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DEGENERATIONS FOR REPRESENTATIONS
OF QUIVERS WITH RELATIONS

By CHRrISTINE RIEDTMANN

1. Introduction

1.1 Letk be an algebraically closed field and Q a finite quiver. The quiver algebra kQ
of Q over k has all paths in Q as a k-basis, and the product of two paths w: i’ — ;' and
v:i — jisthe composed path wo :i — j ifi’=jand zero otherwise. A twosided ideal I
in kQ is called admissible if there exists a natural number N such that kQY = 1< kQ?,
where kQ. is the ideal generated by all paths of length 1, the arrows of Q.  IfIis admissible,
kQ/1 is a finite-dimensional k-algebra, and conversely any finite-dimensional k-algebra
is Morita-equivalent to some kQ/I. We will only consider admissible ideals I.

A representation X of Q over k consists of a finite-dimensional k-vector space X(i)
for each vertex i and a k-linear map X(o) : X(i) — X(j) for each arrow a:i — j. The
dimension vector dim X is the vector with components dim, X(i), and the dimension of X
is the natural number . dim, X(i), where i ranges over the vertices of Q. For a path
v=d, ... : i — jin Q, the linear map X(v) : X(i) — X(j) is defined to be the identity
map of X(i) if r=0 and the composition X(a,) < ... o X(a;) otherwise. A representation
of (Q, I) is a representation X of Q with the additional property that for each linear combi-
nation @=Y.A,v of paths from i to j in I, the linear map X(¢)= Y A, X(v) is zero. Note
that I=@ I(i, j), where I(i, j) is the intersection of I with the vector space kQ(, j) of paths

LJ

from i to j, since I is twosided.

A morphism f: X — Y between two representations of (Q, I) is a family (f;) of linear
maps f; : X(i) — Y(i) for each vertex i, such that for any arrow a : i — j the equality
Y(x) o f;=fjo X(o) holds. A representation X is indecomposable if any decomposition
X 3 X; @ X, is trivial. The theorem of Krull-Schmidt says that any representation
of (Q, I) can be written as a direct sum of indecomposables, and this decomposition is
unique up to isomorphism. The category mod (Q, I) of (finite-dimensional) represen-
tations of (Q, I) is equivalent to the category of finite-dimensional kQ/I-modules.

KEvy-woRrDs. — Degeneration, representations of quivers., Auslander-Reiten quiver.
Classification A.M.S. — 16 A 64, 14 L 30.
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276 C. RIEDTMANN

1.2 Suppose that Q has n vertices 1,2, ...,n, and let d=(dy, ...,d,) be in N*. By
M(d) we denote the set of representations X of (Q, I) with X(i)=k% for all i. A repre-
sentation X in .#(d) is given by a d; x d;-matrix X(o) for each arrow o :i — j, and these
matrices satisfy the equations given by I. Hence .#(d) can be viewed as an affine variety,
which is not necessarily irreducible. The group G(d)= [TGLW;) operates on A(d)
by base change: '

(8- X)0)=g;° X(®) o g;"*

for g=(g1, ..., 8,)€G(d), XeM(d), and o :i — j. The G(d)-orbits are the isomorphism
classes of representations in .#(d).

If X and Y are in .#(d), we say that X degenerates to Y and write X >Y if Y is
contained in the closure of the orbit G(d).X of X, with respect to the Zariski-topology.
The aim of this paper is to find « algebraic » properties which are equivalent to the existence
of a degeneration from X to Y. It is not clear whether such an algebraic description
of the geometric behavior always exists.

1.3 Let us consider an example where it does:
Q=Q¢ and I=(a), N22.

A representation X of (Q, I) in .#(d) is given by a nilpotent endomorphism X(a) of k¢,
and thus the G(d)-orbit of X is uniquely determined by the sizesN>p,; >p,> ... =2 p; =0
of the Jordan blocks of X(a), or equivalently by the partition p(X)=(pi, p2, - - ., pa) of d.
Now X degenerates to Y if and only if p(X) > p(Y), where the order relation on partitions
is given by

(P1s s P)=G1s -+ s qa) = pr1+. . +pi=qi+...+q  forall i=1,....d.

The condition p(X)> p(Y) is equivalent to rank a(Y’)<rank o(X)' for all i. A proof for
these facts, in a different language, can be found in [6].

1.4 Let us return to an arbitrary (Q, I). For two representations U and Z, we write
< U, Z >=dlmk Hom(Q’l)(U, Z) .

Using the semicontinuity of the fiber dimension for regular morphisms, it is easy to see that
X>Y implies

™) (U,X><{(U,Y) for all representations U (see chapter 2).

We will see under which circumstances this condition is also sufficient to guarantee the
existence of a degeneration X >Y.

We say that there is a virtual degeneration from X to Y, and we write X>Y, if X®®Z
degenerates to Y@ Z for some representation Z. The condition (*) is insensitive to can-
celling common direct summands; i.e., for any representation U, < U, X><{(U,Y )
holds if and only if (U, X®Z)><{(U,Y®Z) is true for some Z. Our first result is
that (*) is equivalent to the existence of a virtual degeneration from X to Y, provided that
(Q, I) is of finite representation type; i. €., has only finitely many non-isomorphic indecom-
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DEGENERATIONS FOR REPRESENTATIONS 277

posable representations. One implication is obvious. As for the other one, we prove
more precisely:

THEOREM 1. — Let (Q, I) be of finite representation type, and suppose that X, Ye ./4(d)
satisfy (¥). Then there exists an exact sequence

0-oA->B->-C-0

of representations of (Q, I) such that X® A@C is isomorphic to Y @ B.

Since the middle term of an exact sequence always degenerates to the direct sum of
the two end terms (2.3), we find a degeneration from X®B to Y®B.

1.5 The next question is whether cancellation holds for degenerations, that is, whether
the existence of a virtual degeneration implies the existence of a degeneration. In 3.1
we give an example found by J. Carlson of two k[S, T]/(S?, T?)-modules X and Y such that
there is a virtual degeneration X > Y, but nevertheless X does not degenerate to Y. There
seems to be no such example known for pairs (Q, I) of finite representation type.

THEOREM 2. — Let (Q, I) be of finite representation type, and assume there is a virtual
degeneration X >Y in M(d). Then there exists a degeneration from X to Y, provided that
one of the following conditions is satisfied:

1) The underlying (non-oriented) graph Q of Q is a Dynkin diagram A, or D,

2) The Auslander-Reiten quiver of (Q, 1) is simply connected and B(Q, I) <2.

All the notions used to formulate 2) will be explained in chapter 3. Obviously 2) gene-
ralizes 1) for Q=A,.

In [1]and [2]S. Abeasis and A. Del Fra study degenerations for quivers with underlying
graph A, and for

Q=.>._,. e

respectively. Our strategy is the same as theirs; i. ., we find a complete set of obstructions
for the existence of a degeneration. The main difference is that we use the theory of Auslan-
der-Reiten sequences. This allows us first to give a handy description of some set of
obstructions and to show that it is complete at least for the existence of virtual degenera-
tions (theorem 1). Secondly we can avoid all difficulties arising in [1] from different
orientations on the same graph.

