
ANNALES SCIENTIFIQUES DE L’É.N.S.

MARKO TADIĆ
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Introduction

A basic problem of the harmonic analysis on a particular group G is to describe the
set of all equivalence classes of irreducible unitary representations of G.

Let G be a connected reductive group over a local field F. The set of all equivalence
classes of (algebraically) irreducible admissible representations of G is denoted by
Q. The set of all equivalence classes of topologically irreducible unitary representations
(on Hilbert spaces) is denoted by G, and called the unitary dual of G. The unitary dual
G is in a natural bijection with the subset of all unitarizable classes in Q ([6], [32]). In this
way we shall identify G with the subset of all unitarizable classes in Q. Thus, a
description of the unitary dual can be done in two steps. The first step is to parametrize

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/86/03 335 48/$ 6.80/ © Gauthier-Villars



336 M. TADIC

G, and the second one is to identify all unitarizable classes in G. The first step is called
the problem of non-unitary dual, and the second one is called the unitarizability problem.

The first problem has been studied much more then the second one. It has been
completely solved for the case of archimedean F, by Langlands classification. Langlands
classification is done also for the nonarchimedean case, but here remains to classify the
Langlands parameters.

The second problem is carried out in the case of non-archimedean F only for the
groups SL (2) and closely related group GL (2) (possible reference is [10]) (1).

In the case of archimedean F, despite the complete knowledge of the non-unitary dual
Q the second problem was carried out completely only for a few groups of lower
ranks. For a survey of this case one may consult the paper [17] of A. W. Knapp and
B. Speh and therefore we are not going into further details (see also [31]).

We shall give one more remark about the problem of unitary dual for groups SL (n, C),
which are closely related to the groups GL (n, C). In 1950, I. M. Gelfand and M. A.
Neumark constructed a family of irreducible unitary representations of SL (n, C) for
which they presumed they exhausted the unitary dual [13]. In 1967 E. M. Stein showed
that the constructed family of representations was not complete, by constructing a new
complementary series [25]. G. Olshanskii generalized in [20] this result. He constructed
some complementary series for GL (n) over division algebras (archimedean and
non-archimedean). In [2] J. N. Bernstein constructed a much wider family of comple-
mentary series for GL (n) over a non-archimedean field. This complementary series will
be discussed later. J. N. Bernstein paper contains some very important general results
about unitarizability in the case of GL (n) over non-archimedean fields.

In this paper we give a solution of the unitarizability problem for the groups GL (n)
over a local non-archimedean field F. More precisely, Zeievinsky parameters and Lan-
glands parameters of all unitarizable classes in GL (n, F) ^ are determined. Moreover,
an explicit formula connecting Zeievinsky and Langlands parameters of GL(n, F) is
proved. We prove also the Bernstein conjecture on complementary series from [2].

The results and techniques we need in this paper on non-unitary dual of GL (n)
over non-archimedean field, which are characteristic for this case, belong mainly to
I. M. Gelfand, D. A. Kazhdan, J. N. Bernstein and A. V. Zeievinsky ([4], [5], [12], [33]).

Concerning the facts about the unitary representations required for this paper, in the
first stage of development of ideas of this paper, the results of D. Milicic from [18]
and also results of [27] (obtained using [18]) had an important role. In the second stage,
the results of J. N. Bernstein in [2] played an important role. F. Rodier pointed out to
me possibility of studying the unitary duals of GL (n) over non-archimedean fields using
these two groups of ideas.

Now we shall describe the main results of this paper.

(1) Added in proof: the authors recently learned that H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika
carried out the second problem for non-archimedean GL(3) in "Automorphic forms on GL(3)I", Ann. of
Math., Vol. 109, 1979, 169-212.
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UNITARY REPRESENTATIONS OF GENERAL LINEAR GROUP 337

Let Alg GL(n, F) be the category of all smooth representations of finite length of
GL(n, F) where F is a local non-archimedean field. If Tie Alg GL(n, F) then we write
deg n = n. If T e Alg GL (n^ F) and a e Alg GL (n^ F) then T x a e Alg GL (^ + n^ F)
denotes the representation induced by T ® a.

The set of all equivalence classes of irreducible smooth representations of GL(n, F)
for all n^O, is denoted by Irr. The subset of all unitarizable representations in Irr is
denoted by Irr". Let C be the set of all cuspidal representations in Irr. Set
C"=Irr" 0 C. Note that C" is just the set of all representations in C with unitary central
character. Set

GL (n, F) ̂ = { n e Irr"; deg n = n}.

Let R,, be the Grothendieck group of the category Alg GL(n, F). The induction functor
(r, a) -> T x CT defines a structure of a graded ring on

R= © R^.
n^O

We consider Irr c= R and now Irr is a basis of Z-module R.
Let v be the character g -> \ deig p of GL(n, F) where | |p is a natural absolute value

on F (see 1. 3).
For a positive integer d set A[d\={ -(d- 1)/2, -(^-3)/2, . . ., (ri-l)/2}. If peC

then we put

A^^v^aeAtd]}.

Let ri, n be positive integers. Let

a^rfyp^^-^^^At^v^^^A^, . . .^"-^A^)

be a multiset (see the first section) where

v^^^v^aeA^]^}.

By the Zeievinsky classification we can associate to a(n, rf)^ a representation
<a (n , fQ^eIrr.

Fix an integer n. Take a decomposition
s r

^== Z ^piUi+l ^ b j g j V ,
1 = 1 j = i

where a^ p^ M(, bp q? Vj are positive integers. The case of r = 0 or s = 0 is possible. Let
QCi, . . ., a^e (0,1/2). Take c^, TyeC" such that deg C^=M, and deg T y = U y . Set

(^) 7i((ai,;?i,ai), . . .,(a^,a,),(&i,gi,Ti,ai), . . ., (fc,, g,, T,, a,))

=<a(a„^) (<T l )>x...x<a(^^) ( (T- )>

x[va l<a(fcl ,^) ( T l )>xv-a l<a(^,^)<T l )>]x.. .
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338 M. TADIC

x [v^ a (b,, q^ > x v-^ < a (&„ q^ >].

The main result of this paper is the following:

THEOREM A. - (i) Representations n ((a^ p^ 04), . . ., (^,, a,, T,, a,)) are in GL(n, F) .
(ii) Each irreducible unitarizable representation ofGL(n, F) can be obtained in this way.
(iii) Two representations

n((a[,p\, a\\ . . ., (a;f,/4 c^-), (^, ̂ , ̂  o^), . . ., (^-, ̂ , T^, (40), ^'=1,2,

an? equal if and only ifsl=s2, r^r2 and

((a^p[,o\\ . . .,(^,^l,a,l))=((a2^2,a2), . . .,(a,2,^2, a,2)),

((fc},^^L^ • • •,(^^^a,l))=((fc2^2,T2,a2), . . .^^a2))

as multisets.
By the work of Zeievinsky and Bernstein we have the involution f : Irr -> Irr (see 1.1.4).
The importance of the involution ( lies, among the others, in the fact that ( connects

Zeievinsky and Langlands classification, what was shown by F. Rodier in [21].

THEOREM B. — We have

n((a^p^a^ . . .,(a,,/?,, a,),(fci,^i,Ti,ai), • . ., (b,, a,, T,, a,))'
=7i((^i,ai,ai), . . .,0^,a,,a,),(^,^,Ti,aO, . . .,(^,,&,,T,,OC,)).

In this paper we prove the Bernstein conjecture on complementary series from [2]. For
Tceirr let 71+ be the Hermitian contragredient of n. Rigid representations are defined in
4.1.

THEOREM C (Bernstein conjecture on complementary series). — (i) Suppose that
v" a x v"" a4' is irreducible and unitarizable for all ae( -1/2, 1/2). Then a is a unitarizable
rigid representation.

(ii) Suppose that a is a rigid representation such that v^xy^o'1', is an irreducible
unitarizable representation for some ae(0,1/2). Then there exist a^ a^eirr" so that

<j=(7i XV"1 7 2^.

Let D" be the set of all square integrable classes in Irr".
Let n be a positive integer, and let 5 e D". The representation

v^-^Sxv^-^'^x . . . xv-^-^S

has a unique irreducible quotient which is denoted by u(8, n).

THEOREM D. — Let B be the set of all

^(a.nt.v^S.^xv^i^a.n)

where n is a positive integer, 8 e D" and 0 < a < 1 /2.
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UNITARY REPRESENTATIONS OF GENERAL LINEAR GROUP 339

(i) Ifn^ . . .,7^eB, then n^x . . . x^eirr".
(ii) If aeirr", then there exist n^ . . . ,^eB so that a =7^ x . . . x 7^. 77i(? elements

Tii, . . ., TT, ar^ unique up to a permutation.
This theorem describes the Langlands parameters of Irr".
Note that the statement of Theorem D. makes sense also if the field F is

archimedean. In fact, Theorem D. holds also over archimedean F and the ideas of
sections 3 and 4 of this paper can be applied as well in the case of archimedean F (see
[30]).

Note that for GL (n) over archimedean fields, irreducible square integrable representa-
tions exist only for

GLO.C^C'.GLO.^tFr and GL(2,R).

If 8 is an irreducible square integrable representation of GL (1, R) or GL (1, C), i.e. a
unitary character of R x or C x , then

u(8,n); g->S(detg)

is an one-dimensional unitary representation of GL (n, R) or GL (n, C). If § is an
irreducible square integrable representation of GL (2, IR) than u (8, n) were studied by
B. Speh [24]. In the non-archimedean case we have much more square integrable
representations. Therefore we have much more representations u (8, n) (2).

The involution ( on R was defined in [33]. A. V. Zeievinsky conjectured in [33] that (

carries the irreducible representations into irreducible ones, i.e. that (Irr^Irr. Proof
of this was announced. The fact (Irr^Irr was used in this paper. As up to this date
there is no written proof of this fact in the full generality, known to this author, we
shall write a few words about the role of this fact for this paper.

In [35], J.-L. Waldspurger proved that Ti^eirr for Tieirr in a great number of cases.
In the sections 1-6 of this paper we are using neither (Irry==Irr nor the results

depending on this fact. We use (Irr^Irr in sections 7 and 8 where Theorems A, B, C
and D are proved.

As there is no reference for the written proof of (Irr^Irr in the full generality, we
added Apendix in which the main results are proved without assuming (Irr^Irr, when
char F=0. Therefore we are not using the result of [28] in that section. Using the
idea of B. Speh in [24], we prove the unitarizability of representations u (8, n) by global
methods.

Now we introduce some basic notation. The field of real numbers is denoted by R,
the subring of integers is denoted by Z, the subset of non-negative integers is denoted
by Z+ and the subset of positive integers is denoted by fU If a, Re R then (a,
P ) = { y e ( R ; a<y<p}.

(2) Added in proof: another approach to the unitary dual of archimedean GL(n) is done by D. A. Vogan
(Invent. Math. Vol. 83, 1986, 449-505).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



340 M. TADIC
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1. Zeievinsky classification

For more detailed informations and proofs of the results presented in this section one
needs to use [33].

1.1. Let F be a locally compact nonarchimedean field. The group GL(n, F) is
denoted by G^. Sometimes we shall identify GL(1, F) with F", the multiplicative group
ofF.

