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HOLOMORPHIC SYMMETRIES

BY H. BLAINE LAWSON, Jr. (1) AND STEPHEN S.-T. YAU (2)

In this paper we present a collection of results concerning holomorphic S1-actions on
complex analytic varieties and their boundaries. It is well established that complex
manifolds admitting such actions are special in nature, and if the action is locally generic
(topologically), then the manifold is quite special. (See [BB], [CL], [CS^], [F], [L], and
[So] for example. We shall see here that this continues to be true for singular spaces
and their boundaries.

We shall show that any maximally complex submanifold of dimension 2p— 1 > 1 in C"
which admits an intrinsic S1-action transversal to the CR-structure is, in fact, algebraic
in the sense that it is embedded as a hypersurface in a complete affine algebraic
variety. This variety has at most one singular point and admits an (extrinsic) linear C*-
action which restricts to become the given action on the hypersurface. As a consequence
we show that when p=n—\, any two such manifolds M, M' c= C" having isomorphic
ring structures in their Kohn-Rossi cohomology, are diffeomorphic. In fact, there is an
ambient C°° diffeomorphism /: C" -> C" with /(M) =M/. For example, if H^(M) =0
(and M admits a transversal S'-action) then M is diffeomorphic to S2""3, and if it
happens to lie in the unit sphere S2""1, it is unknotted in that sphere. In the absence
of an S1-action these assertions are utterly untrue.

One of the more basic results of the paper is a fixed-point formula for holomorphic
S1-actions on a compact complex analytic space X. In particular, it is shown that

^^(X81)

where Xs1 denotes the fixed point set of the action. This formula allows us to compute
the Euler characteristic of pieces of given degree of the Chow variety of complex projective
space. The result can be summarized as follows. Let ^p ^ „ denote the set of (positive)
complex analytic cycles of dimension p and degree d in P"(C). Consider the formal
power series

00

Qp,,(0= E XC^,,,)^
d=0
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558 H. BLAINE LAWSON, Jr. AND STEPHEN S. T. YAU

Then the thorem is that

(n+l)/ i Vp^
Q,,.(.)-(,3,)

for Q^p^n and all n. This is equivalent to the statement that ^(^p j n)=( )
\ d }

where v = ( ) for all /?, rf, n.
\ ^+ l7

Similar calculations are carried out for products of projective spaces, and again rational
functions appear.

The paper is organized as follows:
1. Some fundamental extension theorems.
2. The algebraicity of CR-manifolds with automorphisms.
3. Kohn-Rossi cohomology and smooth equivalence.
4. A fixed-point formula for analytic spaces.
5. An application to cycle spaces.

1. Some fundamental extension theorems

In this section we shall discuss some elementary facts concerning automorphism groups
of complex analytic varieties and their boundaries. We shall then prove some basic
results concerning the extension of automorphism groups from boundaries to the interior
and from S1 to C" or A\

Recall that a C1 submanifold M of a complex manifold X is said to be maximally
complex, or simply MC, if

(1.1) coding (T^ M 0 J (T^ M)) = 1 for all x e M

where J denotes the almost complex structure of X, and the codimension refers to M. It
is proved in [HLJ that if M is compact, oriented and of dimension > 1, and if X is
Stein, then maximal complexity implies that M forms the boundary of a holomorphic p-
chain in X.

Suppose now that M is maximally complex and set Jf^=T^M HJ(T^M) for xeM.
Note that each ̂ \ is a complex subspace, i. e., is J^-in variant.

DEFINITION 1.2. — A smooth S^action (of class C1) on M is said to be holomorphic
if it preserves the family of subspaces ^f <= TM and commutes with J. It is said to be
transversal if, in addition, the vector field V which generates the action, is transversal to
Jf at all points of M.
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HOLOMORPHIC SYMMETRIES 559

In the C00 case, the condition of being holomorphic can be written in terms of the
generating vector field as:

(1.3) ^y: r(^f)^r(^f)
j^v(J)=o

where r(^f) denotes the subspace of smooth vector fields with values in Jf and where
J^y denotes the Lie derivative.

Note that a transversal holomorphic action is locally free. Furthermore away from
the singular orbits the orbit space M/S1 is smooth and inherits naturally an almost
complex structure from M. To see this, note that the projection n:M-> M/S1 identifies
^ with T^(M/S1) and that the endomorphism J^ on T^(M/S1) is independent of the
preimage point because (Jf, J) is S1-in variant. It is interesting to note the following.

PROPOSITION 1.4. — If M admits a transversal holomorphic action of S1, the almost
complex structure induced on the regular points of M/S1 is integrable.

Proof. — For simplicity we assume, that everything is C°°. We recall that by the
Newlander-Nirenberg Theorem an almost complex structure J on a smooth manifold ̂
is integrable if and only if [F1'0, F1'0] c: F1'0, where
r^E^WerCT^^C) : JW=fW} is the set of (1, 0)-vector fields on M. Letting
M c: X be as above, we define

r^^jD^WeHjT^C) :JW=iW}.

The integrability of the structure on X easily implies that

(1.5) [r150^), r^OTcr1'0^).
Each (1, 0)-vector field W on M/S1 lifts uniquely to an SMnvariant element

WeFl, O(^). Given two such fields W^ and W^, the Jf (x) C-component of [W^, WJ
is exactly [Wi, WJ. It follows from (1.5) that [W^.WJ, and therefore also [Wi, WJ,
are fields of type (1, 0). •

The complex analyticity of M/S1 extends also to the singular points. This is a
consequence of the following.

PROPOSITION 1.6 (S. Webster). — Let M be as above and define an almost complex
structure / on M X Si by the requirements:

^'=J- /m-^ ^f^)-^
Then / is integrable on M x S1.

