as(\-q)-{-s2c; for some c in A.

Since q = 1 mod te, we get

(l+as)=(l+tea/s)(l+e~lqas)e;

a'eA uniquely determined. We now define a function T = T A /, , . on pairs of theA, (.1^, . . ., i^f r
form

(1+as, M.n^O; aeA, MeA*,

with values in D(A, I), as follows:
1. Since {1 + as, u} = \|/« asu ~ \ u », let

r(l+as, u)=(asu~1, u).

2. To define r(l+a5, r), r=r,, write 1+as as

l+as=(l+tea/s)(l+e~lqas)e,
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so

{1+as, t}={l+tea/s, r}{l+<?-1^, t}6

={1+^S, -^- lfl /5}- l{l+(?-1^5, -e-^S2}6

={1+^0' S, -^a's}-1^^-1^, -^^{l+f?-1^, S}6

=^«^ -^-^'s)-^-^, -^flsy^-^.sy).

Thus we set

T(l+aS,(,)=<-r,, -^r1^)-!^^ ^-la5>e<^-l^fl,5>e.

3. Define T (1 + as, u. ]"[ r?0 by

1(1+05, M.^r? l)=(^T( l+^, ^"O.TO+flS, M).

Let G be the subgroup of L* generated by A* and the .̂'s, and let Z[(1+I)* xG] be
the free abelian group on (1 +1)* x G. The above defines T as a map

T: Z[(l+I)*xG]-^D(A,I)

which makes the diagram

Z[(l+I)*xG]-^D(A, I)
symbol \ i ^A.I

K^A,!)

commute. Composing T with O^.i^ D(A, I) -> K^(A, I), we get a map

(z2) T^=T^A.(^.. . . t ,): ^[(I+IA^XGJ-^K^A,!)

(note the dependence on the choice of the r's). TI^ is functorial for ring homomorphisms
7i: A ^A' such that A' is semi-local, and where we use the n{t^ for T[^ In addition,
suppose that A' is a semi-local PIR with Jacobson radical I', and n: A ->A' is a ring
homomorphism with TC(I) c: I'. Then using 2.1,

(2.3) TC(TI(/, ̂ ))=0^ r^A'MMA 7c(^)}) in ^(A', F).

The above construction also works in arbitrary characteristic if we assume that all the
^•'s are 1.

If A contains a field of characteristic p > 0, there are in general obstructions to lifting
a symbol {a, b} in K^ (A, I) to D(A, I). However, for our purposes it suffices to work
in K^(A, I) [l/p], where the lifting problem is easy to solve. In fact, suppose that A is
semi-local, and I=(QA. Let a be in A, so 1+ta is in (1+1)*, and let b be in A with
| div(fc) ( c: supp(A/I). Then for n » 0, letting q^p", b divides (ta)^ As

{1+^a, bY=[\+(td)^ fc}=v|/A.i«(^m &»,
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we define T[^ i by

(2.4) r|A.i(l+ta, &)=^-1<DA,I«(W^ b» in K^A, I)[1M

It is easy to check that q~1 <(^/&, fc> in D(A, I)[l/^] is independent of the choice of
n. This defines

TU.I: ZKl+I^xGl-^K^A,!)^]

with functorial properties as above.

2.3. PRODUCTS AND SYMBOLS. — If A is a commutative ring, u and v units in A, then the
symbol {u, i;} in K^ (A) agrees with the cup pruduct u U v, where we consider u and v as
elements of Ki(A) via the canonical inclusion A*->Ki(A). We proceed to derive a
similar relationship between the symbol {/, g} in K^A, I), /e(l+I)*, geA*, and the
cup product / U g,

U: Ki(A, I )®Ki(A)^K2(A, I ) .

Since Ki(A, I)=ker(Gl(A)->G1(A/I)/E(A, I)), the map Gli(A)-^Gl(A) induces a
homomorphism

i: (1+I)*-^(A,I).

This is split by the determinant map det: K^ (A, I) -> (1 +1)*, so i is injective.

PROPOSITION 2.1. — Let a be in I, let b be a unit in A, and suppose that 1 -\-ab is a unit.
Then

<I>A.I«^&»=(l( l+^))U&.

Proof. — Let R be the ring Zju, u~1, t, (l+rw)"1]. Define a ring homorphism
n: R -> A by

n(u)=b, n(t)=a.

Since R -^ R/(t) is split by the inclusion Z [u, u~1] -> R, we have the exact sequences

0 -. K^ (R, (0 R) -^ K^ (R) -^ K^ (R/(Q) ̂  0

and

0 -. Ki (R, (0 R) ̂  Ki (R) -. Ki (R/(Q) -^ 0.

As OR^ ̂  «t, u » maps to the symbol {1 + tu, u} in K^ (R), we get

< D « t , M » = i ( l + ^ ) U M inK2(R, (QR) .

The result then follows from the functoriality of 0, < , > and U. D
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COROLLARY 2.2.—Let A a semi-local PIR, I c= A the Jacobson radical, /e(l+I)*,
^eA*. Then

{f,g}-fUg in K^A,!),

where we identify (1+1)* with K^(A, I), A* w^ Ki(A), anri £2 (A, I) wf^ K^A, I).

Proof. - Write f= 1 +a, a in I. Then

{/^-vkiK^-1^))
=i(l+a)U^

==/U^. D

2.4. MILNOR K3. — Let F be a field. Bass and Tate have considered the Milnor ring
K^(F) of F. This is the tensor algebra on F*, modulo the ideal generated by tensors
a (8 (1 —a), a ̂  1. The image of a tensor a^ ® . . . ® a^ in K^F) is denoted [a^. . . a^}.
Let R be a Dedekind domain with quotient field F. There is a tame symbol map

T^ K^(F)^ C K^(k(P))
P <= R
prime

where k(P) is the residue field of P. One can then define K^(R) to be the kernel of Tp.
This is not really the "correct" definition in general; however, if R is semi-local it is
reasonable to force a "Gersten's conjecture" for Milnor K-theory by taking this as a
definition.

An obvious subgroup of K^(R) is the subgroup generated by the tensor algebra on
R*. Dennis and Stein [D-S] have shown

THEOREM. — K^(R) ^ K^(R) ifR is a semi-local PIR. Furthermore, K^R) is gener-
ated by R* ® R*.

We now give an extension of the latter statement to K^, with some additional
hypotheses on R.

PROPOSITION 2.3. — Let R be a semi-local PIR with infinite residue fields. Then
K^R) is generated byR*(x)R*(g)R*.

Proof. — Let (t^), . . ., (ty) be the maximal ideals of R. If R is a field there is nothing
to prove; we therefore assume the result for R [f[1] and proceed by induction. Let t = t^
and let T be in K^(R). By induction we can write T as

T = ]"[ {^ b,, c,}; a,, fc,, c, in R [t~1]*.

As {t, t}={t, —1}, we may also assume that fc;, c^ are in R* and a^=t for all i. Let
r|=n{^, cj, so T={r , T[}. Then

^ ^—/'»^±i'WT)^)*1,
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where T| is the image of T| in K^(R/(t)) and T(^ is the (t) component of T3. Since T is
inK^R),^!.

Suppose that h\b^=b, with h\ and b^ in R*. Then

{^c j={^c j{&r ,c ,}

so we may assume that
(*) for every tp j= 1, . . ., r, fo^ 1 mod .̂.
Let i ,̂ i;, be units in R such that
1. Ui=Vi=lmodt.
2. i^.EE^.modty; Vi=Cimodtj forj=2, . . ., r.
3. Mf= 1 -dit with df in R, d^Omodt.
We may thus assume that t= 1 mod t, for 7=2, . . ., r. The (2), (3) and (*) imply
4. d, is in R*.
We have

{t, M,, i?,}={^ 1-fU Vi}={d^\ 1-dit, uj,

which is in the image of (R*)®3, so we may multiply T by n {r, u,, i;J~1. Thus we may
assume that

r|^l in K^RAt,)) for f = l , . . . , r .

Let s==]~[^ Then T| lifts to an element of K^R, (s))=D(R, (s)\ i.e. we can write T{ as
a product

T| = f] {1 - e, s, f,} with e,, y;. in R.

This reduces to two types of symbols
(a) T={r , \—es, ti}, 17^1, ^ in R.
(fc) T={r , 1-^5, u}, M in R*, ^ in R.
For symbols of type (a), write 1—^s as a product

1-^=(1-^^)(1-^^)

with ^/, e'\ (1 —^ / ^f), and (1 —e" n^ in R*, which reduces us to symbols of the form

(0 T= {t, 1 -etti, ti} i^ 1, e in R*, 1 -ett, in R*.

But

{t, 1 - ett,, I,} = {t, 1 - etti, et} ~1 = {t, 1 - ̂ ,, ^} -1 {t, 1 - ̂ r,, -1} -1

reducing us to symbols of the form

(a") T={r , 1-etti, u}, e, \-ett,, u in R*.
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Writing 1—etti as

\-etti=(\-e/t){\-efft) with e\ e'\ (1-^0, (l-^'O in R*

reduces to symbols {t, 1 —^, u} = [e, 1 —^, u} which is in the image of (R*)®3.
For symbols of type (b), write 1 —es as

l-(?s=(l-^0(l-(?"0 with e\ e'\ (1-^0, (l-^'O in R*,

reducing us to symbols { ( , 1 —ct, u} as above. This completes the proof. D

2.5. K.2 RELATIVE TO RATIONAL CURVES. — The results in this section are preparation for
the specialization homomorphism to be defined in paragraph 2.6.

Let X be a regular scheme over an infinite field fc, and let Yi, . . . , ¥ „ be smooth
irreducible curves on X. Let Y-7 be the connected component of U Y, containing Y^.
We say that the Y/s form a simple rational chain if
(2.4) (1) The Yf's form a divisor with normal crossing on X.

(2) The dual graph of the Y^s is a (not necessarily connected) tree.
(3) Each connected component Y1 is a fe; scheme (fe; •=> k a field), and each node p of

Y1 is fe; rational. We have k^=k(p).
(4) Each irreducible component Y^ of Y1 is absolutely irreducible and rational over k,.
If X==Spec(A), and Y, is defined by the ideal !„ we say that Ii, . . . ,!„ form a simple

rational chain of ideals in A. Let s be the number of connected components of U Y .̂.
We will always order the Y/s so that

r 1 \Y.n UY,
\J=1 /

is empty for i= 1, . . ., s, and is a single point pi for i > s. We call pj the /* node of
the Y,'s.

2.4. LEMMA. — Let A be a semi-local fe-algebra, X ==Spec(A), and Yi, . . ., YN smooth
irreducible subvarieties of X. Let Y be the union of the Y,'s. Let W be a smooth
absolutely irreducible curve on X, p a point of W. Let Z be the connected component
of Y containing p. Suppose

(i) W H Y =p (scheme theoretically).
(ii) There is a k (p) map Z U W -^ p.

(iii) W is rational over k (p).
Then

5: K3(X,Yi, ...,Y^K3(W,;0

is surjective.
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Proof. — We have the commutative diagram

K3(X,Y)
i ^

K3(X,Yi. . . . ,YN)^K3(W, /^ )

so it suffices to show that

K3(X,Y)-.K3(W,/0,

is surjective.
We first note that

O^K3(W,^K3(W)^K3(/0-^0

is exact. Indeed, our assumption (ii) implies that W is a k (p) scheme, and the inclusion
p -> W is split by a projection g: W ->p.

Next, we claim that K^(W, p) is contained in the image of K^W) in K^W). In
fact, let K=k(p). Since W is smooth and rational, and X is semi-local, W is the
localization of A^ at a finite set of points S,

S={p=qi, . . . , ^ r} -

We may assume that q^ =0. We have the localization sequence

0-K3(A^K3(W) I © K,(K(x))^0
< f ^ xe(Aj|)l-S

K3(^)

where 7i: Ajt -> Spec(k)=p is the projection. By [Bass-Tate], there is a similar localization
sequence for Milnor K-theory:

0 -^ K^JF) -^ KM(W) ̂  © K^M) -^ 0
"* xe^^-S

compatible with the map of Milnor K-theory to Quillen K-theory. Let K3 (W)M denote
the image of K^(W) in K^(W).

Now suppose r|eK3(W) restricts to 1 in K^(p), i.e. T| is in K^(W, p). Since
K^(F)=K2(F) for F a field, we can find n* in K3(W)M with

8(n)=8(i1*).

Then T| and T|* differ by an element T of K^(lc):

7r'lt(T)T^=T^*.

But then restricting to p gives

T=TI*|,,
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which is in K^^)^ Modifying T|* by 7i*(r) gives T|=T|*, hence T| is in K^W)^ as
claimed.

By Proposition 2.3, given T| in K^W, /?), we can then write T| as

^ = El {°^ Pr Vi}'' °^ Pr Y» units on w-

Let a;, pf, and y, denote the restrictions to p. By (ii), the ^-morphism g: W ->p
extends to a fe-morphism /: Z ->p = Spec (k). Let

a, =/* (a.); 5', =/* (P,); c, =/* (y,).

By abuse of notation, we let [a^ £f, cj denote the element a^ U 5f U ^i of K3 (Z). Then

n{^,M=l inK3(Z).

