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DEGENERATIONS FOR REPRESENTATIONS
OF QUIVERS WITH RELATIONS

BY CHRISTINE RIEDTMANN

1. Introduction

1.1 Let k be an algebraically closed field and Q a finite quiver. The quiver algebra feQ
of Q over k has all paths in Q as a fe-basis, and the product of two paths w : f -^ f and
v : i -> j is the composed path wv : i -> f if i' =j and zero otherwise. A twosided ideal I
in feQ is called admissible if there exists a natural number N such that kQ^ c I c feQ^.,
where feQ+ is the ideal generated by all paths of length 1, the arrows ofQ. If I is admissible,
/cQ/I is a finite-dimensional fe-algebra, and conversely any finite-dimensional fe-algebra
is Morita-equivalent to some kQ/I. We will only consider admissible ideals I.

A representation X of Q over k consists of a finite-dimensional k-vector space X(f)
for each vertex i and a k-linear map X(a): X(f) —> X(j) for each arrow a : i -> j. The
dimension vector dim X is the vector with components dim^ X(f), and the dimension ofX
is the natural number ZdimfcX(f), where i ranges over the vertices of Q. For a path
v=dr . . . oci : i -> j in Q, the linear map X(v): X(i) -> X(j) is defined to be the identity
map of X(f) if r=0 and the composition X(a^) ° . . . ° X(ai) otherwise. A representation
of(Q, I) is a representation XofQ with the additional property that for each linear combi-
nation (p= ̂  ̂  of paths from i to j in I, the linear map X((p)= ̂  ̂ X(u) is zero. Note
that I = © I(f, 7), where I(f, j) is the intersection of I with the vector space kQ(f, j) of paths

i j
from i to 7, since I is twosided.

A morphism /: X -» Y between two representations of (Q, I) is a family (/i) of linear
maps fi: X(f) -> Y(f) for each vertex f, such that for any arrow a : i -> j the equality
Y(a)o fi=fjoX{ai) holds. A representation X is indecomposable if any decomposition
X ^> Xi © X^ is trivial. The theorem of Krull-Schmidt says that any representation
of (Q, I) can be written as a direct sum of indecomposables, and this decomposition is
unique up to isomorphism. The category mod (Q, I) of (finite-dimensional) represen-
tations of (Q, I) is equivalent to the category of finite-dimensional kQ/I-modules.

KEY-WORDS. — Degeneration, representations of quivers., Auslander-Reiten quiver.
Classification A. M.S. — 16 A 64, 14 L 30.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. - 0012-9593/86/02 275 27/$ 4.70/
© Gauthier-Villars



276 C. RIEDTMANN

1.2 Suppose that Q has n vertices 1, 2, . . . , n, and let d=(d^ . . . , rfj be in ^J". By
J^(d) we denote the set of representations X of (Q, I) with X(i)=kdi for all f. A repre-
sentation X in M(S} is given by a dj x d^-matrix X(a) for each arrow a : i -> 7, and these
matrices satisfy the equations given by I. Hence M(£) can be viewed as an affine variety,
which is not necessarily irreducible. The group G(d)=^GL(rfi) operates on ^(d)
by base change:

(^.X)(a)=g,"X(a)o^-1

for g={gi, . . . , gn)eG(d), Xe^(rf), and a : i -> j. The G(d)-orbits are the isomorphism
classes of representations in J^(d).

If X and Y are in ^(d), we say that X degenerates to Y and write X >\ if Y is
contained in the closure of the orbit G(d).X of X, with respect to the Zariski-topology.
The aim of this paper is to find « algebraic » properties which are equivalent to the existence
of a degeneration from X to Y. It is not clear whether such an algebraic description
of the geometric behavior always exists.

1.3 Let us consider an example where it does:

Q=0 and I^oc^, N>2.

A representation X of (Q, I) in J^(d) is given by a nilpotent endomorphism X(a) of k\
and thus the G(d)-orbit of X is uniquely determined by the sizes N^ i^2>- - -^A^ 0

of the Jordan blocks of X(a), or equivalently by the partition p(X)=(p^,p^ . . . , ̂ ) of d.
Now X degenerates to Y if and only if p(X) >. /?(Y), where the order relation on partitions
is given by

( ^ l , • . • , ^ ) > ^ l , • • • , ^ ) < > ^ l + . . . + ^ > ^ l + . . . + ^ for all f = l , . . . , r f .

The condition p(X)>p(\) is equivalent to rank o^Y^rank a(X)1 for all f. A proof for
these facts, in a different language, can be found in [6].

1.4 Let us return to an arbitrary (Q, I). For two representations U and Z, we write

< U, Z > = dimfc Hom(Q,i)(U, Z).

Using the semicontinuity of the fiber dimension for regular morphisms, it is easy to see that
X^Y implies
(*) < U, X > < < U, Y > for all representations U (see chapter 2).

We will see under which circumstances this condition is also sufficient to guarantee the
existence of a degeneration X ̂ Y.

We say that there is a virtual degeneration from X to Y, and we write X>-Y, if X©Z
degenerates to Y©Z for some representation Z. The condition (*) is insensitive to can-
celling common direct summands; i.e., for any representation U, < U , X > < < U , Y >
holds if and only i f < U , X © Z > ^ < U , Y © Z > is true for some Z. Our first result is
that (*) is equivalent to the existence of a virtual degeneration from X to Y, provided that
(Q, I) is of finite representation type; i. e., has only finitely many non-isomorphic indecom-
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DEGENERATIONS FOR REPRESENTATIONS 277

posable representations. One implication is obvious. As for the other one, we prove
more precisely:

THEOREM 1. — Let (Q, I) be of finite representation type, and suppose that X, Ye^(rf)
satisfy (*). Then there exists an exact sequence

0 - ^ A - ^ B - ^ C - ^ O

of representations o/(Q,I) such that X©A©C is isomorphic to Y©B.
Since the middle term of an exact sequence always degenerates to the direct sum of

the two end terms (2.3), we find a degeneration from X©B to Y©B.

1.5 The next question is whether cancellation holds for degenerations, that is, whether
the existence of a virtual degeneration implies the existence of a degeneration. In 3.1
we give an example found by J. Carlson of two k [S, T]/(S2, T^-modules X and Y such that
there is a virtual degeneration X > Y, but nevertheless X does not degenerate to Y. There
seems to be no such example known for pairs (Q, I) of finite representation type.

THEOREM 2. — Let (Q, I) be of finite representation type, and assume there is a virtual
degeneration X >- Y in Ji(d). Then there exists a degeneration from X to Y, provided that
one of the following conditions is satisfied:

1) The underlying (non-oriented} graph Q of Q is a Dynkin diagram An or Dn.
2) The Auslander-Reiten quiver of (Q, I) is simply connected and P(Q, I) < 2.
All the notions used to formulate 2) will be explained in chapter 3. Obviously 2) gene-

ralizes 1) for Q=A».
In [1 ] and [2] S. Abeasis and A. Del Fra study degenerations for quivers with underlying

graph An and for

Q=');.^. ••• .^.,

respectively. Our strategy is the same as theirs; i. e., we find a complete set of obstructions
for the existence of a degeneration. The main difference is that we use the theory of Auslan-
der-Reiten sequences. This allows us first to give a handy description of some set of
obstructions and to show that it is complete at least for the existence of virtual degenera-
tions (theorem 1). Secondly we can avoid all difficulties arising in [1] from different
orientations on the same graph.