Proof. — One checks straightforwardly using (1.3) and (1.5) that
[r1'0, r^cr1'0. •

The action of the complex group St x Si on M x Si is holomorphic; hence, we have
that (M x S^AS' x S1) ̂  M/S1 is naturally an analytic space.
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560 H. BLAINE LAWSON, Jr. AND STEPHEN S. T. YAU

We now consider S1-actions on complex analytic spaces. We begin by recalling the
usual definitions in the non-singular case. Let Y be a complex manifold which for
convenience we assume to be compact, and l e t S l = { z 6 C : | z | = l } . A smooth action
(p : S1 xY -^Y is said to be holomorphic if the transformation (p^q)^, .) : Y ->Y is
holomorphic for all t. This means that for all ( we have

(1.7) (^J^0^

where J is the almost complex structure of Y. If V is the vector field generating the
action on Y, then this condition can be rewritten as

(1.8) J^v(J)=0-

From this equation we see that [V, JV]=J^v(JV)=JJ^v(v)=a Therefore, the flow
\|/^ generated by the vector field JV commutes with the action, i.e., v|^°(pt==(p(°^s for all
5, t e R. This allows us to define an action

(1.9) 0: C ' x Y - ^ Y

of the multiplicative group C" =C{0}, by setting

^(^)=^-log|z|°^arg(z)

It is easily seen that the map 0 is holomorphic.
Much the same is true when Y is not compact. However, the flow <I> is, in this case,

only locally defined.
Suppose now that Y is a complex analytic space, and let (9^ denote the sheaf of germs

of holomorphic functions on Y. Denote by (9^ the sheaf of germs of weakly holomorphic
functions on Y, that is, the sheaf of germs of bounded functions which are holomorphic
on the regular set of Y (cf. [GR]). Of course we have (9y c: (Py, and the space Y is
called normal if (9y=^.

We denote by reg(Y) the set of regular points of Y, and by sing(Y)=Y—reg(Y) the
set of singular points.

DEFINITION 1.10. — Let q\ be a continuous action of S1 on a complex analytic space
Y, and suppose it preserves the set reg(Y). Then this action is called holomorphic if

(p*^Y=d?Y for all t.

It is called weakly holomorphic if

(p*^=^ for all t.

Suppose now that M is a compact oriented maximally complex submanifold of
dimension 2p— 1 > 1 in a Stein manifold X. Then by [HL] we know that M forms the
boundary of a unique holomorphic /?-chain T in X. In particular, the set Y=suppT
defines a purely ^-dimensional complex subvariety in X — M, and it defines a smooth
submanifold-with-boundary at almost all points of M. We shall say that M is the
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HOLOMORPHIC SYMMETRIES 561

boundary of Y and write M=5Y. We shall denote by reg(3Y) the points of boundary
regularity.

The following result asserts that any intrinsic holomorphic S1-action on M extends
toY.

THEOREM 1 . 1 1 . — Let Y be a compact complex analytic subvariety \vith C1 boundary
8\ in a Stein manifold X. Assume that Y is of pure dimension p>\ and that <3Y is
connected. Then any holomorphic ^-action on 5Y extends to a "weakly holomorphic action
onY.

This extended action defines a continuous map (p : S1 xY -»Y v^hich is real analytic at
all points (t, x) mth ;x:ereg(Y)—<9Y. Furthermore, if both 3Y and the generating vector
field for the action are of class C ,̂ for some k ̂  1, then the extended action (p : S1 x Y —> Y
is of class (? in a neighborhood o/reg(3Y).

Proof. — Fix t, and consider the graph F^= {(x, (p((x))eX x X : xe8Y } of the diffeo-
morphism (p^ : 9Y -> 5Y. Since q\ preserves the CR-structure on 3Y (i. e., since (py is
holomorphic), this submanifold F( is maximally complex. Consequently, by the main
results in [HL], there exists a unique /^-dimensional subvariety Y( c= X x X xith 5Y^ = F^.

Consider now the projections p^ : X x X -> X and p^ : X x X -> X onto the first and
second factors respectively. For each fe, p^ |̂  '• 3Y^ -> 3Y is a CR-diffeomorphism. It
follows from the uniqueness results in [HL] that for each fe, /^(Y()=Y. Furthermore,
the maps /^|Y( : Y(-^Y are one-to-one outside a compact subvariety of Y^—^Yp f.^.,
outside a finite set of points. It follows immediately that each p^ is globally one-to-one
on Y(. Thus the map ^>t=P2°(Pi\\)-1 •' Y^Y is a homeomorphism which is holo-
morphic on the regular points of Y and smooth up to the boundary, a. e. We clearly
have that (pj^^^ an^ by the uniqueness of the extension (corresponding to the
uniqueness of its graph), we conclude that (p^° (ps==<p(+s for all t and 5.

We now consider the regularity properties of the map q^S^Y-^Y. To begin we
choose an embedding X c CN and for each teS1, we consider the map
q\ : Y -> Y c X c: C^ to be C^- valued. Each of these maps is continuous on Y and
weakly holomorphic in the interior. In particular || (P( — (ps || satisfies a maximum principle
on Y. This fact, together with the continuity of (p on S1 x <9Y, proves the global
continuity of (p on S^Y. Applying the maximum principle to (l/7i)((p^,,—q\) and
using the fact that (p is C1 on 3Y shows that we have uniform convergence to a limit

V= lim -((p(+/,-(p()
h-^O^

which is continuous on Y and weakly holomorphic in the interior. At points of
reg (Y) U 3Y, V can be considered as a tangent vector field to Y, and as such, it is
clearly the generator of the action (p. When considered as a C^valued function, V is
holomorphic on reg(Y)—<9Y, and therefore the action is real analytic at such points.