Lift 0,, 6f, Ci to units a;, fof, c^ on X with value 1 on Y—Z, and value a,, P(, y, on W.
We can do this since ZHW=/? (scheme theoretically). Let A=]~[{a;, b^ Ci}eK^(X).
Then

(a) A|w=ri.
(b) A |Y=L
By (&), A lifts to an element A* of K3 (X, Y) which by (a) restricts to T|, completing

the proof. D

COROLLARY 2.5. — Let X be a regular semi-local k-scheme, Y^, . . ., Y,, a simple rational
chain on X. Let s be the number of connected components of UY(, ps+i, . . ' , Pn ^e
nodes. Then for j > s the sequence

0->K,(X, Yi, . . ., Y,)-^K,(X, Yi, . . ., Y,_0-K,(Y,,^,)

is exact.

Proof. - Taking N=7-!, W=Y^., p=pp the subvarieties Y^, . . ., YN and W satisfy
the hypotheses of the above lemma, since the Y^.'s form a simple rational chain. Since
Y; 0 Y .̂ is either empty, or is pp for f= 1, . . ., j— 1, we have the long exact relativization
sequence

->K^(X,Yi, . . . ,Y,)- .K^(X,Yi, . . . ,Y,_O^K^(Y,,^,)^.

The corollary follows from this and lemma 2.4. D

COROLLARY 2.6. — Let X be a semi-local k-scheme, Y^, . . ., Y^ subvarieties ofX. Let
W be a smooth curve on X, disjoint from the Y/s, and p a closed point of W such that
fc(W) contains k ( p ) and W is absolutely irreducible and rational over k(p). Then the
restriction map

K^X.Yi, ...,YN,W)->K2(X,Yi, . . . ,YN,^)

is injective.
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Proof. •— By lemma 2.4, the map

K3(X,Yi, ...,\y,p)^K^,p)

is surjective. We have the commutative diagram

K3(X,Yi, . . . .Y^-^OO^K^X.Yi, . . ., Y^/O^K^X, Y^, ...,Y,,)^
II « T P t II

K3(X,Yi, ...,YN)-^K3(W)^K,(X,Yi, . . ., YN, W) ̂  K,(X, Yi, . . . ,YN)-»

t t6
K3(X,Yi, ...,\^,p)^K^p)

The map a is surjective since p ->• W is split. The surjectivity of e shows that P is
injective. D

LEMMA 2.7. — Let X be a regular, irreducible, semi-local k-scheme, essentially of finite
type over k; X=Spec(A). Let S={pi, . . .,/»„} be a set of closed points ofX, U an
open neighborhood of S in X. Then the map

K2(X,S)^K2(U,S)

is injective.
Proof. — Consider the commutative ladder

^ K3 (U)^ K3 (S) ̂  K^ (U, S) ̂  K, (U) ̂  K, (S) ̂
« T II - T r f II

^ K3 (X) ̂  K3 (S) -^ K, (X, S) -^ K^ (X) ̂  K^ (S) ̂
res

By Gersten's conjecture [Quillen], y and a are injective, hence we need to show that

Ingres') <= Im(res).

Let C=X-U. Let TI be in K3(U), and let reK^C) be 3(r|), where 8 is the boundary
in the localization sequence

-.K3(X)^K3(U)^K;(C)->.

Let Y be an affine regular irreducible fe-scheme of finite type, V an open subset of Y
such that

1. X is a localization of Y.
i u=xnv.
3. There is an element ^ of K^V) restricting to T|.
Let W=Y-V, and let veK^W) be 6(Q, where 8 is the boundary in

^K3(Y)^K3(V)^K2(W)^.
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Consider the restriction v° of v to K; (k (W)) = K^ (k (W)). Since K^ (k (W)) is gener-
ated by symbols, there is an open subset W° of W such that

v|w0==n{t^, v J; Ui, Vi units on W°.

Let D be the complement W-W°.
Let n=dinifcY. Take a morphism n: Y -> A^~1 such that
(a) the fibers of n are curves
(fc) 7i is smooth in a neighborhood of all the closed points of X
(c) n |w is finite

and
(S) 7c-17l(D)nS=0.

(As k is infinite, we can take n to be a linear projection.)
Form the fiber square

Y^Yx^- iW=Z

"i i ^ t 5

A"-14- W

where s is the section induced by the inclusion of W in Y. Then q is finite; passing to a
suitable open subset Y° of Y containing the closed points of X gives a diagram

Y O ^-Y o x^- lW=Z O

n [ [P f.

A^^-W

with s(W) principal on Z°, defined by an ideal (t). We may assume that t=l at all
points of Z° lying over S, shrinking Y° if necessary.

Let

a=tUp*(v)eK^(Z°).

Let

8: K3(Y°-W)^K2(W), 8- K3(Z°-5(W))^K2(5(W))

be the boundary maps in the relevant localization sequences. Then q^(o) in
K3(Y°-W)=K3(Y°-W) has boundary 5(^(a)):

8(^(^)=^(8/(a))=^^(v))=v|Yo^.
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Thus r|.^(CT)~1 extends to an element K^Y0) which restricts to an element T|* of
K3(X). Since t=l over S, ^(o) restricts to 0 on S, hence

res'(T|)= res (T|*)

completing the proof. Q

COROLLARY 2.8. —Let X be a regular semi-local k-scheme, essentially of finite type
over k. Let W be a smooth absolutely irreducible curve on X, p a point of W such that
k(W) contains k(p) and W is rational over k(p). Let p=p^ ' ' - , Pn be closed points of
X, and w the generic point ofW. Let A" be the semi-local ring ofS={w, p^ . . ., /?„} on
X, X' = Spec (A'). Then the map

res: K2(X,WU^U... U^-^K^X', wU^ U . . . Upn)

is infective.

Proof. — Let T| be in the kernel of res. Let X be a finite type regular fe-scheme such
that X is a localization of X; let W be the closure of W in X, P, the closure of p^. We
may choose X, and an open neighborhood U of w (Jp2 U • • • Upn m X so that T| lifts
to an element of the kernel of

K2(X,WUP2U... UPn)^K2(U,(WUP2U... UPn)UU).

Since W is k(p) rational, the k(p) rational points of WFlU are Zariski dense in W.
Let V=X H U. Then, replacing X with a larger localization of X and changing notation
if necessary, we may assume that W contains a closed k(p) point q of V, not among
the p^s, and that T| is in the kernel of

res: ^(X.WU^U... U/^K^V, (WU?2 U . . . U^)UV).

We have the commutative diagram

K^(X, WU^U .. . UA^K^V, (WU^U .. . U^)UV).
i« i?

K2(X, qUp2U . . . U^)^K^(V, q\Jp^\J . . . Upn)

By corollary 2.6, a is injective, and y is injective by the previous lemma. Thus T|=O, as
desired. D

PROPOSITION 2.9. — Let A be a semi-local k-algebra, x, y, t^ . . ., ty in Jac(A) mth
ti = Imodtj for i^j, and ti = Imodxy for all i. We suppose that (t^), . . ., (^), and
(x)+(y) are maximal. Let s=I~[^. Take f, g in A mthf= Imodsxy, and

g = ux'1 y" ]~[ t^; u in A *.

Then there are elements T^ in K^ (A, xs), Ty in K^ (A, ys) such that
(a) T^={/, g] in ̂ (A^, xs)
(b) Ty={/, g} in K2(A(y,), ys)
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(c) T,=T, in K,(A, ((x)+(y))n(s))

Proof. - If n=m=0, let T be the element of K^A, (xy]"]^))

T=T^A.(xy.tl.....t,)(/^^^)

and let T^, Ty be the respective images of T in K^ (A, xs), K^ (A, ys). This reduces us to
the two cases g==x, g=y. We treat the case g=y.

Let /= 1 + axys, a in A. Write / as a product

1 + axys = (1 + axys2) (1 + bxy2 s) b in A.

Then in D(A, ((x)+(j)) 0 (s)), we have

< axs, y > == < axs2, y > < bx^s, .y > (D2)
<axs2 ,^>=<-^, -axs2)^ (Dl)

=<axys, s>-1 < -^s, -axs>-1 (D3)
= < - s, - axys > < axs, ys > (Dl)

< - s, - axys > = < axs, ys > < -ys2, -ax) (D3)
=(axs,y)(ax,ys2)-1 (Dl).

Thus

< axs, y > = < -ys2, -ax><axs,ys>2 <-y, -fcxys>~1

in D(A, ((x)+(>))n(s)). The LHS above lifts to ^ in D(A, xs), the RHS to ?y in
D (A, ys). One easily checks that

^A. xs ftx) = {1 + axs, y} in K:2 (A^, (xs))

^A. ̂  (^y) = {1 + ̂ s. ^} in K-2 (A(^, (js)).

Letting ̂  = 0^, ̂  (^)e K2 (A? •?cs)» ^^y = °A, ys (^y) e ̂  (A? ^s) completes the proof. D

2.6. THE SPECIALIZATION SUBGROUP. — Let R be a semi-local PIR containing a field ko»
I=Jac(R), S=Spec(R), 71: A^ S the affine line over S, with a section s: S -^ A^. Let
L be the semi-local PIR R (A^), f. e., the semi-local ring of A^ in A^.

Let 1^=^: A^ p-^A^ be a sequence of blow-ups of A^ at points (pi, . . .,^):=p
lying over s(S). For each partial blow-up p^r--"^, f ^ s, there is a section.
s^19 ' " f pi): S-> A^ p induced by the section s. We call ̂  allowable if each p^^ is one of
the following two types

(a)^^es^'-^(S)
(b) Pi+i is one of the nodes of the exceptional divisor E^' • • • • pi) of ^(pl ••" pi).
Suppose that [i9: A^ p -> A^ is an allowable blow-up. Let F be the proper transform

of As, and let E^, . . ., Ey be the irreducible components of the exceptional divisor of
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^P. Then the curves

F, EI, . . ., E^

form a simple rational chain on A^ p.
Let F* be the union of the E^s which meet .^(S). Then F* is a disjoint union of at

most m P^s, where m is the number of closed points of S. Let Q={^i, . . ., q^} be the
set of closed points of S, and let N={^1, . . . , n J be the set of nodes of
FUBi U . . . UEr We let BP denote the semi-local ring of NUsP(Q) on A^p, and
B* the semi-local ring of ^(Q) on A^p. We identify L with the semi-local ring of F
on A^ p; this gives a homomorphism

y: BP-^L.

PROPOSITION 2.10. — The map

^: K2(B-,F,Ei, . . . ,E,)-^K,(L,L)

is infective.

Proof. — By lemma 2.7, the map

K^¥)^K^(L,L)

is injective. The map

K,(BP,F,Ei, ....E^K^F)

is injective by corollary 2.5. D
For each allowable blow-up p,1*: A^ p -> A^, denote the group K.2 (B^ F, Ei, . . ., Ey)

by K^B^ F, E^. If n11': A^p/ -> A^ is a blow-up of A^ factoring through ^p :
\ i^s.p'

ni ^Mp

/U ^ /^i

then we get a commutative diagram
^m/^

^(B-', F, E-')
n'f ^^/

^(B-.F/E^^K^^L).
s"

This enables us to define the specialization subgroup K^L, L), of K^L, L) by

K2(L,L),=U^[K2(B»,F,E-)].
p

^p allowable.
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We define a homomorphism ^F,: K^L, L), -> K^S, S) by

(2.5) ^(BP.F.E^5^ ^(B", F, E'1) -.K^S, S).

Since the ^p are all injective, and each two allowable blow-ups can be dominated by a
third, y, is well-defined. We now give a simple sufficient criterion for an element of
K:2(L, L) tobe inK2(L, L),.

PROPOSITION 2.11. — Let s: S -> A^ be a section^ and let T| be in K^(L, L). Let B be
the semi-local ring of s(S) in A^, U=Spec(B). Suppose there is a reduced closed curve
Z c: U, and an element z of B, with z=lmodIB, such that the tame symbol T(r|)|u is
given by

T0i)|u=z|z.

Then T| is in K^(L, L),.
Proof. — Take an allowable blow-up p11: A^ p -» A^ so that the proper transform

ZP: =^p-l [Z] is disjoint from the nodes of the exceptional divisor E1' of H11, and disjoint
from sP(S). We may assume that each component of H11"1 [A^] intersects E11. Blowing-
up points away from the nodes of E9 and away from sP(S), by

H": Ai,,,,-.A^

we can separate ZP from EP, i. e.

^-1[Z^^}^~1[EP]=0.

Let I ^ A ^ p q - ^ A ^ be the composition [j^o^. Let F^ be the proper transform
H"1!^^ Zi the proper transform \^~1[ZV}. By the Remark following Corollary 1.9,
we can compute the tame symbol of

^(rOeK^A^.Fi)

as the tame symbol of the image n*(r|) of n*(r|) in K^(A^ p q). Let r\ be the image of
T| in K2(A^). Then

WOl))=H*(T(ri))

=^i*(z) on the cycle H*(Z).

Now, H*(Z)=ZI+Z^C» where Zg^c is a cycle supported on the exceptional divisor of n.
Since

^kc-l-

it follows that T(n*(r|))==0 in a neighborhood of E^ :=^lq-l [EP].
First of all, this implies by a localization sequence that H*(T|) extends to an element

r|i of K^Ui, FI H Ui)? for some neighborhood U^ of E^. Next, E^ is a union of P^'s,
and each connected component of Ei intersects F^. Since r|i restricted to the generic
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points of Pi is zero, the restriction of r|i to each irreducible component E1 of E^ goes to
zero in H°(E1, Jf^) ^ K^fe,), where fc, is the field of constants of E1.