1.6 Remark. — We could give our definitions for locally bounded k-categories and
our results for locally representation-finite categories [4] instead of finite quivers with
relations. In particular, theorem 2 is true for the universal cover of a representation-finite
selfinjective algebra of class A, [8]. In order to avoid introducing too many notions,
we will just indicate briefly how to reduce from a locally representation-finite category A
to a category with finitely many objects for the proofs of our theorems. Let d be a func-
tion from the objects of A to N which takes the value zero except for finitely many objects,
and define .#(d) as before. Let S(d) be the finite set of objects i of A with the property
that there exists an indecomposable A-module U with U(i)#0 and such that U(j)#0,
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278 C. RIEDTMANN

d(j) # 0 for some object j. Then work with the full subcategory A(d) of A whose objects
lie in S(d).

I would like to thank M. Auslander and H. Kraft for discussions and suggestions, J. Carl-
son for his example, and the referee for useful remarks. I am grateful also to the Uni-
versity of Bielefeld, where part of this work was done.

2. Virtual degenerations

2.1 PRroprosITION. — Let X, Y be in /4 (d), and suppose X degenerates to Y. Then
the following inequalities hold :
*) <U,X><U,Y ) for all representations U.

Proof. — There is a quick proof, applying the semi-continuity of the fiber dimension
to the projection p : .4y — .#(d) on the first factor, where .4y, is the variety of pairs (Z, f)
with Z in .#(d) and f:U — Z a morphism of representations. We will give instead
an elementary argument, which illustrates the connection of (*) with the behavior of
the ranks of linear maps (compare 1.3 and 1.5).

Consider a triple
A=((ila T ir)’ (jl, . ',js)’ [(pjxik])a

where (i, ..., ), (1, - - ., Js) are sequences of vertices and where [¢;,;, ] is an sxr-matrix
with @;,;, €kQ(iy, 7,)/1(ix, j1). With a representation Z of (Q, I) we associate the linear map
r [Z(9ji)] % ,
Z(A): @ Zi) =S @ Zh).
k=1 1=1
The following lemma implies the proposition.

LeEMMA. — Let X, Y be in .#(d).
(@) The inequalities (*) are equivalent to

rank X(A) > rank Y(A)
for all triples A.

(b) If X degenerates to Y, rank X(A) > rank Y(A) for all triples A.

Proof. — (a) Let € be the path category of Q modulo I; i. e. the k-linear category whose
objects are the vertices of Q and whose morphism spaces are

(i, j)=kQG, )G, j);

composition is induced from kQ. A representation Z of (Q, I) is a covariant k-linear
functor from % to the category of finite-dimensional k-vector spaces. In particular,
we have for each vertex i the representable function (i, ), the projective cover of the one
dimensional representation supported at i. By the Yoneda-lemma, the map

Hom (¢(i, ), Z) - Z(i)
given by evaluating at i on the trivial path is an isomorphism which is functorial in i and Z.
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DEGENERATIONS FOR REPRESENTATIONS 279

With a triple A as above, we associate the morphism of functors
[@(‘Pnl‘k: )]

WA): ® €0 ) 2 @ 4, )
=1 k=1

and its cokernel U={(A). For any representation Z, we have the following commutative
diagram with exact rows
0 - Hom (U,2) » @ Hom &(i,, ),2) *2% & Hom (6(j,, ),2)
k=1 =1
z lz

& Zi) ——— @ 2()

=1

0 — Ker Z(A)

We conclude that
rank Z(A)+{ U,Z Y= ). dimZ(i)= ). d;, for Z in .#(d).
k=1 k=1

This implies a), because any representation U of (Q, I) has a projective presentation
and is therefore of the form {(A) for some A.

(b) For a triple A, we consider the map

f: (@)~ Hom, ( & kin, & k"ﬂ): Ha
k=1 1=1
given by sending Z to the matrix Z(A).
This is a G(d)-equivariant polynomial map, where the operation of G(d) on H, is defined by
g. [‘l’jlik ] = [gjl ° \Iljlik ° g!; 1]

for g=(g1, ..., 8,)€G(d) and [;,;, JeH,.
For any natural number r, the set

{ W leHa rank [y, ]<r}

is closed, since a matrix lies in this set if and only if all its (r+ 1) x (r + 1)-minors vanish.
Therefore the set
\Ze. /(d):rank Z(A)<r |

is closed as well. In particular, any Y in G(d).X satisfies rank Y(A) < rank X(A).
Remark. — With a triple A we can also associate the morphism

D%( . 93)]: ® DE( .j)) > & DE( i)

between injective representations, and its kernel o(A)=U. Here D denotes the usual
duality for vector spaces. The dual arguments of the above yield, for Ze .#(d),

{(Z,U ) +rank Z(A)‘=l;1 d;.
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280 C. RIEDTMANN

Since each representation admits an injective presentation, the inequalities (*) for X,
Ye.#(d) are equivalent to

(X,U) <<Y,U) for all representations U .

2.2 In order to prove theorem 1, we need the notion of Auslander-Reiten sequences,
which are the almost split sequences of [3].

For each indecomposable non-projective representation V, there exists a non-split
exact sequence P
Zy:0-5tVISE SV o0

with the following properties:

(i) TV is indecomposable.
(i) Any morphism h:X — V which is not a retraction factors through g.

Such a sequence Zy is called an Auslander-Reiten sequence stopping at V. The repre-
sentations tV and Ey are uniquely determined by V, up to isomorphism. Moreover,
any morphism h:tV — X which is not a section factors through f.

Dually, for each non-injective indecomposable V’, there exists an Auslander-Reiten
sequence
0>V 5 FEy 517V 50

starting at V’; it is at the same time an Auslander-Reiten sequence stopping at 1~ 'V,

THEOREM 1. — Let (Q, I) be of finite representation type, and suppose that X, Ye ./ (d)
satisfy (*). Then there exists an exact sequence

0-A->-B->-C->0

of representations of (Q, 1) such that X® A @ C is isomorphic to Y ® B.

Proof. — Define
8(V)=<V,Y>—-<V,X>

for V indecomposable. By our hypothesis, we have 3(V) >0, and since X, Y both lie
in #(d), 3V)=0 if V is projective. We set

05>A->B->C-0=@I¥V;
A%

1. e., we take the direct sum of 3(V) copies of the Auslander-Reiten sequence stopping at V
for each indecomposable non-projective V.

For any indecomposable U, we obtain an exact sequence
0 - Hom (U, A) - Hom(U,B) - Hom (U,C) —» k*Y - 0,
using the property (ii) of Auslander-Reiten sequences. This yields
CU,A>=C(U, B>+, CH=8U)=CU,Y >—(U,X >,

4° SERIE — TOME 19 — 1986 — N° 2



DEGENERATIONS FOR REPRESENTATIONS 281

and thus
(U ACHX)>=(U,B®Y).