A representation n of G^ on a complex vector space V is called a smooth G^-module
if every vector in V has an open stabilizer in G^. If for each open compact subgroup K
in G^ the vector space of all K-fixed vectors in V is finite dimensional, then V is called
an admissible G^-module. The Grothendieck group of the category Alg G^ of all smooth
G^-modules of finite length is denoted by R^. The induction functor (711,712) -^i xn^
induces a bilinear morphism R^ x R^ -> Rn+m' ^et

oo

R= ® R,.
n=0

We have a structure of commutative graded ring on R. If Tie R,, put deg7i=n.
1.2. Denote by &„ the set of all equivalence classes of irreducible smooth representa-

tions of G^. Note that representations in Q^ are admissible. Suppose that G^-module
V possesses a G^-invariant inner product. Then we say that V is unitarizable. For an
irreducible G^-module, a G^-invariant inner product is unique up to a scalar, if it
exists. Denote by G^ the set of all classes of unitarizable representations in &„. Let
C(G^) be the subset of all cuspidal representations in &„, i. e. the subset of all representa-
tions in &„ whose matrix coefficients are compactly supported functions on G^ modulo the
center of G^. Let ^(G^^C^G^ be the subset of all unitarizable representations. We
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UNITARY REPRESENTATIONS OF GENERAL LINEAR GROUP 341

consider

G,£R,,.

Then G,, is a Z-basis of R,.
Put

Irr= U &„,
n=0

Irr"= U Gn»
n=0

C= U C(G^),
n = l

00

C"= U C^G^).
M = l

1. 3. W shall denote by v e G^ the one-dimensional representation g -> \ detg | p. Here
F is an absolute value on F which defines topology of F such that if (OF generates the

maximal ideal pp in the ring of integers Op of F then

\^\p=[c2ird(0p/pp)]~1.

For oceC put va(7^)=va7l, TieR^. Now we can extend v" to the whole R and v" is an
automorphism of the ring R.

1.4. For a set X, M(X) will denote the set of all finite multisets in X. They are
functions a : X -^ Z + with finite support. We shall write a in the following way. Let
{ X i , . . ., x^} be the set of all xeX such that fl(x)^0. Then we write a as

{X^y . . . ? X^X^y . . . , X^y . . . , X^y . . . , X^

fl(xi)times a (.x^times a (x^)times

We shall consider X s= M (X). Clearly, M (X) has a structure of a commutative semigroup
with identity.

For aeM(X), the number ^ a(x) is called the cardinal number of a and denoted
x e X

a\.
1 . 5 . For f,7'eZ, f^/'set

by |

[iJ]=={keZ;i^k^j},

and call [(', 7] a segment in Z. The set of all segments in Z is denoted byS(Z).
Let A = [f, 7] e S (Z) and a e R. Then we call

[f+oc,7+a]={a+fe; f e e A }

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



342 M. TADIC

a segment in R and denote it by A^. The set of all segments in R is denoted by S (R). We
consider S(Z)^S(R). Now for AeS(R) and aeR we define A, analogously. In this
way we get action of R on S(IR).

1.6. For A€S(R) and pelrrset

A^^v^.yeA}.

Let p 6 C. Then we call A^ a segment in C. The set of all segments in C is denoted
by S(C). If aetR and AeS(R) then

(AJ^v^A^).

For AeS(C) set A^v^. Now for AeS(lR) and aeIR we have

(AJ^A^),

This is an action of R on S (C).
For a multiset a=(Ai, . . ., AJeM(S(tR)), aeR and peC we put

a,=((A,),, . . ., (A^)eM(S(R)), a^=W . . ., A^)6M(S(C)).

For fc=(Ai, . . ., AJeM(S(C)) set ^=(vaAl, . . ., v^J. This is an action of R on
M(S(C)).

Let 7i e Alg G^ and a e R. Then TT, denotes the representation v" n. In this way 1R acts
onAIgG^.

1.7. For AI, A2eS(C) we shall say that A^ and A^ are linked if A^ U A2 is a segment
and

AiHA^{A,,A2}.

Let Al=[v ip, v^'p], A2=[v f cp, v1 p] be two linked segments. If i<k then we say that A^
precedes A^ and write A^ -> A^.

1.8. For AeS(C), A==[p, v'p], f e Z + , the representation

p x vp x . . . x v1 p

has a unique irreducible subrepresentation which we denote by < A >. Let

a=(A,, . . . ,A,)eM(S(C)) .

Choose an ordering on a such that:

A^ precedes A^ => i >j.

Set

7 i (a )=<A,>x<A,>x . . . x<A,>.
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UNITARY REPRESENTATIONS OF GENERAL LINEAR GROUP 343

Now n (a) has a unique irreducible subrepresentation which is denoted by <a) . The
mapping

a - ^ < a > ,
M(S(C))->Irr

is a bijection. This is Zeievinsky classification.
For oceR, aeM(S(R)), peC and fceM(S(C)) we have

<(^p))a>=<(^)(p)>=<^p)>a

and

<^>=<fc \

since the representations n (by) and n (&)„ are isomorphic.
1.9. For a = (Ai, . . ., A^) e M (S (C)) denote supp a e M (C),

(supp a) (p) = card { i ; p 6 A,}.

This is called the support of the multisegment a. In the same way define the support of
aeM(S(R)).

Now we have

supp < a > = supp a, a e M (S (C)).

The support of a representation is defined in 1.10 of [33].
For o)(=M(C)set

Irr^ = {n e Irr; supp7i=co},

R.= Z .̂
n e Irrco

Now {R^; coeM(C)} is a graduation of the ringR.
1.10. Let peC. We denote by p^ (resp. p^) the orbit of p under the action of Z

(resp. R).
For X g C set

Irr(X)= U Irr^,
<o 6 M (X)

Irr^^n^nirr".

Let p1, . . ., p"eC belong to different Z-orbits. We know from Proposition 1.5.2
of [34] that the multiplication in the Grotendieck group

Irr(pi) x . . . x Irr(py ̂  Irr(pi U . . . U P^)

gives us a bijection.
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In the same way one obtains: if pS . . ., p" belong to different [R-orbits then we have
a bijection

Irr(pjs) x . . . x Irr(py -. Irr(p^ U . . . U P^).

1.11. For a smooth representation n of finite length we associate a multiset
JH (n) e M (Irr) as follows: JH(7i)(a) is the multiplicity of a in a composition series of
7i. This multiset is called the Jordan-Holder series ofn.

1.12. Let a=(Ai, . . ., AJeM(S(C)). If A, and A .̂ are linked and i<j then

b=(Ai, . . ., A,_ i , A,nA^., A f + i , . . ., A^_i , A^UA^., A^i, . . ., AJ
is again a multiset in S(C). Set b<a. For a, fceM(S(C)) we shall write b^a if there
exist a^ . . ., a^eM(S(C)) such that

fc==a i< f l2< • • • <am=a•

Now ^ is a partial ordering on M(S(C)).
1.13. Let aeM(S(C)). Then we know from [33] that

JH(7i(a))«fc»^0 o b^a,

and

JH(Ji(a))«a»=l.

1.14. For A = [p, v1 p] e S (C) denote by

A^OpUvp}, .. . ,{v lp})6M(S(C)).

The ring R is polynomial over { < A >; AeS(C)} and

(A)-^^)

extends to an involutive automorphism ( : R -> R of the graded ring R. It is announced
in [33], [34] and [2] that Irr^Irr.

1.15. If K is a smooth representation of G^ then n denotes the contragredient represen-
tation of K. For AeS(C) the set {p; peA} is again a segment in C which we denote by
A~. Fora=(Ai, . . ., AJeM(S(C)) let a=(AF, . . ., A;)eM(S(C)). Then

<a>~=<a>.

1.16. Let A = [p, v1 p] e S (C). Set

,- f^v1-1?] if f ^ lA ~ = <
0 if f = 0

A^v^A-.

For a = (A,, . . ., A,)eM(S(C))let

a'^Ai", . . ., A^),
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UNITARY REPRESENTATIONS OF GENERAL LINEAR GROUP 345

^(A,, ...,A,).

Now < a~ > is called the highest derivative of < a >. Set 71= < a >. Then < a' > is called
the highest shifted derivative of n. We put n' = < a' >.

2. Some general facts
about unitarizable representations

2.1. Let (TC, V) eAIgG^. We define on V a new multiplication by scalars

Ck, v)->7kv.

This vector space is denoted by V. On V we have action of G^ and this representation
is denoted by (TC, V). We say that 71 is conjugated t07c.

For TieAIgG^ set

We say that TT^ is Hermitian contragredient of n. Now + : R -> R is a homomorphism
of the ring. If n^ n+ we say that n is a Hermitian representation. It is well known
that each unitarizable admissible representation is Hermitian.

2.2. Fora=(Ai, . . ., AJeM(S(C)) set

where

^=(A^ . . . ,A; )eM(S(C))

A^p^peA,}.

By Statement 7. 8 of [2] we have

(a)^^).

2.3. If peC(G^) then there exists ae R such that

P^^o

where po is unitarizable. Now

P^v-po.

This means that an irreducible cuspidal representation is unitarizable if and only if it is
Hermitian. Also, an irreducible cuspidal representation is unitarizable if and only if it
has unitary central character.

This implies that it is easy to characterize the subset C" of all unitarizable representa-
tions in C.

2.4. Leta=(Ai, . . ., A,)eM(S(R)). Set
-a==(-Ai, ...,-A,)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



346 M. TADIC

where

-A,={-x; xeA,}.

Note that —A, are segments again.
LetpeC". Then

(a(P))+=(-a)(p)

and

<^P)>^=<(_^(P)>.

This implies that

(Ir^p^-^In^) for peC or pi/^eC,

(Irr (png))+ = Irr (p^) for p e C.

2.5. THEOREM (J. N. Bernstein, [2]). - (i) Ifn^ T^eirr" then n^ x^eirr".
(ii) Ifn^ Ti^eirr ar^ Hermitian and n^ xn^ is unitarizable, then n^ and K^ are unitariza-

ble.
(iii) J/7i e Irr" then n/eirr".
In this paper we are using only the following form of (ii): If n^ Ti^eirr are Hermitian

and Tii x n^ is irreducible unitarizable, then n ̂  and n^ are unitarizable. This fact can be
proved in a much more simple manner then (ii) is proved in [2].

The last fact can be generalized to any reductive group. The form of generalization
was suggested by F. Rodier (3).

2.6. Let G be the group of F-rational points of a connected reductive linear algebraic
group defined over F.

Let H(G) be the Hecke algebra G. If K is an open compact subgroup then H(G, K)
will denote the subalgebra of all K-biinvariant functions inH(G).

The definition of G and G is analogous to the definition of G^ and &„.
The character of a representation n is denoted by ch^.
2.7. THEOREM. — (i) Let (TI,,) be a sequence in G such that for each /eH(G) there

exists a finite limit limch^ (/) in the complex numbers. Then there exist n^eZ+, aeG,
n

such that

limch^(/)= E,^ch,(/)
M CT e G

for each fixed f e H (G). The set { a; n^ chy(f) ̂  0} for a given /, 15 always finite.

(3) Added in proof: this generalization has been obtained earlier by B. Speh.