1.6 Remark. — We could give our definitions for locally bounded fe-categories and
our results for locally representation-finite categories [4] instead of finite quivers with
relations. In particular, theorem 2 is true for the universal cover of a representation-finite
selfinjective algebra of class An [8]. In order to avoid introducing too many notions,
we will just indicate briefly how to reduce from a locally representation-finite category A
to a category with finitely many objects for the proofs of our theorems. Let d be a func-
tion from the objects o f A t o f ^ J which takes the value zero except for finitely many objects,
and define J^(d) as before. Let S{d) be the finite set of objects i of A with the property
that there exists an indecomposable A-module U with U(f)^0 and such that U(/)^0,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



278 C. RIEDTMANN

d(j) i=. 0 for some object 7. Then work with the full subcategory A(d) of A whose objects
he in S(d).

I would like to thank M. Auslander and H. Kraft for discussions and suggestions, J. Carl-
son for his example, and the referee for useful remarks. I am grateful also to the Uni-
versity of Bielefeld, where part of this work was done.

2. Virtual degenerations

2.1 PROPOSITION. — Let X, Y be in M(S}, and, suppose X degenerates to Y. Then
the following inequalities hold:

(*) < U, X > < < U, Y > for all representations U.
Proof. — There is a quick proof, applying the semi-continuity of the fiber dimension

to the projection p : M^ -> J^(d) on the first factor, where J^j is the variety of pairs (Z, /)
with Z in ^(d) and /: U -> Z a morphism of representations. We will give instead
an elementary argument, which illustrates the connection of (*) with the behavior of
the ranks of linear maps (compare 1.3 and 1.5).

Consider a triple
A=((fi , .... f,), C/i, .. .,7'J, [(p^J),

where (i'i, . . . , iy\ (j\, .. .,js) are sequences of vertices and where [(pj,ij is an sxr-matrix
with (p^efeQO'fe, Ji)Wk-> J i ) ' With a representation Z of(Q, I) we associate the linear map

^A):®^)12^ ©ZC/,).
f c = l 1=1

The following lemma implies the proposition.

LEMMA. — Let X, Y be in J/{d\
(a) The inequalities (*) are equivalent to

rank X(A)> rank Y(A)
for all triples A.

(fc) IfX degenerates to Y, rank X(A) > rank Y(A) for all triples A.

Proof. — (a) Let ̂  be the path category of Q modulo I; i. e. the fe-linear category whose
objects are the vertices of Q and whose morphism spaces are

^j)=kQ(i,j)/l(iJ)',

composition is induced from feQ. A representation Z of (Q, I) is a covariant fc-linear
functor from ^ to the category of finite-dimensional fe-vector spaces. In particular,
we have for each vertex i the representable function ^(f, ), the projective cover of the one
dimensional representation supported at i. By the Yoneda-lemma, the map

HomW, ) ,Z)^Z(Q

given by evaluating at i on the trivial path is an isomorphism which is functorial in i and Z.
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DEGENERATIONS FOR REPRESENTATIONS 279

With a triple A as above, we associate the morphism of functors

H(A): ©^, ̂ ^^ ©^, )
1 = 1 k=i

and its cokernel U = (;(A). For any representation Z, we have the following commutative
diagram with exact rows

0 -^ Hom(U,Z) ^ © Hom(^, ),Z) -̂̂  © HomWh ),Z)
f c = i | 1=1 ,.I ' l'

0 -. KerZ(A) ——————> © %) ———Z(A)——— © Z(j\)
k=l 1 = 1

We conclude that

rankZ(A)+<U,Z>=E dim%)= f d^ for Z in ^(rf).f c = i f c = i -

This implies a\ because any representation U of (Q, I) has a projective presentation
and is therefore of the form ^(A) for some A.

(b) For a triple A, we consider the map

/ r s \
f:jy(d) -^ Honife © ̂ , © fe^ =HA

V=i ^=1 /
given by sending Z to the matrix Z(A).

This is a G(rf)-equivariant polynomial map, where the operation ofG(d} on HA is defined by

^•[VI/^J=[^0^^0^1]

for ^=(^1, . • .,^)eG(rf) and [\|/^.JeHA.
For any natural number r, the set

{ M/^JeHA:rank [\|/^J^r}

is closed, since a matrix lies in this set if and only if all its (r+1) x (r+ l)-minors vanish.
Therefore the set

; Z e - ^ ( r f ) : r a n k Z ( A ) < r ;

is closed as well. In particular, any Y in G(d).X satisfies rank Y(A) < rank X(A).
Remark. — With a triple A we can also associate the morphism

[D^( ,(p^)]: © D^( ,7,) -> © D^( ,f,)
1 = 1 k=l

between injective representations, and its kernel a(A)=U. Here D denotes the usual
duality for vector spaces. The dual arguments of the above yield, for ZeJ^(d\

<Z,U>+rankZ(Ay=E^ , .
1=1

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



280 C- RIEDTMANN

Since each representation admits an injective presentation, the inequalities (*) for X,
YeJW) are equivalent to

< X, U > :< < Y, U > for all representations U .

2.2 In order to prove theorem 1, we need the notion of Auslander-Reiten sequences,
which are the almost split sequences of [3].

For each indecomposable non-projective representation V, there exists a non-split
exact sequence

£v : 0 -^ TV -> By -"> V -̂  0

with the following properties:

(i) xV is indecomposable.
(ii) Any morphism h: X -^ V which is not a retraction factors through g.

Such a sequence ly is called an Auslander-Reiten sequence stopping at V. The repre-
sentations TV and By are uniquely determined by V, up to isomorphism. Moreover,
any morphism h: rV -> X which is not a section factors through f.

Dually, for each non-injective indecomposable V, there exists an Auslander-Reiten
sequence

0 -, V -> By -> T^V -̂  0

starting at V; it is at the same time an Auslander-Reiten sequence stopping at T^V.

THEOREM 1. — Let (Q, I) be of finite representation type, and suppose that X, Ye^(ri)
satisfy (*). Then there exists an exact sequence

0 - ^ A - ^ B - ^ C - ^ O

of representations ^(Q,I) such that X © A © C is isomorphic to Y©B.

Proof. — Define
8(V)=<V,Y>-<V,X>

for V indecomposable. By our hypothesis, we have 5(V) > 0, and since X, Y both lie
in J^(d\ 8(V)=0 if V is projective. We set

O ^ A - ^ B - ^ C ^ o^ez^;
V

i. e., we take the direct sum of 8(V) copies of the Auslander-Reiten sequence stopping at V
for each indecomposable non-projective V.

For any indecomposable U, we obtain an exact sequence

0 -^ Horn (U, A) -. Hom(U,B) -^ Hom(U,C) ^ k6^ -^ 0,

using the property (ii) of Auslander-Reiten sequences. This yields

< U , A > - < U , B > + < U , C > = 6 ( U ) = < U , Y > - < U , X > ,

4e SERIE - TOME 19 - 1986 - N° 2



DEGENERATIONS FOR REPRESENTATIONS 281

and thus
< U , A © C © X > = < U , B © Y > .