If <9Y and V j^y are of class C\ then from the boundary regularity results in, say, [HL],
§ 5, we know that V is of class C^ up to the boundary. Therefore, at all manifold points
it generates a C^-flow. •

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



562 H. BLAINE LAWSON, Jr. AND STEPHEN S. T. YAU

THEOREM 1.12.—Let Y be as in Theorem 1.11 and suppose there is a transversal
holomorphic action of S1 on Y. Then the extended action on Y has exactly one fixed-
point. This point, say p, may be a singular point o/Y, however, Y—p is a smooth manifold
with boundary.

Note. — If the action is not transversal, this conclusion fails to be true even
in the pseudoconvex case. For example, consider the manifolds S^^eR3: ^ c | = l }
and S^=={zeC 3 : z.z= 1}, and the S^action on C3 given by ^ ( z ^ z ^ z ^ )
=(zi cost—z^ sint, z^ sint+z^ cost, z^). This action preserves S2 and S^.
Since it is unitary, it also preserves each manifold (S^g = {zeS^: dist(z, S2) ^ c} for
£ > 0. Note that ^(S2;)^ is pseudoconvex and the S^action is free here. However, on
the interior of S2; the action has two fixed-points.

Proof. — Let V be the vector field that generates the action of S1 on 5Y U reg(Y). By
replacing V with — V if necessary we can assume that JV points interior to Y at some
point of 5Y. Since V is transversal, we conclude that JV must point strictly into the
interior of Y at all points of 5Y.

Let F c= Y denote the set of fixed-points of the S1-action. Clearly F is a compact
analytic subvariety of Y—5Y, and so F consists of a finite number of points, say,
Pi. • • • » Pm-

Consider now any point ^ereg(Y) Ureg(3Y), and let y denote the orbit of y under
the S1-action. From elementary ordinary differential equations we know that there is a
neighborhood ^ of y in Y and a non-empty time interval [0, a) so that the vector field
JV can be integrated over this interval at all poionts of (JU. When y ^ <9Y, this interval
can be extended to ( — a, a).

If (p^ denotes the S1-action and \|/s denotes the JV-flow as above, then the complex
analytic flow

(L13) ^^-loglzl^argCz)

is defined at each point of ^ for all z in the set {zeC: r < |z| ^ 1} (or
{zeC: r < |z| < 1/r} when^^3Y) where r^e"".

Suppose now that y e Y — 3Y is a singular point. Then y must lie in the regular set of
some S^invariant stratum £ of the singular set of Y. The vector fields V and (therefore)
JV are both tangent to S at regular points, so the construction above applies to give us
an analytic flow (1.13) defined in some neighborhood of the orbit of y in £.

Let us now fix any point ye(\—9Y) Ureg(3Y) and define ry to be the infimum of
the set of real numbers r > 0 such that the holomorphic map

/,(z)=<D,(y)

is defined for r < \z\ ̂  1. We claim that ry=0. To see this, suppose that ry > 0 and
note that in the region A = { z e C : ry < \z\ ̂  1} the function fy is holomorphic and has
the property that

(1.14) Ir/;^16)^

4e SERIE - TOME 20 - 1987 - N° 4
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HOLOMORPHIC SYMMETRIES 563

Recall from the proof of 1.11 that the extended vector field V is defined and continuous
on all of the compact set Y. Hence there is a constant c so that | V | ̂  c
on Y. Therefore, from 1.14 we conclude that for any two points z^, z^eA we have

\fy(z,)-fy(z,)\= r2^
Jzi

/;(0^
J z i

T I C . .
^ — — | z 2 - Z i |

and so fy extends continuously to the closed annulus A. Note that the image of fy on
the inner circle is just the orbit: fy (r-y e11) = (py (fy (Ty)) =(p^ (/), for 0 ̂  t ̂  2 n, of the point
;/ = fy (ry) e Y — 3Y. The corresponding holomorphic map fy, (z) = 0^ (/) is now defined
in the region {z : 1—e < |z| < 1 +e} for some c > 0, and clearly fy, (z) =fy (Ty z) for
| z |=L It follows that fy^z)=fy(TyZ) in a neighborhood of the unit circle, and so fy,
provides an extension of fy in violation of the minimality of ry. We conclude that ry = 0
as claimed.

We now have the holomorphic map fy (z) defined and bounded in the punctured disk:

^x={zeC: 0< |z| ^ 1}.

It follows from elementary theory that —fy extends holomorphically across the
origin. The limiting point/y(0) is clearly a fixed-point of the S^action.

Let us summarize the situation at this point. Set Y^ ^ (Y—3Y) Ureg(^Y). Then
we have defined a map

0: AxY^Y^

which when restricted to A" x(Y—3Y) defines a weakly holomorphic action of the
analytic semi-group A" on the analytic variety Y—3Y which extends the given S1-
action. Since for each y e Y^ the map fy: A -> Y (c C1^ for some N) given by
fy (z) = 0 (z, y) is holomorphic, we have that

(1.16) 0(^)=——f °̂
27cUia=i ^-z

for all such y. Note that since 0(z, ^) is smooth for (z, jQeS1 x c?Y, the right hand side
of (1.16) defines a map on all of Ax<9Y which is smooth up to the boundary and is
holomorphic in z for each fixed y e 8 " Y . The map 0 : A x 3 Y - ^ Y is evidently
surjective. Furthermore, the differential of 0 at { l}x3Y is surjective since the lines
t -> 0 (t, y) are the integral curves of the vector field JV and JV is everywhere transversal
to 8Y. It now follows easily that in a neighborhood of <5Y, the set Y is a smooth
manifold with boundary, i.e., reg(5Y)==<5Y and so Y^ =Y.