4e SERIE - TOME 19 - 1986 - N° 3



UNITARY REPRESENTATIONS OF GENERAL LINEAR GROUP 347

If we have numbers m^eZ+, aeG, such that

^m,ch,(/)= E^chJ/)
< T 6 G aeG

for all /eH(G) then my=0 for aeG\G, and n^=myfor aeG.
(ii) // (TI,,) 15 a sequence in G then there exists a subsequence (n^) of (n^) such that

(ch (/)) i5 convergent for each fixed f e H (G).
nk

(iii) In the situation of(i), the set

{a;n^0}

15 finite.
Remark that in the situation of (i) the sequence (nj in the topology of the dual G

converges to a if and only if n^O. The first two statements of the above theorem are
consequences of [18] and [1]. All three statements may be obtained directly from [27]
(see particulary Remark 5.8 of [27]) where the topology of the unitary dual of reductive
/?-adic groups was studied. In this paper we shall use only the statement (i). Here we
shall give another proof of (i) and (ii) which is not using the general facts about dual
spaces. We shall prove (i) and (ii) simultaneously. In the cases where we shall apply (i)
of this theorem, it will be obvious that the finiteness property of (hi) holds. The
property (iii) is expressed in the terms of the topology of unitary dual in the following
way: a sequence in G can have only a finite set of limits. The statement (iii) can be
proved using [3].

Proof. — Let (n^ VJ be a sequence in G. Let {K^ , m e f ^ J } be a descending basis
of neighbourhoods of identity in G as in [I], consisting of open compact subgroups
of G. Let 7c^"1 be the representation of the Hecke algebra H (G, KJ on the space of all
K^-fixed vectors V^» in ¥„. Now V^"* are irreducible H(G, KJ-modules
([7], Proposition 2.2.4) and there exist c^^O such that

w dimcV^c,

for all neFU The last inequality is a simple consequence of the Statement (A) of [1]
and the fact that every irreducible smooth representation of G is admissible.

Let V be a countable dimensional complex vector space with an inner product.
Passing to a subsequence we may suppose that dim^y^l=d^ for all n e f U Then

choose a d^ -dimensional subspace V1 of V. Let

(^) ^: V^V1

be an isomorphism of unitary spaces. Now we have a unique representation (n^Y on
V1 such that (p^ is an isomorphism of H(G, Ki)-modules.
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Let dg be a Haar measure on G. For/eH(G, K^), v^ 1^2 eV^1 unit vectors we have

| (^ (/) ̂ 1^2) | = f / (^) ̂ n (S) ̂  Vl) dg ^ f | / (g) | ̂ .
JG JG

Thus, the operator norm I^C/)! on V^ is bounded by \f(g) dg, so
JG

{(^O* (/)» n 6 ̂  }is a bounded family of operators on V1 for each fixed fe H (G).
The algebra H(G, K^) is finitely generated (in fact the proof can be done without this

fact but then it would be a little longer). Let /i, . . ., /fe€H(G, K^) be
generators. Passing to a subsequence of (n^ ) we may suppose that ((^^(fi))? is a
convergent sequence for 1 ̂ i^k. Now each K^1)^/)),, converges to some ^(f) and
clearly n1 is a representation of H(G, K^). We have

(^) lim trace (^;)(/)= trace TI^/), /eH(G, K^).

Denote by (1 Tip, ^p) the sequence (n^ V^) and denote (p^ by (pp.
Passing to a subsequence of (^J we may suppose that dim ̂ ^=^2 for all n- Now

d^d^ and we can find in V a ^-dimensional subspace V2 containing V1. Let
(p2 : ly^2-^\2 be an isomorphism of unitary spaces such that (p2 restricted to ^^ is
(^). We have a unique representation ^Ti^2)* of H(G, K^) on V2 such that (p2 is an
isomorphism of H(G, K^-modules. Passing to a subsequence (2^, ̂ ^ we may sup-
pose that a2^)* (f))^ converges for all /€ H (G, K^) to some n2 (f). Now (^-^ (^)
is an orthogonal projection on V1. Here ^ denotes the characteristic function
of KI. The restriction of the representation n2 to the subalgebra H(G, K^) and the
subspace V1 is just 7i1. Corresponding isomorphism (p2, : ^i^2 -> V2, with suitable m, is
denoted by (p2.

Now we define recursively sequences ((m^, "'V^))^, ^eZ+, subspaces V" of V, unitary
space isomorphisms (p^ : ̂ ^ -^ V^ representations C"^)* and 7^w of H (G, KJ on Vw

in the following way.
We have defined these objects for m = 2. Suppose that m ̂  2 and that we have defined

the above objects for that m. Passing to a subsequence of (C^, ^n^n we "^Y suppose
that din^V^^^d^.n for all n. Since d^+^^d^, we may find a d^+^ -dimensional
subspace Vm+l containing V"1. Let (p^1 : lV^m+l -)• V^^ be an isomorphism of unitary
spaces such that (p^1 restricted to ^^ is just (p^ : ""V^ -^ V^. We denote by
('"Ti^1/ a unique representation of H(G, K^+i) on V^1 such that (p^1 in an isomor-
phism of representations. Passing to a subsequence ((m+l^^ ""^^n^n °^ ((^n? ^nftn
we may suppose that ((w+l^"l+l)tf(/))„ converges for each fixed/eH(G, K^+^) to some
^m+i^y j^ restriction of the representation nm+l to the subalgebra H(G, KJ and
the subspace V^ is TT^ Corresponding isomorphism (p^1 : W+1V^M+1 -^ V^1, with
suitable ^c, is denoted by (p^1.
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We have constructed sequences (k^)^ f e e M , where (k+17tn)n is a subsequence of
(^n),,. To each k e N corresponds V^ and a representation ̂  of H(G, KjJ. Denote

Vo= U V^
k ^ l

On Vo we have a representation TI() of H(G) because H(G)= U H(G, K^). To this
f c ^ i

representation corresponds a smooth representation of G, denoted by KQ again. We
have TT^ =7^. Thus TI() is admissible.

For/eH(G) set/*eH(G)

/*te)=7(^T).
The representations (TI^, VJ are unitary so

(^(/)^^)=(^^(/*)^).

Therefore,

(^o(/)^)=(^o(/*)^)

for/eH(G), u, weVo. From this one obtains directly that the inner product on Vo is
G-invariant.

Let 0^=^. Then (o^ is a subsequence of (TC^ and

limch,J/)=ch,,(/).
k

Since an admissible unitarizable representation is completely reducible, it is a direct
sum of unitarizable irreducible representations, with finite multiplicities
([7], 2.1.14). Thus, we have proved (ii) and part of (i).

Suppose that

^m,ch,(/)= Z^clU/)
oe G ere G

for all /eH(G). We define n^ to be 0 for aeG\G. Let m^ or n^ be
nonzero. Choose an open compact subgroup K of G such that OQ has a nonzero vector
invariant for K. Let Q^ be the subset of G consisting of all classes of representations
with nonzero vector invariant for K. Now

^ m,ch,(/)= ^ n.chj/)
o 6 G^ a e G^

for all / e H (G, K). Note that the sets

{aeG^ m^O},

{aeQ^n^O}
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are finite. Since for 04, o^eG^ a^^a^ corresponding representations of H(G, K) are
unequivalent ([7], Proposition 2.2.2), the linear independence of characters of representa-
tions of H(G, K) implies m^=n<, for oeG^ Thus m^=n^. This proves the rest
of (i).

Remark. — The D. Milicic description of the topology of the dual spaces of
C*-algebras with bounded trace in [18] gives that irreducible subquotients of ends of
complementary series of a reductive group over any local field are unitarizable (after
using some general fact from the representation theory of such groups). As this author
knows, this fact was noticed first by D. Milicic.

The topology of the dual spaces of real semi-simple Lie groups was studied by
D. Milicic in his Ph. D. thesis (University of Zagreb, 1973). These results have not
been published. Note that there exists also a considerable difference between the topo-
logy of the dual spaces of reductive groups over archimedean fields and over non-
archimedean fields. For example, no one of the three main results of [27] mentioned in
the introduction of that paper, holds for real reductive groups (counterexamples are
either SL (2, R) or SL(2, C)).

2. 8. Suppose that P is a parabolic subgroup in G. Let P=MN be a Levi decomposi-
tion of P. Denote by °M the subgroup of all m e M such that [ co (m) |F= l for all
rational characters CD of M. A character ^ of M is called unramified if it is trivial
on°M.

The group of all unramified characters Unr(M) of M has a topology of convergence
over compacts. In fact, Unr(M) has a canonical structure of a complex Lie group.

For a smooth representation CT of M, Ind(a|P, G) denotes the representation of G
induced by or from P.

The next fact can be easily obtained from the formula for the character of an induced
representation (computed in [8]).

LEMMA. — For ^eUnr(M) let 7i^=Ind(^(j|P, G). Then the mapping

X-ch^(/)

is continuous, for fixed f e H (G).
2.9. We are again in the case of GL(n, F).

PROPOSITION. — Let oreG^. Suppose that cr^xcr.^ is irreducible for ae(—ao, (Xo),
ao>0. Then o ^ x a _ ^ is unitarizable for ae(—ao, QCo) and all composition factors of
a^ x (T_^ are unitarizable.

This is a consequence of the Proposition 8.3 of [2], the last theorem and the last
lemma.

2.10. The following proposition may be useful for applying the last proposition.

PROPOSITION. — (i) IffjeG^ then there exist ao>0 such that G ^ X C T _ ^ 15 irreducible for
ae(-ao, ao).

(ii) Let aeG^ mth n^ 1. Suppose that
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^X(^)-.

is unitarizable and irreducible for a e (P, y), p < y. Then

y-P^l .

/ / y — P = 1 ̂ n Op x (a'^).? and a^x^'^).^ reduces.

Proof. — The fact that the set of all ae IR such that c^ x a_^ is reducible, is finite and
(ii) of Theorem 2. 5 implies (i).

Proposition and Remark in 8.3 of [2] implies that y—(3^1. The reducibility of
^^x(^+)-^ and a^x^'^.y, when y—[}=l , follows from proposition 2.9, the fact that
the set

{ a e I R ; CTo^a'^)., is reducible}

is closed, and the first part of (ii).
2.11. Let for a moment S be an abelian multiplicative semigroup with identity.
Let B be a subset of S such that B generates S as semigroup. Suppose that B satisfies

the following property: if seS and s=b^b^ . . . b^=c^ c^ . . . Cj with b^ c;eB, then i=j
and there exists a permutation CT of { 1 , 2, . . ., i} such that b^=Cy^ l^^1- I11 ^is
case we shall say that S is a free abelian semigroup over B.

Let S(, fe l , be a family of subsemigroups of S such that each S^ contains identity
of S. Suppose that the union of all S^, fe l , generates S as semigroup and suppose that
the following condition holds: if s,, r^eS,, fe l , are such that 5^ and r; are different from
identity only for finitely many i and if

rh=n'-.,
then Sf=y\. for all f e l (we take Y\Si to be identity if all s^ are identity, otherwise we

16 I

take Y[ Si to be the product of all s^ which are different from identity). In this case we
I 6 I

say that S is a direct sum of semigroups S,, fe l , and we write S= © S^.
i e I

If S is a direct sum of S^, f e l , and if S, are free abelian semigroups, then one can see
directly that S is a free abelian semigroup.

If A is a subset of S then X (A) will denote the subsemigroup of S, with identity,
generated by A.

2.12. The Theorem 2. 5 implies that Irr" is multiplicatively closed in R. Thus Irr" is
a semigroup. The group U acts in C and a set of representatives of [R-orbits in C is C".

PROPOSITION:

Irr^ © Irr"(po,).
P6C"
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Proof. — Let p\ . . ., p"eC" be different elements. Then we have an injection

Irr" (p^) x . . . x Irr" (p;,) ̂  Irr" (p^ U . . . U p£)

by 1.10. We shall prove that this is a surjection. Let

TieIrr^U... U p£).

Then 71=71^ x . . . XTI^, 7^elrr(p;5). Now T^T^ implies TT^TI^ by 1.10. The
Theorem 2.5 (ii) implies 7E,eIrr"(py.