By an unpublished result of Auslander, which follows quite easily from the existence
of Auslander-Reiten sequences [3 ], the numbers { U, Z ), for U indecomposable, charac-
terize Z up to isomorphism, and therefore X®@APC = YD B.

2.3 CoOROLLARY. — Let (Q,1) be of finite representation type, and let X, Ye . 4(d).
Then X and Y satisfy (*) if and only if there exists a virtual degeneration fromXto'Y.

Proof. — If X @ Z degenerates to Y @ Z, the inequalities (*) hold for X®Z and YO Z
and thus for X and Y (proposition 2.1). To show the converse, we have to prove that
an exact sequence

0o A-B->C->0

gives rise to a degeneration B > A @ C, which is a consequence of the following lemma.
Let Z be a representation in .#(d), filtered by subrepresentations

Z=Z()2212 oo 22,22,4.1:0,

set Z, = Z,/Zx+1, and denote the associated graded representation by
grZ=Q@ Z.
k=0

LEMMA. — There exists a one parameter subgroup \:k* — G(d) such that Mt).Z is
isomorphic to Z, tek*, and }Lng Mt).Z=grZ. In particular, Z degenerates to gr Z.

Compare [7], where it is shown in addition that, conversely, any degeneration
M1).Z>NMO0).Z for a 1 PSGA is of the form Z> gr Z for some filtration.

Proof. — For each vertex i, we choose a basis of Z(i) which is adapted to the filtration.
Then the matrix of Z(a) is of the form

[ Zo(e) 0 0 o 0

A 71~(0() 0

Ajo Az Z—z(a)

ArO Arl L Ar,r -1 Z(a)

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



282 C. RIEDTMANN

for any arrow o. We choose for A(t) the base change that replaces each basis vector x
in Z,(i)\Z+ (i) by t*x. The matrix of (A(t).Z)(%) is

[ Zo() 0 0 Co 0
tAso Z,(0) 0

*As0 tAy, Zy(w)

0
_trArO tr—lArl T .tAr.r—l Z(a)_ .
We see that
!i_{r& Mt).Z=grZ.
2.4 REMARK. — Let (Q,I) be an arbitrary quiver with relations, and let # be the

category of k-linear contravariant finitely presented functors from the category of repre-
sentations of (Q, I) to the category of vector spaces. Suppose that F;, F,e% have the
property that
{ dim, F;(U) <dim, F,(U) forall U,
dim; F;(P)=dim, F,(P) for all projectives P .

As suggested by H. Lenzing, it would be interesting to know if there exists an F;e %
such that '
dimk F3(U) =dlmk Fz(U) —dlmk F] (U) for all U .

Without loss of generality, one may assume that F,, F, are representable. If such an F;
always exists for some (Q, I), the same arguments as above imply that (*) is equivalent
to the existence of a virtual degeneration X >Y.

3. Cancellation for degenerations

3.1 First we give an example, due to J. Carlson, where cancellation does not hold;
i.e., we find two representations X and Y such that there is a virtual degeneration X >Y
although X does not degenerate to Y. Let Q be the quiver

Q=a(.0B

4° SERIE — TOME 19 — 1986 — N° 2



DEGENERATIONS FOR REPRESENTATIONS 283

and I={af—Ba, o, B>>. Note that kQ/I is the algebra k[o, B]/(2? B?). For Aek,
let M, be the two-dimensional representation of (Q, I) given by

0
Mx(d)-:l:l g] and MA(B)=[2 0].

Denote by P the only indecomposable projective representation, which is at the same time
injective.
The Auslander-Reiten sequence containing P as a direct summand of the middle term
has the form )
]

0 - radP % P®rad P/socP Zed P/socP — 0,

where j and p are inclusion and canonical projection [3]. For each A€k, there are exact

sequences
0->M, »radP—->k—->0

0> k> P/socP > M, -0,
where k is the unique one-dimensional representation. So we obtain degenerations

P@®rad P/soc P>rad P@soc P>M, @M, @ k?,

for any A, pek, and since rad P/soc P = k?, this yields a virtual degeneration
P>M,@®M,.

On the other hand, the endomorphism ring of P is 4-dimensional, so that the orbit
G(d). P has dimension 12, where d=(4). For A # p, the orbit of M, @ M,, has dimension 10,
and hence the closure of the union of the orbits of all M, @ M,,, A # p, is 12-dimensional
as well and cannot be contained in the irreducible variety G(d).P.

3.2 We now turn to our positive results. First we show that we may replace I be
a smaller ideal.

Let (Q, I) be arbitrary, and let J be a twosided ideal containing I. Even though J is
not necessary admissible, we denote by mod (Q, J) the full subcategory of mod (Q, I)
of representations Z of Q satisfying Z(¢)=0 for all peJ. By .#(d) and .#,(d) we denote
the algebraic varieties of representations Z of (Q, I) and (Q, J), respectively, with Z(i)= k%
for alli. Clearly .#,(d) is a closed G(d)-stable subset of .#;(d), and therefore the closure
in .#(d) of the orbit of some Ze .#,(d) is contained in .#y(d). As an immediate conse-
quence we have:

Lemma. — If X > Y implies X >Y for X and Y in M(d), then X >Y implies X >Y
for X and Y in M\d).

3.3 THEOREM 2. — Let (Q, 1) be of finite representation type, and assume there is a
virtual degeneration X >Y in .#(d). Then X degenerates to Y in the following cases:

1) If the underlying graph Q of Q is a Dynkin diagram A, or D,

2) If the Auslander-Reiten quiver of (Q, I) is simply connected and B(Q, I) < 2.

Note that we may assume I=0 in the first case by the preceding lemma.
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284 C. RIEDTMANN

We will prove the theorem by examining the « building blocks » of degenerations.
Let X, Y be in .#(d) for some d. We call a degeneration X >Y or a virtual degeneration
X >Yirreducibleif X % Y andif, forany Zin .#(d), X >Z >Y or X >Z > Y, respectively,
implies that Z is isomorphic to X or to Y.

If X degenerates to Y and X & Y, we have
dim G(d). X > dim G(d).Y or equivalently dim; End X < dim,EndY.

Therefore there is a finite sequence X >Z, > ... > Z, >Y of irreducible degenerations
whenever X >Y and X 5 Y. In general, there seems to be no reason why such a finite
sequence of irreducible virtual degenerations should exist for a virtual degeneration X > Y.
By 2.1 we still have

dim, End X=( X, X> << X, Y><<Y,Y >=dim, End Y,

but the inequality might not be strict for X 5 Y. It would be interesting to have an
example of a virtual degeneration X >Y with X &8 Y and dim; End X=dim; End Y.
For such an example, (Q, I) has to be of infinite type: If (Q, I) is of finite type, X >Y and
X % Y implies that the sum

Z(<U Y =<CU, X))

over all indecomposables U is positive and finite, and hence there is a finite sequence of
X>Z,>...>2Z,>Y of irreducible virtual degenerations.