By an unpublished result of Auslander, which follows quite easily from the existence
of Auslander-Reiten sequences [3 ], the numbers < U, Z >, for U indecomposable, charac-
terize Z up to isomorphism, and therefore X © A © C ^> Y@B.

2.3 COROLLARY. — Let (Q,I) be of finite representation type, and let X, Ye^(rf).
Then X and Y satisfy (*) if and only if there exists a virtual degeneration from X to Y.

Proof. — If X © Z degenerates to Y © Z, the inequalities (*) hold for X © Z and Y © Z
and thus for X and Y (proposition 2.1). To show the converse, we have to prove that
an exact sequence

0 - , A - ^ B - > C - ^ 0

gives rise to a degeneration B>-A©C, which is a consequence of the following lemma.
Let Z be a representation in eJ^(rf), filtered by subrepresentations

Z=Zo^Zi3 . . . 3Z,3Z,+i=0,

set Zfc = Zfc/Zfc+i, and denote the associated graded representation by

grZ= © Zfc.
k=0

LEMMA. — There exists a one parameter subgroup ^:fe* -> G(d) such that 'k(t).Z is
isomorphic to Z, tek*, and lim Ut). Z = gr Z. In particular, Z degenerates to grZ.

Compare [7], where it is shown in addition that, conversely, any degeneration
?i(l).Z^(0).Z for a 1 PSG^ is of the form Z^grZ for some filtration.

Proof. — For each vertex i, we choose a basis ofZ(f) which is adapted to the filtration.
Then the matrix of Z(a) is of the form

Zo(oc) 0 0

Aio Z7(a) 0

A2o A2i ^(a)

A,o A,i . . A,,,_i Z,(a)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



282 C. RIEDTMANN

for any arrow a. We choose for X,(t) the base change that replaces each basis vector x
in Zk(0\Zt+i(i) by r^.v. The matrix of (^(r).Z)(a) is

"Zo(a)

(Aio

^20

. fA^o

0

Z7(a)

(Azi

^^i • • •

0

0

Zz(a)

rA.

0

Z;(a)

We see that
lim?i(O.Z=grZ.

2.4 REMARK. — Let (Q,I) be an arbitrary quiver with relations, and let y be the
category of fc-linear contra variant finitely presented functors from the category of repre-
sentations of (Q, I) to the category of vector spaces. Suppose that Fi, F^e^ have the
property that

f dimfc Fi(U) ̂  dinifc F^V) for all U,
[ dinifc Fi(P) = dinifc F2(P) for all projectives P .

As suggested by H. Lenzing, it would be interesting to know if there exists an ¥^e^
such that

dinife F3(U) = dinife F2(U) - dinife Fi (U) for all U .

Without loss of generality, one may assume that Fi, F^ are representable. If such an F3
always exists for some (Q, I), the same arguments as above imply that (*) is equivalent
to the existence of a virtual degeneration X >- Y.

3. Cancellation for degenerations

3.1 First we give an example, due to J. Carlson, where cancellation does not hold;
i. e., we find two representations X and Y such that there is a virtual degeneration X>-Y
although X does not degenerate to Y. Let Q be the quiver

Q-oeC.^P

4° SERIE - TOME 19 - 1986 - N° 2



DEGENERATIONS FOR REPRESENTATIONS 283

and I=<ap-|3a, a2, P2 >. Note that feQ/I is the algebra fe[a, P]/(a2, P2). For ?iefe,
let M^ be the two-dimensional representation of (Q, I) given by

M>(.)=[; ^] and M,((»-[̂  ^.

Denote by P the only indecomposable projective representation, which is at the same time
injective.

The Auslander-Reiten sequence containing P as a direct summand of the middle term
has the form r j i

0 -> radP y PQradP/socP ̂  P/socP -^ 0,

where j and p are inclusion and canonical projection [3]. For each \ek, there are exact
sequences

0 -> M^ -^ radP -> k -> 0
0 -^ k -^ P/socP -^ M, -^ 0,

where fe is the unique one-dimensional representation. So we obtain degenerations

P © rad P/soc P > rad P © soc P > M), @ M^ © k2,

for any X,, j^efe, and since rad P/soc P ̂  k2, this yields a virtual degeneration

P>-M^©M^.

On the other hand, the endomorphism ring of P is 4-dimensional, so that the orbit
G(d). P has dimension 12, where d = (4). For ̂  i=- [i, the orbit ofM^ © M^ has dimension 10,
and hence the closure of the union of the orbits of all M^© M^, ^ ̂  ^i, is 12-dimensional
as well and cannot be contained in the irreducible variety G(ri).P.

3.2 We now turn to our positive results. First we show that we may replace I be
a smaller ideal.

Let (Q, I) be arbitrary, and let J be a twosided ideal containing I. Even though J is
not necessary admissible, we denote by mod (Q, J) the full subcategory of mod (Q, I)
of representations Z of Q satisfying Z((p)==0 for all (peJ. By ^i(d) and e^j(rf) we denote
the algebraic varieties of representations Z of(Q, I) and (Q, J), respectively, with Z(i)=kdi

for all f. Clearly ^j(ri) is a closed G(rf)-stable subset of ^i(rf), and therefore the closure
in ^i(ri) of the orbit of some Ze^j(d) is contained in ^j(d). As an immediate conse-
quence we have:

LEMMA. — IfX>^ implies X^Y for X and Y in ^(d\ then X>-Y implies X^Y
for X and Y in ^j(rf).

3.3 THEOREM 2. — Let (Q, I) be of finite representation type, and assume there is a
virtual degeneration X>-Y in ^(d). Then X degenerates to Y in the following cases:

1) If the underlying graph Q ofQ is a Dynkin diagram A,, or D».
2) If the Auslander-Reiten quiver of (Q, I) is simply connected and P(Q, I) <: 2.
Note that we may assume I==0 in the first case by the preceding lemma.
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284 C. RIEDTMANN

We will prove the theorem by examining the « building blocks » of degenerations.
Let X, Y be in J/(d) for some d. We call a degeneration X >\ or a virtual degeneration
X > Y irreducible ifX ^ Y and if, for any Z in J/(d\ X >Z >\ or X >- Z > Y, respectively,
implies that Z is isomorphic to X or to Y.

If X degenerates to Y and X ^ Y, we have

dim G(d). X > dim G(d). Y or equivalently dim^ End X < dim^ End Y.

Therefore there is a finite sequence X >Z^ > . . . >Z, >\ of irreducible degenerations
whenever X >\ and X ^> Y. In general, there seems to be no reason why such a finite
sequence of irreducible virtual degenerations should exist for a virtual degeneration X >- Y.
By 2.1 we still have

dimfc E n d X = < X , X > < < X , Y > < < Y , Y > = = dim^ End Y ,

but the inequality might not be strict for X ̂  Y. It would be interesting to have an
example of a virtual degeneration X>Y with X ^ Y and dim,, End X= dim,, End Y.
For such an example, (Q, I) has to be of infinite type: If (Q, I) is of finite type, X >- Y and
X ̂  Y implies that the sum

E « U , Y > - < U , X »

over all indecomposables U is positive and finite, and hence there is a finite sequence of
X>Z^> . . . >Zr>^ °f irreducible virtual degenerations.