Now it is easy to see that Irr^p^), peC", generates the whole Irr".
2.13. As in 2.12 we get, for peC",

Irr" (po,) = [ © Irr" ((p,̂  U (p-a)z)]®[ + Irru (PaU
oc6(0 , 1/2) a e { 0 , 1/2}

It is now a question to classify the unitarizable representations in
^((PJz^P-Jz)- The case ae{0 , 1/2} is called the rigid case and ae(0, 1/2) the
nonrigid case ([2], 8.4).

2.14. Take AeS(R) such that A= -A and peC". Then

(A^) and ((A^)

are unitarizable representations (Lemmas 8.8 and 8.9 of [2]).
The above statement may be proved using Proposition 2.9 and (ii) of Theorem 2.5,

by induction.
2.15. In [27], the following theorem is proved.

THEOREM. — Let G be the group of rational points of a connected linear reductive
¥-group and P= MN a parabolic subgroup. Let or be an irreducible cuspidal representation
ofM. Then the set of all ^eUnr(M) such that Ind(^a|P, G) contains a unitarizable
composition factor, is a compact subset o/Unr(M).

This can be easily proved from (ii) of the Theorem 2.7 using Bernstein center [3]. We
shall not use this theorem in the paper.

3. Certain primes in R

3.1. For a positive integer m we put

AM^^^^eSW.

If d, n e ^J then we set

a(n, d)=(A[4_^^,A[4_,^, . . ., A[^_^)eM(S(R))).

If n = 1 then a (1, d) = A [d]. If d = 1 then a (n, 1) = A [nf.
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3.2. By 2.14 we have that < a (1, n)^ >, < a (n, l)^ > are unitarizable for p e C". Also
we have, by the definition of the involution r,

<a ( l , n ry=<a(n , 1)^>.

3.3. The ring R is a factorial ring ([33], Corollary 7.5). The ring R is a polynomial
ring in indeterminates < A > over Z, A e S (C). Thus < A > are prime elements of R. Since
t : R ->R is a ring isomorphism, < A y are prime elements. It means that <a(n, l)^)
and <a ( l , n)^) are prime elements. We shall prove generally that <a (n , d^y are
prime elements of the factorial ring R.

We shall suppose in the rest that d> 1, n> 1. We fix peC.
3.4. Leta(n,d)^=(^^ . . . ,A^),

AI —>• A^ —>• A3 — > . . . -^A^.

LEMMA. - Let b € M (S (C)) such that b ̂  a (n, ^(p). T^n

fo(A,)e{0, 1}

for \^i^n.

Proof. — Since b^a(n, d)^ then, for creC, the number of segments in b which begin
in a is less then or equal to the number of segments in a(n, rf)^ which begin in CT. The
same conclusion is true for the numbers of segments which end in o. This implies our
lemma.

3.5. For aeM(S(C)) we have

7c(a)=^m(fc;a)<fc>, m(fc,a)^l
b^a

([33], Theorem 7.1). We fix a and consider the system of all equations

n(c)=^m(h,c)<b>
b^c

with c ̂  a. This is a triangular unipotent system in indetermines < b ), with b ̂  a, for a
suitable order of indetermines < fc ). We can solve this system. In particular, we shall
obtain

<a>= ̂  m^ ^(fc).
b^a

Here m^ ^=1.
3.6. Suppose that ^(^^ but there is no beM(S(C)) such that

bo < b < a.

Then 3. 5 implies m^ fco^O because m^ ^= —m(fco, a)and m(ho, a) 9^0.
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3. 7. We return to the notation of 3.4. Set

A?=A,UA,^

Denote

Af=A^nA,

a^=(^^^ . . . ,A^ )

^-(Ai.A^A^, ...,A,)

^-i,n=(Ai,A,, ...,\_2,A^,,A5,).

Now a^ ^.+1 satisfy 3.6 with respect to a(n, d)^. We shall denote a{n, d)^ by OQ.

3.8. PROPOSITION. - Let d, ne^J , and peC. T^n <f l (n, d)^) is a prime element of
R.

proof. - It is enough to consider the case d^2, n^2. Set ao=a(n, d)^\ We shall
suppose that < a (n, d)^ > is not a prime element. Let < a (n, rf)^ > = Pi x P2 be some
nontrivial decomposition. Since < a (n, rf)^ > is a homogeneous element of the graded
ring R, P^ and P^ are homogeneous elements and deg Pi>0, deg P2>0.

We shall look at R as a polynomial algebra over indeterminates < A > , AeS(C).
Now 3.5, 3.6 and 3.7 imply that we can decompose < a (n, ri)^ > in the basis n(b).

W <a (n ,^>=<A i>x . . . x< \>

+ m a o , . l , 2 < A & l > x < A S 2 > x < A 3 > x • • • x < A n > + • • •

+ . . . + m ^ ^ _ ^ ^ < A i > x . . . x < A ^ _ 2 > x < A S _ i > x < A ^ > + o ^ r ^ r m s

where m^ ^ » + i ^ ^ ^or l^^^-
Let

P,= ^ m[n(b\ i = l , 2 ,
b e M (S (C))

where m[eZ are uniquely determined. Since

^(n.^^PiXP^,

the formula (^) implies that there exist b^ b^eM(S(C)) such that

b i+b2=(Ai , A2, . . ., A^), i.e.

TI^OX^^^^X-- - X < A ^ >

and mj,. 7^0 for i = l and 2. This implies that there exists a partition of { 1 , 2, . . ., n}
into two parts

{ 1 , 2 , . . . , n } = { / ? ( l ) , . . . , ^ ( r ) } U { ^ ( l ) , ...,^)},
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r+5==n, such that

^-(^(D, ...,A^)

and

^2=(\(1). • • • . A /A

These parts are nonempty because P^ and P^ are homogeneous elements of R of positive
degrees.

There exist p {i) and q (/') which are consecutive. We fix such i and j. Clearly 1 ̂  i ̂  r
and l^j^s. Let

{P(0^( / )}={fe^+l} (l^^n-1).

As before, from (^) one obtains that there exist c^ C2eM(S(C)) such that

^ l + ^ 2 = a f c , f c + l

and m,\ ̂  0, m^ ̂  0. Thus

Ci+C2=(Ai , A^, . . ., A^_i , A^, A^+i , A^2. • • • . A^).

This means that c^ and c^ determine a partition of the set
{ A I , . . ., A ^ _ ^ , A^, A^+i , A^+^ • • • » \} a^d we consider c^ c^ as subsets of this
set. Without loss of generality we may suppose that A^GC^ . Suppose that
^+1^1- Let deg p=ze^J . Now

deg<A^>=^z,
deg P^=rdz,
deg P^ = sdz,

degA^(ri+l)z,
degA5^^-!)^

Since A^ec^ and A^i^Ci, there exist m e Z + such that

deg 71 (c i )=m^z+(d+l)z=z(d(m+!)+!) .

The element P^ is homogeneous, so deg 7i(c^)=deg P^ i.e.

r r f z = z ( r f ( m + l ) + l ) .

This implies that d divides 1 i.e. d=\. This is a contradiction since we consider the
case of d ̂  2.

Thus A^, A ^ + ^ eci. Now degrees of c^ and c^ implies that there exist a partition

{ 1 , 2, . . . , /c-2, fc-1, /c+2, fe+3, . . . , n}

= { u ( l ) , . . . , ^ ( r - 2 ) } U { ^ ( l ) , . . .^(5)}
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such that

cl=(\9 A^+i, Ay(i), • • "> \(r-2))

^2=(A,(i), . . ., A,^)).

In particular, u (/) ̂  { f e , fe + 1} for 1 ̂ /^ r - 2 and u (/) ̂  { f e , fc + 1} for 1 ̂ /^ 5. Thus
q{j)t[v (l),y(2), . . . , i ; (5)} i .e .

{^(1) , . . . , ^ ( s )}${ i ; ( l ) , . . . , r (5 )} .

Therefore { u ( l ) , . . . , u ( s ) } has a nonempty intersection with the complement of
[q(\\ . . . , ^ ( 5 ) } , L e .

[v{\\ ...,r(5)}n{^(l), ...,^(r)}^0.

Let g=p(t^)=v(t^) be in the intersection (1 ̂ i^r, l^t^^s, l^g^n).
Now, the polynomial Pi has a degree in the indeterminate < A p ^ > = = < A ^ > greater

than or equal to 1, and the polynomial P^ has a degree in the indeterminate
< Ay ̂  > = < A^ > greater then or equal to 1. Thus, the polynomial < a (n, ^Y^ > = P^ x P^
has a degree in the indeterminate < A ^ > greater than or equal to 2. This contradicts
Lemma 3.4 and 3. 5.

4. On completeness argument

4.1. LetTieIrr. If

supp7ieM( U p(i/2)z),
peC"

then we say that n is a rigid representation. If

supp7ceM( U ((pJzU(p-^)),
P6C"

a 6(0, 1/2)

then we say that 71 is a nonrigid representation.
Each n e Irr can be uniquely decomposed

n=n(r) xn(n)

where K (r) is a rigid and K (n) a nonrigid representation.
Now n is unitarizable if and only if n (r) and n(n) are unitarizable.
We have corresponding decomposition of unitarizable representations

Irr^f ® Irr^p^^P-^et © Irr'ftp^)].
a 6(0, 1/2) a e { 0 , 1/2}

peC" peC"
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4.2. PROPOSITION. — Let CT e Irr" be a rigid representation. Then

71(0, ^)=^X(o^+=(5^Xa_^

is irreducible and unitarizable for

ae(-l/2, 1/2).

The representation 71(0, l/2)=7i(a, -1/2) is reducible when deg a>0.

Proof. - Suppose that a^^xa2 where a1, c^eirr". Let n(o^ a), 71(02,0)
be irreducible unitarizable representations for a G ( — l / 2 , 1/2). Then
7t((j, a)=7i(<7i, a) x7t(a2, a) is unitarizable and irreducible for ae (—l /2 , 1/2) by
Theorem 2. 5. We can decompose <7=a1 x . . . x a"" where each a1 is supported in one
Z-orbit in C and different o1 are supported in distinct Z-orbits. Since a is unitarizable
a1 are unitarizable because a is rigid. Now a^xaL^ is irreducible for ae (—l /2 , 1/2)
since a1 is supported in p^ or pi/2+z, peC". Proposition 2.9 implies that 7i(a1, a)
are unitarizable for ae(-l/2, 1/2). The reducibility of n(a, 1/2) follows from (ii) of
Proposition 2.10.

4.3. PROPOSITION. — Suppose that 7i1, ^eirr" are rigid representations. Then

^X(^)e

is irreducible for se{- 1/2, 0, 1/2}.

Proof. — By Theorem 2.5 it is enough to consider £ e { —1/2, 1/2}. We shall prove
the proposition for e= 1/2. Now

K^XK2^ a)=(7C, lX^/2+Jx(7C l_,X7C2_l/2-J=(7l, lX7l l_,)x(7l^-^„X7l2 l /2_,).

Take a=-l/4, Now n(n1 XTt2^, -l/4)=7i(7i1, -1/4) xn(n\ 1/4) is irreducible by
Theorem 2. 5. Thus

(T^XTl2^)

is irreducible. This implies the proposition.

COROLLARY. — Let 7i1, . . ., T^eirr" be rigid representations. Then

< x ̂ 2 x • • • x <

is irreducible when all ^e{0, 1/2} (or when all ^s{ —1/2, 0}).