The fixed-point set F of the action is exactly the set O(OxY). Since Y is connected
and F is finite, we see that F consists of exactly one point. All other points are in the
image of A x x 5Y and are therefore regular points. •

In the course of proving Theorem 1.12 we have also proved the following.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



564 H. BLAINE LAWSON, Jr. AND STEPHEN S. T. YAU

THEOREM 1.17. —Let Y be as in Theorem 1.11. Then any transversal holomorphic
action of S1 on <9Y extends to a weakly holomorphic representation of the analytic semi-
group A x as a semi-group of analytic embeddings ofY into itself. This action has a single
fixed-point p, and given any neighborhood ^ ofp in Y, there is an £ > 0 so that <D^(Y) c: ̂
for all z with | z | < s.

It should be noted that the assumption of transversality in Theorems 1.12 and 1.17 is
necessary. Consider, for example the variety Y=={AeSL2(C) : ^(AA^) ^ 1}, and con-
sider the S1-action on Y given by setting

( a h\( ^a e^b \
^\c d j ^ e - ^ c e'^d)'

This action is holomorphic on Y and its boundary but is not transversal on 3Y. Note
that the action has no fixed points in Y.

2. The algebraicity of CR-manifolds with automorphisms

Throughout the section we assume M c= C" to be a compact oriented submanifold
which is oriented and of class C1. Our main result is the following.

THEOREM 2.1. — Let M c: C" be maximally complex and of dimension lp—\ > 1, and
suppose M admits a transversal holomorphic Sl-action. Then there exists a holomorphic
equivariant embedding M q; Y as a hypersurface in a p-dimensional algebraic variety
Y c= C" with a linear C"-action.

Proof. — Let Y() c: C" denote the p-dimensional variety with boundary 3Yo=M. By
Theorem 1.12 we know that the S1-action extends to a weakly holomorphic action on
YQ with a single fixed point which we may assume to be OeC". Furthermore, the
variety is smooth outside of 0.

By Theorem 1.17 the S1-action complexities to become a weakly holomorphic semi-
group A" of contractions. This action lifts naturally to a holomorphic action on the
normalization Yo of Yo. We now appeal to the following known fact whose proof we
include for completeness' sake.

PROPOSITION 2.2. — Let (W, 0) be a germ of a normal isolated singularity on a complex
analytic space. Assume W admits a holomorphic ^-action with 0 as an isolated fixed-
point. Then there exists a linear action on C^ (for some N) and an S1-equivariant
embedding

(W, 0) c, (C^ 0).

Proof. — The action on (W, 0) induces a linear action on (fi^)o which preserves the
maximal ideal M = {fe^^Q: /(°)=0} and also the ideal eJT2. This gives a linear S1-
action on the space J ^ / J ^ 2 ^ C^ Any choice of functions /i, . . .,f^eJ^ such that
< /i > , . . . , < /N > fo™ a basis of Ji^M1, gives us an embedding
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HOLOMORPHIC SYMMETRIES 565

F=(/i, . . ., f^): (W, 0) ^ (C^ 0) where (W, 0) now denotes some fixed representative
of the germ. We want to choose an F of this type which is S^equi variant.

To begin we fix one such embedding F on some representation (W, 0) of the isolated
singularity. We then choose a smooth measure \i on W—{0} which is S^invariant and
"decently behaved" at 0. We do this by taking a resolution (W, D) -> (W, 0) of the
singularity, and then averaging the volume form of a riemannian metric on W.

Consider now the Hilbert space L^W, n) and the SMnvariant subspace
H == {(peL^W, n): (p is holomorphic}.

LEMMA 2.3. — The subspace H is closed in L^W, ^i). Furthermore, L2-convergence of
a sequence {(pj^=i in H, implies uniform convergence o/{(pJ^Li on compact subsets o/W.

Proof. - Our first observation is that any (peL^W, \i) which is holomorphic on
W- {0}, extends automatically to a holomorphic function on W. To see this lift (p to
the resolution (W, D) -> (W, 0) and apply the usual I^-extension theorem to get a
holomorphic extension q> of (p to W. Since (W, 0) is normal, (p is the pull-back of a
holomorphic function (p on W.

Suppose now that {(pj^i is a sequence in H which converges in L^W, n) to a limit
(p. It is standard that in reg(W)=W-{0}, (p is holomorphic and (?„ -> (p uniformly on
compact subsets. Hence, by the preceding paragraph, (peH. Furthermore, applying
the same principle on the resolution W, we see that (p^ -> (p uniformly on compact subsets
of W, and so (?„ -> (p uniformly on compact subsets of W. •

We now consider the closed S^invariant subspace Ho = {(peH: (p(0)=0} and the S1-
equivariant maps:

Ho -̂  M -^ M\M1.

This composition is surjective, since we may assume f^ . . ., /N6!"^. The subspace
kerv|/ is closed, S^invariant and of codimension N. Hence, the subspace E = (ker\|/)1

is N-dimensional and S1-in variant, and the restriction of \|/ gives an Sl-equivariant
isomorphism

v|/: E ^ ^ / J ^ 2 .

Choosing an orthonormal basis [J^ . . ., J^} of E we get a map

F=(7i, ...J^W^C1^

such that

F(TZ)=L(T)F(Z)

where L: S1 -> UN is the unitary representation of S1 on E in this basis. Of course, for
a proper choice of basis we have that

(2-4) F(TZ)=(T^(Z), ...,T^(z))

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



566 H. BLAINE LAWSON, Jr. AND STEPHEN S. T. YAU

for relatively prime integers k^ ^ . . . ^ k^. This proves Proposition 2.2. •
We return now to the main argument. By 2.2 we can choose a neighborhood W of 0

in Yo which admits a holomorphic embedding F: W c, CN which is A x -equivariant with
respect to a linear exaction as in (2.4). (Here we have A" cC" in the obvious
way.) Since A" acts by contractions on Yo we must have

(2.5) kj^Q for j= l , . . . , N .