Thus the following proposition implies theorem 2.

PRrOPOSITION. — Let (Q, 1) be of finite representation type, satisfying 1) or 2) of theorem 2,
and let X and Y be in #(d) with no nontrivial direct summand in common. If there is an
irreducible virtual degeneration X >Y, then there exists an exact sequence

0-Y - X->Y,—>0
with Y3Y ®Y,.
It follows easily from 3.2 that in case 1) we only have to prove this for I=0.

3.4 Proposition 3.3 tells us more precisely that in some cases an irreducible degene-
ration is given by a short exact sequence. This is not true for an arbitrary (Q, I) of finite
representation type:

Let Q=1532D8B and I=( B?),
and set
! 00 0, 00
X-k—»kZQ[l 0], Y—k.—+l\ D[l 0].

For tek*, consider the element

a(1m; (:])eG@), d=(1,),

4¢ SERIE — TOME 19 — 1986 — N° 2



DEGENERATIONS FOR REPRESENTATIONS 285

and let

HIS [0 0
X, =g, .X=k =5 k :
& @) {0

Obviously, X degenerates to Y, and the degeneration is irreducible, since
dim G(d).X —dim G(d).Y =dim; End Y —dim; End X=1.

Since Y is indecomposable, this degeneration is not obtained from a short exact sequence.
This example leads us to a new type of degenerations, for arbitrary (Q, I).

PROPOSITION. — If
0-A->A®DX>Y -0

is exact, X degenerates to Y.
The same conclusion holds for an exact sequence

0-Y > X®PpA ->A->0.

The example above is of this type : Take the sequence

el )
00]/ |

00 k0| ¢
(la?) ()

For this (Q, I), any irreducible virtual degeneration is either the one above or is given by
a short exact sequence. It would be interesting to find other types of irreducible degene-
rations.

Proof. — Let f= [&:I: A - A® X be the morphism given in the exact sequence and
o]

t.1
set f,= [&‘F ], tek. Choose a k-supplement Z for f(A) in A@X. There exists an
c

open neighborhood U of 0 such that for te U, f; is injective and Z is a supplement for f,(A).
The representation Z,=A @ X/im f; thus defined is isomorphic to X whenever £+¢.1
is an isomorphism, which it is for almost all teU, and Z, is isomorphic to Y.

3.5 We now introduce the notions we need for the proof of proposition 3.3.

A pair (T, 1) consisting of a quiver I" and a bijection 1 : # — ¢ between two subsets
of vertices of T is a translation quiver if:

(a) T contains no loops nor multiple arrows

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



286 C. RIEDTMANN

and

(b) for each xe 2, the set x~ of tails of arrows with head x coincides with the set (tx)*
of heads of arrows with tail tx.

The full subquiver of I" given by the vertices x, tx, and x~ is called the mesh of I" which
starts at Tx and stops at x, for xe 2. Ifa: y — xanarrow of I', xe 2, we set ca.: tx — y

\ /

FiG. 1.

If I is locally finite (x " and x~ are finite for all vertices x), we define the mesh category k(I'):
Its objects are the vertices of I', and

k(I)(x, y)=kI'(x, y)/3(x, y),

where kI'(x, y) is the vector space spanned by all paths from x to y in I" and J(x, y) is the
intersection of this vector space with the ideal generated by the « mesh relations »

Y. a.ou

aiy—x

with yex™, for all xe?. For a path v: x — y in I, we denote by v its residue class in
k(T)x, y).

Let (Q, I) be arbitrary. The Auslander-Reiten quiver I'g; of mod (Q, I) has as vertices
representatives of the indecomposable representations. There is an arrow a: x — y
in I, if there exists an irreducible morphism f: x — y; i.e., a non-isomorphism with
the property that for each factorization f =h o g either g is a section or h is a retraction.
The connection between irreducible morphisms and Auslander-Reiten sequences gives
I'q,1 the structure of a translation quiver (see [3]): For each non-projective vertex x there
is a unique non-injective vertex tx and an Auslander-Reiten sequence

0- ™ @y,—»x—»O
i=1

Moreover, (tx)*={yy, ..., y,}=x". So the translation t is the Auslander-Reiten
translation DTr, which maps the non-projective vertices of I'y bijectively onto the non-
injective ones.

If (Q, I) is of finite representation type and if I’y contains no oriented cycles, the full
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subcategory ind (Q, I) of mod (Q, I) whose objects are the vertices of I'y; is equivalent
to k(I'y,). So we may work in k(I'y) in order to prove proposition 3.3.

A map n: Iy — I, between connected translation quivers is called a covering map
if m induces bijections from x* to (nx)™ and x~ to (nx)~ for all vertices x. A connected
translation quiver I' is simply connected if any covering n:I” — I' is an isomorphism.
Let I be a translation quiver. For a vertex x of I', we let B*(x) and B~ (x) be the number
of vertices in x* and x~, respectively, which are not projective-injective; i. e., for which
either 1 or 17! is defined. We let B(I') be the bigger one of the two numbers

supB*(x) and  sup B(x),
and we set B(Q, I)=P(I’g,) for a pair (Q, I).

3.6 We now explain our strategy for the proof of proposition 3.3, which will be
carried out separately in all the cases we consider in the following chapters.

Let X and Y be in .#(d) such that there exists a virtual degeneration X >Y, and set
Oxy(U)=< U, Y=L, X
for any representation U. Given an exact sequence

0A->B->C-0.
define
3x(U)=C(U,A> - C(U,B>+{U,C)=38gr0dl).

We say that X is admissible for (X, Y) if 85(U) < 6x y(U) for all U.

In each case we consider, we will define a set & of non-split exact sequences with inde-
composable end terms such that the following is true:

Given X Y with X >Y, ¥ contains a sequence
2:0--A-B-C-0

which is admissible for (X, Y) and such that Y S A@C@Y’ for some Y’

Then we can prove proposition 3.3: Let X and Y be in .#(d), without a direct summand
in common, and such that there is an irreducible virtual degeneration X >Y. Choosing
as above, we have

CUXD=CU. Y ) =dxvU)<{U, Y >=8:(U)=C(U. Y®B)

for all U, and, by theorem 1, X>Y'@B. By construction, Y’ ® B degenerates to Y,
and Y @B AY, since T does not split. The irreducibility of X >Y implies X3 Y’ ® B,
and since X and Y have no direct summand in common, we conclude that X % B and
YxA®DC.

The following lemma will give us the left end of the desired exact sequence X.

LeMMA. — Let (Q, I) be of finite representation type and suppose that I =Tgq; contains
no oriented cycle. Choose X >Y in ./(d), set 3=0x y, and let a be a vertex of I such that
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d(a) >0 and &(z)=0 whenever there exists a non-trivial path from z to a in I. Then 1a
is a direct summand of Y.