Thus the following proposition implies theorem 2.
PROPOSITION. — Let (Q, I) be of finite representation type, satisfying 1) or 2) of theorem 2,

and let X and Y be in ^(d) mth no nontrivial direct summand in common. If there is an
irreducible virtual degeneration X >- Y, then there exists an exact sequence

O - ^ Y i ^ X ^ Y ^ O

mth Y ^ Y i C Y ^ .

It follows easily from 3.2 that in case 1) we only have to prove this for 1=0.

3.4 Proposition 3.3 tells us more precisely that in some cases an irreducible degene-
ration is given by a short exact sequence. This is not true for an arbitrary (Q, I) of finite
representation type:

Let Q = 1 ^ 2 Q P and I^P 2 ) ,
and set

x-^.0^], V-^0[^].

For (efe*, consider the element

^([uR "T)60^ ^=(1,2),
46 SERIE - TOME 19 - 1986 - N° 2



DEGENERATIONS FOR REPRESENTATIONS 285

and let

x,-,,.x-^o^ 3.
1

Obviously, X degenerates to Y, and the degeneration is irreducible, since

dim G(d). X - dim G(d). Y = dim^ End Y - dim^ End X = 1.

Since Y is indecomposable, this degeneration is not obtained from a short exact sequence.
This example leads us to a new type of degenerations, for arbitrary (Q, I).

PROPOSITION. — If
0 -. A -. A © X -> Y -. 0

is exact, X degenerates to Y.
The same conclusion holds for an exact sequence

0 -^ Y -> X©A -^ A -> 0.

The example above is of this type : Take the sequence

For this (Q, I), any irreducible virtual degeneration is either the one above or is given by
a short exact sequence. It would be interesting to find other types of irreducible degene-
rations.

Proof. — Let /= : A ->• A © X be the morphism given in the exact sequence and

set /(== * , tek. Choose a ^-supplement Z for /(A) in A©X. There exists an
L a J

open neighborhood UofO such that for ^eU, /, is injective and Z is a supplement for /^(A).
The representation Z(=A©X/im/( thus defined is isomorphic to X whenever ^+^.1
is an isomorphism, which it is for almost all te\J, and Zo is isomorphic to Y.

3.5 We now introduce the notions we need for the proof of proposition 3.3.
A pair (F, r) consisting of a quiver F and a bijection T : SP -> / between two subsets

of vertices of r is a translation quiver if:
(a) r contains no loops nor multiple arrows

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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and
(b) for each xe^, the set x~ of tails of arrows with head x coincides with the set (^x)+

of heads of arrows with tail TX.
The full subquiver of F given by the vertices x, TX, and x~ is called the mesh of F which

starts at TX and stops at x, for xe ̂ . Ifa: y ->• x an arrow of F, xe^, we set era: TX ->- ^
(see Fig. 1).

.y,

IfFis locally finite (^ and x~ are finite for all vertices x\ we define the mesh category fe(F):
Its objects are the vertices of r, and

k(r)(x,y)=kr(x,y)/J(x,y),

where kF(x, y) is the vector space spanned by all paths from x to y in F and J(x, y) is the
intersection of this vector space with the ideal generated by the « mesh relations »

^x== £ a.<7oc
a:y->x

with y e x ~ , for all xe^. For a path v: x -> y in F, we denote by ~u its residue class in
fe(r)(x, y).

Let (Q, I) be arbitrary. The Auslander-Reiten quiver Fpj of mod (Q, I) has as vertices
representatives of the indecomposable representations. There is an arrow a: x -> y
in FQJ if there exists an irreducible morphism /: x -> y; i. e., a non-isomorphism with
the property that for each factorization / = h o g either g is a section or h is a retraction.
The connection between irreducible morphisms and Auslander-Reiten sequences gives
FQJ the structure of a translation quiver (see [3 ]): For each non-projective vertex x there
is a unique non-injective vertex TX and an Auslander-Reiten sequence

r
0 -^ TX -> © yi -> x -> 0.

i= i

Moreover, (r^ = { ^i, . . . , y^ }=x~. So the translation T is the Auslander-Reiten
translation DTr, which maps the non-projective vertices of Fpj bijectively onto the non-
injective ones.

If (Q, I) is of finite representation type and if Fpj contains no oriented cycles, the full
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subcategory ind (Q, I) of mod (Q, I) whose objects are the vertices of Fpj is equivalent
to fe(FQj). So we may work in fe(rQj) in order to prove proposition 3.3.

A map K : FI -> FZ between connected translation quivers is called a covering map
ifjr induces bijections from x+ to (nx)+ and x~ to (nx)~ for all vertices x. A connected
translation quiver Y is simply connected if any covering n: F' -> F is an isomorphism.
Let r be a translation quiver. For a vertex x of F, we let P^x) and P~(x) be the number
of vertices in x4" and x~, respectively, which are not projective-injective; i.e., for which
either T or T~ 1 is defined. We let (3(r) be the bigger one of the two numbers

sup P^x) and supp~(x),
.X: X

and we set P(Q, I)= P^i) for a pair (Q, I).

3.6 We now explain our strategy for the proof of proposition 3.3, which will be
carried out separately in all the cases we consider in the following chapters.

Let X and Y be in .^(d) such that there exists a virtual degeneration X>-Y, and set

§ X , Y ( U ) = < U , Y > - < U , X >

for any representation U. Given an exact sequence

S: 0 -> A -> B -. C -. 0.
define

W)=<U,A>-<U,B>+<U,C>=6B,Aec(U) .

We say that Z is admissible for (X, Y) if §s(U) ̂  5x,v(U) for all U.
In each case we consider, we will define a set y of non-split exact sequences with inde-

composable end terms such that the following is true:
Given X ̂  Y with X > Y, y contains a sequence

£:0 -^ A -^ B -^ C -> 0

which is admissible for (X, Y) and such that Y ̂  A © C © Y' for some Y'.
Then we can prove proposition 3.3: Let X and Y be in ^(d\ without a direct summand

in common, and such that there is an irreducible virtual degeneration X ̂  Y. Choosing E
as above, we have

< U , X > = < U , Y > - 5x.v(U) < < U, Y > - §s(U) = < U, Y' © B >

for all U, and, by theorem 1, X>Y'©B. By construction, Y'®B degenerates to Y,
and Y' © B ̂  Y, since S does not split. The irreducibility of X >- Y implies X ̂  Y' © B,
and since X and Y have no direct summand in common, we conclude that X^>B and
Y^>A©C.

The following lemma will give us the left end of the desired exact sequence S.

LEMMA. — Let (Q, I) be of finite representation type and suppose that r=FQj contains
no oriented cycle. Choose X ;> Y in ^{d\ set 8=8x,Y? ana l^t a be a vertex ofT such that
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5(a)>0 and 5(z)=0 whenever there exists a non-trivial path from z to a in V. Then TO
is a direct summand of Y.

proof. — Since 5(a) > 0, a is not projective. Consider an Auslander-Reiten sequence

0 - > ^ a - ^ @ z - > a - > 0 .