By 1.15 there is a contraction TocA" such that

CP^O^W

where q\ denotes the action on Yo. Composing with F gives us an equivariant embed-
ding of all of Yo, and in particular of 3Yo==M, into C^

Let Y^F^q^Yo)) denote the image of this embedding. Then L(r)(Y') ^ Y' for all
r eA" <= C", where L(r) is the linear C"-action above. Hence, each image I^T^Y')
for T^eA" is an analytic extension of Y', and one easily checks that the monotone
union

00

Y = UL(n)(YQ
n==l

is a proper analytic subvariety of C^ It follows from the explicit form of the action
(2.4) and the positivity of the exponents (2.5) that the volume function
y (r) = vol ({z e Y: || z || ^ r}) has polynomial growth. Hence, Y must be algebraic. •

Remark 2.6. — We note that the re-embedding of M which takes place in Theorem 2.1
is, in general, necessary. If Y c= C" is a variety with an isolated singularity which is not
normal, then intrinsic S1-actions on reg(Y) do not necessarily extend to holomorphic
actions on Y. A simple example is given by the curve
C={(x,^)eC 2 : x'+^+x^^O}. The piece C=Cn{(^ .v): 0 <\x\2+\y\2 ̂  1} is
holomorphically equivalent to A", and so it carries an intrinsic Ax-action. However,
by the condition of Saito [S] the singularity at 0 admits no holomorphic S1-action.

On the other hand, if the isolated singularity 0 on Y is normal, then any weakly
holomorphic action on Y is actually holomorphic. The proof of Proposition 2.2 then
easily adapts to show that there exists a change of ambient coordinates at 0, and a linear
C x -action on these coordinates which preserves the germ of Y and restricts to the given
A x-action. [The new coordinates will be of the form (^/.J^2)®^ with Y embedded in
the first factor.] Every isolated singularity on a hypersurface of dimension > 1 is normal,
so we have the following corollary.

COROLLARY 2 .7 .—Le t McC"'^1 be a maximally complex submanifold of dimension
2 n — l > l , and suppose M admits a transversal holomorphic S1-action. Then after a
holomorphic change of coordinates in C^1, M is contained in an affine algebraic hypersur-
face YcC"^. The hypersurface Y has at most one singular point. It also has a C"-
action and the embedding McY 15 S1-equivariant.
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3. Kohn-Rossi cohomology and smooth equivalence

In [KR], J. J. Kohn and H. Rossi introduced and studied certain ^-cohomology
groups H^(M) of the boundary M of a complex analytic variety. When M is the
boundary of a hypersurface in C""^ with isolated singularities, the second author [Y]
showed that certain H^(M) carry the structure of an algebra. Specifically, each of the
groups H^(M), ior p-\-q=n—\ and l^q^n—2, is isomorphic to the direct sum of the
moduli algebras, of the singular points of the variety.

The main point of this section is to show that for boundaries with transversal
automorphisms the "Kohn-Rossi algebra" determines the manifold M and its embedding
in C"'^1 up to diffeomorphisms.

We assume throughout the section that our manifolds are compact smooth orientable
and connected, and that S1-actions are holomorphic.

THEOREM 3.1 .—Let McC"'4"1 and M'cC"'^1 be pseudoconvex MC-manifolds mth
transversal S1-actions, each of dimension 2 n — l > l . Suppose there exists an algebra
isomorphism

H^M^Hfc^M')

for any(p, q) as above. Then there exists a diffeomorphism f: C"'1'1 —> C"'^1 with

f(M)=M/.

This result has the following immediate corollary which is also a direct consequence
of [Y] and [MY].

COROLLARY 3.2. — Let M(=:Cn+l be as above and suppose that H^(M)=0. Then M
is diffeomorphic to the standard sphere. Furthermore, if M c: S2"4'1 = { z e C^1: || z || = 1},
then this embedding is isotopic to the standard one.

It is well known that the vanishing of singular cohomology H*(M) =0 is not sufficient
for the above conclusion. The Brieskorn spheres:

^^=={zeC 2": | |z | |=landzl+ ^ z^=0}
k>l

are often exotic, and even when they are not, they are knotted in S4""1.
On the other hand, in the absence of an S1-action even the vanishing of H^(M) is

not sufficient for the conclusion of 3.2. In fact, let V o = { z e C 1 : p(z)=0] be any
algebraic hypersurface with an isolated singularity at the origin, and choose e > 0 so that
V/? (z) + 0 for 0 < | z [ ̂  e and so that V is transversal to S (e) = { z e C": [ z | = e }. Consider
the pseudoconvex manifolds M(={zeC":/?(z)=?} H S(s). These manifolds are mutu-
ally diffeomorphic for all t sufficiently small. However, the results of [Y] show that
H^(M()=O for t^O. Thus, the Kohn-Rossi cohomology can be perturbed away
without losing any essential property except the S1-action. This discussion applies for
example to the Brieskorn spheres above.
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It is possible to construct two pseudoconvex MC-manifolds M, IvT of dimension In— 1
in C" with H^M^Hi^M^O, and with isomorphic algebraic structures, but which
are not even homotopy equivalent as manifolds. Such a pair is given as follows. Let
p (x, y) = x2 (y — I)2 -\-y2 (x — 1) (x — a) where | a — 11 is non-zero and small, and set

M,={(x, y , z,, . . ., z^.,) : p(x, ̂ )+l>f=0}n S(e)
j

Then M=Mg and M'=M^^ will have the stated properties for all e>0 sufficiently small.
PROOF OF THEOREM 3 . 1 . — By the results of section 1 we know that M and M' are

the smooth boundaries of analytic varieties Y and Y' respectively each of which has a
holomorphic Ax-action extending the given S1-action and having one isolated fixed-
point, which we assume to be the point OeC"'^1.

