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IWASAWA MODULES ATTACHED
TO CONGRUENCES OF CUSP FORMS

BY HARUZO HIDA

§0. Introduction

A general principle in the study of congruences modp between primitive cusp forms is
(not to consider them directly but) to analyse the ring theoretic properties of the associated
Hecke algebras. This approach appears indirect, but in fact, is more accessible. Roughly
speaking, the local rings of the Hecke algebra overZp correspond bijectively to the maximal
classes of primitive cusp forms congruent each other modulo p. If one of its local rings
splits after extending scalar to Qp, then there exists a non-trivial congruence between
distinct Galois conjugacy classes of primitive forms.

In our previous papers [7 ] [8 ] and Ribet [24 ], this principle was applied to primitive
forms of fixed level and fixed weight. The present purpose is to consider all primitive
forms of all weights for a fixed level, simultaneously, and to apply this principle. For a
technical reason, we have to assume p ̂  5 for the prime p throughout this paper. Then, as
a result, the Hecke algebra A of the space of all ordinary forms is proved to be free of finite
rank over the Iwasawa algebra A==Zp[[X]] (for the definition of ordinary forms, see
below). The local rings of A correspond bijectively to the maximal classes of infinitely
many ordinary forms congruent each other modulo p, and if one of them splits after extend-
ing scalar to the quotient field ^ of A, then there exists non-trivial congruences between
systems of infinitely many ordinary forms. Furthermore, to each simple component JT
of ^®A^» a finite torsion A-module ^(Jf) can be naturally associated. In terms of
^(Jf), one can give a fairly complete description of congruences mod;? occurring at each
weight between cusp forms belonging to JT and others.

To give a more explicit illustration, we consider, just for simplicity, the space <9^(r\(/?); Z)
consisting of cusp forms for Fi(/?) of weight k with rational integral Fourier coefficients,
and put ̂  = y\y\{p} \ Z)®zZp. Let 4 be the subalgebra of Endzp(^) generated over Zp
by all the Hecke operators T(n) of level p. For sufficiently large reZ, the ^-adic limit
^= lim TO^^'^ exists and gives an idempotent of ^. Any non-zero common eigen-
form of operators in 4 is called ordinary if /1 c= f and its first Fourier coefficients is
equal to 1. We fix once and for all an embedding of the algebraic closure of Q into the
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232 H. HIDA

p-Sidic completion Q of an algebraic closure of Qp. Then, a non-zero common eigen-
form / with / | T(/?) = a(p, f)f is ordinary if and only if its eigenvalue a(p, f) is a 7?-adic
unit in Q. For any ordinary form /^O, there is a unique simple direct summand K
of ^!?(Qp)=(^fc)®ZpQp» which acts non-trivially on f. Let A be the complementary
direct summand of K, ̂  be the direct sum of the projected images of ̂  = ̂  in K and A,
and define a finite /^-power-torsion module C(/) by A^jA^. The following fact is funda-
mental in the theory of congruences of primitive forms:
(0.1) C(/)^0 if and only if there exists an ordinary form g in <9?fc(Q)=<99fe®zp^ suc^

that g=f mod ^P and g is not conjugate to f under any automorphism of Q over Qp,

where ^ is the maximal ideal of the 7?-adic integer ring of Q.
Now we generalize this to the infinite dimensional spaces of all ordinary forms of all

weights. Let us denote by ^ ] the subspace of © ^j?(Qp) (e^?(Qp)=^k(Qp)) consisting
k=l

of all forms with radically integral Fourier coefficients, and put y = [j y3. Then y
00 J

contains © y^ (y^ = ̂ y\ but is much bigger than that. The usual action of Hecke
k = l

operators respects V and y3 (see § 1). Naturally the Hecke algebra A3 is defined as
the Zp-subalgebra of Endzp(^) generated by all Hecke operators. The restriction of
operators of A3 to the subspace V 3 ' for j>f gives a projection morphism of A3 onto A3',
and their projective limit A=\\mA3 naturally acts on y. Let zeF=l+7?Zp act on

^(Qp) through f\z==zkf; then, this action on © ^?(Qp) leaves V stable by a result
k=0

of Kats (see (1.12)). For any prime \~=\ mod/?, the action of (eF on y coincides with
that of the Hecke operator (^((.l). Thus the Iwasawa algebra A= limZp|T/TJ

^~n~

(Fn= 1 -^-p^p) can be regarded as a subalgebra of ^. Then one of our main results is
(0.2) ^ is free of finite rank over A (Theorem 3.1).