Proof. — Since 8(a)> 0, a is not projective. Consider an Auslander-Reiten sequence

0—>ta—f>®z—>a—>0.

Using that every morphism starting at ta which is not a section factors through f, we
obtain two exact sequences:

0 —» Hom (a,X) - ® Hom (z, X) - Hom (ta,X) = k* - 0

0 - Hom(a,Y) > ®Hom (z,Y) - Hom (ta,Y) —» k* - 0,

where A and p are the multiplicities of ta in X and Y, respectively. Hence
8(a)=8(a)— Y 8(z)+ d(ta)=p—A>0,

and we conclude that p > 0.
4. The case Q=A,

Let Q be a quiver with underlying graph A,, I=0, and set '=I,,. We view I" as a
subtranslation quiver of ZA,, which we now describe (see [8]).

4.1 Let K be the quiver
K=1-2-53...n—-1-n.

Then ZA, is obtained from Z x K by adding an arrow (i,j) — (i+1, j—1) for ieZ and
2<j<n. The translation is given by 1(i, j))=(i—1,j). We say that the vertices (i, n)
and (i, 1) lie on the upper and the lower border, respectively.

Embed the opposite quiver Q° of Q into ZA, in such a way that all t-orbits of vertices
in ZA, are hit. Then the Auslander-Reiten quiver I" can be identified with the full sub-
translation quiver of ZA, given by the vertices lying on or between Q°? and v(Q®), where v
is the Nakayama permutation v(i, j)=(i+j—1,n+1—j) (see [5]). We write T and Tz,,
for the translation on I and ZA,, respectively, if we have to distinguish. We have to work
with Q instead of Q since an arrow i — j of Q yields an irreducible map €(j, ) — %(, )
between projective indecomposables (see (2.1).

4.2 Let (i, j) be such that the vertex (i + 1, j) of ZA, belongs to I" and such that
2<j<n—1. Then we say the two paths

G- Gj+1) > @E+1,) and ) = (+1,j-1) - (+1,))

are homotopic. We call two paths v, w: x » y in I' homotopic if they are equi-
valent under the equivalence relation generated by the « mesh homotopies » just
defined. A path in I' is called essential if it is not homotopic to a path factoring
through (i, n) - (i+1,n—1) - (i+1,n) or (i,1) » (i,2) - (i+1, 1).

Obviously any two paths v, w: x — y in I" are homotopic, and therefore they yield
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the same morphism o, wek(I')(x, y), up to the sign, which depends on the number of
meshes of I' « lying between v and w »; i. e, the number of mesh homotopies used to get
from v to w,modulo 2. So we have that k(I')(x, y) equals k or 0 depending on the existence
of an essential path from x to y.

4.3 For two vertices a and ¢ of I with k(I')(a, ¢) # 0, we define the rectangle
R,.={d:kD)a, d)#0#kI)d, c) }

(see Fig. 2). Note that R, intersects the upper and the lower border of ZA,, at the same
time if and only if ¢c=v(a), and then a is projective and c¢ injective.

Fi1G. 2.

From now on we suppose that a is not projective. We denote by %, . the set of vertices
of I' which lie in a mesh stopping in R, . but neither in R, . nor in ©(R, ). IfR,. does not
hit either border, we have

Bae=Rea\Rac UTUR,)={ by, by }
as in Fig. 2. Otherwise 4, consists of one vertex only. For be4, ., we let
v,:Ta > b and wy,:b — ¢
be the unique paths in I" between these vertices (Fig. 2). We define a sequence
Z4e:0 > uBep™™c50.
where b ranges over %, . and where g,= + 1 with the only condition that

€p,8p, = (— 1) a1
for $={ bla b2 }.
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LemMMA. — X, . is exact, and
1 forzeR,,
0 otherwise.

5za,c(z) = {

Proof. — There exists an essential path v:z — ¢ in I" which is not homotopic to one
factoring through a vertex be 4, if and only if z lies in R,.. So we have:

fi
coker (@ K(I')(z, b) — k()z, c))= { k for zeR,,
b 0 otherwise,

and similarly
k for zetR,.),

COkCr ((—? k(r)(b, Z) - k(r)(Ta, Z))= { 0 Otherwise .

In particular, the statement about 8y, _ is a consequence of the exactness of Z, ..
We show that for any vertex z the induced sequence

0 — k(I')(z,ta) > @K(T)z,b) > k(I')z, c)
b

is exact, leaving the dual assertion to the reader. Since an injective vertex j cannot belong
to ©(R,,), the map
® kIXb, j) = k(I')(ta, j)

is surjective. Choose maps i, : ta — j, from ta to injective vertices j; such that
[ix]: Ta — @j, is an injective envelope. There is a commutative triangle

k()(z, ta) ——— @ k(T)(z, b)
b

D k()2 ji)

which guarantees that k(I')(z, [v,]) is injective.
By the definition of g,, we have

Z SbW,,Bb = 0 .
b

On the other hand, let f,ek(T')(z, b) be such that
; Ebbeb = 0 .

We have to find gek(I')(z, ta) with f,=7,g. We may assume that for some b,;e4%,,
there is an essential path v} :z — b; with f, =7}, and we will suppose that the second
coordinate of b, is greater than the second coordinate of ta (as in Fig. 2).

If wy, v1 is not essential, it is homotopic to a path factoring through (i, 1) — (i,2) - (i+1,1)
for some i, because v} is essential. Therefore v is homotopic to v,,u for some path u: z — ta.
Taking g =u certainly works if 8, .= { b; }. Incase #,.={by, b, }, the path v,,u: z > b,
is not essential, hence k(I')(z, b,)=0 and f,,=0=71,,u.

4¢ SERIE — TOME 19 — 1986 — N° 2



DEGENERATIONS FOR REPRESENTATIONS 291

If wy, v} is essential, the condition
; Sbwa;, =0

implies that %, ,={ b;, b, } and that w,,v} is homotopic to w;,v5 for some essential path
vy:z - b, with f,,=+7,. But then v} is homotopic to v,u for some path u: z - 1a,
i=1, 2, and we can take g=1u.

4.4 Let &, be the set of vertices of I" that belong to a mesh starting in R, . but neither
to R, nor to 17 Y(R,,) (see Fig. 2). Note that this situation is not exactly dual to the
one studied in the preceding paragraph as ¢ might be injective. In particular, %, can
be empty, whereas %, . cannot. For b'e 4%, , let v,,:a — b’ be the only path between
these vertices. Consider the map

.ﬁz,c= [Bb']: a - @b’9
where b’ ranges over %, .. If c is not injective, this is just the left half of X -1, .- 1.
However, if ¢ is injective, f,. is not a monomorphism. For any vertex z of I', we set

8, (z)=dim; coker (® k(I')b’, z) - k(I'Xa, z)).
¥
The following lemma is easy to prove.