From section 2 we know that the intrinsic A x -action on Y extends to a holomorphic
A x -action on a neighborthood ̂  of 0 in C^1. In fact, this extended action is equivalent,
after a holomorphic change of coordinates, to the restriction of a linear C"-
action. Denote this action by cp^ for r eA" . Observe that for s>0 sufficiently small,
all of the curves q\(z), for 0<t^ l , will be transversal to the spheres
S(p )=={ze^ : | | z | |=p} for 0<p<e. (This is because in small neighborhoods of the
origin, the given action is C1-close to a linear action.) We then define the manifold

M(p)=YHS(p )

and prove the following.

LEMMA 3.3. — F o r each p, 0<p^£ there is a diffeomorphism /p: C^1 -> C^1 such
thatf,(M)=M(p).

Proof. — For each point z e M let t (z) = sup { t e (0,1): q\ (z) e M (p) }. By the transver-
sality of the curves (p^ (z) we see that t (z) is a smooth function on M. Hence the map
Fp: M -> M(p) defined by setting Fp (z) = cp^ (z) is smooth. By the transversality above
we see that Fp is a local diffeomorphism, and therefore a diffeomorphism.

The family of embeddings Fp ^: M -> C^1 given by setting

^(^^oo+d-^)
is an isotopy of the original embedding Fp o(z)=(pi (z)=z with the embedding Fp , i=Fp
constructed above. The standard isotopy extension theorem (cf. [H]) asserts that there
exists a smooth family of diffeomorphisms f^ ^: C" +1 -> C"+1 such that /p, J M = ¥p, s ' Tne

map /p =/p i is our desired diffeomorphism. •
The analogous discussion applies, of course, to M' and Y'.
Now comes the main point of the proof. For p + q = n — 1 and 1 ̂  q ̂  n — 2 there is a

natural isomorphism H{^(M) ^>^o(Y) where ̂ (^ ls tne "moduli algebra" of Y at
the point 0, i. e.

^o(Y)=C{zo,...^.}/f^^...^)
\ 8zo QzJ
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where p e C { ZQ, . . ., z^} is the function which defines the hypersurface Y in a neighbor-
hood of 0. (See[Y}.) Our main hypothesis now implies that there is an algebra
isomorphism:

^(Y^^om.
It then follows from a result of J. Mather and the second author [MY], that there is a

holomorphic change of coordinates H: % r^ ^U' defined on a neighborhood ^U of 0 with
H(0)=0, so that

H(^^Y)=^^}y/.
As a consequence we know (cf. [M]) that for all p>0 and p'>0 sufficiently small, there

is a diffeomorphism hpp/: B(2 p) ̂  B(2 p') such that

(3.4) ^ppWp^M^pO

where BO^zeC"-^ : ||z||<r}, M(p)=YOS(p) and M^p^Y' 0 S(pQ. This map
/^>/

may be altered outside B(p) and B(p') to become a diffeomorphism Ap/p:C" + l 2>Cn + l

with the same property (3.4). Lemma 3. 3 can now be applied to give diffeomorphisms
/p and /p. with /p(M)=M(p) and f^(M/)=M/(p/). The concatenation
f= (f^,) ~1 o h^ p o/p is the desired diffeomorphism. •

It is worth noting that our proof actually shows the following.

COROLLARY 3.6. — Let M and M7 be as in Theorem 3.1 with H^(M) ^H^(M').
Then as CR-manifolds, M and M' ar^ "strongly h-cobordant" in the following sense. There
is a complex manifold W which is diffeomorphic to M x [0,1] and for which there is a CR
(i. e., "holomorphic") diffeomorphism F: <9W —> M JL M".

PROOF. — Let (P( and H be as in the proof above, and choose t>0 sufficiently small
that (py(M)<=^. Then the holomorphic map H°(p^ embeds Y into interior (Y'). We
set

WEEY'-HO^Y)

and note that cW^cRM-u-NT. It remains to see that W is diffeomorphic to
M x [0,1]. It is elementary that for p and p' sufficiently small and chosen so that
I^Yr^p^Y'r^pO, the manifold Y'HB(p)-H(Y U B(p)) is diffeomorphic to
M x [0,1]. Using the flow as in the proof of Lemma 3.3 we can construct diffeomor-
phisms Y - B (p) ̂  M x [0,1] and Y' - B (p') ̂  M' x [0,1]. Hence

W^Y-^p^-P^Y-^p^U^Yr^p))]

is diffeomorphic to M x [0,1] with a collar neighborhood of one boundary component
removed. •
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4. A fixed-point formula for analytic space

The first result of this section is the following.

THEOREM 4.1. — Let X be a compact complex analytic space mth a weakly holomorphic
S1-action. Then

X(X)=X(F)

"where F is the fixed-point set of the action.
This theorem actually holds in the more general category of compact differentiable

stratified sets. (See Theorem 4.7 below.) However, for its interest, we shall first
present a quick proof of Theorem 4.1 which is based on the resolution of singularities.

PROOF. — By the work of Hironaka [Ha] we know that there exists an equivarient

resolution X ->X of X. Let Sc=X denote this singular set of X and let EEETT'^S) be
the exceptional set. Then it is well known and easy to check that

(4.2) ^(X)-^(E)=x(X)-x(S).

We proceed by induction on the dimension of X. The result is clearly true for dim
X == 0. We assume that dim X = n and that the results is proved in all lower dimensions.

Observe that S1 acts analytically on the smooth manifold X and so its fixed-point set
F is a smooth complex submanifold of X. The vector field generating the action on X
is projectable to X. Hence, we have

7i(F)^F.