Let U^ c= Ui be a neighborhood of E^ n F^ such that
(i) U^ contains spfq(S)

(ii) IJ2 contains all the nodes of E^
(iii) ^ maps U^ isomorphically onto ^q (U^)
(iv) U^ 0 E1 is not complete, for each irreducible component E1 of Ep
By (iv), we see that the restriction of r|i to U^ Pi E1 is zero. Thus, by lemma 2.6, r|i

determines a unique element r|2 of K^B^ F, E?). Clearly ^(r^)^, which completes
the proof. D

PROPOSITION 2.12. — Let 5, S, L, B and U fc^ 05 in Proposition 2.11. L<?r / be in B
wfrft /= 1 mod I. Let M ri^nor^ the quotient field of L, and let g be in M* such that s(S)
is not a component ofdiv(g). Then {/, g}eK^(L, L) is in K^L, L),, and

^({/^-{^(A^)}.

Proo/. - Let ^p: A^ p ̂  A^ be an allowable blow-up such that n~1 [| div (g) |] is disjoint
from the nodes of the exceptional divisor E of ̂  disjoint from s^S), and disjoint from
EOF, where F is the proper transform of A^. We may assume that each connected
component of F U E has dual graph a straight line, f. e. a tree with exactly two end
vertices, and that one end lies in F, and the other end is the unique irreducible component
of E passing through s^S).

As the tame symbol of ^p*({/, g}) in a neighborhood of E is

T^ri^/l^iv^)

we see as in the proof of Proposition 2.11 that {/, g} extends to an element T| of
K^BP.F.E^).

Write F as a union of components:

F=Fi lL . . . l iF^-i- in

with F, lying over q^eS. We can write E as a disjoint union:

E=E^...J1E,

where E .̂ is the component of E intersecting F,. Then F .̂ U E, is a connected simple
rational chain on A^p. Let E,1, . . . . E^ be the irreducible components of Ei. Since
there is the section s? to T^P the unique component, say E^, passing through s ,̂)
appears with multiplicity 1 in ^^(A^).

Let V1*: Pi, p -» P^ be the extension of ̂  to a blow-up of P^. Let F, denote the closure
of F, in P^ p. Let q=q,. Then the total transform v^^P^) is connected, both F, and
E^ appear with multiplicity 1 in this divisor, and are at the "ends", i. e.

^•.(vP-^P^-E^^F.^-^P^-F^^L
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In particular, (v^^P^—E^1) is an exceptional curve of the first kind, and can be blown
down to form a regular surface

^+: Y-^Spec(S)

flat over S and having a smooth P1 as fiber over q. In particular, Y is a P1 bundle
over a neighborhood of q in Spec(S). Thus, if we let

be the blow-up of all the p / s in p lying over q, we see that
^ii-^iU^l U . • . UE^"1) is isomorphic to A^, with fiber E^-E^"1 over q. Let
Li be the semi-local ring of E\1 -u- F^ -U- . . . -Li F^, in A^ p. We claim it suffices to show
that

(^i) the image of T| in K^Li, L^) is given by the symbol {^p*(/), ^(.g)}'

Indeed, it then follows by induction that, letting L^ be the semi-local ring of
E^ 11 . . . JU- E^" in A^ p, we have

(*J the image of T| in K^(L^ LJ is given by the symbol {^(/), ^(g)}.

Let B^ be the semi-local ring of sP(S) in A^p. Arguing as above, B^ is isomorphic to
the semi-local ring of the zero section in A^, hence the map

K,(B^,BJ->K2(L,,LJ

is injective, by corollary 2.8. In addition, letting ^ be a generator for the ideal of E^1 in
B^ with ^.=1 mod tj for i ^7, we can write ^p* (/) and ^p* (g) as

H?* (/) = l + a n t,; |.i»* fe) = u. II t?s with a in B^, u in B ;̂,

since ^p-l [div(g)] is disjoint from Spec(BJ. Let T|̂  be the image of T| in K^B^, BJ,
and let r^ be the element of K^B^, BJ:

^=^.^ ....<.) (r (A r^)).
Then r|/=r|^, since both have the same image in K^L^, LJ. Finally,

5P* (^) = ̂ P* (^P* (y))^P* (^ ̂ ))}

={s*(/),5*fe)}

the first equality following from the functorial properties of the maps T|^^ defined in
paragraph 2.2. Thus ^(ri) = {s* (/), s* (g)}, as desired. We now prove (^).

We order the E^'s so that F^ intersects E^, at say n1, and E1^ intersects E\~1 at n1, for
f=2, . . ., r^. Let N be the set of nodes n1, . . ., rf1, and let A be the semi-local ring of
N-U-{s"^!)}!! F^ li . . . - L L F ^ in A^p. Let A; be the semi-local ring of
E1! -U. F^ -U- . . . -U-F^ in A^ p, and let A()=L, E?=Fi. We will show by induction on i
that
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(**) the image T|, of T| in K^ (A, E^ 11 F^ 11 . . . 11 FJ has image {^ (/), ̂  fe)} in
K,(A,A,).

This is true for i=0 by construction of T|. Assume (i^) for f < r^ then by
proposition 2.9 there exist elements T^, T^+ i

T.eK^A, E^ F^ ^ . . . 11 FJ; T^eK^A, E^ll F^ ^ . . . Jl FJ

such that
(a) T, has image {^{f\ ̂ (g)} in K^A,, A,)
(b) T,^ has image {^(A ^fe)} in K^A,^, A,+0

and
(c) Im (T,)=Im(T,^) in K^A, nil F^ 11 . . .^ FJ; n=n l + l .
By corollary 2.8, the map

K,(A, ̂ 1L F^ll . . . ^FJ-^(A,, A,)

is injective, so (a) and our inductive assumption implies
(d) T-TI, in K^(A, El 11 F,^ . . . 11 FJ.
On the other hand, we have the commutative diagram

K2(A,E l l ,E l l + l ,F2l l . . . lLFJ
^i .^ \ res,+i

K,(A, E^ 1L F^IL . . . JLFJ ^ res,. K^A, E1^1 U- F^ IL . . . 11 F,)
res^\ ^res;+l

^(A.nllF^ll . . . 11 FJ

Thus, letting r|^+i be the image of T| in K^(A, E^, E^ll F2 11 . . . 11 FJ, we have

^n Ol*. i+1) = res;, (r|;) = res^1 (T^ 0

so

and

res;. (T,) = res^1 (r|, + 0; since T, = ri,,

res^ (Tf) = res^1 (if +1); by construction of T; and T^ +1.

Thus

res^l(r|,^)=res^+l(T,^).l'>/on V' l i+ l^— 1 ^ ^^i+lJ

Since res^1 is injective by corollary 2.6, this gives

^li+i = Tl+l?

hence

Im(Ti,^)=Im(T^O={^(/), n^)} in K^A,^, A,^},
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and the induction goes through. This completes the proof. Q
Let S -> S" be a finite etale extension of semi-local PIR's; J the Jacobson radical of S.

Given a section 5: S -> A^ let 5" be the induced section 5': S -> A^. Each allowable blow-
up of A^ gives by pull-back an allowable blow-up of A^; conversely, each allowable
blow-up of A^ is dominated by an allowable blow-up which is pulled back from A^.
This shows that the norm map

N: K, (R (A^), R (As1/)) ̂  K^ (R (A^ R (As1))

N: K, (R (A^), R (AiOL/ -^ K, (R (A^), R (A^)),

restricts to

satisfying

^(N(T1))=N(^(T1))

forriinK2(R(A^),R(As1^.
Let {x, &} be in K^S', SQ with x in (1 +J')*, b in L* where L is the quotient field of

S. We claim that

(2.6) N({x, &})={N(x), b} in K^S, S).

Indeed, we may assume that b is in S. Write A^=Spec(S[u]) and consider the symbol
{x, u} in K:2 (R (A^), R (A^,)). Since u is a unit in R (A^), we have

N({x, ^})={N(x), t.} in K2(R(Ai), R(As1)),

by Corollary 2.2, and the projection formula. Specializing via the section s with s* (u)=b,
and applying Proposition 2.12 proves (2.6).

3. Some relations in relative K^

Let S be a semi-local PIR with Jacobson radical I. We suppose that S contains a
field ko containing ^. Let a be in S*, let S^= S [Xj/X^-a, if char(feo) + \\ if char(feo) = /,
let S, = S [X]/X1 - X - a. Let

N: K^(S,,S,)^K^(S,S)

be the norm map, and let a be a generator of Gal(S^/S). Our first object is to show

(A) {x, l-N(x)} is in (l-a)K2(S,, SJ for all xe(l+ISJ*.

In [M] and [S], this is done by an easy direct computation. We proceed here by
a "generic element" method, coupled with the specialization techniques developed in
chapter 2.
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3.1. THE GENERIC ELEMENT. — Fix a prime ;, and let Fo be the prime field. If Fo=Q, let
R=Q(d)M(o; if Fo=Fp, let R=Fp(^, to)[t]^, with to and t independent variables. Let
I==(0, and let k be the quotient field of R. If E is an extension ring of Q(^), or of ¥p,
let RE=E[^|((), IE==(ORE and feg the quotient field of Rg. We let ko be the ground field
Q (^) or Fp(^, to), and let/? be the characteristic of ko.

LEMMA 3.1. — Let E be an extension field ofko. Ifl^p, then (K^RF, Ig) is generated
by the symbols {/, Q with fin (l+V*. ^(RE, IE)==O i/> > 0.

Proof. — Since the surjection Rg -^ RE/IE = E is split, we have the short exact sequence

0 ̂  K^ (Re, IE) -^ ̂ 2 (RE) ̂  K^ (E) -^ 0.

In addition, the map

K^)^K^)

is injective. Suppose I +p. Let T| be an (-torsion element of K^RE? IE)? so

Im(Ti)=Or,y in K, (fe^,

for some g in fe^ by Suslin [S]. Since T| maps to K^ (feE) v^ K-^ (RE)? fhe tame symbol
T^(Im(r|)) vanishes, i.e.

^ord^(g)^^

Thus g=tal.u, for some integer a, and some unit u in RE. Then {g, Q=={u, Q. In
addition, since T| is in K^RE, IE)? {M? Q restricts to 1 in K^ (RE/IE) =K-2(E). Let
res: RE -^ E be the canonical surjection; then {res (u\ Q = 1 in K^ (E). Thus

Im(r|)={M/res(M),y in K^).

Letting f==u/res(u) completes the proof in this case. If (=7?, we use the same proof,
together with the result of Suslin that pK^(kE)=0. D

Let Xo, . . ., Xj_i , v be independent variables over fe, let u=v1 if I ^ p; if l=p, let
u=vp—v. Let A and B be the rings

^==rco[XO? xl9 ' ' • ? xl-l7 xl-l9 M]?

B==rCo[Xo? x^, . . ., Xj_i , .?Cj-i, t^J,

so B = A [v]. Let x be the element

x=l+t^XiVieR^

so x is the "generic element" of the universal Kummer extension (or Artin-Schreier
extension if l=p) RB/RA having x^_i invertible, and with x = Imod?. Let L be the
quotient field of B, E the quotient field of A.

Let N: Rg -> RA be the norm, a the generator of Gal(Rg/RA) with a(v)=^v for I + p,
<j (v) = v +1 for / =p. Let X l / l = Spec (Rp), X = Spec (RA). Let W be the closed subscheme
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of X111 defined by the ideal ((l-N(x))/t), W the subscheme defined by (x). We note
that W and W are reduced and irreducible. Write x as x = 1 + ty.

On X^^WUW'), both (l-N(x))/r and .x are units, so the symbols
<^[(l-N(x))/?]-1, (l-N(x))/Q and <^, t> define elements

^=(S>((ty[(l-^(x))/t]-\(l-^(x))/t^

T|2=^«^0)

of K^X^^WUW'), X^-W), satisfying

(3.1) {x, l-N(x)}=Im(Th+r|2) in K^RL, IJ.

Abusing notation, we will denote the element ih+r^ of K^X^-^WUWQ, X^-W)
by{x, l-N(x)}.

Let z be the regular function on W defined by

/ ^-1 _ \
(3.2) z=(l|l)^l+^(x^r~l+•"+a~l\ for l^p

\ 1 = 1 /
p-i

(3.2)' z=-^-l+ ̂  (_^-l)o-*(^)a-l+...^-^ ^ (^

i=l

where x^ is the restriction of x to W. Then z = 1 mod (; in particular z is not identically
zero. Let Z c: W be the locus {z=0}. Then

(3.3) x^=z°lz on W-Z.

Let A°=ko[xo, . . ., ^_i, x^], L° the quotient field of Ao, and let X°=Spec(RAo).
Then

X l / l = Spec (R^o M), X = Spec (R^o M).

We form relative compactifications of X111 and X over X° by introducing new variables
i;o and UQ: ==(^0)^, and defining

X*=Proj^oRA°[^o. "o];

X^^Proj^oRA^o^o]-

Let W1 be the closure of W in X1^*, and W* the normalization of W1.

LEMMA 3.2. — The element x^y ofkQ\^T\ extends to a regular function x^ on W*, \vith
x^* = 1 mod t.

Proof. - Let X^oo) be the locus {vo=0}. W c= X1'1 is defined by the equation
1-1

(3.4) 0=(N(x)-l)/t=ao+ E a^1; a, in A°,
i=i
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with

ao=fccomockA°; a,_i=(-l)1-1. r1-1^.^, for l^p
(Xo=x^_imodtA°; a^i^-1.^.^, for !=p.

Since ^-i is a unit on X°-X°, W-W is finite over X°-X°, so W^W is contained
in X^oo). Extend x^ to a rational function x^ on W*. Then each component C of
(xw*)oo dominates X°. Pass to the semi-local ring R°:=RLO of X° in X°. Then
W^o:=W* XxoSpec(R.Lo) is proper over R^o, and is irreducible; since R^o is a DVR,
this implies that W^o is finite over R°.