4.4. PROPOSITION. — Let a be an irreducible representation ofG^ where n^\. Suppose
that

K (<7, O^C^XfCT'')^

i5 irreducible and unitarizable for all ae(- 1/2, 1/2). Then a is a rigid representation.
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Proof. — Let <7=<7i x . . . x a, be a decomposition into product of (irreducible)
representations. Now

7i (o, oO^a^^a^.Jx . . . xKo^xCa^.J.

Theorem 2. 5 (ii) reduces the proposition to the case when a is in Irr((p^).
Take a e M (S (Z)) such that a = < a^ >. Then

7c(a,a)=<a^,>x<-(a,)(P)>_,=<^^>x<(-a)(^_,>=<a^,+(-a)^

Suppose that x e (0, 1/2). Now 71 (a, a) is irreducible and unitary for a e (—1/2, 1/2). By
(ii) of Proposition 2.10 we have that 7i(a, 1/2) =< 0^1/2) x ((-a)^.^ > reduces so
that 2 x e Z. This means that a is a rigid representation.

4.5. LEMMA. — Let (peM(S(R)) consist of one-point segments (i.e.
(peM(R)). Suppose that sup (peM(Z) (re5/?. supp q>eM(l/2+Z)). Then there exist
HI, . . ., n^ m^ . . ., m^et^ j and a^, . . ., a,, Pi, . . ., P^e{0 , —1/2} such that

<P+(A[niLp . . ., A[nJJ=(A[mJp^, . . ., A[m,]p^),

and supp A[n;]^ eM(Z), (resp. suppA[n,]^eM(l/2+Z)), f = l , . . . , s).
Proof. — We shall prove the case supp (peM(Z). The proof of the other case is

analogous.
If supp (peM({0}) then the lemma is evident. Suppose that the statement of the

lemma is true when supp ( p e M ( [ — ( f e — l ) , fe—1]) for some f e e N .
Take (p such that supp (peM([—/c, k]). No\v

(p+(A[2^]_^ • • ., A[2fc]_^)+(A[2^c-l] , . . ., A[2/c-l])
<p(fc)-times <p(-fc)- times

=(A[2fe+l] , . . . ,A[2fe+ l ] )+(A[2fc ]_^ , . . . ,A[2fe]_^)+(pi

<p(fc)—times < p ( — k ) — t i m e s

where supp (pi e M ( [ — ( f c — 1), fe~ 1]). We can apply inductive assumption on (pp
4.6. For n, d e N and p e C set

a(n, ̂ ^(v-^-^A^, v1-^-1^2^^, . . ., v^-^AK)^).

This is a multisegment in C.
Denote by (LT) the following statement

(U^"): if n, de ^J and peC" such that

(nd) deg p ̂  m

then < a (n, d)(p) > is unitarizable.
Set

X.-i={<a (n, rf)^), 7i,«a (n, d^\ a);n, de^J, peC", (nd)degp ̂  m-1, 0 < a < 1/2}.
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4.7. LEMMA. - Suppose that (U^ holds. Let a^Q^be rigid. If

7t(o, o^o^a'').^

i5 irreducible and unitarizable for some ae(0, 1/2), then there a1, . . ^c^eX^, and
e,e{-l/2, 0} such that

a = a1 x ... x cr^.e! 6r

Proof. - We shall prove the lemma by induction. Let a = pp, p e C", P e (1/2) Z. Now

7i(cr, ^=o^x(a+)_^=p^^xp_^^

is irreducible and unitarizable if and only if a + p e ( — l / 2 , 1/2). This implies that
Pe{0, -1/2}.

Let m > 1. Suppose that CT satisfies the assumption of the lemma. If a=<7i x c^ is
nontrivial decomposition then

7i (a, oc)=7i(ai, a) X7i(a2, a).

Theorem 2.5 implies that n(a^ a) and n(o^ a) are unitarizable so we can apply the
inductive assumption. Therefore, we may restrict ourselves to the case when CT is
supported in one Z-orbit. Take aeM(S(tR)) and peC" such that o=(a(<))). Here
suppaeM(Z) or suppaeM(l/2+Z).

Let a° denote the multisegment obtained from a by removing all one point
segments. Then a = OQ + (p where (p consists of one point segments. Theorem 2.5 implies
that 7t(o, a) '=71 (a", a) is unitarizable. The inductive assumption implies

a^aOt,, d^)+...+a(n,, d^\ e,€{0, -1/2}.

This implies

ao=a(ni, d i+ l )^+ . . .+a (n fe , rffc+1)^.

We set 3^=^+1, ^=Uf. Now <a(n,, 3^^ are unitarizable by (LT).
For the multisegment (p take A[nj^, A[m^]p. from Lemma 4.5. Now ^(AIn^, a) are

unitarizable and

71(0, a)x7i«A[nJ^>, a) x ... XTI«AK]^>, a)

= 7i« a (n,, ?i)̂  >, a) x ... x n « a (n,, 3,)^ >, a)

x 7i« A [mjp^ >, a) x . . . x n « A [m^ >, a).

This implies that CT^ is dividing the right side of the equality. Thus CT, is a product of
some <a(n,, ̂ \, «a(n,, S^^)^ <A[m,]p^\ and ((Atm,]^)^., since these are
prime elements of the ring R. Considering the support of CT^ we obtain that a^ is a
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product of some < a (n,, 3^ >„, < A [m^y \ i. e. a is a product of some < a (n,., 3^ >^.,
< A [m^\ with e,P,e {0/1/2}.

4.8. LEMMA. — L^t m = 1. Suppose that (LT"1) Wrfs. L^r

X,-i={<^ (n, d)^), 7i«a (n, ri)^), a);
n, deN, peC^mOdegp^w-l, 0 < a < 1/2}.

TT^n:

(i) y<Ji, ..., a^eX^.i, t^n CTI x ... x (T^eirr". 7n particular, if

deg ai 4-. . . + deg cr^ = m, then a^ x ... x a^ e G^.

(ii) S^r

I(G,)=G,\{<a(n, d)^); n, de^J, peC", (nd)degp=m}.

7/7ieI(G^), then there exist a^, ..., (j^eX^.i such r/ia?

7t=CTi X . . . X Of.

Representations a^ ..., a, ar^ determined uniquely up to a permutation.
Proof. — By (U"1"1) and Proposition 2.9, X^_ i ^= Irr". Now (i) is a consequence of

the fact that Irr" is multiplicatively closed.
The uniqueness of a factorization of n in (ii) is a direct consequence of Proposition 3.8

(it can be obtained also without use of that proposition, but then argument would be
longer).

We shall prove existence of a factorization of n in (ii) by induction. For m = 1 there
is nothing to prove.

Let m ^ 2. Take 7ieI(GJ. We can decompose

7t=T^ x ... XTfc

such that T^eirr", and such that there exist pi-eC", 0 ̂  a^ 1/2 so that

supp T, e M ({v" (v"' p,), v" (v-^- p,); n e Z})

f = l , ..., k (4.1). If the factorization TC=TI x ... x T^ is non-trivial, then the inductive
assumption and (L^1"1) implies existence of the factorization.

Thus, we may suppose that

suppTieM^v^p), v^v"01?); neZ}).

Let7 i=<a> , aeM(S(C)).
We proceed now in the same way as in the proof of Lemma 4.7.
We shall consider first the case ae{0, 1/2}. Since the highest shifted derivative n' of

K is irreducible and unitarizable, we obtain by inductive assumption, considering the
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support of 7i, that

n/=(a(n„d^)+...+a(n„d^)).

This implies that

7c=<a(ni , ^+l ) ( p ) +. . .+a(nfc , ^+l )<P)+(p>

= < a (ni, rff)^ + ... + a (n,, d^ + (p >, d* = ̂ . + 1

where (p € M ({v" (v" p); n e Z}). The assumption 71 e I (GJ implies

(n^*)degp < m.

Thus <a(n,, d^P^eX^.i. Since n is unitary we have n=K+, and thus

(p^v^i-^p, v^^p, ..., v^p, v'^^^p}

where/?,€Z+. Now

n x < A [2^i +2 a- l]^ > x ... x < A [2 /?,+2 a-1]^ >

=<a(n,,d?)^>x...x<a(n,,rf?)^>

x < A [ 2 / ? l + 2 a + l ] ( p ) > x . . . x<A[2/? ,+2a+l] ( p ) >,

where A[5](p)=0 if 5^0. Proposition 3.8 implies that n is a subproduct of the right
hand side and this implies existence of the factorization.

Suppose that 0 < a < 1/2. Using Lemma 4.7 we obtain a factorization.

5. Langlands classification

5.1. Let A = {p, vp, ..., V"1"1 p} e S (C). Then the representation

p x v p x . . . xv^^

possesses the unique irreducible quotient which is denoted by L(A).
5.2. Let a=(Ai, ..., A^)eM(S(C)). Choose a permutation o of {1, ..., n}, so that

^ (0 -> ̂  u) ^ G (0 > a 0')' l ̂ l. J ^ n.

The representation
L(A,(I)) x L(A,^)) x ... x L(A^,))

does not depend on a as above. This can be proved in the same way like Proposition 6.4
of [33], using Theorem 9.7, (a) of [33]. We denote this representation by ^(a). The
representation X- (a) has a unique irreducible quotient, which is denoted by L (a).

The mapping
a-^L(a),

M(S(C))^Irr
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is a bijection. This is another parametrization of Irr and it is a version of Langlands
classification of Irr. As presented here, this classification was presented by F. Rodier
in [21] (see also [15]).

5.3. Let D" denote the set of all classes of square-integrable representations in Irr". Set

D={v(ln, TieD", ae(R}.

Elements of D are called essentially square-integrable representations. For S^TieD,
n e D", a e IR we define 8" and e (5) by

8" =TI and (?(§)= a.

5.4. By Theorem 9.3 of [33],

A-^L(A), S(C)^D

is a bijection. Denote this bijection by (p. This bijection lifts to a bijection of M(S(C))
and M (D) which is again denoted by (p. Now

d^L^-1^)),
M(D)-^Irr

is a bijection which will be again denoted by L. This is a parametrization of Irr and
can be described directly, without going to M(S(C)), as follows. Let
rf=(§i, ..., 8JeM(D). Suppose that the ordering of 8, satisfies

i<j => 6?(8,) ^(87).

Then X(rf)=8i x ... x 8^ possesses a unique irreducible quotient, and it is equal to
L(d). This classification d->L(d), M(D)-^Irr is directly related to the Langlands
classification of [15] in a simple manner.

5.5. For d=(8i, .... 8^)eM(D), a e R, set, as before:

^=(Si, ...,^),

J=(8i, ...,8^),

d^ ,̂...̂ ;),

v^^, ....v^).

Let 8 e D, 8 = v6 (8) 8" and a e R. Now

^v-^^r i.e. ^(S)=-^(8) and (S)"^")';
S^^)- i.e. ^(5)=^(8) and (S)"^)-;
8+=v-e (5 )8u i.e. e^+)=-e(6) and (8+)M=8M,

^§^^+e(S)§» j g (?(va8)=a+6?(8) and (va8)M=8u.
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Now we shall recall some very well known facts about the classification.

5.6. PROPOSITION. - For aeIR, aeM(S(C)) and r feM(D) we have:

(i)

(ii)

(iii)

f v" X (a) ̂  ^ (v" a\ \ (a) ̂  ̂  (a);
[ v^(d) ̂  MV )̂, Hd) ̂  X(J).

fv^^Mv0^), L(aj=L(a);
[v01 LO^L^), L(d)=L(J).

fL(ar=L(a), L(a)+=L(a+);
\L(d)^L(3\ LW^L^).