Using that every morphism starting at TO which is not a section factors through /, we
obtain two exact sequences:

0 ̂  Horn (a, X) -. CHom(z,X) -. Hom(T^,X) -> k^ -> 0
0 -^ Hom(a,Y) ^ ©Hom(z,Y) -. Hom(Ta.Y) -.^ -^ 0,

where X, and |A are the multiplicities of \a in X and Y, respectively. Hence

S(a) = 6{a) - Z§(z) + §(ra) = a - )i > 0,

and we conclude that a > 0.
4. The case Q = A^

Let Q be a quiver with underlying graph A^, 1=0, and set r=rQj. We view F as a
subtranslation quiver of ZA^, which we now describe (see [8]).

4.1 Let K be the quiver
K=l -> 2 -> 3 . . . n-1 -> n.

Then ZA^ is obtained from Z x K by adding an arrow (ij) -> (i+1,7-1) for feZ and
2<j<n. The translation is given by T(ij)=(i-l,./). We say that the vertices (f, n)
and (f, 1) lie on the upper and the lower border, respectively.

Embed the opposite quiver Q015 of Q into ZA^ in such a way that all T-orbits of vertices
in ZAn are hit. Then the Auslander-Reiten quiver F can be identified with the full sub-
translation quiver ofZA^ given by the vertices lying on or between Q015 and v(QOP), where v
is the Nakayama permutation v(f, j) =(i +7-l,n+l-/) (see [5]). We write T and TZA.
for the translation on F and ZA^, respectively, if we have to distinguish. We have to work
with Q°P instead of Q since an arrow i -^ j of Q yields an irreducible map ̂ (j\ ) -> ^(i, )
between projective indecomposables (see (2.1).

4.2 Let (ij) be such that the vertex (1+1,7) of ZA^ belongs to F and such that
2 < j < n — 1. Then we say the two paths

{ij) -^ OJ+l) -^ O'+U) an(i ( '̂) -^ O'+lj-l) -^ O'+l,7)

are homotopic. We call two paths v, w: x -> y in F homotopic if they are equi-
valent under the equivalence relation generated by the « mesh homotopies » just
defined. A path in F is called essential if it is not homotopic to a path factoring
through (f, n) -. (f+1, n-1) -> (f+1, n) or (f, 1) ^ (f, 2) -^ (f+1, 1).

Obviously any two paths v, w: x -> y in F are homotopic, and therefore they yield
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the same morphism v,\vek(r)(x, y\ up to the sign, which depends on the number of
meshes of r « lying between v and w »; i. e., the number of mesh homotopies used to get
from v to w, modulo 2. So we have that k(F)(x, y) equals k or 0 depending on the existence
of an essential path from x to y.

4.3 For two vertices a and c of Y with fe(F)(a, c) 7^ 0, we define the rectangle

R^={d:k(r)(a,d)^0^k(r)(d,c)}

(see Fig. 2). Note that Ra,c intersects the upper and the lower border of ZA,, at the same
time if and only if c=v(a), and then a is projective and c injective.

FIG. 2.

From now on we suppose that a is not projective. We denote by SSa,c the set of vertices
of F which lie in a mesh stopping in Ra,c but neither in Ra,c ̂ r m ^(Ra,c)- If ^a,c does not
hit either border, we have

^.c=Rta,c\(Ra,cUT(R^))={ fci, ̂  }

as in Fig. 2. Otherwise ^Sa,c consists of one vertex only. For beSta,^ we 1̂
Vf, : ra -> b and w^: h -> c

be the unique paths in F between these vertices (Fig. 2). We define a sequence
[Vb] ^ i [SbVVb] „

TO -> © 0 ———^ C -> 0 .^,c:0

where fc ranges over ^a,c ^d where £<,= ± 1 with the only condition that

c^^-ir^--1

f o r ^ = { f c i , & 2 } .
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LEMMA. — 2^c is exact, and

8 ( ) = { { ^rzeR^
[ 0 otherwise.

Proof. — There exists an essential path v: z -> c m F which is not homotopic to one
factoring through a vertex be^Sa,c if ^d ^Y if z li65 m Ra,c- So we have:

coker(© k(r)(z, b) -. k(r)(z, c))= { fe for zeRfl•c?

h [ 0 otherwise,
and similarly

{ k for zeT(R./,),
coker (© k(r)(fc, z) ^ k(r)(Tfl, z))= . v fl>c/

b 0 otherwise.

In particular, the statement about 8^ is a consequence of the exactness ofl^-
We show that for any vertex z the induced sequence

o -^ fc(r)(z, TO) -^ © fe(r)(z, b) -^ k(r)(z, c)
b

is exact, leaving the dual assertion to the reader. Since an injective vertex^ cannot belong
to T(RO c\ ̂ e map

©k(r)(b,7)^k(r)(^,y)
b

is surjective. Choose maps i^ : ̂ a -> jj, from TO to injective vertices 7^ such that
[fJ:Ta -^ ©/fc is an injective envelope. There is a commutative triangle

4r)(z,Ta)———>©k(r)(z,b)\ y
efe(rxz,A)
k

which guarantees that k(r)(z, [rj) is injective.
By the definition ofc^, we have

Z£bW^=0.
b

On the other hand, let //,ek(T)(z, fo) be such that

Z£bW^=0.
b

We have to find gek(r)(z,xa) with fb=Vbg. We may assume that for some b^e^a,c
there is an essential path v\: z -> bi with fb^=v^ and we will suppose that the second
coordinate of hi is greater than the second coordinate of ^a (as in Fig. 2).

Ifw^i/i is not essential, it is homotopic to a path factoring through (f, 1) -> (f, 2) ^ (f+1,1)
for some f, because v[ is essential. Therefore 1/1 is homotopic to Vb^u for some path u: z -> TO.
Taking ̂ =M certainly works if^,,c= { ^i }• I11 case ^a,c={ bi, b^ }, the path Vb^u: z -> b^
is not essential, hence k(F)(z, ^2)=^ B^d fb^=Q=v^u.
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If w^i/i is essential, the condition

"L^bfb=Q
b

implies that ^a,c={ &i, b^ } and that w^i/i is homotopic to w^2 for some essential path
v ' ^ ' . z -> b^ with f^= ±u'2. But then v\ is homotopic to v^u for some path u; z -» TO,
f= 1, 2, and we can take g=u.

4.4 Let ^a,c be the set of vertices of F that belong to a mesh starting in R^ but neither
to Ra,c Hor to T'^R^c) (see Fig. 2). Note that this situation is not exactly dual to the
one studied in the preceding paragraph as c might be injective. In particular, ^,c can
be empty, whereas ̂  cannot. For Ve^c, let Vy: a -> V be the only path between
these vertices. Consider the map

fa,c=[Vb']''a -> ©fc',

where V ranges over g8^,c' If c is not injective, this is just the left half of E,-i^-i,.
However, if c is injective, fa,c is not a monomorphism. For any vertex z of F, we set

8^(z)=dimfe coker(© k(F)(b\ z) -^ k(F)(a, z)).
b'

The following lemma is easy to prove.

LEMMA.
f 1 for zeR^,,

8a,cCO=^ . , .(^ 0 otherwise.

If there is a virtual degeneration X > Y, we have the following consequence (with the
notations of 3.6).