We shall assume for the moment that F has no (irreducible) components of top
dimension (i. e., of dimension n). Now the singular set S is S1-invariant, and therefore
so is the set E. By induction we have that

(4.3) x(S)=x(Fs) and X(B)=X(FE)

where Fy denotes the fixed-point set of Y. From the classical Lefschetz formula (or,
say, the Atiyah-Singer formula) we know that

X(X)=x(F).

Together with (4.2) and (4. 3) this gives us

(4.4) X(X)=z(F)-x(FE)4-z(Fs).

We want to claim that

(4.5) X(F)-X(FE)+X(FS)=X(F).
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Since X — E -^ X — S is an analytic isomorphism we see that

(4.6) F-F^F-Fs
w

is an isomorphism. If A and B are any two subcomplexes of a finite simplicial complex,
we have that x(A UB)=x(A)+x(B)-x(A HB). Taking a regular neighborhood of
Eg in F, we get a triangulable set whose boundary is an odd-dimensional oriented
manifold. The same holds for a regular neighborhood of Fg in F. Hence, we have

X(F)=X(FE)+X(F-FE) and x(F)=x(Fs)+x(F-Fs)

from which it follows that

X(F)-X(FE)+X(FS)
=X(F-FE)+Z(FS)
=X(F-Fs)+x(Fs)=x(F)

as desired.
Suppose now that F has a component of top dimension. Let F() be the union of all

such components and let XQ = closure (X —Fo). As above we have

X(X)=x(Xo)+x(Fo-Xo)
=X(Xo)+x(F-Xo)
=X(FnXo)+x(F-Xo)
=X(F). •

As noted above, Theorem 4.1 has the following generalization.

THEOREM 4.7. — Let X be a compact differentiable stratified set \vhich admits a smooth
S1-action mth fixed-point set F. Then

X(X)=X(F).

Proof. — Our first step is to choose a prime p sufficiently large that the subgroup
Zp c: S1 has the same fixed-point set, i. e., so that F = { x e X : g (x) = x for all g e Zp ] . To
see that this is possible we first note that, by standard arguments, each point xeX has a
neighborhood U^ with the property that

GyCzG^ forall j^eU^

where by definition Gy=={^eS 1 : g(y)=y} is the isotropy subgroup of y. It follows
that the number of distinct isotropy subgroups is finite. Hence, there exists a prime p
so that Zp<1=G^ for any x^F, and the assertion follows.
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Our next step is to triangulate X so that:
(i) F is a finite subcomplex, and

(ii) /maps simplicies to simplicies, where/: X ->X is a generator of the action.
To do this we need only triangulate the differentiable stratified set X/Zp with F as a
subcomplex.

Let Cfc(X) denote the group of integral fe-chains for this triangulation, and write

(4.8) Q(X)=C,(F)®C,(F)

where C^(F) [respectively Cfc(F)] denotes the subgroup generated by the k-simplicies
which are contained (respectively, not contained) in F. The induced chain map
/* : C\(X)-^Cfc(X) respects the decomposition (4.8) and clearly /* | ̂  (F) = Idck (F)' I11

the basis for Cfc(F) given by the fe-simplicies, /* has the form:

(0 ^

0

Mc,^ o
^ ' 0

To see this, it suffices to show that if for some k-simplex a<=X, we have that/(a)=o,
then ac:F. Since F is a subcomplex, it will suffice to show that /(a) = a =>Fn (interior a)
7^0. However, since p is prime, Fn(intcr)=0 implies that Zp acts freely on
inHcr)^^, which in turn implies that ^(Rk/Zp)p=^(Rk)=l.

The result now follows immediately from the Lefschetz Fixed-point Formula. •

5. An application to cycle spaces

By a cycle of dimension p on a compact complex analytic space X we mean a finite
sum ^UfcVfc where n^eZ^ and V^ is an irreducible ^-dimensional complex subvariety of
X. (Thus "cycle" here means "effective analytic cycle".) The space of cycles in a fixed
class has the structure of a complex analytic variety (Barlet [B]).

We shall first examine the spaces of cycles on complex projective space P^C). Fix
positive integers p, d, and n and let ^ ^ ^=^ ^ denote the space of all cycles of
dimension p and degree d in P"(C), where degree (^ n^ V^^n^ degree (V^) is the homol-
ogy degree of the cycle.

It is not difficult to see that each space ^p ^ „ is simply connected. We shall give
here a quick computation of the Euler characteristic of these spaces.

THEOREM 5.1:

_ , /v+rf-i\ , /n+r
X(^p,d,n)= , where v=

\ d ) VJ^+L
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Note. - This theorem recaptures the well known facts that x(^-i ^ »)=( ) and
\ d )

^ ^ ^+1^
^^^[p^)'

It is interesting to observe that if for each pair of integers p and n with O^p^n we
define the formal power series

00

Qp,n(0=Zx(^,.,.)^,
d=0

then Theorem 5.1 can be restated in the form

Q,,.(»=(^)
(n+l)

1 ^P+1-'

' \1-^

where we have adopted the convention that /(^n o n)= 1-
Proof of theorem 5.1. — We consider the action of the n-torus

T-T.^/T^U^/T^PU,^ on P"(C) given by setting

(5.2) ^(M)=[^°^ ...,^J

where t=(to, . . ., ^eT"^ and where [z]=[zo, • • -^J are homogeneous coordinates
for P" (C). Fix z e C""^1 - {0}, and suppose that z^, . . ., z^ are exactly the coordinates
of z which are not zero. Then one easily sees that

(5.3) ^(M)=N ^ ^=..=^.

Hence, if T^ = { t e T : 0, ([z]) = [z]}, then we have

(5.4) dimn,(T^)=n-p.