Proof. — For (i) one constructs desired isomorphisms directly. Clearly (i) implies (ii).
The relation L(d)"=L(3) is another expression of the relation (3.3.13) of [15]. Now

(ii) implies L (d) + = L (^+). We obtain L (oT= L (a) from the previous case L (rf)~= L (?)
and Proposition 9.5 of [33] which states that L(A)^=L(A^).

5.7. Let aelrr. Take a, fc€M(S(C)) such that

a = < a > , a=L(fo).

Then suppa=suppfc (Proposition 1.10 of [33]). Consider supper as an element of
M(S(C)) in a natural way. Then the set of all representations in Irr whose support is
equal to supp CT is just the set of all composition factors of

n (supp o) = ̂  (supp o).

Suppose that n^ n^eirr and a is a composition factor of n^ x n^ then

SUpp CT = SUpp Tti + SUpp Tl^.

5.8. We introduce, like in [21], an additive endomorphism t of R defined by

r«a»=L(a), aeM(S(C)).

There exists a unique mapping

t: M(S(C))-^M(S(C))

such that

t«a))=(t(a)\ aeM(S(C)),

Le.

L(a)=<r(^>.

This implies

t(L(a))=L(t(a)\ aeM(S(C)).
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Formally, we have

t-l(L(a))=(a\

r^L^^LCr1^)),
r^a^O-1^)).

The homorphism t contains all informations about connection of Zeievinsky and
Langlands classification.

We have

supp t (n) = supp 7i, n e Irr.

6. Technical lemmas

6.1. LEMMA. — Suppose that l^k^d and peC. Then

<^,dr>x<a((fe-2) ,^>

i5 irreducible if and only if

(a(k,d-\)^^x(a(k-l,d-\)^}

15 irreducible.
Proof. — Let k ̂  d and p£ C. The representation

n,=(a(k,d^)yx(a((k-2),d)^y

is a subquotient of the representation

^ =TI (a (fe, dy^xTi^afe^), ̂ ^(aCfe, d)(p)+a((fe-2), d)^).

It means that each composition factor of n^ is also a composition factor of n^.
Letm=degp. Let

a(fe, ^+a((fe-2), d)^=(^ . . ., A^-^).

Suppose that b ̂  a (fe, rf)^ + a ((fe - 2), rf)^^ The inequality k ̂  d implies that

A,HA,^0

for any l ^ f , j^lk—1. This implies that the cardinal number of the multiset b is
2 / C — 2 . Therefore, the highest derivative of b has degree

m(l(k-\)(d-\)).

This degree does not depend on b.

4'1 SERIE - TOME 19 - 1986 - N° 3



UNITARY REPRESENTATIONS OF GENERAL LINEAR GROUP 365

Suppose that n^ is irreducible. Then the highest derivative of n^ is irreducible and
equal to

(a(k,d-\)(p-^}x(a(k-l, r f - l )^- i /2)>.

This implies that

(a(k,d-\)^^x(a{k-l,d-\)^')

is irreducible.
Suppose that n^ is not irreducible. Then the derivative D(n^) is

D(7ii)=<a(/c, r f - l ) ( p - l /2 ) >x<a(fe-2 ,d- l ) ( P-l /2)>-Kr^w5 of higher degree).

Let 7 i i=ai+. . . +CT^, a,elrr. Here n^2. Let a," be the highest derivative of
CT(. Then

D(7ii) =ai" + . . . +a^~ + (terms of higher degree).

The above discussion about degrees of highest derivatives implies that

<a(fe,d-l) (P-l/2)>x<a(fe-2,rf- l) (P-l/2)>=a^+...+CT„-.

Thus (a(k, rf-l^-i/^) x <a(fe-2, ^- l )<P-i /2)> is not irreducible. Therefore
< a(k, d- 1)^ > x < a(k -2, d-1)^ > is not irreducible.

6.2. LEMMA. - L^ m^ 1. Suppose that (U^1"1) Wrfs. L^ n, de N, peC" such that

(nd)degp=m and n^d.

Then < a (n, rf)(p) > 15 unitarizable.

Proof. - If n= l , then <a ( l , rf)^ > = < A [^(p) > and this is unitarizable by
2.14. Suppose n^2. By (U^1"1)

<a (n - l , r f ) ^>

is unitarizable. Proposition 2.9 implies that all composition factors of

v112 < a (n- 1, rf)^ > x v-1/2 < a (n- 1, ri)^ >

are unitarizable. Thus

(v^^n-l, rf^+v-1/^^-!, d)(p))=(a(n, d)^+a(n-l, d)^)

is unitarizable. Now Lemma 6.1 implies that

<a (n , ^O^x^n-^ rf)^)

is irreducible, since

< a(n, d-1)^ > x < a (n-2, d- l)^ >
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is irreducible. By (ii) of Theorem 2. 5 < a (n, d)^ > is unitarizable.

6.3. LEMMA. — Let n, de^ and n<d. Then

^(n,^))^^,^), peC,

L .̂

L^n,^)^^,^).

Proof. — Let peC(G^), i.e. degp==m. Suppose that

L(a(n,d) ( p ) )=<a(n,d) ( p )>.

Thus \(a{n, d)^) and 7i(a(n, d)^) have a common composition factor, by the definition
of L(a(n, d)^) and < a (n, d)^ >.

Let PQ (resp. P^) be the unique standard parabolic subgroup of GL(mrin, F) whose Levi
factor Mo(resp. M^) is naturally isomorphic to GL(m, F)^ (resp. GL(md, F)"). Let N^
be the unipotent radical of P(, f=0,l.

In the rest of the proof we shall use freely notation of § 1 of [33].
First of all, note that there is no standard parabolic subgroup of GL(mnd, F) associated

to Po different from P(). Since < a (n, d)^ > is a composition factor of an induced
representation from PQ by a cuspidal irreducible representation of M(), by § 6 of [7]

^,.....,m),(nmd)«^(^^)(p)»^0.

Now <a (n, ^^^^(^(n, d)^) implies that representations

^....^(n^)^^^^))

and

^,.....),(^)(^(^(^^)(p)))

have a common non-trival irreducible composition factor.
Let a(n, ^^(A^, . . ., A^) where A^ -^ A^ ̂  . . . -^ A^. Choose CTGC(GJ so that

A^a.v^a],

A2=[va, v^o],

A^IV"-^, v"-1^-1^.

Now

(^) (a®v<7(x) . . .OV^CT)®^®. . .^v^a)®. . .(^(v""^®. . . OOv""1'^"1 a)
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is a composition factor of r^ . . ., n,), (nmd) (n (^(^ ^O^)) and each other irreducible compo-
sition factor is obtained from (^) after a permutation of factors of (^) with a permuta-
tion which preserves the order of elements of each bracket (see (3) of Proof of
Proposition 6.9 of [33]).

In the similar way

(^) (v^cTOOv^aOO. . .00(7)00^000.. .OOvo)
®. . .®(vn~ l + d - la®. . .(gv"-^)

is a composition factor of r^ ^ ^^(^(^(^ ^O^)) and each other irreducible composi-
tion factor is obtained from (^) after a permutation of (^) with a permutation
which preserves the order of elements of each bracket.

Let T be an irreducible factor of r(m, . . ., m), (nmd)^^^ ̂ ^ Let

T = v"! a 00. . . 00 ̂ mnd cr. Then there exist 1 ̂ i < . . . <pd ̂  mnd so that

(^^^) a^.==f-l, f = l , . . ., ri.

Let CD be an irreducible composition factor of r^ ^ ̂  ^^)(X,(a(n, ^(p))). Let
o^v^1 CT®. . . (^v^a. Now simple combinatorial observation implies that if
P^<P^<. . . <P^, for some l ^^<g2<- • • <^mnrf, then r^n.

Therefore

,̂ ...,.). (.„) ̂  (^ (^ ^(p))) and ^n., .. .. no, (n^) (5l (a (n- ̂ ^^

can not have a common non-trival composition factor.
We obtained a contradiction. This proves the lemma.
6.4. Let n, r fe^J , peC. One sees directly that

supp < a (n, ^(p) > =supp < a (n, d)^ >.

Suppose that n^d. Then supp < a (n, d)^ > (o) = 0 for a e C and a t { v" a;
ae[(n+rf)/2+Z]}.

Let CT = v" p, a e [(n + d)/2 + Z]. Then

0 a^-(n+d)/2,
i a+(n+rf)/2, l-(n+d)/2^a^(n-rf)/2,

supp < a (n, d)(p) > (a) = < n (n- d)/! ̂ ^(d- n)/2,
-a+(n+d)/2, (d-n)/2^a^ -1 +(n+rf)/2,

0 (n+d)/2^a.

7. Unitary dual

In 1.14 we have defined ^ R - ^ R and in 5.8 we have defined t: R -^ R. F. Rodier
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showed that (Irr^Irr implies r^pl]. In this section and the following one we assume
(Irr^Irr and thus we do not make difference between t and r.

7.1. The following theorem completely solves the unitarizability problem for GL(n)
over non-archimedean field, and also presents explicit connection between Zeievinsky
and Langlands classifications in the unitary case. The Bernstein Conjecture 8.10 of [2]
was stating that t (Irr") c irr". The following theorem describes completely t: Irr" -> Irr".

THEOREM. — Let

B= {(a (n, d)^\ n((a (n, d)^\ a); n, deN, peC", 0<a<l/2}.

Fix me fU Then
(i) J/cji, . . ., a^eB are such that

deg <7i + . . . + deg <7fc = m,

^n CTI x . . . x a^eG^.

(ii) IfneG^ then there exist T^, . . ., T y e B so r^

7t=7t^ X . . . XT..

Such TI, . . ., TJ are unique up to a permutation and

deg Ti+ . . . +deg ^.=m.

(iii) The following formulas hold

^(n,^))^^^)

r(7i«a (n, d)^), a))=7i«a (d, n)^), a)

/or elements ofB.
7.2. Remark. — Note that by (i), B c Irr". The statement (iii), together with (i)

and (ii) describes explicitly t« a)) in terms of Zeievinsky classification, when < a) is
unitarizable. The same description is valid for Langlands classification.

Proof. — We shall prove (i), (ii) and (iii) by induction on m (in (iii),
m=(nd) deg p). Define X^-i as in Lemma 4.8.

Suppose that m= 1. Then (i), (ii) and (iii) hold. Here the only possible <a (n, d)^)
is for n=d= 1 and p a unitary character of G^, t is here identity.

Suppose that (i), (ii) and (iii) hold for k^m-1. Then (U"1"1) holds. Now
Lemma 6.2 implies that <a (n, d)^) is unitarizable, for n^d and (nd) deg p=m. By
[28], t((a (n, rf)^)) is unitarizable, i.e.

^(n.^^G,.

From the inductive assumption one sees that

r«^(n,rf)^»^I(GJ,
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where I (G^) is defined in (ii) of Lemma 4.8 (by the inductive assumption and Lemma 4. 8
we know how t acts on I(GJ). One can obtain that also from Proposition 3.8
(r«a (n, rf)^)) is a prime element of R since it is the image of a prime element under
an automorphism of R, and elements in I(GJ are composite by Lemma 4. 8).

The above discussion and Lemma 4.8 imply

r«a (n, d)^^e[(a{n^ d^); ̂  d,e^ p^eC", (n^)degpi=m}.