We now identify A with the power series ring Zp[[X]] through F^l+p \—> l+XeZp[[X]],
and put Pj^^X+^—^+T^eA for feeZ. The restriction of operators in A to the
subspace y^ induces an isomorphism:

(0.3) ^/P^< if W (Corollary 3.2).

Let S be the quotient field of A and put S= A®^. Then
(0.4) ^ is a finite dimensional semi-simple algebra over ^ (Corollary 3.3).

Let us take a simple direct summand ^ of ^, and let ^ be its complementary direct
summand. Denote by ^(Jf) and ^(^) the projected images of ^ in Jf and j^, respectively.
Let us further pur ^(Jf)= C}^Wp, ̂ )== H^OP. ̂ '= ̂ W©^Q and ^== ̂ (Jf)©^),

P P
where P runs over all prime ideals of A of height 1, the subscript " P " indicates the loca-
lization at P and the intersection is taken in Jf and ^/, respectively. Then, the module
yT=^/^' has only finitely many elements; i.e., pseudo-null, and

(0.5) ^(Jf^ ̂ A is a finite torsion module over A (Theorem 3.6).
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Furthermore, i ffe^2,

(0.6) 4(Jf)=^(Jr)/P^(Jf) is isomorphically embedded into ^(Qp) (Corollary 3.7).

For simplicity, we now assume that Jf is reduced to J^f. Then (0.6) shows that there
is a unique ordinary form fj, in ̂  for each k ̂  2, on which ^(Jf) acts non-trivially. Then
if fe^2, we have an exact sequence: ^

(0.7) 0 -. C(./fe) -. ̂ (Jr)/P^(Jf) ̂  ^T/Pfe /r -^ 0 (Corollary 3.8),

and we know that ^(JQ^O if and only if C(fk)^0 for at least one k^2 (this condition
is also equivalent to knowing that C(/fc)^0 for all fe^2). Since \^\<co and ^ is
independent of k, ̂ (Jf) may be said to interpolate all the modules C(fk) (as in (0.1)) for
the system { fk} of /^-ordinary forms belonging to jf. The pseudo-null module J^
is expected to vanish, and some sufficient (not too restrictive) conditions for ^=0 will
be given in Proposition 3.9.

In this paper, we shall deal with only the algebraic aspect of the theory of the Iwasawa
modules ̂ (Jf), but as seen in [7, Th. 6.1, Cor. 6.3] and [8, §§ 6, 7 ], the number of elements
of C(fk) can be expressed by the rational part of the special value at s = k of a certain zeta
function L(5, fk) of fk. Thus the characteristic power series of ^(Jf) may be conjectured
to interpolate the values L(fe, fk) radically (Conjecture 3.10). An affirmative but partial
solution of this conjecture will be given in our subsequent paper [11]. Besides this,
another proof of the above facts (0.2-7) by using cohomology groups as in [8, § 3 ] will
be given in [11].

The precise statement of our results valid for any level and over any ground ring will
be given in § 3. The proof of (0.2) heavily relies on the theory ofjp-adic modular functions \
of Katz [18] and the duality between /?-adic modular forms and their Hecke algebras.
An exposition of Katz's theory is given in § 1 and a duality theorem is proved in § 2. \
Another key point is a result ofJochnowitz [13 ] which guarantees the finiteness of ordinary \
forms modulo p. This together with a proof of finiteness of ^ over A will be given in § 4.
Main theorems will be proved in the following sections §§ 5 and 6. In § 7, we discuss
the Hecke algebras obtained from theta series of imaginary quadratic fields and Eisen-
stein series. They provide ample examples of irreducible components Jf and Iwasawa
modules ̂ (Jf). Some other examples, together with a detailed exposition on the relation
between congruences and the module ^(Jf), are discussed in [31].