Consequently for each ordered (/?+l)-tuple of integers a=(ao, . . ., o^) with
0^ao<ai < . . . <a^n, we consider the coordinate (/?+ l)-plane

^-'^{zeC^1 ; z^Oiff^a.forsome^crC"-'1

and we denote by

P?c:P"(C)

the corresponding projective 7?-plane. We see immediately that

(5.5) dim^ (T[^) ̂  n -p <^> [z]e P^ for some a.
This fact may be viewed alternatively as follows. For each point [z] e P" (C) we define
T^] to be the tangent space to the orbit of T at [z]. Clearly we have that
^^[z^+d^^^^n, and so (5.5) can be rewritten as

(5 • 5)' dim^ (T[^) ̂ p ^> [z] e P^ for some a.
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An important fact which is straightforward to verify is that the subspaces T are all
Lagrangian i. e., T±JT at each point. In particular we have that

(5.6) dime (r^ + JT^) = dinio, (r^)

forall[z]eP"(C).
From all of this we have a very clear picture of the orbit space. Consider the standard

n-simplex A" = {(xo, . . ., x^) e R"+1: x^ 0 for all j and ̂  x^ = 1}. The following is easily
proved.

PROPOSITION 5.7. — There is a diffeomorphism of differentiable stratified sets

P^Q/T^A"

which associates to the orbit o/[z]6P"(C), the element

f M ^ ^ M ^ ^MIMII inf i l l /
where ||H||=^|^|. Each subspace P^ 15 T-invariant, and P^/T is mapped to the octh p-
dimensional edge o/A".

Note. — This map is merely the "moment map" for the action given by the Kahler
form.

We now come to the main proposition.

PROPOSITION 5.8. — Let V be a p-dimensional analytic cycle on P" (C) which is T-
invariant. Then

V=En,P?

for integers n^ ̂  0.

Proof. - Let reg(V) denote the set of regular points of the (reduced) cycle. Fix
xereg(V). Since V is T-invariant, we have T^C=T^V, and so
dim^ (T^ + J T^) ̂ p. Applying (5.6) and (5.5)' we conclude that

x e reg (V) => x e P^ for some a.

The proposition now follows easily. •
The action of T on P" (C) induces an action of T on ̂  ^ ,. By Proposition 5.7 the

fixed-point set of this action consists exactly of the cycles of the form ^n^P? where
^,n^=d. Applying Theorem 4.1 (inductively n-times) shows that

X(^p, d, ^)=card{(mi, . . . . , m^eZ^.esich m^O and ̂ m^d}

(v+d-\\ , / n + l \ -= where v== . •
\ d ) \P^\)
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The result above suggests the following definition in the general case. Let X be a
compact Kahler manifold of dimension n. For each integer p, O^p^n, we shall define
a formal sum of characters, i. e. of homomorphisms

H^(X;^)/H^(X;Z)^^^-S1,

as follows. Let ^ denote the space of analytic cycles on X and for each
XeH2p(X; Z)mod torsion I61 ̂  denote the subset of cycles in ^ which represent ^. Then
for xeH^X; R), we define

Qp^ZxC^2"1^^x

where by convention we set /(0)=0. If we choose a basis e ^ . . . , e ^ of
H:2p(X; Z)^a torsion ^en Qp can be rewritten as follows. Set ^=^^-^ and for each 7,
set tj=e2nl<eJf x> . Then as a function of ?=(?i, . . ., ^), Qp becomes

(5.9) Qp(0=ZxCW
x

where the sum is taken over all ^ e Z^
The method used above enables us to compute this function also in the case where

X = P" x P"1. Here we have a canonical decomposition

(5.10) H^(X;Z)^^,=H,,(X;Z)= ® H^n^H^P-)
O^k^n
O^l^m
k+l=p

Let {e^i}k+i=p denote the obvious basis of H^(X; Z) with respect to this decomposition,
and let {')ik,i}k+i=p denote the corresponding coordinates on H^X; R). Setting
^ ̂ e1"1^1 we can express the function Qp as in (5.9).

THEOREM 5.11. — For X =?"(€) x P^C) and for any integer p, 0^/^n+m, one has
that

( n + l ) (m + l )
Q fi\ r~r (\ f ^ - v fc+ l 7 v^+ l /

pW 11 ^-^l)
k+l=p

Proof. - Consider the action of the torus T=T" x T"1 on P" x P"1 given as the product
of the actions considered above on each factor. A general class ^eH^X; Z) can be
written as ^-=^^,1^ (where ^ ^eZ), and this class contains an analytic cycle if and
only if ^j^O for all k, I. Arguing as above, one finds that the T-fixed cycles in 'k are
exactly those cycles of the form

n — V wi fo^ v IP̂c— ^ m^ ^ ^ pi^a^ " p
k+l=p

a, P

where the sum runs over all a's with 0^ao<ai<. . . <a^n and all P's with
O ^ P o < P i < . . . <P2^m; where P^ and Pp denote the distinguished subspaces of P"(C)
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and P"" (C) as before; and where

Z m^ a, P^k.I
a, P

for each k and I.

From Theorem 4.1 we know that ^(^\) ==the number of fixed cycles in ^, and this in

turn is the product ]~[ N^ where N^ffKm^eZ^ ̂ ^l^c, p=^. J=the number

of distinct monomials of degree \ ̂  in ( n ] variables. Hence, we have that

^ /^.l+^M-1 '
^l-[

\ ^k,l

, /n+lVm+l\ ,
where ̂ =LJLJ, and so

x(^)= n ([lkfl\^l~l'
k+l=p\ ^k,l >

It follows that

Q^O=ExCW?i

s n (^'t•i+^i-l)(^^•'
^.^0 f c + f = p \ ^k,l /

- n (i-^r^
fc+f=p

For cycles of codimension one, i.e., in the case where p=n+m—l, the rationality of
this function can be deduced as a general consequence of the rationality of generating
functions associated to graded modules. In higher codimensions, this rationality is more
mysterious and intriguing.
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