Thus t« a (n, ^(p)» = < a (n,, d^ > for some n^ d^ pi as above. The fact

supp < a (n, d)^ > = supp < a (n^ d^ >

implies

P=Pi
{ n , d } = { n , , d , }

(support of < a (n, rf)(p) > is computed in 6.4).
Therefore,

t« a (n, d)^ » e { < a (n, rf)(p) >, < a (n, ^(p) >}.

Ifn=rithen

r«a(n,^»=<fl(n ,^ )>.

If n < d, then Lemma 6. 3 implies

^(n,^))^^,^).

Thus < a (d, M)(p) > is unitarizable. This means that X^ c irr". Since ^ is an involution,
we have that

r«a(n,d)^»=<a(n,d)^>.

Thus, (iii) holds. Clearly (i) holds because if < 7 i , . . . , < 7 f c e B and
deg<ji + . . . +deg0fc=m, then then a^, . . ., c^eX^,. Lemma 4.8 implies (ii).

7.3. The above theorem can be expressed in the following form:

THEOREM. — Let

B= {a{n, d)^ (v^n, d^+v-^^, ^(p)); n, r f e N , peC, 0<a<l/2}.

L^r X(B) ̂  the additive subsemigroup o/M(S(C)) generated by B. Then

a^<a>

anrf

a-> L(a)
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are bijections from X (B) onto Irr".
The mapping

t : B -> B,

r: a(n, ̂ -^(d, n) ;̂

(v^n, ̂ ^-^^(n, d)̂ ) -^(v^^, n^+v-^^, n)̂ )

extends uniquely to a morphism of semigroups l: X (B) -> X (B). Now

<a>=L(r(a))

and

r«^»=<^)>.

7.4. For 8eD" and ne^J set

u(8, ^Mv-^-1^, v1-^-1^, . . ., v^-^S).

We can characterize u (8, n) as the unique irreducible quotient of
^(n-l)/2§^((n-l)/2)-l§^ ^^-^-i)/2g

Clearly L(a(n, ^^^^(A^]^), n) and this implies

{L(a(n, ^(p)); n, de^J, peC"} = {^(8, n); 86D", ne^J}.

7.5. THEOREM. — Set

B= {^(8, n), vau(8, n)xv -aM(8, n); 8eD"; ne^J, 0<a<l/2}.

(i) J/Tii, . . ., Tt^eB, ^n n^x . . . xj^eirr".
(ii) L^^ aeirr". Then there exist TT^, . . ., Ti^eB so ^a? a=7ii x . . . x Ky. The multiset

(7i i, . . ., TI,.) is uniquely determined by a.

7.6. COROLLARY. - Let aeM(S(IR)), pi, p2eC". Then (a^) fs unitarizable if and
only if ( a^^ ) is unitarizable.

7.7. Remark. — The formula for the Zeievinsky involution in Theorem 7.1 can be
obtained using C. Moeglin and J.-L. Waldspurger results in [19] where they proved
Zeievinsky conjecture on (: Irr -> Irr from [34]. It is also possible to prove this conjecture
for representations < a (n, d)^ ) using Theorem 7.1 as it was done in the previous draft
of this paper.

8. Bernstein conjecture
on complementary series

8.1. In 4.1, we introduced the notion of a rigid representation.
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THEOREM. — Let aelrr. Suppose that a is a rigid representation such that 71(0, a) is
an irreducible and unitarizable representation for some ae(0, 1/2). Then there exist
unitarizable representations a^ and o^ so that

a=o-i xv"172 CT^.

Proof. — The theorem is a consequence of Theorem 7.1 and Lemma 4. 7.

8.2. THEOREM. — Let oelrr. Suppose that

7i(a, ^)=a^x(o+)_^

i'5 irreducible and unitarizable for all ae (—l /2 , 1/2). Then a fs a unitarizable rigid
representation.

Proof. — Let aelrr. Suppose that n(a, ^)=o^x(<J+)_^is irreducible and unitariza-
ble for a e(-1/2, 1/2). Then 4.4 and 7.1 implies o=a1 x( (7 2 )_l /2 where
cr1, c^eirr". Clearly, a1 and a2 are rigid.

Suppose that CT is not unitarizable. This implies that deg o2^!. Proposition 4.2
implies that

n(c5\l/2)=(^)^x(G2).^

is reducible. Thus, in the ring R we have

7t(a,0)=axa+=(a lx(cT2)_l /2)x(^x(cJ2)^)=(a lxa l)x((a2)_l /2x(cJ2) l /2).

This implies that 7c(<7, 0) reduces which is a contradiction.

8. 3. Remark. — These theorems prove Bernstein Conjecture 8. 6 in [2] on complemen-
tary series.

APPENDIX

In this appendix we shall prove all the statements of the seventh and the eighth section
without using the result that (Irry^Irr, if characteristic of F is zero. This means that
we shall not use the result of [28].

We consider here the additive homomorphism

t : R -^R

defined by r«a»=L(a), aeM(S(C). This is all we assume in this section about t (we
do not assume that t is involutive, and also that t is multiplicative).

A . I . We shall first prove one result about classification L.

PROPOSITION. - Let a=(Ai, . . ., A,), fc=(r\, . . ., rjeM(S(C)). Suppose that A,
and Fj are not linked for all \^i^n, \ ̂ j^m. Then:

(i) ^(a)x\(b)^(a-}-b).
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(ii) < a > x < f c > = < a + f c > .
Proof. — The definition of ^ implies (i). Proposition 8.5 of [33] gives

< a > x < f c > = < a + f o > .
A. 2. Remark. — One can obtain that L(a)xL(b)=L(a+b) when a, b are as in the

above proposition, using multiplicity one of the Langlands representation in
'k(a-^b). For our purposes, the following irreducibility result will be sufficient.

A. 3. COROLLARY. - Let r,=(p1!, . . ., p^.)eM(C), f=l ,2.
Suppose that

W ^)-^(p^{-l,l}
for 1 ̂ p ̂  Hi, 1 ̂  q ̂  n^. Let a, fc e M (S (C)) 50 (/iat

supp<a>=r i and supp<fc>=r2 .

TTi^n L (a) x L (fc) and < a ) x ( b )> ar^ irreducible and

L(a)xL(fc)=L(a+&),
< ^ > x < f c > = < a + f c > . t

Proof. — The assumption (^) implies that a and fc are as in Proposition A . I , and (ii)
of Proposition A. 1 implies our statement for Zeievinsky classification.

Choose a*, fc* so that

L(a)=<a*> and L(fc)=<b*>.

Now supp < a > = supp < a* > and supp < b > = supp < fc* >. The first part of our proof
implies that

L^OxLW^a^x^*)

is irreductible.
Now. L(a) x L(fc) is an irreducible quotient of ' k ( d ) x'k(b). By (i) of Proposition A. 1

we have

?i(a)x^(ft)^(a+b)

since a and b satisfy the assumption of Proposition A. I . The representation K(a+b)
has a unique irreducible quotient which is L (a + b). Thus L (a) x L (b) = L (a + b).

A. 4. PROPOSITION. — (i) Suppose that a, fceM(S(C)). Then L(a+fc) is a composition
factorofL(a)xL(b).

(ii) Ifc, deM(D), then L(c+d) is a composition factor ofL(c) x L(d).
Proof. — First of all, note that it is enough to prove the proposition for M(S(C)).
Let a, &eM(S(C)). Set

supp<^>=(pi , . . ., p^), supp<fc>=(<ji , . . ., c^).
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Let e be the minimum of all

11 + e (p,) - e (CT,)) | with 1 + (e (p,) - e (o,)) ̂  0,

| l-(^(p,)-^(a,))[ with l-(^.)-^.))^0,

when l^i^u, 1^/^u. Then e>0. Let 0<a<e..By the choice of a, a and (v^)
satisfy the assumption of Corollary A. 3. Thus L(a) x L^b) is irreducible and equals
to L (a + v" b\ Proposition A. 1 implies \ (a) x ̂  (v" b) ̂  K (a + v" b).

Suppose that a consists of n segments and b of m segments. We can denote those
segments in the following way

a=(A,^, . . ., A,^), f ( l ) < . . . <f(n),
fc = (A./ (i)» • • - A] (m)\ 7 (1) < . . . <; (m)

with { ; ( ! ) , . . . , f ( n ) } U { / ( l ) , . . . , 7 ( w ) } = { l , 2 , . . . , n+m}, such that

A,, -)• Ay ==> i; < u.

For 0^a<£ set A^=A,^, AJ^^v^,^.
Now

a+v^^A0;,...^,).

By construction

^(a+va^)^L(Aa l)x... xL(A^,)

for 0^a<£. The representation ^(^v^) possesses a unique irreducible quotient,
which is equal to L(a-{•vab)=L(a)xvaL(b) for 0<a<e, and L(a-^-b) for a=0.

Suppose that L(a-^-b) is a representation of a group Gp. Let H(Gp) be the Hecke
algebra of Gp. For an admissible smooth representation n of Gp, c\ will denote the
character of n. With a fixed fe H (Gp)

(^) a^ChL(,).vaL(b)(/)

is a continuous function. One can see this from the formula for the character of an
induced representation in [8] (see also Lemma 2.1 of [26]).

Let (aj be a sequence of real numbers converging to 0 such that 0<a^<£ for all
n. Suppose that we have proved that there exist a quotient n of 'k(a-{-b) and a
subsequence (a^) of (aj such that

(^ ^) I™ ch,, (, + ̂  (,),) (/) = ch, (/)
k

forall/eH(G^).
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Now L(a+fo) is the unique irreducible quotient of 'k(a-\-b\ so it is a (unique irreducible)
quotient of 71. The relations (^) and (^ ^) imply

lim chL ̂  + ̂  w b) (/) = lim cl^ ̂  x v"" ̂  L w (/) = ̂ L (a) x L w (/) = ch^ (/)
k k

for all /eH(Gp). Since L(a+fc) is a subquotient of 71, the last equality implies that
L (a + b) is the subquotient of L (a) x L (fc).

Thus, for a proof of the proposition we need to contruct n as above.
Roughly speaking, such n is contructed as follows. One can realize all representations

L ( A C ; ) x . . . x L ( A ^ J

on the same vector space (by restriction to the standard maximal compact subgroup). In
this way one obtains a continuous family of representations on the same vector space
(for a precise formulation of "continuous family" see Lemma 3. 5 of [27]). Now using
the compactness of the Grassmanian manifold of a finite dimensional vector space, and
the diagonal procedure (several times), one constructs a subsequence (a^) and n as
above.

For a formal proof, to avoid the whole construction, we pass to the contragredient
representations. Now

I^a+v^fc^I.^arxv-^L^r

is a subrepresentation of L(A°^x . . . x L(A^+J~, and we can as in the proof of Lemma
3.6 of [27], construct a subsequence (a^^) of (a^) and a subrepresentation KQ of
L(A^)^x . . . x L(A^+^)~ such that

limchL^+v<x«Wb)-(/)=ch^(/)
k

for all /eH(Gp). Lemma 3.6 of [27] deals with induced representations by cuspidals,
but the fact that inducing is by cuspidals, is not used in the part of the proof of the
lemma that we need (this fact is used at the end of the proof to reduce the lemma to the
case of subrepresentations). Now KQ is in a natural way a quotient of

L ( A , ) x . . . xL(A^J.