Notation. — The group GL^(R) of real matrices with positive determinant can be con-
sidered as the holomorphic transformation group of the upper half complex plane

§== { zeC | Im (z)>0}. For any function /(z) on $ and y= I )eGL^(R) and feeZ,
we can define another function / l^y by vc /

(/ Ly)(z)= de^/vfe^Vcz+rf)^ (ze^).
\cz+d/
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234 H. HIDA

For any positive integer N, we define subgroups of SI^Z) by

Fo(N) = \ ( a JeSL2(Z) | c = 0 mod N },
[\c d ) J

Fi(N) = \ ( a b }eW) | d= 1 mod N I,
[\c d j J

r(N)=<^ ,)eri(N)|fo=OmodN}.
(V dj j

Any holomorphic function / on § with f\^=f for all yeUN) has Fourier expansion
of the form:

(0 • 8) ^a(-, /\(nz/N) (e(z) == exp (Iniz)).

Hereafter, we always write the Fourier expansion of / as in (0.8). For any subgroup A
of SL2(Z) containing F(N) for some N, the space ^(A) of modular forms on A consists
of holomorphic functions / on $ with the properties:

(0.9 a) /lt5=/ for all SeA;

(0.9 b) a (—/ka)=0 for all n<0 and any aeSÎ Z).

For any character ^ of A of finite order, we put

^(A,v)/)={/e^(A)|/|,8=<l/(5)/ for any §eA}.

Especially, any Dirichlet character \|/ modulo N induces a character of ro(N) (which is
again denoted by <)/) through

^(a ;))= )̂ for ( a ;)ero(N).
\\c d j } \c d]

Thus the space .J^(To(N), v|/) is defined in this manner. Put

^(A) = {/e^(A) | a(0, / l^a) = 0 for all oceSL^Z)},
^(A, v|/) = { /G^(A, \|/) | a(0, / l^a) = 0 for all aeSI^Z)}.

For any automorphism a of C and /e^(ro(N), v|/) (resp. e9^(ro(N), \|/)), there is a modular
form /^^(^(N), v)/0) (resp. WoW, ̂ )) such that a(n, f°)=a(n, f)° for all n, where
vj/^m) = (^(m))0 for all meZ ([27, Th. 2 ]). The modular form /CT is called a conjugate of /

We denote by Q the /?-adic completion of an algebraic closure of the ;?-adic field Qp.
The normalized norm of xeQ is denoted by | x\p (\p \p==p~1). The algebraic closure
of the rational number field Q is regarded as a subfield of C and Q. Every finite extension
of Qp is considered in the universal domain Q.
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IWASAWA MODULES OF CONGRUENCES OF CUSP FORMS 235

§ 1 . p-adic modular forms and their Hecke algebras

Firstly, we shall define spaces of/?-adic modular forms in an elementary manner; then,
we shall give another definition of them in the context of works of Katz. This enables
us to define Hecke operators acting on these spaces.

Let K be a finite extension of Qp in Q and (9^ be the ring of all /?-adic integers. Let Ko
be a finite extension of Q dense in K under the p-adic topology. Let A be either of the
congruence subgroups ri(N) or r(N) for a positive integer N. Put

^(A;Ko)=^/e^(A)|a(n,/)6Ko for all ne^Z^

^(A;K)=^(A;Ko)®KoK

We define a p-sidic norm | \p on Q^1^]] by

00

( 1 .1 ) ^a(n)q^ = Sup | a(n) |,.
n=0 p "

We write the Fourier expansion of /e^(A;Ko) as
/ n

J^^/)^ for q=e(z).

Then one can define the norm | / \p by (1.1). It is known (cf. [27, Th. 1 ]) that | / \p is
finite for all /e^(A; Ko), and we may regard ^(A; K) as a completion of ^(A; Ko)
under this norm. Thus ^(A; K) can be identified with the closure of the image of

j_
j^(A;Ko) in K[[^]], and thus every element of J^(A;K) has a unique ^-expansion.
The space ^(A; K) is determined independently of the choice of the subfield Ko (see
below (1.5)). Let 0 be either of the congruence subgroups Fo(N) or Fi(N)nFo(//). Any
Dirichlet character \|/modN or mod//" (according as 0=Fo(N) or Fi(N)nro(7/)) gives

a character of ^> by \|/( ( ) )=\|/(d). Then we can define, if v|/ has values in Ko,
\\c d } }

,̂(0, v|/; Ko) = {/e^(<D, v)/) | a(n, /)eKo for all n },
^(<D, ̂ ; K) = .̂ (0, ̂ ; Ko) ®KoK.

Put
^,(A;^)= {/e^,(A;K) 1 1 / |̂ 1} =^^K)^[[qNn

^((D,v|/;^K)=={/e^?^;K)||/|^l}.