Let v be an extension of the valuation of R° defined by (t) to a valuation on feo(W)-
One easily checks that

v(a,)^f, for f=0, ...,;-!, v(a,.0=;-l.

Let a=—v(i0. Since x=l+^Sx,u1 , we need only show that a ̂  \/i Assume that
a > l / l . As

v^OL^-ila+i and v(u1-1 aLl~l)= -(I- \)la+l-\ < 0,

we see that

v(ul~lQil_^<v(uiQLi) for f=0, ...,f-2.

But then (3.4) shows that

O^v^-1^-.^-^ --!);+;-1,

hence a ̂  l / l , contrary to our assumption. D

COROLLARY 3.3. — The function z defined in (3.2) extends to a regular function z^ on
W*, with z^ =lmodt. The divisor (z^*) ls disjoint from W*, so the divisor Z=(z) on W
is proper over X°.

Proof. — Immediate from the lemma and (3.2). D
We now proceed to explicitly solve the equation

[x, l-N(x)}=a°/a in K^U, U)

for a particular open subset U of X111. The final result (3.7) includes an additonal term
of the form {g, ^}, but we will absorb this factor later on.

Let W* -> W° -»- X° be the Stein factorization of W* -^ X°. Then, as W is finite over
X°-X°,wehave

W0_^o_^_^

Since z^ is identically 1 on W*, z^ defines a regular function z^o on W°, with
z^o = 1 mod t. Let Z° c W° be the locus {z^o = 0}; then Z° U W° = 0.
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Form the pullbacks

X^X^XxoW0; X^-^X^XxoW0.

Then

p,: X^X^ and p,: X^^X^

Sire finite, X^o is isomorphic over W0 to A^o, and X^* is isomorphic over W° to P^°.

Homogenizing the equation (3.4) gives the equation for W1 in X111*. Thus W1 ->X°
is finite over the locus XQ^O (if ?=/?, W1 ->X° is finite). In particular, there is a
codimension two subset T° of W°, T° c: W°, and a closed subset T of W1, T <= W1,
such that the birational map W° -> W1 defines a birational finite morphism

p : W0-^0-^1-^ .

The map p composed with the inclusion W1 —T -> X111* gives a section

s : W^T^X^^w0-

Let F" be a section of (9(1) on P^o-T0 wlt^ divisor

div(F')=5(W°-T°).

Since T° has codimension at least two, and W° is normal, F/ extends to a section F of
G)(l) on P^o with

div (F) = closure of s (W° - T°).

Let / be the restriction of F to X^ ^ A^o? considered as a regular function on A^o.
Let Y° be the closure in A^o of 5(W°-T°) 0 A^o. Then

div(/)=Y°.

In addition, the restriction of p^

p,^o: Y°-.X^

gives a finite birational morphism from Y° onto W. Let p^\ X^o-^W0 be the second
projection and let D°=/?2'1 (Z°); we note that D° H A^o=0.

Consider the symbol

O^wo), /}eK,(R(AU I(A^o)).

On A^o — Y° — D°, p^ (z^o) is a unit, /?$ (^w°) = 1 mod ^ and / is a unit. Writing p^ (z^o)
as 1 + ta, for some regular function a on A^o, the symbol

^o:=0«ra/- l,/»6K,(AwO-YO-DO,A^o-YO)
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has image {/^(z^o), /} in K:2(R(A^o), HA^o)). The tame symbol of H° is

T(H°)=ZWO on Y°.

Let D=/?i(D°), and let n be the element p^([i°) of K^X^-W-D, X^-W). Then
jii has tame symbol

(15) T(H)=^^(T(H°))=(zonW)

in K^X^-D, X17^2. In addition, D=p^-i(p^o(D)), i.e., D consists of fibers of
p^o-.X^^X0.

We now pass to R°: =RLO. X^J is isomorphic to Apo. The element

{x, l-N(x)}.^lo/^eK2(ARo-(WUW /), A^o-W)

has trivial tame symbol by construction, hence determines a unique element a of
K^ARO, Apo) ^ K2(R°, 1°). On the other hand, under the norm map

N: K^R^IJ^K^R^IE)

(recall that E is the quotient field of A=ko[xo, .. ., u] and L is the quotient field of
A [u]) we have

(^=N(0)
=N({x,l-N(x)}^io/^)
={N(x), l-N(x)}

==1 in K^ (RE, U

Since the map

is injective, we have

K^RLO.I^^K^RE.IE)

o^=0 in K2(RLo, ILO).

By lemma 3.1, we have

(36) U^^-^W}^/^={g,Q in K^ARO.ARO), if l^p,
[ {x, l-N^)}^/^! in K^ARO.ARO), if l=p.

Here g is an element of (1 +Ii/>)*, g= 1 +tb.
Since K-theory commutes with direct limits, we have proved the

PROPOSITION 3.4. — There is an affine open subset U ofX^-W-W, containing the
generic point ofX111, such that b is regular on U, ^ extends to an element ofK^(V, U)
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and

(3 7) f {^ l-N(x)}H°/n={^ y m K^U, U), f/ ; ,̂
I {x, l-N(x)}^<^/^=l mK2(U,U) , if Z=p.

^re {^, y stands for the element d>«rf<~1, ^» O/K^OJ, U), and as explained above,
{x, l-N(x)} stands for the image of the element ih+r^ o/K^X^-W-W', X^-W)
defined in (3A).

3.2. THE ELEMENT {x, l-N(x)}. - We retain the notations X°, X, X111, U, W, W, x, ^
and ^ of the previous section. Let S be a semi-local PIR containing feo, J the Jacobson
radical of S, J=(t) S. Extend the inclusion ko -> S to a ring homomorphism g * : R -> S
by g*(t)=t Letting T=Spec(S), we get a smooth R scheme g: T-^Spec(R) with
T=Spec(S/J). Let

t=nt.
1=1

be a prime factorization of t in S.
If A-)-Spec (R), B-^Spec(R) are R-schemes, we let Ag-^B be the B-scheme

P 2 ' ' AXspec(R)B-^B.

Take a in S*, fix a prime I, and let S" be the etale cyclic extension of S:

S^SpCMX^-oO^n}], if l^p
=SpC]/(X^-X-cx)=S[p], if l=p.

Let J^JS", Ta=Spec(Sa). Let X^a) be the subscheme of XT defined by the ideal
(u-a), and let X^(a) be the subscheme of X^a defined by the ideal (i^-P). We get
the commutative diagram

X^oO^X^a)
\ ^

I X? ^
\

T01 -^ T

We note that X^(a) is isomorphic to the fiber product (X^) X T (XT (a)). If we modify
a by the ;-th power of a unit in S, a'^a (or a^a+a^+a if l=p) then T"' and T" are
isomorphic as T-schemes, thus we may assume that

(3.10)T each component of X^(a) has non-empty intersection with UT«.

If Z^T is a finite etale T-scheme, let Z^T'XrZ. For all such Z, the condition
(3.10)z is satisfied.
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If ^=l+r£^,p1 is in (1+J01)*, y, in S" and ^_i in S"*, then ^ determines a pair of
compatible sections ̂  and ^a:

X^(a)-X?

\ T^ U^
T" -̂  T

by ̂ =0^ ...,^-1),^=^ ...,^-i,P).
Let ^: A^ -^ 1\\ be the map induced by T" -+ T. For Z a closed subset of A^, we let

Z" denote/^(Z).

LEMMA 3.5. — Let g=g(z) be in S^z] ,̂ z an indeterminant, with g= 1 modt, SUCH that

ord^(l-N(^))=ord^(l-N(^(0))); for f= l , . . . , r

where we consider g as an element o/S^zj^ga^ in the LHS.
Let C be a closed subset of A^. Then there is a closed subset D of A^, with

D r\ {z = 0} = 0, an^ a proper map

F: A^-D-^A^

such that

(a) F: A f — D - ^ A f is etale at each generic point
(b) F- l (0)={z=0}UZ,withZn(CU{z=0})=0
(c) Tiz: Z -> T fs y?nf^ and ^^afc
(d) ^ is regular on A^a—D".
L^ i :Z-^A^, ^Z'^'-^A^.a ^ ^ inclusions. For each section s:T->^, let

Z (s) = F -1 (s (T)), and let i,: Z (s) -> A^ - D be the inclusion. Let j,: Z (s^ -> A^a - D01

denote the inclusion ^/^(s)01, and let

7i,: Z(s)->rT; 7t:: Z(s)a-^Ta; TI;: Z->T; 71": Za^Ta

denote the projections. Then
(e) If¥ is etale over a neighborhood o/5(T), then

{g(0\ l-^(g(0))}=(n^({i!(g), l-Na?fe))}).<({;*fe), l-N(/*Qr))}-1).

Proof. - Our assumption on N(^)-l can be rephased as l-N(^)=v.nt,nf; v a
unit on an affine neighborhood V of {z=0} in A^a.
Then

^=^A.ti...t,((^ l-N(^))eK2(V, V); V=Spec(A),

is defined, and for each map q: R-»-V, with R a regular, semi-local curve with R
reduced,

q^ (S) = {^* (g), 1 - ̂  (N (^))} in K, (R, R).
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Extend p : A^x -> A^ to p : P^a -> P^. Let D°" = P^a - V, D* =p (D°"). Shrinking V if
necessary, we may assume that D^^'^D*). Let m be the degree of D* over T. We
note that D* contains no component of P^. Let s^ be a section of (9(m) on P^ with
(s^) = D*. Let SQ be a section of 0 (m) such that

(5o)=L{z=0}+Z,

with

(*) Z c= A^ - (D* U C U [z = 0}), Z -^ T etale, and Z reduced.

LetD=D*nA^.
Let F: A^-D -> A^. be the restriction to A^-D of the map

(f^(5o:5j):P^P^

Then F is a finite degree m map with F~1 (0) =(so). From (^) it follows that F satisfies
(a)-(d). Let F": A^x-D" -^ A^a be the map induced by F.

Let T = F0" (S) e K^ (A^«, A^«). Let

^r: A^T; g": A^-^T01

be the projections. By the homotopy property, T^0"'^) for some ^ in K^T", T").
Then for sections s, 5': T -> A^, we get induced sections 501, s'": T01 -> A^-a and

COT(3))=^°(F|z^a),(,r(p))

=^(F^(n))

=^0^)

=^,

and similarly for s\ Taking s' to be the zero section, we find

^0•?(S))=7^a-y*(S))+5/*(S)

=^({/*(^ l-N(;*te)}).{^(0), l-N^(O)}

which completes the proof. D

LEMMA 3.6. — The subgroup o/K^T01, T^l-c^K^T01, T01) generated by the symbols
[y, l-N(y)} with ^=l+tS^,P1 in (l+J")* 15 the same as the subgroup generated by
elements of the form

NQ./T.({W,I-N(W)}),

where Q-^T range over finite etale T-schemes, and w^l+J^)*, w=l+t£w,P 1 ,
w,er(Q, ^p) satisfies

(a) w^_i and WQ ar^ Mnft5 fn S"
(fc) /^ (x) fs in UQ /or ^ac/i generic point x of Q.
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Here i^:Q-> X^1 is the section determined by w.

Proof. - Given an open subset V of A^, we can find elements ^^l+tSv'B1 and z
of^+J^with

^(T) S V for f = l , . . . , ;-1; y=z°/z,

so N(y)= 1. Take V so that aeV implies that a+yo and fl+^-i are units in S". Then
V^y satisfies (a), and

{^, l-N<j)}={^, 1-NOQ}
^^i-NC/oHy.i-NOO}-1

^^l-NC/OHz.l-NO^1-0)

which proves (a), with Q=T and w=y7.
For (b\ let N be the maximum of ordb(l-N(j)), as b ranges over the closed points

of T. Let Po (z), . . ., P;_ i (z) be in S [z], z an indeterminant, such that

(^ fP,(z)=OmodtN for f=0 , . . . , ; - l ,
I P<(0)=0.

Let ^(z)=^+2P;(z)p1. Let M denote the total quotient field of S. Choosing the P(
sufficiently general, we may assume that the S [z]-valued point ^ of X111 determined by g
satisfies

^ (x) e UM (^ for each generic point x of Spec (M (z)).

Sy (*)» <? satisfies the hypotheses of Lemma 3.2; applying that lemma, with C being the
closure of the points of ^(X^-U) lying over Spec(M), and s being any sufficiently
general section, proves (fo). D

LEMMA 3.7. — L e t y ' . T - ^ ^ b e a section, ̂ : T01 -> A^. the induced section. Let Q
be a neighborhood of ^(T) m A^, Q" the neighborhood of ^(T") fym^ oiw Q. L^
R(Q) (r^s/?. R^Q")), be the semi-local ring ofQ in Q (resp. Q" in Q"). Suppose there are
elements PeK^Q", Q") anri/e(l+JR(Qa))ilt wfd

Im(P) = {/, Q in K, (R (Q"), R (Q01)).

Then^W={g, Q mK^T", T01),/^ som^e(l+Ja)'lt.