COROLLARY. — // R,,, contains no direct summand of Y, then 6^(a) < ̂  §x y^').
/)'

Proof. — For any vertex z, we have an exact sequence

0 -^ Horn (coker /,,„ z) -. © Horn (b\ z) -^ Horn (a, z) -> fe50'^^ ^ 0,
b'

which yields
< coker /^, z > - Z < ^ ' , z > + < ^ z > = = 8,,,(z).

b'

The value of 5^ is zero for all vertices z which are direct summands of Y, and therefore

5x,Y (coker /^) - ̂  6^(V) + 8x,Y^) < 0.
b'

4.5 We are now ready to carry out the program explained in 3.6. We fix X and Y
in Ji(d} non-isomorphic and such that there exists a virtual degeneration X>-Y.

The set y of exact sequences consists of the Sa,c constructed in 4.3. We call a rec-
tangle Ra,c admissible if Z^,c ls admissible for (X, Y). We have to prove:

Claim. — There exists an admissible rectangle R^ , for which TO and c are direct summands
ofY.
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We choose the vertex a as in lemma 3.6; i. e., such that S^(a) > 0 and 8x,Y^)=0 for all
proper predecessors of a. Then ra<3Y and Ra,a is admissible. Let Ra,d be a biggest
rectangle, with respect to inclusion, among all admissible rectangles « starting in a ».
It suffices to show that R^ contains some vertex cQ\.

Suppose this is not the case. Then corollary 4.4 applies to all subrectangles of R^
and it is enough to find some Ra',^ R^ such that 6x,\(br)=0 for a^ b'e^',d' It is easy
to see that for this we can choose the smallest rectangle R^ stopping in d with the property
that no bigger rectangle Ra'^ ^ ^a',d is admissible.

5. The case P(Q,I)<2 and Fpi simply connected

Let (Q, I) be of finite representation type, and assume that Q (and hence Fpj) is connected,
that P(Q,I)^2, and that r=rQj is simply connected. We will generalize the proof
for Q=A^ given in the preceding chapter. In 5.5, we will indicate how to weaken the
topological condition on F: It suffices to assume that F contains no oriented cycle.

5.1 As mentioned in 3.1, an Auslander-Reiten sequence containing a projective-
injective indecomposable P as a direct summand of its middle term is of the form

0 -> rad P -> P© rad P/soc P -> P/soc P -> 0.

Since rad P determines uniquely its injective envelope P, the condition (i(Q, I) < 2 implies
that card x4" <, 3 for all vertices x. We denote by 3) the set of vertices x with card ^+ = 3,
and for xeQ we let x* be the injective envelope ofx.

We call the vertices x* with xeQ special and the other ones ordinary. Note that a
projective-injective vertex may still be ordinary. A path v: x -> y in r is ordinary if it
does not pass through special vertices.

Since F is simply connected, the following rules divide the ordinary arrows of F into
two disjoint classes. We will say that the arrows in one class go up, the other ones down.

(i) a and oa belong to distinct classes.
(ii) If two ordinary arrows start or land in a vertex, they belong to distinct classes.
With each vertex x of F we associate its height h(x)eZ: We choose /i(xo)==0 for some

ordinary vertex Xo, and for each ordinary arrow a: x -> y we set h(y)=h(x)+1 or h(x}— 1
according as a goes up or down. Finally, we define h(x*)=h(x) for xeQ.

5.2 Let x be a non-injective vertex with card x"*^ 2. Then we say that the two
paths of length 2 from xto^~lx are homotopic. We call two ordinary paths r, w: x -> y
homotopic if they are equivalent with respect to the equivalence relation generated by
these mesh homotopies. We say that an ordinary path v: x -> y is essential if v is not
homotopic to a path containing some TZ -> z' -> z with z~ = { z'}.

LEMMA. — For any t\vo ordinary vertices x and y, k(r)(x, y)==@kv,
\vhere v ranges over representatives of the homotopy classes of essential paths from x to y.
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Proof. — Modulo the mesh relations for meshes containing a special vertex, any path
from x to y in F can be replaced by a unique linear combination of ordinary paths. The
remaining mesh relations express that homotopic paths yield the same morphism, up to
a factor ± 1, and that an inessential path w: x -> y yields w=0.

REMARK. — For a special vertex x*, the arrows i : x -> x* and K : x * -> ^ ~ l x induce
isomorphisms

k(F)(z, x) ̂  k(F)(z, x*)
and

^rxT-^z^^rxx^z)
for all vertices z -^ x* (see [4]).

For any ordinary path v: x -> y there is a highest path v^^ and a lowest path v^
homotopic to v, which are defined as follows: If i^max01" Hnm contains a subpath TZ °? z' -^ z
with card z~ =2, then a goes down or up, respectively. The path v is essential if and only
if neither v^ax nor ^min contains a subpath TZ -^ z' -°̂  z with z~ = { z'}.

5.3 Let k(F) be the residue category of k(F) modulo the morphisms factoring through
projectives; i.e., k(F) has the same objects as k(F), and fe(F)(x, ^) = fe(F)(x, y)/proj (x, y),
where proj (x, ^) is the subspace of morphisms ̂ gp o fy with /pefe(F)(x, /?) and gpek(T)(p, y)
and /? projective.

It is easy to see that dim^ fc(F)(x, y) < 1 for any two vertices x, y of F. We claim that,
for x, yeQ,

//T-V ^ f ^ for x=y,fe(r)(x,}Q=< .
—— [ 0 otherwise.

Indeed, any morphism /: x -> y can be extended to a commutative diagram with exact rows

0 - ^ X - ^ X * - ^ 5 - ^ 0/! !- !7
0 -> y -^ y* -^ t -> 0,

where s and t are the simple tops of x* and y*, respectively. If / is not an isomorphism,
/==0, and / factors through /*.

Let a, c be two vertices of r such that k(T)(a, c) ̂  0, and define the rectangle R^c to be
the following set of vertices:

R^= { d : k(r)(a, d)^O^k(T)(d, c) }

(see Fig. 3). Denote by SSa,c ̂ e set of vertices of F that belong to a mesh stopping in Ra,c
but neither to Ra,c nor to ^^a^)- The set ^a,c is not empty, since

^ (dimz+dimrz— ^ dim z ' ) = dim T^ + dim c — ^ dimb=0.
zeRa,c z ' e z ~ be S9a,c

For beS8a,c^ I61 v^'. ^a -> b and w^: fc -^ c be arbitrary paths between these vertices.
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LEMMA. — There exist numbers 8^= ± 1, for be^,,c? suc^ ^at the sequence

s^o^T^e^^c^o
is exact. In addition,

f 1 for zeR^,,
§£a ̂  = 1 n ,[ 0 otherwise.

Proof. — We claim that there exists no path i;: T~ ̂  ->- yin F for x, ̂ e^ n T(Ro,c). If there
is such a path, y must lie in R^c, and then u is essential. Since fc(D (x, ^) = 0, there exists an
ordinary arrow O L : X ' -> x~lx such that ua(aa) is not essential. Suppose a goes down.
Since Ra,c contains no projective vertices, the highest path Umax homotopic to v has to pass
by the « upper corner ofRa,c»»i- e., the highest vertex in R^c. But then y cannot lie in T(R^).