The corresponding spaces can be similarly defined for cusp forms, and for the space of
/?-adic cusp forms, we shall use the notations: ^(A;K), ^(O, v|/; ^c)? etc-

For each positive integer y>0, put

^(A; K) = © ^,(A; K), ^(A; K) = © ^,(A; K).
f c = 0 k=l

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



236 H. HIDA

Since ^(A; K) is embedded into K^^]] for each k, we can consider the ^-expansion
j J

of any / = © /^^(A; K) given by a(n, /) == E a{n, /jQ. Then, it is plain that ^(A; K)
k=0 k=0

is embedded into K^^]] by this ^-expansion, and so we can define a /?-adic norm
on ^(A;K) by (1.1). Put

^J(A;^)={/e^(A;K)||/ |^l}=^(A;K)n^K[^ l /N]],
^(A; ̂ -^(A; K)n^(A; ̂ ).

Let A denote either of the ring K or 0^. Now we take the limit:

^(A; A) = U W; A) in A [ [q^ ] ],
j

<^(A;A)=U ^(A;A) in A^^]].

Let ^(A; A) and ^(A; A) be the completion of ^(A; A) and c^(A; A) in A [ [^1/N ] ] under
the norm (1.1). The elements in J^(A; A) will be called j?-adic modular forms. When
A==;Ti(N), we simply write ^(N;A), JT(N;A) and ^(N;A) instead of ^(F^N); A),
^(Fi(N);A) and ^(Fi(N);A). This simplification for the symbols also applies to the
space of cusp forms.

Here we summarize some results of Katz in a manner suited for our later application.
Firstly, we give another definition of the space of modular forms as a solution of certain
moduli problems. The details are found in [18, Chap. II]. Let ^ be the finite flat
group scheme over Z realized as the kernel of the multiplication by N on the multiplicative
group G^. For each commutative ring A with identity, we consider triples (E, co, Q/A
consisting of the following three objects: (i) E is an elliptic curve (i. e., an abelian scheme
of dimension ^1) over A, (ii) co is a nowhere vanishing invariant differential on E rational
over A, and (iii) i is an inclusion over A of HN into the schematic kernel E [N] in E of the
multiplication by N. As an example of such triples, we may offer the Tate curve Tate (q)
over the ring Z((q)) of formal Laurent series (cf. [3, VII ]). If we regard Tate (q) as a quotient
of Gw/z((g)) by the subgroup generated by q, the canonical level N structure
^can : ̂ N ^ Tate (q) [N] is induced by the natural inclusion ̂  into G^. If one identifies G^
with Spec (Z [x, x~1 ]), then the invariant differential d x / x induces a canonical differential
©can on E- Thus we have the triple (Tate (q\ (o^an, ^'can) defined over Z((^)). The space
of modular forms on Fi(N) over A in this context consists of functions / which assigns
the value /(E, co, QeA' to any triple (E, co, i) over any over-ring A' of A and which satisfies
the following conditions:

(1.2 a) /(E, co, i) depends only on the A'-isomorphism class of (E, co, f ) ;
(1.2 b) The function / is compatible with the base change;
(1.2 c) For any unit ^(A')', /(E, a-1®, i)=akf(E, co, i).

The space of these functions is denoted by Rfc(Fi(N);A).
The evaluation of /eRfc(ri(N);A) at (Tate (g), cOcan^'can) ^lves an embedding:

(1.3 a) R,(ri(N);A)c,A((^))

4° S^RIE - TOME 19 - 1986 - N° 2
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and if A' => A, then

(1.3 b) /eRfc(Fi(N); A) if and only if /(Tate (q\ co^, kJeA((q)) and /eR^N); A').

This type of assertion will be called the ^-expansion principle. We mainly deal with
the level N structure ; : ̂  <^ E [N] in this paper, but to prove one of key lemmas for our
later use, we need some other types of level N structure, which concerns the principal
congruence subgroup F(N): Let (Z/NZ)/A denote the constant group scheme of order N
over A and define a standard pairing < , > : ̂  x Z/NZ -> ̂  by < ((;, m), (^, n) > = ̂ A^".
Then we consider the following two other types of level N structure:

(i) P : ̂ IN><Z-/NZ^E[N] such that < , > coincides with the Weil pairing on E[N]
under P;

(ii) a^Z/NZ)2^^].