Proo/: - Let p : A^^A^. be the obvious map. As in lemma 3.5, we construct a
proper map

F: Q-^A^

withF-l(0)=s(T)+Z,Z-^^ Gtale, and Z c Q-p(div(/))-s(T). Since /=l+at on
Q", with a regular on Q", the symbol {/, Q is the image in K2(R(Q<2), R(Q01)) of the
element <S>((at^-\ Q) of ^(Q", Q"). Then, retaining the notations of lemma 3.5 we

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



318 M. LEVINE

have

^ (T (P)) = ̂  ({T (A i;J), by functoriality of 0
= {n^f (/), ^} (projection formula)

={g\Q, ^e(i+JT.
Similarly, for a sufficiently general section 5: T -> A^, we have

C (/? (P)) = C ({/? (A y), by functoriality of <D
= {^ °J! (A y (projection formula)
={^y, re(l+JT.

Using the homotopy property applied to T=Fa<l(|3) as in the proof of lemma 3.5, we
have

^(p)={^,w,y-1

={^7^},
as desired. D

PROPOSITION 3.8. — Let y be in (1 +J01)*. Then [y, 1 -N (y)] is in (1 - o) K2 (T", T01).
Proof. — By lemma 3.6, replacing T with a finite etale cover and changing notation,

we may assume that ^=l+t£^P 1 with the y, in S, and (a) and (b) of that lemma
satisfied. We have the diagram

X^oO-.X^cA^1

iT^ i t ^
T" -̂  T

Take a linear projection p : A^~x ̂  A^~2 which then induces projections po:X^-^ A^~2,
and ^a: Xy (a) ̂  A^- 2. Choose /? so that the fiber Q": ̂  -1 p^ (W (T)) satisfies

(3.12) each component of Q" intersects U-r".

Let Q be the fiber po 1 po (^ (T)). Let q: Q -^ X, (f: Q" -> X1/( be the respective composi-
tions

Q ̂  X? ̂  X°; Q2 -^ X^ ̂  X1/1.

Let x, H and g be as given in (3.7), and let x^ ^ and ̂  be the pullbacks of x, |i and g
via ^ to (1+JR(Q"))*, K^incy), R(Qa)) and (1+J01)*, respectively. From (3.7) we get
the equation

(3.13) [x\ 1 -N(^ (x))} ̂ /n,= {^, y in K^ (R (Q"), R (Q"))

where we take ^=1 if l=p. Here we have used the functoriality of the map 0^ ^ and
the functoriality of the symbols < , >. In addition, letting W4 be the divisor ^*(W),
W={(l-N(x))/r=0}, and ^ the pullback q*(z), where z is the function constructed in

4® SfiRIE — TOME 22 - 1989 — N° 2



THE INDECOMPOSABLE £3 OF FIELDS 319

paragraph 3.1, we have from (3.5) the computation of the tame symbol of u :

T(u,)=z» on W.

In particular, z" the restriction to W of the regular function

Zq=b+I.b''~l(xv)''~l+•••+''~'

where b=lfl if l^p, and b=(-y-1) if l=p. Z" is thus defined in a neigh-
borhood of ^"(T"), with Z^=lmodt . By Proposition 2.11, u, is in the specializ-
ation subgroup K^I^Q"), R(Q1'))^. By Proposition 2.12, {x", l-N(x9)} is also in
K2(R((y),R(Q»))^and

^({x", l-N(x<')})={^ 1-NOO}.

Thus [g», Q is also in K2(R(Qa), R(Q°'))^., and we have

^« ({^ ^}) = {>', 1 - N 00} V/v in K, (T«, T«),

where v=y(u,,). This completes the proof in case l=p.
For l^p, the tame symbol of {x", l-N(g*(x))}u^/u, vanishes in a neighborhood of

W(T'), so {g", Q extends to an element y of K2(V, V), for some neighborhood V of
^CP) in Q". By lemma 3.7, we have

^" ({̂ . ̂ }) = [h, y, for some h in (1 + P) *.

But

{A.pTO,?}^,?0/?}
={^y,

which completes the proof. Q

3.3. GENERATORS FOR RELATIVE K^. - We now consider a filtering direct system of semi-
local PIR's: {S( | i el}, where each S, contains hy. We assume there is an initial element
0 of I. Let J, be the Jacobson radical of S,. Let S^, J^ be the direct limits. Since K-
theory commutes with direct limits, we have

K2(S«,JJ=limK2(S,,J,).
—»

Similarly, for a in S$, let S? be S.^/J^-a (or S.[X]/X"-X-a if l=p), so S? is etale
over S., and has Jacobson radical J?=J,.S7. Also, letting S^, J^ be the direct limits, we
have

K2(S^,J"J=limK2(S?,J?).

Let L, denote the quotient field of S,, L^ the direct limit of the L;, and similarly define
L? and L^. Let CT be the generator of Gal(S?/S,), o(P)=^,p (or P+l if l=p), where P
is the image of X in S?.
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We suppose that {S; [ iel] satisfies
(I) Every x in 1 +Joo is a norm from S* .̂

(II) If P(u) is a separable polynomial with coefficients in S^ and has degree d < ?,
then P(u) factors completely in S^ [u].

Using Hilberfs theorem 90, we can replace (I) with
(I)' Every x in 1 +J^ is a norm from 1 +J°5o.

Our object here is to show

PROPOSITION 3.9. — Assuming (I) and (II), the quotient group

K^.J^/O-^K^.J^)

fs generated via symbols by (1 +J°So)* ® L^.
The proof proceeds in a series of steps:
Let GI <=K2(S^,J^):=G be the subgroup generated by (l+J^)*®^, G^ the

subgroup (1 — o) G.

STEP 1. — G/GI is generated by symbols of the form

{ l + f l p , f c + c p } and { l+a ,b+cp}

with a in 3^ and b, c in S^.

Proo/ — G is generated by symbols {/, g} with/in (1 +J°»)*, g in L^. Write g as

^ = E gi P1 with .̂ in L, for some j.

Let /?i, . . ., py be the closed points of Sp v^, . . ., v,. the associated valuations. Take h
in L^ so that

v, (h) = min [v, (g,)} for s = 1, .. ., r.
i

Then gjh is in Sj for each f, and at each py at least one of the gjh is a unit. Since
{/ ^}={y, g/h]modG^ we may replace ^ with g/h, and changing notation, assume that
each py at least one of the g^ is a unit.

Assume that l^p. Take units i^, t<2 m Sj. Note that ^(^i +1^2 P^^^ P1 with

'=J ^Si-^-u^gi-j for 1 ^ 7
l^i^+^a^-, for f<j.

Since a is a unit, it is easy to see from this that we can find units Uy ̂  ^i k an(! integers
Jk» 0 <jfc < ? so that

^^.n^ifc+^k^)
k
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is of the form ^=^^P1 with g\ in SJ°. Replacing M i k + ^ f c P ^ ^h
M! k + u! k P^ + ̂  P^ ~ 1 + ̂ k P» it follows that

r^.n^+^p^+vfcp^+w.p)
is also of the form

^=Z^P1 with grinSf,

if we choose the v^ and w^ to be sufficiently general units in Sj. Changing notation, we
may therefore assume that go and gi_^ are units in Sj. The proof of this fact in case
l=p is similar and will be left to the reader.

Write/as

/=l+Ey;-P1 with the/in JJ,

increasing j if necessary. Arguing as above, we may assume the polynomials

P(^)=Z^1; Q(^)=l+Z/^1

are separable, hence by (II) factor in S^ for some n > j; changing notation we may
assume that n =j, and

P(u)=Y\(a,+b,u); Q(u)=Y\(c^d,u)

with a,, bf, c;, and d^ in Sj. Since ^o=^ai» Si-i=Y].bi, and l+/o=^cl» t^ elements
a^ fcf, and ĉ . are all units in Sj. Let c=fjcf, d^d^c^ so c is in (1 +J^) and

Q(^)/c=n(i+rf^).
As the coefficient/-/c of u1 in Q(u)/c is the f-th symmetric function of d\, . . ., d;-i, and
/•(p) vanishes for all closed points p of Spec(Sy), it follows that d\(p) also vanishes for
all i, and all closed points p. Thus d\ is in Jy, and the symbol {/, g} can be written as

u ^}=n{i+^ ^+^P}{^ ^+^P}f , j
completing the proof of step 1.

STEP 2. — G/GI is generated by symbols of the form {1+a, fc+cp}, with a in Joo,
and b, c in S^.

Proof. — By step 1, we need only consider symbols of the form {1+flp , &+cp}; a in
J^ b and c in S^, some n.

Let M be an indeterminant, let S=S^ J=J^ let S=S/J and let v be the indeterminant
with

^=M if l^p\ vl-\-v=u if l=p.
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Let L(iQ denote the semi-local ring of A^ in A^:=Spec(S[u]), L(v)=L(v)/JL(v). Con-
sider the symbol

T| = {1 + av, b + cv} in K^ (L (v), L (v)).

Let Zi, Z^ <= A^ be the curves defined by the ideals (1-har), (fc+cr) respectively. Then
the projection

7i: A^T:=Spec(S)

restricts to an isomorphism Z^ -> T and a generically 1-1 map Z^ -»- T. In addition
Zi n As = 0, so TC : Zi-^T defines an isomorphism

Zi -> Spec(L),

where L is the quotient field of S. Furthermore Z^ 0 {v=0} is empty, since b and c are
units.

The tame symbol T(r|) is given by

T(r|)=(l+ar) onZ2-(fc+cy) on Zi.

Then we can find/in 1+J, g in L* such that

^*(/)|z2=(l+^)|z^ ^fe)|z,=(fc+^)k.

Thus the product {71* (/), b-\-cv} {1 +01;, TT* (g)} has the same tame symbol as T|, so there
is a T in K^S, J) with

(*) ^-{^(A b+cv}{l+av, n*(g)}n*(x) in K^(L(v), L(u)).

Let 5: Spec(Sa)-^A^ be the section (over S) with 5*(i?)=P, p: A^a-^A^ the obvious
map. Since n*(f) and \-\-av are units in a neighborhood of p(s(SpGc(Sa)),
Proposition 2.11 implies that the terms in (^) pulled black to A^<x are in the specialization
subgroup K^L^y), L"^)),. Thus, using Proposition 2.12,

{ l + a p , f c + c p } = { / , & + c p } { l + a p , ^ } . T in ^(S^J").

This completes the proof of Step 2. D

STEP 3. - {1 +a, fc+c P} is in Gi G^ for a in J^, b, c in S*,.
Proof. - By (I)', we can find x in (1 +J^)* with 1 +a=N(x).
We claim that

(*) {l+a, fc+cp}={jc ,N(fc+cp)}modGiG2.

Since {x, N (b+c P)} is in G^, this would complete the proof.
Write x as

^=i+Z^P1
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As in step 1, we can factor this as

x=(l+d).n(l+^P1) with d , d , m J ^ .

Since 1 + a = N (x) = (1 + d) ]~[ N (1 + d, P1), we need only show that

(**) {NO), fc+cp}={^, N(fc+cp)}modGiG2,

for .y==l+0o+0ip, Oo and o^ in J^.
We proceed as in step 2, retaining the notations from that step. We assume all the

elements defined above lie in S^: = S".
Let W1, W2 be the curves on A^ defined by ideals (1+Oo+Oiu), (fc+ciQ, respectively

(note that Wl=0 if Oi=0). As above, n: W2 -^Spec(S) is an isomorphism, and
7i: W1 -> Spec(L) is an isomorphism if a^ + 0. Let V1 and V2 be the subschemes of A^
defined by ideals (N(l+ao+aii;)) and (N(fo+ci;)), respectively. Then V1 and V2 are
the unions

V1 = U a1 (W1); V^ = U a1 (W2)

Since fc and c are units,

CT l(W2)naJ(W2)=0 if i^j.

Since W1 is disjoint from A^,

(T1 (W1) n ̂  (W2) = 0 for all i and 7.

Thus V1 and V2 are regular, disjoint, and etale over Spec(S).
Let T| be the element of K^(L(v), L(v)):

T|= {N(l+ao+aii;), &+cu}{l+Oo+Oii; ,N(b+ciO}-1 .

Then T| has tame symbol

TQ^^onV^-^onV1),

with

/ii6k(V1)*; h^eY(N2, ^2), ^=lmodJ.

Clearly

N(^)=N(^)=1,

so we can write

^=z?/zi; /i2=^2 with Zi(=k(V1)*; Z2^r(V2, ^2).
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Taking

z^b+yw^"^'1
as in the proof of Proposition 3.8, we may assume that z^=l modJ. Let z\ be the
restriction of z^ to (^(W1), and similarly define z\. Then there are elements /^eL*,
^e(l+J)*with

^*(^)|w^4
Let (Of and 8^ be the symbols

®, = {1 + Oo + ai a10;), Ai}; 8, = {^, fc + c a1 (r)}.