The claim implies that any path from TO to xe^nT(R^) is ordinary, and that all such
paths are homotopic. Similarly, any path from yeR^c^^'1^) to c ls ordinary, and all
such paths are homotopic. In addition, no two vertices x, yeQr\x(Ra,c} have the same
height. We number the vertices of ^,,c» setting ^a,c={&i, . . . , h ( } with h(foi) > h(bj)
for i < j (see Fig. 3).

For b=x*e^a,c^ wli^ xeQ, we let V^,Q 2in(^ ^,0 be the subpaths of v^ and w^ obtained
by deleting b, and we set

(w^)+=Wb,oa(^aKo,

(w^)~=Wb,oP(<7PKo,

where a and P are the arrows with head T" ̂ x going down and up, respectively (see Fig. 4).
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If be^a,c is ordinary, we set

Vb,o=Vb, ^b,o=^b, and (^b^ =(^bVb)~ =w^.

It is easy to see, using again the claim above, that (w^.)" is homotopic to (w^^^^
for f= l , .. . , r — l . Therefore we can define £^ by induction on i starting with e^=l
in such a way that

t
^ E^H^=0.
f = l

As in 4.3, we have that

coker(©fe(^)(z.fc)[?(^^]fc(^)(z,c))={fe for ^eRfl•c'
b [ 0 otherwise,

coker(© k(D(b, z) ̂ -W fe(r)(^z)) = { k !OTZe^'
b [ 0 otherwise.

So the statement about 8^ ^ follows from the exactness of £a,c-
We show that for any vertex z the induced sequence

0 ^ fe(r)(z, m) -^ © fc(F)(z, ^) -^ /c(r)(z, c)
&

is exact. We may suppose z ordinary. The proof for the injectivity of [fe(r)(z,^)] is
the same as in 4.3.

It remains to be shown that for any family /;,ek(r)(z, b) with ^£^^==0 there exists
b

a gek(T)(z, m) such that fb=~Vb§- I1 suffices to examine families [f^] of the following
kind (see Fig. 5): There is a path

v\'. z -> bi for 1 < r < i < s ̂  t

such that v^o is essential, (w^)"^ is not essential, (w^)~ is homotopic to (w^^^I+i)"^
for f=r , .. . ,5—1, (w^)" is not essential, and

f ± ^ for r ^ f < 5 ,
^ ^ [ O otherwise.

We use the same notations as above; the signs ± in the definition of f, are chosen in such
a way that

s

Z £^Jfc.=0.
i=r
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Consider the highest path homotopic to v^,o, and decompose it as u^u^, where u^ consists
of arrows going down and where the last arrow of MI : z -> x goes up unless MI is trivial.
The highest path homotopic to (w^i^ contains MI as a subpath, and we decompose
it as u^u^. Since 14 is essential, u^ is not. Therefore x lies outside of R^c? higher than ra,
and we can decompose 1^3 =^5^4, where no vertex of 114 but the last one lies in R^c, whereas
all vertices of u^ do. The path 14 cannot be essential.

Similarly, v's,o is homotopic to a path passing through a vertex y outside of Ra,c anc!
lower than TO. Hence we find a path u: z -> TO such that v^o is homotopic to v^ou for
f = = r , . . . , 5 , and we set g=u. For i < r, i^,,oM is homotopic to a path containing 114 and
thus is not essential. In the same way V^,QU is inessential for i > s.

5.4 Let SS'^c be the set of vertices belonging to a mesh that starts in Ra,c but neither
to Ra,c nor to T~ \Ra,c)- Choose any path v^ : a -> V for fc'e^,,, and set

fa^[^'Va^@V.
We define

8^(z)=dimfe coker (® k(r)(b', z) ^ k(r)(a, z)).
v

Then lemma 4.4 and its corollary are true. The proof of proposition 3.3 given in 4.5
for Q=A^ carries over to the present situation.

5.5 We indicate briefly how to extend this proof to pairs (Q, I) of finite represen-
tation type with P(Q, I) < 2 and such that r=rQ,i is connected and contains no oriented
cycle.

Let n : f -> r be the universal cover of F. Starting from a rectangle Ra,cm ?, we obtain
a sequence n(La,c) of representations of (Q, I):

/x-» \ f\ [Wb] ^-^ i [£b»tWb] ^7c(£a,c): 0 -^ n^a —> @nb ——> nc -> 0,
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and our considerations in 5.3 together with the fact that K induces a covering func-
tor (see [4])

n: k(F) -> k(F) imply that 7c(E^,) is exact.
In addition,

8n(£,,,)(^)=card (R^n Hz),

for any z in F, where n is the fundamental group of F. If a rectangle R^ contains two
distinct vertices Zi, z^ =gz, lying in the same n-orbit, we can assume that z/, z^ are corners
of R^,; i^e., the highest and the lowest vertex in R^,, respectively. Moreover, replacing
Ra.c by T '(R^,) if necessary we may suppose that R^, contains an injective vertex/ But
then we find a vertex x with

m^j)^o^k(r)(x,gj),
which means that nx contains some simple twice as a composition factor. But the struc-
ture of the indecomposable representations of (Q, I) is known, and a simple cannot have
multiplicity 2 in an indecomposable unless F contains an oriented cycle. In fact, here
it suffices to know that the endomorphism ring of any indecomposable is fe. So we have
that two rectangles R,., and ^R,,) with geH\{ 1 } do not intersect or equivalently that

§^(£,,,)(7tz) < 1 for all z.
Using the set of exact sequences of the form n(La,c) as our set y, we carry out the strategy

of 3.6 as in 4.5 for Q = A^. Note that here we do need that F contains no oriented cycle,
first to have lemma 3.6 and then to conclude that if, for a rectangle R^ n^a and nc are direct
summands of Y, their direct sum ma © nc is, too.

6. The case Q=D^

Let Q be a quiver with underlying graph Q=D^, 1=0, and set r=roi.

6.1 Let K be the quiver

K = 1 ^ 2 ^ . . . -^-2^~1

^n
The translation quiver ZD^ is defined as follows [8]: Start from Z x K and add an arrow
O'j) -^ O'+lJ-l), for feZ and 2<j<n-l, and an arrow (f,n) -. (f+1, n-2) for feZ.
The translation is given by T(f,7')=(f-l,y).

We call a vertex (ij) of ZD» low ifj<n-2 and high otherwise. A high vertex (1,7)
is said to be even or odd if i+j is even or odd, respectively. Two high vertices (ij) and
(p, q) are called congruent if i+j=p+q (mod 2).