Using the fact that

ch,(/)=ch,(7)

where J is defined by7(g)=/(g~1), one obtains that

lim ctiL ̂  + V01" ̂  b) (/) = ̂ no ̂
k

for all/eH(Gp). Thus, we can take 7i=7io. This finishes the proof.
For another possible proof of the preceding proposition see (iii) of A. 12.
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A. 5. Remark. — Since the multiplicity of the Langlands representation in 'k(a-^-b) is
one, then L(c+ri) is a composition factor of L(c) x L(d) whose multiplicity is one.

A. 6. COROLLARY. - (i) Let c, deM(D). IfL(c)xL(d) is irreducible, then

L(c)xL(d)=L(c+d).

(ii) Let a, b e M (S (C)). If L (a) x L (b) is irreducible then

L(a)xL(fc)=L(a+fc).

A. 7. COROLLARY. — (i) Let c, deM(D). Suppose that L(c) and L(d) are
unitarizable. Then L(c-^-d) is unitarizable and

L(c+rf)=L(c)xL(rf) .

(ii) Let a, beM(S(C)). IfL(a) and L(b) are unitarizable, then

L(a+b)=L(a)xL(b).

In the rest of this section we suppose that the characteristic of the field F is zero.
Let 5eGL(m, F) be a square-integrable representation and nelU Then the induced

representation

(v^^x^-^-^x . . . x^-^a)

has a unique irreducible quotient. This quotient was denoted by u (8, n).

A. 8. THEOREM. — Suppose that charF=0. Let 8elrr be a square-integrable represen-
tation and let ne N. Then

M(8, n)

is a unitarizable representation.

Proof. — The first part of the proof uses a result of [3] or [22], and the second part
uses a result of [16].

Let 8eG^=GL(w, F) be a square integrable representation and ne FU
There exists a division algebra H central over F with dimension m2 over F. We

choose, like in paragraph 5 of [22], a number field fe, a place w of fe, and a group G
defined by a division algebra D over k such that: F is isomorphic to the completion k^
of k at w, the group G(feJ of fe^-rational points of G is isomorphic to the multiplicative
group of H, G satisfies assumptions of paragraph 5 of [22]. Let So be the set of all
places v such that G(fey) is ramified. Clearly we So. Let A be the Adele ring of k.

Since 8 is an irreducible square-integrable representation of GL(w, F)^GL(m, k^\
the proof of Proposition 5.15 of [22] implies that there exists an irreducible cuspidal
automorphic representation a of GL(w, A) such that, in the factorisation

a=(x)c^
v
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which corresponds to the factorisation of GL(m, A) into the restricted product of all
GL(m, fey) (see [9]), we have

c^8.

Let Z"1 be the center of the algebraic group GL(m). Then Zm is isomorphic to
GL(1). Now Z^A) is naturally isomorphic to the restricted product of Zm(k^. Let
Z^ be the group of all z = (Zy) e Z"1 (A) such that Zy = 1 for all finite places, and Zy is a
positive real number independent of v infinite.

Let T| be the central character of the cuspidal automorphic representation a. Suppose
that T| is trivial on Z"^.

Let P be the standard parabolic subgroup of GL(nm) whose Levi factor M is naturally
isomorphic to GL(m)". We identify elements of M(A) with n-tuples (^i,. . . ,^),
^•eGL(m, A). Let n be the representation

(g„...,g^^G(g,)\detg^n-l)'2

(aa^ldet^l^^^'^.-.^^^ldet^l"^-1^

Let 7i=®7Ty be the decomposition of n into the restrict product of representations of
M(fey). The induced representation from P(A) to GL(nm, A) (resp. P(fey) to
GL(nm, fey)) by 7i(resp. Tty) is denoted by Ind(Ti) (resp. Ind (TCy)).

Since the center Z'"" of GL(n, m) is isomorphic to GL(1), we may consider r| like a
character of Z^A). Set w=r{m. Let L2(co, GL(mn, A)) be the space of (classes of)
functions on GL(mn, A) such that

f(yzg)=(o(z)f(g)

for all yeGL(mn, fe), zeZmn(f^), geGL(mn, A); and |/|2 is integrable function on

GL(mn, fe) Zm"(A)\GL(mn, A)

with respect to a non-trivial right-invariant measure. Action of GL (mn. A) on
L^O), GL(mn, A)) by right shifts defines a unitary representation of GL(mn, A).

In paragraph 2 of [16] it is proved that there exists an intertwining operator

E : Ind (7i) -> L2 ((o, GL (mn. A))

whose image is an irreducible representation. Let T be the image of E. Decompose T
into restricted tensor product T=®Ty.

Since Ind(7c)^(x) Ind(7iy) we have the epimorphism
v

E : ® Ind (TCy) -> ® Ty.
v v

Now ®Ind(7iy) is, like a representation of GL(wn, fe^,), isomorphic to a direct sum of
copies of Ind (n^) (we need to fix a basis in each Ind(7iy), u^w, and use the fact that the
local Hecke algebras are idempotended algebras). Since ®Ty is also a direct sum of
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copies of T^, by the same reasons, we obtain directly that there exists a surjective
intertwining operator

e\ Ind(7cJ->T^.

Now

Ind^J^v^-^^x . . . x^-1^).

Thus

T^u(8, n).

Since T is a subrepresentation of L^co, GL(wn, A)), T^, is unitarizable and therefore
u (8, n) is unitarizable.

It remains to consider the general case (without assumption T| | Z^ =1).
This case reduces to the case of T| | Z^ = 1 by twisting 5 with a suitable character.
The following theorem is a direct consequence of the preceding theorem.

A. 9. THEOREM. — Representations

L(a(n, d)̂ ), n, de^, peC"

are unitarizable.

A. 10. THEOREM. - Let char F=0. Set

B={<a (n, rf)^>, 71 «a (n, d)^\ a); n, rfe^, peC", 0<a<l/2}.

FfxmefU T^n
(i) J/ai, . . ., cy^eB 5McA îar

deg (Ji4-. . . +deg (7^=^,

r/i^n Oi x . . . x a^eG^.
(ii) IfneG^ then there exist T^, . . ., TjeB 50 ?/ia?

n = Tj x . . . x Tj.

(iii) Ifn, r f e N , peC" 50 ^a? nd (deg p)^m, r^n

<a(^^,rf)(<5)>=L(a(rf,n)(<?)).

(iv) Let Hi, di, nip e^eN, p,, cy^.eC", 0<a^.<l/2 /or l^i^p, l^j^q "where p,
qe^.+. Suppose that

P 2

^ (n,rf,)degp,+2 ̂  (m^.^.)degCT^=m.
1 = 1 j=i
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Then

I/ f: a^d^+ ̂  [v^a^e^^v-^a^e^]}
\i=l j = l /

== f n L (a (n,, d,)̂ ) 1 x [ n ̂  (L (a (m,, ̂ -)), a,)1
Li=i J Lj=i J

=l" n ̂ ow^M n ̂ «^(^^)(<^J)>.^)1
p fi

=<Z ^(^^)(pl)+ Z [v^a^m^+v-^a^m,)^]).
1 = 1 j=i

Proo/: - We shall prove (i), (ii), (iii) and (iv) by induction on m. The proof is similar
with the proof of Theorem 7.1.

For m = 1 there is nothing to prove. Let m ̂  2. Suppose that the theorem holds for
k ̂  m — 1. Let X^ _ i be defined as in Lemma 4.8. By our inductive assumption (U"1 ~ ̂
holds ((L^) is defined at 4.6). Thus we can apply Lemma 4. 8. Each element of I (GJ
is some product of elements of X^_i(I(GJ is defined in (ii) of Lemma 4.8). By
definition

l(G,)g=G,

and

G,\I(GJ ̂  { < a (n, d)̂  >, n, de N, peC" and (nd) deg p=m}.

LetTeI(G^). Then

T = n < ̂  (^ ̂ (pi) > x nn«a (w^ ̂  >'a.)1=1 j = i
for some n,, d,eN, p,, a^.eC", 0<a,<l/2, ^, geZ+, by Lemma 4.8. By inductive
assumption, we have

<a(n,,d,)(p')>=L(a(d,,n^•)).

Also

7i(L(a((?,, m,)̂ ), a,)=v^L(a(^, m,)̂ ) xv-^L(a(^,, m,)̂ ) = TI « a (m,, ̂ P ,̂ a,).

Thus n(L(a(ep m^)^, a^) is unitarizable. Using Corollary A. 7 we obtain

P 9
T= [I LW, n^x n ̂ (^ ̂ )(^ oc,).

f = l 7=1

This implies that (iv) holds for representations in I(G^).
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Let now n, deN, peC" so that

(nd) deg p=w.

Now L(a(n, d)^) is unitarizable, by Theorem A. 9. By the preceding considerations

L(^(n,^P^I(GJ.

Thus

L(a(n, d)(p))(={(a(u, u)^); M, veN, aeC and (MI;) deg a=m}.

Therefore, L(a(n, d)^) == < a (u, v) (<y) > for some u, v and o as above. The fact

supp < a (n, d)^ > = < supp a (u, i;)^ >

implies

L (^ (n, d)^) e { < a (n, d)(P> >, < a (d, n)<^ > }.

By Lemma 6.3

L^n,^)^^,^).

Thus < a(d, n)^ > is unitarizable. This implies (i), (ii), (iii) and the rest of (iv).
Let R" be the additive subgroup of R generated by Irr". Then Irr" is a Z-basis of R",

and R" is a subring of r.
The following theorem is a direct consequences of the preceding one.

A. 11. THEOREM. - (i) Let aeM(S(C)). The representation < a > is unitarizable if
and only if

r«a»=L(a)

is unitarizable.
(ii) The mapping

t: Irr^Irr"

<a>-^L(a) , ^eirr",

is an involutive automorphism of the multiplicative semigroup Irr".
(iii) The homomorphism in (ii) satisfies

r«a(n,^»=<a(d,n)(P)>,

t(n((a (n, d)^\ a))=7t«^(d, ̂ >, a),

n, deN, peC", 0<a<l/2.

(iv) The mapping t\R^ is an involutive ring automorphism.
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A. 12. Remark. — (i) Lemma 6.3 can not be omitted in our proof of Theorem 7.1,
while we can prove (i) and (ii) of Theorem A. 10, and also (i), (ii), (iv) of Theorem A. 11
without using Lemma 2.3.

(ii) The statement (i) of the preceding theorem is a new proof of Conjecture 8.10
of [2] stated by J. N. Bernstein (in the zero characteristic case).

(iii) Now we shall give an outline of another possible proof of Proposition A. 4. If
deM(D) then we have in R

^(d)= Z md,L(x\ m^eZ+,m^=l,
x e M (D)

L(d)= ^ m(d,x)\(x\ m(d,x)eZ, m(d, d)=\.
x e M (D)

Take d^ d^eM(D). In the ring R we have

L(^)xL(d2)=(Z^(rfi^i)^(^i))x(Z^(^2^2)^(^2))

= ̂  (dl + ̂ ) + Z m (̂  x!) m (d^ x!) tk (x! + x!)
x^di,

or x-i^d-z

=L(d^+d^+m(d^d^m(d^,d^ ^ m^L(y)
y^d\+d2

+ E (m^xOw^^Z^^LOO).
xi^d i , y

or x^^d^

For a proof of Proposition A. 4 it is enough to show that if

m(di, x^m^x^m^^^

where x^d^ or x^d^ then ^^^1+^2- This can be obtained using relation which
exists between a and b when m^O (i. a. when L(b) is a composition factor of 'k(a)}. For
this relation one can consult A. 4. / of [3].

For details of a proof of such type one can consult proofs of Propositions 3.5 and
5. 6 in [30].
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