Then ^: = fl °^i 81 has tame symbol

T(X)=(ziOnVi)-(z3onV2),

so

TI . (^A) -1 = TT* (T) in K^ (L (y), L (i;)),

for some T in K^S, J). Specializing as in step 2 gives (^), completing the proof of
step 3, and the proposition. D

4. Main Theorems

4.1. HILBERTS THEOREM 90 FOR RELATIVE K^. — We now follow the proof of Suslin in
[S] to prove Hilbert's Theorem 90 for relative K^. Let S be a semi-local PIR containing
the field ko. Let a be a unit in S; we retain the notations J, S", J", T, T", etc. from
part 3. In particular, S" is an etale cyclic Galois extension of S, of prime degree /, with
Galois group generated by a. For a flat S-algebra W, with W a semi-local PIR, let
W^W OsS", J(W) c W the Jacobson radical, .H^^JCW) W". We have the complex

M(W)^: K^W", J(W)01) ——. K^W", ^W)01) -^(W, J(W)).
(l-CT) N

Let V(W) be the homology Hi(M(W)^). If g: W->W is an inclusion of semi-local
PIR's, then g induces g * : V(W) ->y(W)', if W is finite and etale over W we have
g^: V (W) -> V (W). Since V (W") = 0, and g^°g*= deg (g). id, we get

1. V(W) is an ^-torsion group for every W.
If g: W -> W is finite and Galois, and of degree d prime to /, then using the maps

g^. K^w701, ^w^mi/rfi^K^w01, .KW^HiAq
and

^: K^W", .KW^niAq^K^w, J(W))[i/d]
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defined is paragraph 1.10, we see that
2. g * : V(W) ^V(W') is injective.
Let x be in 1+J(W), let 2 be the Azumaya algebra constructed as a crossed product

algebra from the Hilbert symbol (a, x\ (or the symbol [a, x)p if l=p) as in Serre [Se], let
g: X^Spec(W) be the Brauer-Severi variety associated to Q). We let W=W/J(W),
X=^-l(Spec(W)), and let R(X) denote the semi-local ring of X in X, with radical J(X).
We note that X is a projective space over W (^ is split) as x=l modJ(W). Let
X" = X x w W", and let /: X" -> X, /: Spec (W01) -> Spec (W) be the covering maps. X01 is
also a projective space over W".

PROPOSITION 4.1. — The map g * : V(W) ~^V(R(X)) is injective.
Proof. - Let r\ be in K^W", W") with N(1-1) =1, and suppose that ̂ (11)=^ for

some K in K^R^X"), J(Xa)). Let z=5(^), where 8 is the boundary in the localization
sequence

^ K^ (R (X01), J(X01)) -^ KI ((X01)1/2, (X")1/2)^ Ki ((X")0/2, (X^)012) ̂
a

Then za/z=8(g* (r|))=0. By our computation of K{ (X112, X112) and K\ ((X^2, (X01)172)
in paragraph 1.8, the map

/*: KI (X1/2, X112) -> Ki ((X01)172, (X")172)

is injective, so z can be considered as an element of

KI (X172, X1!2) c Ki ((X")172, (X")172).

As 8(z)=0 in ^((X")273, (X")273), and since

/*: Ko (X2/3, X2/3) ̂  Ko ((X")2/3, (X")2/3)

is injective (Corollary 1.12), z defines a class [z] in E^' "^X, X). Since ^*([z]) clearly
dies in E^ "^X", X"), and S is split, Corollary 1.13 implies that [z]=0 in E^ -2(X, X).
Thus z=8(x) for some T in K:2(R(X), J(X)). Modifying X. by/*^), we may assume
that 8Ck)=0. By Corollary 1.6, we have ^=g*(Q for some ^ in F^W", W"), and thus
g* (r0=§* (y/Q- As X" is a projective space over W", g* is injective, and we get T| =^°/^,
completing the proof. D

We now define a direct system {S, | ie^} of S-algebras with SQ=S. For each x in
1+J(S), we let S^=R(X), where X is the Brauer-Severi variety over with symbol (a, x)i
(or [a, x)p if l=p), and for each irreducible separable polynomial P of degree < ?, let Sp
be the normalization of S in the splitting field of P. For each finite set of Ps and x's,
we form the tensor product of the Sp's and S^'s over S and normalize, giving an
S-algebra T. We then localize T with respect to JT, forming T. Let .9̂  be the set of
such T'. We note that each element of <^\ is a PIR, and is flat as an S-algebra.
Repeating this for each T in y^ and taking localizations of normalizations of all finite
tensor products gives .9 ,̂ etc. We let y be the union of all the y,. Then {S; | i e y} is
a direct, filtering system of PIR's which are flat S-algebras. Let S^ be direct limit of

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



326 M. LEVINE

the S;, and J^ the direct limit of the J(S^), S^, J^ defined as in paragraph 3.3. Then S^
satisfies (I) and (II) of paragraph 3.3. Let L^ be the direct limit of the quotient fields
L,ofS, Let G=K,(S^J^

Let a be in 1+Joo, b in L^. Then a=N(x) for some x in 1-hJ^. Suppose a^l.
Then

{x, l-a}={x, l-N(x)}=0 in G/(l-o)G

by Proposition 3.8. If a= 1, then x=za/z, so {x, b} =0mod(l —a) G. Thus the map

(l+JJ*®L^G/(l-a)G
ag)fc-^{x , fc}mod(l-a)G

defines a homomorphism ©: K^ (S,o, JJ -^ G/(l - a) G. By Proposition 3.9, © is surjec-
tive; clearly N o © = id. Thus V (SJ = 0. Since V (S) -^ V (S,) is injective for all i in y by
(1) and (2), this implies that V(S)=0. Thus we have shown

THEOREM 4.2. — Let S be a semi-local PIR containing ko* ^et a be a unit in S, and S"
the extension ring Spq/X^-a i/ ^/?=char(ko), Spq/X^-X-a i/?=p. Let J be the
Jacobson radical ofS, J^JSa. Let a be a generator o/Gal(S°7S). Then

K, (S01, J") —^ K^ (S01, J01) -> K, (S, J)
(l-o) N

is exact.

4.2. TORSION IN RELATIVE K^ AND K^. — Using Hilbert's theorem 90 we compute the
torsion in K^S, J) and in K^E)1114, where E is a field.

THEOREM 4.3. — Let S be a semi-local PIR containing afield k which contains Hn/w n
prime to the characteristics p of k. Let J denote the radical of S. Then ^K^ (S, J) is
generated by symbols {/, Q, mthfin 1 +J. K^S, J) has no p-torsion ifp>0.

Proof. — Suppose ; is a prime dividing n. Suppose the theorem is true for n==I. Let
T| be an n-torsion element in K^(S, J). Then r|1 is n/l torsion, so by induction we may
assume that ^^{g, ̂ } for some g in 1+J, so r}{g, ^}~1 is (-torsion, thus is of the
form {h, Q. Then TI = [g W1, Q, as desired.

Consider the generic Kummer extension S(v)/S(u) with I/=M; here S(v) is the semi-
local ring of J [v] in S [u], and similarly define S (u). Let /*: S -^ S (u), h*: S -> S (u) be
the inclusions. Let T| be in iK^(S, J). Then

NS(.)/S(U)(/*(TI))=W)=^

so we can write /* (r|) as

/* (n) = T°/T for some T in K^ (S (v\ JS (v)).

Let

g: Ai = Spec (S M) -^ As1 = Spec (S [u])

4® S^RIE - TOME 22 - 1989 - N° 2



THE INDECOMPOSABLE Ka OF FIELDS 327

be the Wold cover. Then 8(xa/1:)=8(f*(r{))=0 in K{ (S [v], JS[v])\ so there is an
element z of Ki (S [u]) with ^* (z) = 3 (r). The image of z in K'i ((S/J) [u]) is 1 at all points
of As - {0}, since g is etale away from 0. Thus we can add an element ZQ of the form

Zo=(a on {M=O}), aeS*

to z so that Z+ZQ lands in the subgroup K{ (S [u], 3S [u]) of K\ (S [u]).
Take ^ in K^ (S (u\ JS (w)) with

3(y=z+zo.

Then T.^* (y1: =T' has 3(T') supported on {^=0}, and

TI^/T'.

Since Zo:={i^=0} is smooth, 5(0=(/*(x) on Zo), for some x in 1+J. But then
^.{^(x), r}-1 has ^(^.{/^(x), t;}-1)^, so

^={f*(x), v}.f*(P) for some pin K^S, J).

Thus

/ilt(T^)=T/<^/T/

=({/ilc(x),^.P)CT/{/^16(x),t;}.P

={/*M,y
=/*(M}),

hence T| = {x, Q, as desired.
If /=/?, we use the generic Artin-Schreier extension S(v)/S(u) where vp—v=u. Since

SM/SM is etale, the above argument shows that there is no 7?-torsion in K^S, J). This
completes the proof. D

For a ring R, we let K:3 (R)^ be the subgroup of K:3 (R) generated by products from
KI (R); K^CR)"^ will denote the quotient group

K^R^K^RVK^R)^

Let E be a field, and let E (t) be a purely transcendental extension of E; then the map

K^E^K^E^))""1

is an isomorphism. Indeed, the map is clearly injective. We have the exact localization
sequence 0 -. K3 (E [t]) -. K, (E (Q) ̂  C K, (E [t]l(g)) -. 0

j i 5 fir prime

K3(E)
and the exact sequence of Milnor K-theory [Bass-Tate]

O^K^(E)^K?(E(0)^ C V^(E[t]/(g))^0
5 g prime
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compatible with the Quillen localization sequence. As K2(F)=KM(F), and K^F)^0 is
the image of K^F) for fields F, we see the map K^E^-^K^E^))""1 is surjective.
Similarly, if R is a semi-local ring containing E, with quotient field E (t), then
K:3 (E)*^ -^ K:3 (R)"^ is an isomorphism.

COROLLARY 4.4. — Let E be afield containing ^, (n, char(E))=l. Then the n-torsion
subgroup of K3(E)ind is a quotient of Z/n. If E has characteristic p > 0, then K^E)"^
has no p-torsion.

Proof. — Let R be the semi-local ring of {0, 1} on A^, J the Jacobson radical of R.
We have the exact sequence

-^(R) -^(R) ^K^(R, J) ^K^(R) ̂

which gives the exact sequence

-^ K:3 (R)"^ ̂  K:3 (R)1114 -^ K:2 (R, J) -> K^ (R) ->.

Since

K3 (R)"^ = K3 (E)^', K3 (R)""* = K3 (E (O))""1 C K3 (E (1))^

we get the exact sequence

0 ̂  K3 (E)^ ̂  K^ (R, J) ̂  K^ (R) ̂ .

From this and Corollary 4.3, it follows that „(K3(E)ind) is generated by symbols of the
form {/, 0, /e^+jr/rtl+J)^, such that the symbol {/, 0=0 as an element of
K2(R). In particular, the tame symbol T({/, ^}) is zero, hence the divisor of/on A^
is divisible by n.

Thus we can write / as an n-th power:

f=gn some g in (E Og R)*.

We normalize g so that ^(0)= 1. Let CT be an element of Gal(E/E). Then

g°=^

for some K in n^; evaluating at 0 shows that ^==1. Thus g is in R*. The class of/mod
((1 +J)x)" is then determined by the value ^(l)e^, proving the corollary. D

Now we can show

THEOREM 4.5. — Let E be a number field. The Chern class

€2.1: K3(E) ind®Z^H&(E,Z,(2))

is an isomorphism, so the l-primary torsion in K3(E)ind is isomorphic to H°(E, Q;/Zj(2)).
Proof. — We may assume that E contains n,. From [Q] and the vanishing of K^ for

finite fields, K3(E) is finitely generated. From the above, the /-torsion in K3(E)ind is
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cyclic, hence the /-primary torsion is also cyclic. By [B-T], K^(E) is a torsion group; by
[Borel] the rank of K^E) is r^. Thus K^E)*"4/^ is a Z / l vector space of dimension
between r^ and l+r^. In addition, the Chern class vanishes on the Milnor K.3 (this
follows from the integral product formula for Chern classes).

Let symb: H1 (E, n02) -^ ̂  (E) be the map

H1 (E, n02) - (E^E^) ® H^ ,K, (E),

and let H be the kernel of symb. Tate [T] has shown that H is (Z/Q14^. Soule [So] has
shown that c^ i is surjective for I > 2; we give here a proof of surjectivity for all prime
;: LetR be the semi-local ring of {0, 1} on A^. By ([So], Prop. 2) we have the
commutative ladder

K^Z/O^e'K^EO^Z/O^O
^.ij, " l-^.o

^(R, n02) ̂  ©^(EOc), n,)^0;
8 x

where ©1 means the sum over codimension one points of AE—{O, 1}, and the rows are
respectively the localization sequence and Bloch-Ogus sequence for the open subset
Spec(R) of A^. As c^o induces the isomorphism ^(E(x))* -> H°(E(x), H(), the map

Ks (R; Z/OAr* K3 (E, Z/Q ̂  H1 (R, H02)/^* H1 (E, n02)

is surjective. We have the commutative square

(**) K3(R;Z//)^K3(E;Z/0
C2.1 [ [ C2.1

H^R.H^^H^E.Hi82)

where 5^ is the composition

K3(R;Z/Q ———> K3(R/J;Z/0=K3(E(0);Z/0©K3(E(1);Z/0 ———. K^E; Z/Q
reduce mod J (x, y) -> y - x

and similarly for §H. Since H^R, ^0 2)=R> < ®^ and H^E, ^02)=EX ®^, §H is
surjective.

Since 5^ kills T^K^E, Z/J) and 6^ kills TC^H^E, n02), it follows that
C2, i: K3 (E; Z/Q -> H1 (E, n02) is surjective. This incidently shows that
c^ i: K3 (R; Z/Q -^ H1 (R, nf2) is also surjective. The surjectivity of
C 2 ^ i : K3(E, Z/Q-^H^E, H02), together with the computation of K3(E)ind/^ and H
implies that the Chern class map

c^: K3(E;Z/Oind^Hl(E,H?2)

is an isomorphism. The commutative square (^rAr)? together with the surjectivity of
^ i : K3 (R; Z/f) -> H1 (R, n02) and SH then implies that 8^ is surjective (8^ is obviously
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surjective on the Milnor Ka), and hence K^R, J; Z/Q-^K^R, Z/Q is injective, hence
K:2 (R, J)/; -^ K^ (R)/( is injective.