Embed the opposite quiver Q015 of Q into ZD^ in such a way that all r-orbits of vertices
in ZD^ are hit. Then the Auslander-Reiten quiver F can be identified with the full sub-
quiver of ZD^ given by the vertices lying on or between Q015 and v(Q015), where v is the
Nakayama permutation; if(fj) is low, v(fj)=(f+n-2,y), and if (1,7) is high, v(ij) is the
high vertex with first coordinate i+n-2 which is congruent to (ij). From now on we
denote by T the translation of F

6.2 We now describe the set of exact sequences which replace the sequences asso-
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dated with rectangles in the previous chapters. Let a = (f, j) and c = (f, /) be vertices of F
with fe(F)(a, c) 9^ 0, and suppose that a is not projective. Set

3 i f a a n d c a r e l o w a n d f + n — l < f + / , f '< f+7- l ,
1 otherwise.^a.c=

Below we define a set Ha,c ^ integralvalued functions r|i, . . . , T|̂  , on the vertices of F
for all pairs a, c. For r|eH^, we set

\=a, Pn=^
and we define suppTl={ z: ^(z^O }.

we say that T|'^T| for TI, r('eH=UH,,c if r|'(z)^r|(z) for all vertices z.
fl,C

Choose T| e H^,c. We claim that:
1) There exists an exact sequence

E ^ O - T a ^ e b ^ c - O

with 5s = TI. In the middle term, b ranges over the set ̂  of vertices belonging to a mesh
stopping in supp T| but neither to supp T| nor to T (supp T|). For be^, v^ ^a -> b and
Wb: b -> c are suitably chosen paths, and 8^= ± 1.

2) If X > Y is a virtual degeneration and if no vertex in the support of T| is a direct
summand of Y, we have

8x.Y(^Z§x,Y(fc').

Here V ranges over the set ^=x~\S^).
We leave it to the reader to verify this claim using the detailed description ofmorphisms

in fe(ZD») given in [9].
(i) a and c are lo\v and f '<f+7- l , i '+/<f+n-2:

^ f 1 if i<^p<i\ i-}-j^p+q<V+f,
^ ^ { o otherwise.

(ii) a and c lo\v and f '< f+7 '—l , f + n — l < ^ ' + / :

1 if (p,q) is low and i<p<i\ i+j<p+q^V+f ,
r| ̂ p, q) = < 1 if (p, q) is high and even and i < p < f +/ +1 - n,

0 otherwise.
1 if (p,q)low and i^p<i\ i+j<p-}-q<i'+f,

^i(P. q) = • 1 if (P^(?)is ^g11 and odd and l ̂  P ^ r +/ +1 - n.
0 otherwise.

' 2 if (p,q) is low and 7?<f+/+l-n, f+n-1 </?+<?,
1 if (p,q)is low and f</?<f '+ /+l -n , i+j<p+q^i+n-2,

r{^p,q)= < 1 if (^ ,g) is lowandf '+/+2-n</?<i ' , f+n- l^^+^<i '+/ ,
1 if (p,q) is high and f ^ / ? < f ' + / + l — n ,
0 otherwise.

46 SERIE - TOME 19 - 1986 - N° 2



DEGENERATIONS FOR REPRESENTATIONS 299

(iii) a and c are low and i-\-j<i\ f + n — 1 :<?'+/:
r| is defined as r|3 in (ii).

(iv) a is low, c is high, and i'^i+j—l:

1 if (p,q) is low and i <p<i', i-\-j<p-\-q,
^(p^ (?) = 1 if (P^ q) is high, congruent to (f, /) and i :< p < i ' ,

0 otherwise.

(v) a is high, c is low and f :< i + n — 1:

1 if (p,q) is low and/7^f, f + n — 1 </?+<? <f'+/,
^(7^ <?) = 1 if (j^ ^) 1s high, congruent to (f, j) and i<p<, V +/ +1 — n ,

0 otherwise.

(vi) (3 and c are high, congruent, and i' < i + n — 1 :

1 if (p,q) is low,/? <f, i+n-Kp+q,
r\(p, q) = 1 if (p, q) is high, congruent to (i,j), and i<p< f ,

0 otherwise.

Note that for r|eHa,c and rfesupp T|, there is a function ri'eH^ with rj'<r|.

6.3 Let us carry out the strategy explained in 3.6. The set y of exact sequences
consists of the £^ with T|eH.

Let X ̂  Y be in J^(d) such that there is a virtual degeneration X^Y. We say that
a function T| eH is admissible for (X, Y) if 2^ is. We choose the vertex a as in lemma 3.6;
i. e., 8x,Y(^)> 0 and §x,Y(z)=0 fo1' all proper predecessors of a. Then raQY and the only
function r\eHa,a 1s admissible.

Let T|' be maximal among the functions in H with \'=\=a which are admissible
for (X, Y). Again it suffices to show that supp T|' contains a direct summand ofY. If not,
part 2) of the claim in 6.2 applies to all T|" < T|' with ri"eH, and it suffices to find such an T|"
with ^ §X,Y(^)=O» fo'e^-. For this we can take the minimal element in the set of all

b'

functions seH with £ < T|', pg = p^ and such that no £' ̂  e with s' ̂  e and ̂  =^g is admis-
sible for (X, Y).

We explain this in detail in the most complicated case: Suppose that a=\'=(i,j) and
^PTI'^'J') are low with f '<f+7-l, i+n-Ki'+f and that r|'=r|3eH^. The
same argument works if a = ̂  = (i,j) and c = p^ = (i'.f) are low with; +y <, f,;' + n — 1 <;' +/
and if T|' is the only function in H^,c. For simplicity we assume that c is not injective.

By construction, r(' is maximal among the functions rieH with \= a which are admis-
sible for (X, Y). This implies that

5x,YO''+l» <?)==0 for some q with i-^-n—2—i'^q^f—l

and that 5x,Y satisfies one of the following sets of inequalities (see Fig. 6).
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(ij)

FIG. 6.

Set
Zi = { (p^qiY Pi +min(^,n-l)== i" +/+Ui >/+!},

. Z2={(/?2^2)^2=W+2-n,f+n-l<^2^-2},
Z3={(;?3,g3)^3=^+/+2-n,l+7<^3^+^-2}.

(^) 8x,Y(^i^i)==0 for some (p,,q,)eZ,, ^{p^q\)>. 1 for all (;/i,^)eZi with
^'i<min(^i,n-l).

W 8x^2^2) <1 for some (p 2^2)^2, ̂ (pi^i) ̂ 2 for all 0/2^2)^2 with g'2>^
and SX.Y^ 1 on Zi.

(c) 8x,Y(^3,^3)=0 for some (^3, q^eZ^ 8x^3^3)^! for all (/?3,^3)eZ3 with
^3 > ^3? 8x,Y >- 2 on Z2, and 5x,v ̂  1 on Zi.

In case (a), we have ̂ " = (p^, f +1 + q —pi), and we obtain 5x,Y(^n") == 0, a contradiction.
In case (c), ^=(f'+<?+2-n, 7^3+^3-^-^+^-2) and ^{\^=0.
Finally, we show that case b) cannot occur. Indeed, set c'=(('-(-/4-2—n, n—l)eZi ,

and let a '=(^2+<?2+2—n, r) be the high vertex congruent to c'. Consider the exact
sequence

1^:0-^ Ta'=(p2+^2+l-^^) ̂  b=(p2,q2)^ c'=(i'+/+2-n,r) ̂  0

associated with the only function r|eH^,c'- Since supp T|' contains no direct summand
of Y, the sequence

0 -> Horn (c', Y) -. Horn (b, Y) -. Horn (r^', Y) -> 0

is exact, and therefore
8x,Y(0 + 8x,Y(^') < SX,YW ̂  1.

But §x,Y(^')>l and thus 8x,Y(^)=0 although c'eZi.
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