LEMMA.
1 for zeR,,,

0 otherwise.

8a.c(2)= {

If there is a virtual degeneration X > Y, we have the following consequence (with the
notations of 3.6). -

CorOLLARY. — If R, contains no direct summand of Y, then 3xy(a) <) 3y y(b').
&
Proof. — For any vertex z, we have an exact sequence
0 — Hom (coker f, ., z) - @ Hom (b’, z) -» Hom (a, z) — k%@ - 0,
¥

which yields
Ccoker fonz)—2 Kb z)+{az)=8,.z).
2

The value of &, is zero for all vertices z which are direct summands of Y, and therefore

3.y (coker f,.) —; 3x.y(b')+8x v(a) <O0.

4.5 We are now ready to carry out the program explained in 3.6. We fix X and Y
in .#(d) non-isomorphic and such that there exists a virtual degeneration X >Y.

The set & of exact sequences consists of the X, . constructed in 4.3. We call a rec-
tangle R, admissible if Z, . is admissible for (X,Y). We have to prove:

Claim.— There exists an admissible rectangle R, . for which ta and ¢ are direct summands
of Y.
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We choose the vertex a as in lemma 3. 6; 1. e., such that 8x y(a) >0 and 3% y(z)=0 for all
proper predecessors of a. Then tadY and R,, is admissible. Let R,, be a biggest
rectangle, with respect to inclusion, among all admissible rectangles « starting in a ».
It suffices to show that R, ; contains some vertex cQY.

Suppose this is not the case. Then corollary 4.4 applies to all subrectangles of R, ,
and it is enough to find some R, ;<= R, 4 such that 8« y(b')=0 for all b'eB, ;. It is easy
to see that for this we can choose the smallest rectangle R, ; stopping in d with the property
that no bigger rectangle R, » Z R, 4 is admissible.

5. The case B(Q,I) <2 and I', simply connected

Let (Q, I) be of finite representation type, and assume that Q (and hence Iy ;) is connected,
that B(Q,I)<2, and that I'=T}, is simply connected. We will generalize the proof
for Q=A, given in the preceding chapter. In 5.5, we will indicate how to weaken the
topological condition on I': It suffices to assume that I" contains no oriented cycle.

5.1 As mentioned in 3.1, an Auslander-Reiten sequence containing a projective-
injective indecomposable P as a direct summand of its middle term is of the form

0->radP - P®rad P/socP - P/socP — 0.

Since rad P determines uniquely its injective envelope P, the condition B(Q, I) <2 implies
that card x* < 3 for all vertices x. We denote by 9 the set of vertices x with card x* =3,
and for xe 2 we let x* be the injective envelope of x.

We call the vertices x* with xe 2 special and the other ones ordinary. Note that a
projective-injective vertex may still be ordinary. A path v:x — y in I is ordinary if it
does not pass through special vertices.

Since I is simply connected, the following rules divide the ordinary arrows of I into
two disjoint classes. We will say that the arrows in one class go up, the other ones down.

(i) o and oo belong to distinct classes.
(i) If two ordinary arrows start or land in a vertex, they belong to distinct classes.
With each vertex x of I' we associate its height h(x)eZ : We choose h(x,)=0 for some

ordinary vertex x,, and for each ordinary arrow o: x — y we set h(y)=h(x)+1 or h(x)—1
according as o goes up or down. Finally, we define h(x*)=h(x) for xe 2.

5.2 Let x be a non-injective vertex with card x* =2. Then we say that the two
paths of length 2 from x to t~'x are homotopic. We call two ordinary paths v, w:x — y
homotopic if they are equivalent with respect to the equivalence relation generated by
these mesh homotopies. We say that an ordinary path v:x — y is essential if v is not
homotopic to a path containing some 1z — z’ — z with z7={z"}.

LEMMA. — For any two ordinary vertices x and y, k(I')(x, y)= @ kb,
where v ranges over representatives of the homotopy classes of essential paths from x to y.
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Proof. — Modulo the mesh relations for meshes containing a special vertex, any path
from x to y in T" can be replaced by a unique linear combination of ordinary paths. The
remaining mesh relations express that homotopic paths yield the same morphism, up to
a factor +1, and that an inessential path w: x — y yields w=0.

REMARK. — For a special vertex x*, the arrows 1 : x — x* and % : x* — 1~ 'x induce
isomorphisms
k(I')(z, x) = k(I')z, x*)
and
KI)t™'x, 2) 3 k(T)(x*, 2)

for all vertices z # x* (see [4]).

For any ordinary path v: x — y there is a highest path v, and a lowest path v,
cx s @

homotopic to v, which are defined as follows: If v ,,,0r 1,;, contains a subpath 1z 3 z' 5 z
with card z~ =2, then a goes down or up, respectively. The path v is essential if and only
if neither vy, NOT vy, contains a subpath tz 3 2/ 5 z with z7={z"}.

5.3 Let k(I') be the residue category of k(I') modulo the morphisms factoring through
projectives; i.e., k(I') has the same objects as k(I'), and k(I')(x, y)=k(I')(x, y)/proj (x, y),
where proj (x, y) is the subspace of morphisms ), gpe fpwith f,ek(I')(x, p)and g,ek(I')(p, y)
and p projective.

It is easy to see that dim, k(I')(x, y) <1 for any two vertices x, y of I.  We claim that,
for x, ye 9,
k for x=y,
MI)x, )= { 0 otherwis: .
Indeed, any morphism f: x — ycan be extended to acommutative diagram with exact rows
0ox—->x*>55-0
fl lf‘ lf‘

O-oy-oy*>1t-0,

where s and ¢ are the simple tops of x* and y*, respectively. If f is not an isomorphism,
f=0, and f factors through f*.

Let a, ¢ be two vertices of I' such that k(I')(a, ¢) #0, and define the rectangle R, to be
the following set of vertices:

Ruc= {d:kI)a,d)#0#k(I)d, c) }

(see Fig. 3). Denote by 4%, . the set of vertices of I' that belong to a mesh stopping in R,
but neither to R, nor to (R, ). The set 4, is not empty, since

Y (dimz+dimtz— 3, dimz)=dimta+dime— ) dimb=0.

zeRq,c z'ez” be Ba,c
For be%#, ., let v,: ta — band w,: b — c be arbitrary paths between these vertices.
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FiG. 3.

LEMMA. — There exist numbers g,= + 1, for be, ., such that the sequence
20 0> 1a i @b feoe], c—0
is exact. In addition,
1 for zeR,,,
0 otherwise.

ds,.(2) = {

Proof.— We claim that there exists no path v: t~'x — yin T for x, ye 2 nt(R,,.). If there
is such a path, y must lie in R, ., and then v is essential. Since k(I') (x, y)=0, there exists an
ordinary arrow a :x’ — T~ !x such that vo(cw) is not essential. Suppose o goes down.
Since R, . contains no projective vertices, the highest path v,,,, homotopic to v has to pass
by the «upper corner of R, . »;1. e, the highest vertexinR, .. But then y cannot liein ©(R, ).