Let L be the quotient field of R, f : Spec (L) -> Spec (R) the inclusion. Let i\ be the
functor "extension by zero", from sheaves on L to sheaves of R (for the etale topology).
The construction of Chern classes for relative K-theory in paragraph 1.12 gives the Chern
classes

W ^p-JR. J) ->H^(Spec(R), f.(^)^),

together with the commutative ladder

K3(E)/r ^ K2(R,J)/P1 ^ K^R)//" ^ (K^EW^O
(^ i i i i

H^E, H,.02) -. H^R, f,(^02)) - H^R, ^02) - (H^E, ̂ 2))2 ̂ 0,
the horizontal line coming from the relativization sequence, and the vertical arrows
Chern classes. For all n, the Chern classes for K^ (R)/?" and K^ (E)/?" are isomorphisms.
The surjectivity of SH shows that H^R, f,(»i02))-^H^R, n02) is injective, hence the
second vertical arrow is an isomorphism for n= 1.

We define the map symb: H1 (R, n®2) ̂  ̂  (R, J) by

/(S^-Uy; feR\

where we identify H1 (R, nf2) with R x g)^ via the Chern class c^ i. From the product
formula for Chern classes, we have

c^ 2 (a. &)= -Ci, i (a) U c^ i (ft)

for a in KI (R, J) = (1 + J)x , fc in KI (R) = R x. This gives the commutative ladder

^(R.J) -^ K2(R,J)/F -^ K^R.J)/;^1 -^ K2(R,J) / / ->0
-symb f [ [ [

H^R, f.(^f2))-H2(R, f.(^^2))^H2(R, f,(^.l02))-^H2(R, f,(nf2))

with the second row exact, and the first row exact, except possibly at K^(R; J)/F. This
and induction shows that the Chern class for K^ (R; J ) / P is an isomorphism for all n.

From the localization sequence on A^, together with a knowledge of K^E), and Ki
of number fields, it follows that K^ (R) has no divisible subgroups. As K.3 (E) is finitely
generated, K^R, J) has no divisible subgroups as well. Thus for n suficiently large, the
/-primary torsion in K^E)"^ injects into K^R, J)/;11. From the ladder (^), it follows
that the Chern class c^^\ K^E^-^H^E, ^n®2) is injective on the (-primary torsion
for large n. From this, the surjectivity of c^ i, and the computation of the ranks of
K^E)1114 and H^E, Z^(2)) (the latter due to Tate [T]) it follows that the Chern class
gives an isomorphism on the limits

c^.i: K^E^OZ^H^E.Z^))

proving the theorem. D
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Using this result, we can refine the statement of Corollary 4.4.

COROLLARY 4.6. — Let E be a field, I a prime \vith (I, char(E)) = 1. Then the l-primary
torsion in K^E)"^ is isomorphic to H°(E, Q,/Z^(2)). J/F is an extension field ofE, then
the map

K^^K^)1^

is injective.

Proof. - The second statement follows from the first. If E is a finite field, the
computation of the torsion is due to Quillen [Q2]; for E a number field this is part of
Theorem 4.5. In particular, if E -> F is a map of fields which are finite over the prime
field, the induced map

K^Er^K^r6

is injective.
In the general case, since K-theory commutes with direct limits, we may assume that

E is finitely generated over the prime field F().
Let k be the field of constants in E. Let T| be an /-primary torsion element of K.3 (k)1"'1.

Let g * : k -> E denote the inclusion, and suppose that g^ (r|) =0 in K.3 (E)"^. Then there
is a regular k-algebra A of finite type, A a domain with quotient field Eo c: E, such that
h*(r|)==0 in K^A)"^. Here h*: k->A is the inclusion. Taking an F-valued point
7*: A -> F of A, with F a finite extension of k, we see that 7* h* (r|)=0, contradicting the
injectivity of K:3 (fc)"^ -> K^ (F)"^. Thus there is a natural inclusion

0: HO(E,Q^(2))^K3(E) ind{0.

To show that <D is surjective, we may assume that E contains ^. Then ^3 (E)1"'1 is cyclic
by Corollary 4.4, hence 0 is surjective. D

4.3. CO-TORSION IN K^. - We now compute KJ^/n for fields. Let E be a field, R the
semi-local ring of {0, 1} in A^, J the Jacobson radical of R, R the quotient R/J. For an
R-scheme T let T = Tx spec (R) Spec (R). Let R(T) denote the semi-local ring of T in T.
We consider a chain of R-schemes

X^X^_, -> . . . ^X^Xo=Spec(R)

such that X f + i is the Brauer-Severi scheme over Spec(R(X,)) associated to a central
simple algebra ^+1 over R(X^), with ^+1 split.

LEMMA 4.7. — For each i= 1, . . ., n there is field E, => E, a smooth E^-scheme Y,, mth

Y^ P^XE^. Spec (E, [t]^i}),
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and finite maps

Xi <- Yf; R (Xf_ i ) -> E( [̂  o, i} such that the diagram

(*) xi "- Yl ^
i M ^

X,_^Spec(E,[^o,l))Pnl

\ [
Spec(E,)

commits.

Proof. — By Tsen's theorem, ̂  OgEo is split for some finite extension E() of E. Let
R-^Eol^o,!} the natural inclusion and Y^ the fiber product XiXeEo. In general,
suppose we have the diagram (^). Let F, be the function field E^P"1). Then the semi-
local ring R (Y;) of Y, in Y; is F^ [t]^ ^ and R (Y,) is finite over R (X;). Take the fiber
product X ^ . i

X^i=X,^x^x,)R(Yi)-^Spec(R(Y,))
I

Spec(F,)
Then X^+i is split by a finite extension E,+i of F;. Letting Y^+i be the fiber product

^i+^^f+i ^i-Ei+i -» E(+I [^o, i}

continues the induction. D

LEMMA 4.8. — The map

K2(R(X,), J(X,))^K2(R(X,^), J(X,^))

is infective.

Proof. - Let X=X,, X'=X;+i, Y=Y,, F=Ef. We have the commutative ladder with
exact rows

^ K3 (R (Y)) ̂  K3 (R (Y)) ̂  K^ (R (Y), J (Y)) ̂  K^ (R (Y)) -^
t T T T

^ K3 (R (X)) -. K3 (R (X)) ̂  K^ (R (X), J (X)) ̂  K^ (R (X)) ̂

Since each Qfj is split, R (X) is a pure transcendental extension of R, hence the map

K3 (E (O))1114 C K3 (E (I))11111 ̂  K3 (R)1114 -^ K3 (R (X))^

is an isomorphism. Similarly, the map

K3 (F (0))^ © K3 (F (I))11111 ̂  K3 (R (Y))1^

is an isomorphism. Let Xo and X^ denote the two irreducible components of X, and
similarly define Y() and Y^. Yo and Y^ are both projective spaces over F; and XQ and
Xi are projective spaces over a subfield fe of F, so we can identify Xo and X^, Yo and
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YI. Then the image of

K3(R(X))-»K3(R(X))=K3(fe(Xo))©K3(fc(Xi))

and

K, (R (Y)) -> K, (R (Y)) = Ka (F (Yo)) © K, (F (Y^))

contain the respective diagonals. By taking the difference maps

KB (k (Xo)) © K3 (k (Xi)) ̂  K3 (k (Xo))

and

Ks(F(Yo)) ©K3(F(Yi)) ̂  K3(F(Yo)),

and noting that the maps

K^XQ) ^K^RCX7)); K3"(R(X)) ->K3-(R(X))

are surjective, we can rewrite the ladder above as

-> ie, (R (Y))'»<1 -. K, (F (Yo))'"" -^ K, (R (Y), J (Y)) ̂  K, (R (Y)) ̂
' " T T t t

- K, (R (X)'"- -^ 103 (fe (Xo))""" - K, (R (X), J (X)) -^ K, (R (X)) ̂

Let L(X), L(Y) be the quotient fields of R(X), R(Y). Then by Proposition 2.3, the
maps

K3 (R (X))'"4 ̂  K3 (L (X))'-"; K3 (R (Y))"1" -. K3 (L (Y))^

are injective. Thus from Corollary 4.6, the vertical arrows in left-hand the commutative
square of (*) are injective. On the other hand, since R(Y)=F[(]{O i,, the image of
K,(R(Y)) in K3(F(Yo)) is exactly K3(F(Yo))dec, i.'e. the map
K3 (R (Y))""1 ̂  K3 (F(Yo))•n<l is the zero map. Thus K3 (R (X))"'1 ̂  K3 (k (Xo))'"'1 is the
zero map as well, and we have the exact sequence

O^K3(fe(Xo)) i n d^K2(R(X),J(X))^K2(R(X)).

By a similar argument, we have the exact sequence

0 ̂  K3 (k (Xo))""1 -^ K, (R (X7), J(X')) -^ K^ (R (XQ).

By Suslin (Theorem 3.6 [S]) the map K^(L(X)) -^K^L(X')) is injective. This implies
that K2(R(X))^K2(R(X')) is injective; the map K3(fe(Xo)) ind^K3(fe(Xo))md is also
injective by Corollary 4.6, hence

K2(R(X), J(X)) ^K2(R(X'), J(X'))

is injective, completing the proof. D
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THEOREM 4.9. — Let X=X,, X^X.+i, TT: X' -> Spec(R(X)) the projection. The map

7i*: K^(R(X), J(X)) ->E^ ^(X-, X') c= K^RCXQ, J(X'))
is an isomorphism.

Proof. - We recall from paragraph 1.6 that E^ ~2 is the kernel of

K2(R(X'), J(X')) -^K'i(X1/2, X1/2) c= Ki(X)1/2.

The injectivity of TI* follows from the previous lemma. We have the commutative
diagram with exact rows:

K,«x2 x')) - K,(^2) - KKX'1/2, X'1/2) - K^^x))
T T « T T

^ K3 (R (X')) ̂  K3 (R (X')) -. K^ (R (X'), J (XQ) -^ K^ (R (X')) ̂  K^ (R (X'))
n - T ^ t "'T "'T ^J

-^K3(R(X))^K3(R(X)) -. K2(R(X),J(X)) -. K^RCX)) ^K^RCX))
T T T T
0 0 0 0

The columns are all complexes. The second and fifth columns are exact since X' is a
projective space over R (X); the fourth column is exact since Suslin has shown that

K2(fe(X))-H°(X^^2)

is an isomorphism, and R (X) is semi-local. In addition, the image of the tame symbol
a is the same as the image of a restricted to K^I^X')). Since we can lift K^R^X'))
to K3(R(X7)), the surjectivity of 7t*: K:2(R(X), J(X))-^E0^ ~2(X\ X') follow from a
diagram chase. D

Let k^(S, S) denote K^S, S)/?, where I is a prime different from char(E), S an
E-scheme with closed subscheme S.

COROLLARY 4.10. — Suppose that E contains Hj, and that the division algebra (3l=(3'^+^
is the crossed product algebra coming from the symbol (a, b)^ ae(l+J(X))*, beL(X)*.
The kernel of

7i*: k^(R(X), J(X))^(R(X'), J(X'))

is the subgroup generated by {a, b}. If 2 is split, then n* is infective.

Proof. - This follows from Theorem 5.9 and a diagram chase as in [M-S]. D

THEOREM 4.11. — The Chern class map

c^ ,: K^ (R, J)/P1 -> H2 (R (X), f, (n,n)02)

is an isomorphism.

Proof. — We prove the stronger result that

ci, 2: K^ (R (X), J (X))/F -. H2 (R (X), i, (^n)02)
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is an isomorphism. An argument as in the case of K^ of fields reduces to the case n= 1;
we may also assume that E contains ̂ . In this case, for X=X;, H^I^X), f,^)02) just
the kernel of the restriction map

H2(R(X), (n,)02) -.H^X), (^)02)

so {a, b}eK^(R(X), J(X)) goes to zero under €3,2 if and only if the crossed product
algebra (a, b\ is split. By Corollary 4.10, {a, &}=0 in k2(R(X), J(X)). We now prove
that

€2,2: K2(R(X), 3(X))/l->H2(R(X), f,(n,)02)

is an isomorphism by induction on the length of an element T| in the kernel

TI=Z{^^}.

This is done by going up to the Brauer-Severi scheme associated to {a^, b^} and using
the corollary above. D

THEOREM 4.12. — The Chern class

€2. i: K3 (E, Z/rr' ̂  H1 (E, (^2)

is an isomorphism.

Proof. — We reduce as in the proof of Theorem 4.5 to the case n= 1, and may assume
that E contains .̂ We have the commutative ladder

x a

K3(R, J; Z/Q ^ K:3(R; Z/Q -^ K3(E; Z/Q -^ ^(R, J)// -^ K^(R)/l
^ £ i Y i & i < i ,

H1 (R, f, (nf2)), -. H1 (R, n02) ̂  H1 (E, n?2) ̂  H2 (R, f, (^2)) -. H2 (R, n02)

We have already shown that 8 is surjective. Since P is surjective, a is also surjective.
As in the proof of Theorem 4.5, a and P factor through K^R; Z/I)/K^(E; Z / l )
and H^R, Hf^/H^E, nf2) respectively. We claim that e maps K^R, J; Z/Q onto
iCH^R,^?2))).

Indeed, we have the commutative triangle
K^Z/O^K^R)

Y [ /' symbR

H^R.n^n^R^^

The image i(H1 (R, f, (nf2))) is (1 +J)></;; let /be in (1 +J)x, and let T| be a lifting of the
element {/, Q of ^^(R, J) to K^R, J; Z/Q. Then

symbR o Y o K (T|) = symb^ (/ (g) Q.

On the other hand, the kernel of symbu injects into H^E.u02)2, hence
y°K(K3(R, J; Z/0) maps isomorphically onto ^(R) via symbR. Thus
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Y°K(r|)==(/(g) t^), proving our claim. Since

y: K3 (R; Z/Q/K3 (E; Z/Q ̂  H1 (R, ̂ /H1 (E, n02)

is an isomorphism, 8 is an isomorphism, as claimed. D
Let E/F be a finite Galois extension of fields which are finitely generated over the

prime field. Since H^ (E, Z;(2)) =0, the Hochschild-Serre spectral sequence shows that

H^F, Z^^H^E, Z^))™^.

In addition, using the Bloch-Ogus sequence relating H^ (E(Q, Ujv®2) and H^ (A^, Ujv02),
we find that H^—, Z^(2)) is invariant under pure transcendental extensions.

THEOREM 4.13. — Let E be afield. Then the map

c^,: lim K3 (E)^/?" ̂  H& (E, Z, (2))

is an isomorphism, so the kernel ofc^^ i: K3(E)ind -» Hit(E, Z;(2)) 15 ̂  maximal l-divisible
subgroup o/K^E)""1. J/Eo is the field of constants in E, then

K3(Eo)ind/^K3(E)ind/rl

is an isomorphism. If E -> F is an algebraic Galois extension mth Group G, such (feat
eî ry finite quotient of G has order prime to the characteristic, then

K^E^^K^FrT.

Proof. — Suslin has shown that

kerCH^Eo, (n^2) -^ ̂ (Eo)) -^ker^^E, (^n)02)-^^K^E))

is an isomorphism, and that these kernels are the image under c^i of K^Eo)1114 and
K3 (E)1114 respectively. In addition, he has shown that the map

H^Eo.Z^-^H^E.Z^))

is an isomorphism. The first two results follow from this. Theorem 4.5 and Theorem 4.12.
To prove the third, we may assume that F is finite over E, of degree say d. Since
K3 (E)1"'1 -> K3 (F)"^ is injective we have the inclusions

d. K3 (E)1114 c d. ̂ 3 (F)"^)0 c K3 (E)1114 c= (K3 (F)"^)0

Thus we need only show that

K3 (E)^/! = (K3 (F^/O0.

for all / 1 d. The result now follows from the isomorphism

H^E,^)) ̂ (F.Z^))0

4° SfeRIE - TOME 22 - 1989 - N° 2



THE INDECOMPOSABLE Ka OF FIELDS 337

and Theorem 4.12. D
Let F be a field. We recall the definition of Bloch's group B(F). Let D(F) be the

free abelian group on F*—{1}; P(F) the quotient of D(F) by the subgroup generated
by elements of the form

M-M+^l-Kl-^Ml-^l+Kl^^Ml-x-1)].

The map D(F) -> F* ® F*/< a ® b + b ® a > gotten by sending [x] to x ® (1 -x) descends
to P(F). B(F) is defined to be the kernel of

T (F) -^ F* g) F''7< a®b^b®a)

COROLLARY 4.14. —Let E be a field containing an algebraically closed field. Then
Block's group B (E) is uniquely l-divisible for I prime to the characteristic.

Proof. — We may assume that E is finitely generated over the algebraic closure of the
prime field. Suslin has shown that B(E) is just K^E)1114 modulo the image of Q,/Z,(2).
By Corollary 4.6 B(E) is torsion free. Since H^E, Z,(2))==0 by Suslin's computation
(Cor. 2.7 [S]), it follows from the previous theorem that B(E) is /-divisible. D

5. Relative K^ and J-adic cohomology

We now proceed to prove an analogue of the theorem of Merkurjev and Suslin for
relative K^ of semi-local PIR's. Since the receptor cohomology group for the relevant
Galois symbols are the etale cohomology groups of Spec(R), R a semi-local PIR, we
need a good cohomology theory with Z^ (f) coefficients. Uwe Jannsen [J] has constructed
such a theory by viewing Z^ (i) as an object in the category of inverse systems of etale
sheaves. A similar theory has been constructed by Dwyer and Friedlander [D-F], using
etale homotopy theory.

5.1. CONTINUOUS COHOMOLOGY. — Let y^W denote the category of sheaves in the small
etale site over X, ^/^8 the category of abelian groups. If s/ is an abelian category, let
^/H denote the category of inverse systems in ^ indexed by the natural numbers.
Jannsen defines the continuous cohomology on X of the limit F of an inverse system
(F^)e^et(X)^, H^ni(X, lim(F^)), to be the derived functors of the composition

(F^) - (H,° (X, F^)) - lim(He° (X, F^))

from y^(X)^ to ̂ ^. The functor H^nt satisfies many of the properties of continuous
Galois cohomology; in particular if X is the spectrum of a field, and the (FJ satisfies
the Mittag-Leffler condition (e.g. all F,, sheaves of finite groups) then H^nt(X, F) is the
usual continuous Galois cohomology. There is a Hochschild-Serre spectral sequence if
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X is over a field, and short exact sequences

0 -^ lim1 (W-1 (X, F,)) ̂  H^(X, lim(F^)) ̂  lim(H^(X, F^)) ̂  0.
<— <—

In particular, if X is of finite type over Z [1/fj, the cohomology groups H^X, F^) are finite
if the F^ are sheaves of finite groups, hence

H^(X, lim(F^))=limW(X, F^).

Let X be a scheme essentially of finite type over a field fc. Let Fin(X/) be the category
of pairs (Y, /), where Y is a scheme of finite type over Z[l/?] and /: X-»-Y is a
morphism. A morphism from (Y, /) to (Z, g) is a commutative diagram

X-.Z
i ^
Y

Then X is the inverse limit

lim Y
Fin (X/)

hence K^ (X) is the direct limit

K^(X)= lim K^(Y).
Fin (X/)°P

We have the Chern classes ([Gillet] or [So]):

c^ ,: K^_, (Y) ̂  lim H?, (Y, (M^) = H^ (Y, Z, (p)).

This defines the Chern classes Cp^q: K^p_q(X) -> H^ni(X, ^-i(p)) via the composition

K2p-,(X)^ lim K^-,(Y)^ lim H^ (Y, ^(p)) ̂  H^ (X, Z,(p)\
Fin (X/)°P Fin (X/)°P

If X=Spec(R), where R is a semi-local PIR with Jacobson radical J, and i: x->X the
inclusion of the generic point, we similarly get Chern classes

c^: K^_,(R,J)->H^(X,f,(Z^))),

compatible with the relativization sequences for K-theory and continuous cohomology.
This is done using the relative Chern classes of paragraph 1.12 and a limit argument as
above.
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5.2. MERKURJEV-SUSLIN FOR RELATIVE K^.

THEOREM 5.1. — Let R be a semi-local PIR containing afield ko, J the Jacobson radical.
Let I be a prime distinct from char(feo). Then the Chern class

c^,: K^^JVr-.H^R,^^)02)

is an isomorphism. The map

c^: K,(R,J)^H^(R,f,(Z,(2)))

is injective mod the maximal (-divisible subgroup of K^ (R, J). If all the residue fields of
R are finite extensions of the prime field, then €3,2 induces a natural isomorphism

K^R.JHO-^H^R^Z^HO.
Proof. — To prove the first statement, we reduce to the case n==l, and may assume

that R contains fij. Let R =R/J. By Theorem 4.13, the map

€2,1: K^Z/O^^H^R.Z/^))

is an isomorphism. Arguing as in Theorem 4.5, the map

c^.i: K^Z/O^-^H^R.Z/^))

is surjective. Since R contains p^, the map

H^R.Z/H^^H^R.Z/^))

is surjective, hence

is surjective. Thus

and

K^^Z/O-^K^Z/O^

K^(R,J)/l^K^R)

H^R.f.^^H^R,^)02)

are injective. Since ,Ki(R, J)=0 and jK^ (R) -> ,Ki (R) is injective, the relativization
sequence

-̂  K^ (R, J; Z/Q ̂  K^ (R; Z/Q ̂  K^ (R; Z/Q ̂

yields the commutative ladder
0-^ K2(R,J)/! ^ K^R)/; ^ K^R)/;

i ^ i ^
O-H^R, f.^^^-H^R, (u^^-H^R, (fi,)02)

Thus

^.2: K^R.J^-H^R,^^)02)
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is an isomorphism as claimed. Passing to the limit, we see that

c^ 2: lim K:2 (R, J)/P -> Hm H2 (R, f, (M02)

is an isomorphism. We have the commutative diagram

K^R.J) c2^2 H^(R, f,(Z,(2)))
i i

limK^R, jyr^limH^R, f^n)®2)
^~ ^ 2 <-

proving the second statement. To prove the third, we note that our assumptions on R,
together with Quillen's finiteness theorem [Q3] for the K-theory of number rings, implies
that the maximal (-divisible subgroup of K^ (R, J) is just the prime to / torsion. We
may assume that ko contains p,j. Then the sequence

H^R, i,(n^2) -^H^(R, W2)) ̂ H^(R, i^(2))

together with the symbol map

symb: H^R.f^.O^K^R.J)

/®^{/,C}

shows that € 3 2 maps (K^R, J) onto fH^(R, fiZ,(2)), completing the proof. D
We have the Chern classes

C2. i: K3 (R, J; Z/U ̂  H1 (R, i, (^)®2)

and

€2.2: K2(R,J)^H2(R,f,(^l^2).

As in the absolute case, these are compatible with the Bockstein homomorphisms, i. e.
we have the commutative square

K3 (R, J; Z/F) ̂  ,n K^ (R, J) c K^ (R, J)
^ 1 [ ^ 2 J,

H^R.^H^^) ^ H^R,^)02)

In addition, if R contains n^n, the map

€2, i : ,nK2 (R, J) -> H1 (R, ^ (^n)02^^ , (^ (R, J))

satisfies

^.i({/, ^})=7®^nmodc2.i(K3(R, J)); 7=/mod(l+J)<
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We have the relativization sequence:

H^(R, Z,(2)) -H^t(R, i,Z,(2)) ^H^(R, Z,(2)) -H^(R, Z,(2)).

Suppose that R is essentially of finite type over Z. Then the H° terms both vanish, and
the lim1 terms for the H^s also vanish so we get

H^(R, Z^^limH^R, (M02).
<—

By the Bloch-Ogus sequence, we get

limH^R, Oi^^limH^L, (»i,n)02)

=^(^^(2));

by Suslin's theorem (Cor. 2.7 [S]), the restriction map

H^(R, Z,(2)) ̂ H^(R, Z,(2));

is injective, hence

HLt(R,W2))=0.

LEMMA 5.2. — Let R be a semi-local PIR. Then

C2.i(K3(R,J))=0.

Proof. — We may suppose the R is essentially of finite type over Z. We have the
commutative diagram

K:3(R,J) -^ K3(R,J,Z/;")
c^ i [ ^ 11

0 = H1 cont (R, f. Z, (2)) ̂  H1 (R, i, (^)02)
which proves the lemma. D

Let L be the quotient field of R, Lo the field of constants in L, and Ro=Lo 0 R. Ro
is a semi-local PIR and R is a smooth, faithfully flat extension of Ro. We call Ro the
ring of constants in R.

THEOREM 5.3. — Suppose R contains ^n. Let Ro be the ring of constants in R. Then
the following are equivalent

(a) { / ,M=OinK,(R,J)

W f=foglr, ^ith g in (1 +J)*, /o ^ (1 +Jo)^ and {/o, ̂  } =0 in K^ (RQ, Jo).

Proof. — This is the same as the proof of Theorem 3.5 in [S]. D
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THEOREM 5.4. — Let R -> S be a smooth faithfully flat extension of semi-local PIR's
mth R algebraically closed in S. Suppose that JS H R ==J. Then

K2(R,J)^K2(S,JS)

is injective.

Proof. - The same as the proof of Theorem 3.9 of [S]. D
Since c^ i: K^R, J) ->H^nt(R? ^O^")02) is the zero map, we get a well-defined map

<D: K, (R, J) {1} -. H^t (R, h Wi (2)).

COROLLARY 5.5. — There is a natural surjection

H^R,!,^,,)®2)^,,,!^,;).

// R has characteristic zero, then

<&: K, (R, J) {Q ̂  H^t (R, f, Q,/Z, (2))/Im (H^i (R, t, Q, (2)))

is an isomorphism. If R has characteristic p > 0, p^l then

<D: K, (R, J) {;} ̂  H,1^ (R, », Q,/Z, (2))

is an isomorphism.

Proof. — Make the obvious modifications in the argument Suslin uses to prove
Theorems 3.9, 3.10, and Corollary 3.13 in [S]. D

COROLLARY 5.4. — Let Q) he an Azumaya algebra over R mth S split, n: X -» Spec(R)
the associated Brauer-Severi scheme. Then the map

TC*: K^R.J^E^-^X.X)

is an isomorphism.

Proof. — Same as Theorem 4.9. D

COROLLARY 5.5. — Let 3> be an Azumaya algebra over R mth Q split. Then there is a
unique homomorphism

Nrd: K^,S)^K^J)

such that for every smooth extension R -> S splitting ^, the diagram

Nrd: K^(^S)->K^(R,J)
I I

commutes. ^ ̂  ̂ s) ̂  K^ (S, JS)<»..
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Proof. - Let X/R be the associated Brauer-Severi scheme. Define Nrd to be the
composition

K^, S)^K^(X, X)=K2(R, J)©K^, ^)©. . . ^E^-^X, X)
iz

K2(R,J). D
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