The claim implies that any path from ta to xe 2 nt(R,,) is ordinary, and that all such
paths are homotopic. Similarly, any path from yeR, .n17}(2) to c is ordinary, and all
such paths are homotopic. In addition, no two vertices x, ye 2 nt(R, ) have the same
height. We number the vertices of %, ., setting %&,.={by,...,b,} with h(b;)> h(b;)
for i< j (see Fig. 3).

For b=x*e4%, ., with xe 2, we let v, , and w, , be the subpaths of v, and w, obtained
by deleting b, and we set

(Wp0p) " =Wy, 00OV 0 »
(Wop) ™ =wp,0B(SB)vs,0,
where o and P are the arrows with head t~'x going down and up, respectively (see Fig. 4).
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If be B, is ordinary, we set
+ _
Ub,O =UVp, Wp,0=Wp, and (vab) = (Wbl]b) =Wy,

It is easy to see, using again the claim above, that (w,v,,)~ is homotopic to (wy,, ,vs,, )"
for i=1,...,t—1. Therefore we can define ¢,, by induction on i starting with g, =1
in such a way that
t
z Sbiwbi—ﬁbizo .
i=1
As in 4.3, we have that

Z,EpWb, k  f Ra co
coker (& k(I b) MOEST KT)z, o)) = { or 268,

0 otherwise,
k for zet(R,,),

coker (@ k(T')(b, z) KO (T )(ra, 7)) = { i
b 0 otherwise.

So the statement about 85, follows from the exactness of Z,.
We show that for any vertex z the induced sequence

0 = k(I')(z, ta) » @Kk(I)(z, b) = k(I')(z, c)
b

is exact. We may suppose z ordinary. The proof for the injectivity of [k(I')(z,7,)] is
the same as in 4.3.

It remains to be shown that for any family f,ek(I')(z, b) with Y &,w, f, =0 there exists
b

a gek(I')(z, ta) such that f,=7,g. It suffices to examine families [f,] of the following
kind (see Fig. 5): There is a path

viiz—-b; for 1<r<i<s<t

such that v}, is essential, (w,v})* is not essential, (w, 7))~ is homotopic to (wy,, ,vi+1)"
fori=r,...,s—1, (w,v)” is not essential, and

7 + 9! for r<i<s,
%10 otherwise .

We use the same notations as above; the signs + in the definition of f; are chosen in such
a way that

s
Z 8biwbifi,l. =0 .
i=r
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FiG. 5.

Consider the highest path homotopic to v} o, and decompose it as u,u, where u, consists
of arrows going down and where the last arrow of u; : z — x goes up unless u, is trivial.
The highest path homotopic to (w,,v;)* contains u; as a subpath, and we decompose
itas usu,. Since u is essential, u3 is not. Therefore x lies outside of R, ., higher than 1a,
and we can decompose u3 =usuy, where no vertex of u, but the last one lies in R, ;, whereas
all vertices of us do. The path u, cannot be essential.

Similarly, v; o is homotopic to a path passing through a vertex y outside of R, and
lower than Ta. Hence we find a path u:z — 1a such that v}, is homotopic to vy, ou for
i=r,...,s and we set g=u. For i<r, v, ou is homotopic to a path containing u, and
thus is not essential. In the same way v,, ou is inessential for i > s.

5.4 Let &, be the set of vertices belonging to a mesh that starts in R, . but neither
to R, norto 1~ }(R,.). Choose any path v, :a — b’ for b’e %, ., and set
Jae=[0p]:a > @Y.
We define
8;,.((z)=dim, coker (® k(T')¥’, z) - k([')a, z)).
>

Then lemma 4.4 and its corollary are true. The proof of proposition 3.3 given in 4.5
for Q=A,, carries over to the present situation.

5.5 We indicate briefly how to extend this proof to pairs (Q, I) of finite represen-
tation type with B(Q, I) < 2 and such that I'=Ig is connected and contains no oriented
cycle.

Letn : I" — I be the universal cover of T. Starting from a rectangle R, . in I, we obtain
a sequence m(X,.) of representations of (Q, I):

(Z,.): 0 - nta =3 @nb @™ ne - 0,

4° SERIE — TOME 19 — 1986 — N° 2



DEGENERATIONS FOR REPRESENTATIONS 297.

and our considerations in 5.3 together with the fact that m induces a covering func-
tor (see [4])
n: k) - k([)  imply that n(Z,) is exact.
In addition,
Onzaofmz)=card (R, N I1z).
for any z in I, where IT is the fundamental group of I If a rectangle R, . contains two
distinct vertices z,, z, =gz, lying in the same IT-orbit, we can assume that z,, z, are corners
of R,; i. e., the highest and the lowest vertex in R, ., respectively. Moreover, replacing
R, by 1"(R,,) if necessary we may suppose that R, . contains an injective vertex j. But
then we find a vertex x with
M), ) # 0 # I, &),

which means that mx contains some simple twice as a composition factor. But the struc-
ture of the indecomposable representations of (Q, I) is known, and a simple cannot have
multiplicity 2 in an indecomposable unless I" contains an oriented cycle. In fact, here
it suffices to know that the endomorphism ring of any indecomposable is k. So we have
that two rectangles R, and g(R, ) with geTT\{ 1} do not intersect or equivalently that

Sz, HM2) < for all z.

Using the set of exact sequences of the form (X, ) as our set &, we carry out the strategy
of3.6asin4.5for Q=A,. Note that here we do need that I" contains no oriented cycle,
first to have lemma 3. 6 and then to conclude that if, for a rectangle R, ., nta and nc are direct
summands of Y, their direct sum mta @ nc is, too.

6. The case Q=D,
Let Q be a quiver with underlying graph Q=D,, I=0, and set I'=Tj,.

6.1 Let K be the quiver

Kel 525 ... 5271

S

The translation quiver ZD, is defined as follows [8]: Start from Z x K and add an arrow
@,)) - (i+1,j—1),forieZ and 2 <j<n-—1, and an arrow (i,n) — (i+1, n—2) for ieZ.
The translation is given by 1(i, j))=(—1, j).

We call a vertex (i, j) of ZD, low if j <n—2 and high otherwise. A high vertex (i, j)
is said to be even or odd if i+; is even or odd, respectively. Two high vertices (i, j) and
(p, q) are called congruent if i+j=p+q (mod 2).

Embed the opposite quiver Q® of Q into ZD,, in such a way that all t-orbits of vertices
in ZD, are hit.  Then the Auslander-Reiten quiver I" can be identified with the full sub-
quiver of ZD, given by the vertices lying on or between Q° and W(Q®), where v is the
Nakayama permutation; if (i, j) is low, v(i, j)=(i+n—2, j), and if (i, j) is high, v(i, j) is the
high vertex with first coordinate i+n—2 which is congruent to (i,j). From now on we
denote by 1 the translation of T

6.2 We now describe the set of exact sequences which replace the sequences asso-
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ciated with rectangles in the previous chapters. Let a=(j, j) and c=(i’, j’) be vertices of "
with k(I')(a, ¢) #0, and suppose that a is not projective. Set
3 ifaandcarelowand i+n—1<i'+j, i'<i+j—1,
Hac= .
1 otherwise.
Below we define a set H, . of integralvalued functions ny, ..., n,, . on the vertices of I"
for all pairs a, c. For neH, ., we set

Ay=a, Pn=C,

and we define suppn={z:n(z)#0}.

we say that ' <n for n, weH={JH,_ if n'(z)<n(z) for all vertices z.

Choose neH,,. We claim that:
1) There exists an exact sequence
Zn:0—>w[ﬂ’>’ b= 50
with 8z, =7. In the middle term, b ranges over the set 4, of vertices belonging to a mesh

stopping in supp n but neither to supp n nor to t(suppm). For be,, vy: ta — b and
w,: b — c are suitably chosen paths, and g,= +1.

2) If X >Y is a virtual degeneration and if no vertex in the support of n is a direct
summand of Y, we have
Sx,v(@) <D dxy(b').

Here b’ ranges over the set &, =1~ (%,).
We leave it to the reader to verify this claim using the detailed description of morphisms
in k(ZD,) given in [9].
(i) a and c are low and V' <i+j—1,i"+j <i+n-2:
1 if i<p<?,i+j<p+q=<i'+j,
0 otherwise.

n(p, 9= {

(i) a and ¢ low and V' <i+j—1, i+n—1<i'+j":

1 if (pg)islowand i<p<i,i+j<p+q<i+j,
ni(p,g) =4 1 if (p,q)is highand evenand i<p<i'+j/+1—n,
0 otherwise.
1 if (pglowand i<p<i,i+j<p+q<i'+j,
nAp,g) =3 1 if (p,q)ishighand oddand i<p<i’'+j +1—n,
| 0 otherwise .
(2 if (p,q)islowand p<i'4+j+1—n,i+n—1<p+q,
1 if (p,g)islow and i<p<i'+j+1—n, i+j<p+q<i+n-2,
nsp,g) =41 if (pg)islowandi’+j/+2—n<p<i,i+n—1<p+q<i'+j,
1 if (p,g)ishighandi<p<i'+j+1-n,
| 0 otherwise.
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(i) a and ¢ are low and i+j<i, i+n—1<i+)":
1 is defined as n; in (ii).
(iv) a is low, c is high, and i’ <i+j—1:

1 if (p,gislowand i<p<?,i+j<p+q,
np,q)=4{ 1 if (p,q) is high, congruent to (i, j) and i<p <7,
0 otherwise.

(V) aishigh,cislowand i’ <i+n—1:

1 if (p,gislowand p<i?,i+n—1<p+q<i'+j,
np,q)= { 1 if (p,q) is high, congruent to (i, j) and i< p<i'+j +1—n,
0 otherwise.

(vi) a and c are high, congruent, and i’ <i+n—1:

1 if (p,q)islow, p<i,i+n—1<p+q,
n(p,q)= < 1 if (p,q)is high, congruent to (i, j), and i<p <7’,
0 otherwise.

Note that for neH, . and desupp n, there is a function n’eH,, with n’ <n.

6.3 Let us carry out the strategy explained in 3.6. The set % of exact sequences
consists of the X, with neH. _

Let X 5 Y be in .#(d) such that there is a virtual degeneration X >Y. We say that
a function neH is admissible for (X, Y) if Z, is. We choose the vertex a as in lemma 3.6;
i. e, 8x y(a)> 0 and 8x y(z)=0 for all proper predecessors of a. Then tadY and the only
function neH, , is admissible.

Let n’ be maximal among the functions in H with A, =A,=a which are admissible
for (X, Y). Again it suffices to show that supp n’ contains a direct summand of Y. Ifnot,
part 2) of the claim in 6. 2 applies to all n” < n’ with n”eH, and it suffices to find such an n”
with Y 8 y(b)=0, b’e%,.. For this we can take the minimal element in the set of all

<

functions eeH with € <n’, p. = p,; and such that no &’ > € with ¢’ #¢& and A, =1, is admis-
sible for (X, Y).

We explain this in detail in the most complicated case: Suppose that a=A, =(i, j) and
c=py=(7,j) are low with i'<i+j—1, i+n—1<i'+j’ and that n'=n3;eH,,. The
same argument works if a=X,, =(i,j) and ¢ = p,, =(¥, j’) are low with i+ <7, i+n—1<i'+j
and if n’ is the only function in H,,. For simplicity we assume that ¢ is not injective.

By construction, n’ is maximal among the functions neH with A, =a which are admis-
sible for (X, Y). This implies that

dxy(i"+1,9)=0 for some g with i+n—2—i"<q<j—1
and that 8y y satisfies one of the following sets of inequalities (see Fig. 6).
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(i,n-1) (i'+j'+1-n,n-1)
A

(L))

F1G. 6.
Set
Z;={(p1,41): pr+min (g, n—1)=i"4+j+1,9,2j+1},
Z,={(p2,q2): p2=V+j+2—n,i+n—1<g,<n-2},
Z3={(p3,q3): p3=i+j+2—n,i+j<qs<i+n—-2}.
(@) dx,.y(P1,41)=0 for some (p;, q1)€Z;, Oxyv(p1,q1)=1 for all (pi,q1)eZ, with
g1 <min(q,, n—1).
(b) dx,v(P2, g2)<1 for some (p,, 4;)€Z,, 8%.y(p3, q2)=2 for all (p3, g3)€Z, with g5>q,
and 6xy>1onZ,.

(¢) dx.y(P3, q3)=0 for some (ps, q3)€Z;, Ox y(p3,q3)=1 for all (p3,q3)eZ; with
q5>q3, dxy=2o0nZ, and dxy>1onZ,.

In case (a), we have A,»=(p,, i’ +14g—p,), and we obtain 8y y(A,~)=0, a contradiction.
In case (¢), Ay=("+q+2—n, p3+q3—i'—q+n—2) and Ox y(A,)=0.
Finally, we show that case b) cannot occur. Indeed, set ¢’=(i"+;'+2—n, n—1)eZ,,

and let a’=(p,+q,+2—n, r) be the high vertex congruent to ¢’. Consider the exact
sequence

2,:0 - ' =(p,+q2+1—-n,1) > b=(p;,q2) = '=({"+j/+2-n,r) > 0

associated with the only function neH, ... Since supp 1’ contains no direct summand
of Y, the sequence
0 - Hom (¢/, Y) » Hom (b, Y) - Hom (@', Y) - O

is exact, and therefore
Sx,y(c’) + ax,y(‘tal) < Bx,y(b) < 1.

But 34 y(ta’)>1 and thus 3x y(c')=0 although c’€Z,.
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