For the very existence of the structure a as above, N must be invertible in A. We will
use the symbols a, P and i exclusively to indicate which type of level N structure we are
dealing with. Similarly to Rfc(r\(N); A), we define the space of modular form s R^(F(N); A)
(resp. ̂ (r(N); A)) which classifies triples (E, co, P) (resp. (E, co, a)). Assume that N~ ̂ A,
and we consider naive level N structures (E, co, a) over A. Let e^ be the Weil pairing
on E[N]. We define a primitive N-th root of unity det(a) by

det(a)=^(a(l,0),a(0,l)).

Then we can define an arithmetic r(N)-structure ?„ : |^NXZ/NZ^E[N] out of the given
naive r(N)-structure a by

P^deW.^^m,^.

The correspondence: (E, co, a) -> ((E, co, Pa), det (a)) gives a bijection (cf. [18, 2.0.8 ])

(1.4 a) {naive r(N)-structures } ̂  {^^(A) | ^ : primitive } x { arithmetic r(N)-structures }.

This yields an important isomorphism

(1.4 b) W(N); A)^R,(F(N); A)(g)zZr^, J

where ^ is a primitive N-th root of unity. On the Tate curve, a canonical arithmetic
r(N)-structure ̂ : ̂ xZ/NZ^ Tate(^)[N] over Z^q^)) is given by PcanK,^^.
Then, the ̂ -expansion principle holds for Rfe(r(N); A) for the evaluation at (Tate(^), co^n? Pcan)-

In order to compare these new definitions of modular forms with those given in the
beginning of this section, we consider the space of modular forms over C. To any point
ze§, one can associate a lattice in C given by L^=27u(Z+Zz). By means of p-function

relative to this lattice L^, we can regard the triple (C/L^, du, i) with i ( e ( — ) ) = ( — mod L^ ]
\ \ N // \N /

as an arithmetic level N structure, where u is the variable on C. For any /e^(Fi(N)),
the correspondence:

(C/L,,^,0^(27iO-V(z) for each ze$

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



238 H. HIDA

defines an element of Rfe(ri(N); C). Since the evaluation of /e^(ri(N)) as an element
of Rfe(ri(N); C) at (Tate (q\ ©can? ^can) coincides with the analytic ^-expansion of / via
the identification q=e(z\ we can regard ^(ri(N)) as a subspace of Rfc(ri(N); C). The
correspondence: (E, CD, P) \—> (E, co, P |^) yields an inclusion Rfe(r\(N); A) into R^(r(N); A),
which preserves ^-expansion. Then through the identification (1.4fc), we can evaluate

\_
an element /eRfe(ri(N); A) at Tate (q) over A KK^)) with an arbitrary naive r(N)-struc-
ture oc :(Z/NZ)2^Tate(^)[N]. Then we have that

j_
^(ri(N))= {/eRfc(ri(N),-C)| /(Tate^co^oc^Ct^]] for every oc}.

This combined with the ^-expansion principle shows that, for each subring A of C or Q,

(1.5) ^(W); A) = { /eR,(r\(N); A) | / (Tate (q\ co ,̂ oc)eA ̂ , ̂ pH for all a ̂

as a subspace ofA[[^]] . By this fact, ^(ri(N);K) does not depend on the choice of
the dense subfield Ko.

Now we shall review the 7?-adic theory. Main source of the results is [18, Chap. V]
and [16, 17]. We mean by a j?-adic ring A an algebra which coincides naturally with
the projecture limit lim A//?"A. Thus it is radically complete, but for example, the

^~n~

/?-adic field Qp is not an object of the category of^-adic rings. Let E be an elliptic curve
over a ^-adic ring A. By a trivialization ^ on E, we mean an isomorphism <|) : E ̂  G^
between the formal completion E of E along the origin and the formal multiplicative
group G^. Write N=N0^'" with (No,/?)= 1. We consider triples (E, (j), f), (E, ((), P) and
(E, ()), a) over /?-adic rings and we impose the following additional compatibility condition
between <^> and the level N structures:

(1.6) The composition: [ipr <4 E^ G^ is a natural inclusion.

As for the naive r(N)-structure a, one can discuss it only when N is invertible in A (there-
fore, necessarily, p is prime to N), and thus no additional compatibility condition is neces-
sary. We denote by V(N; A) (resp. V(F(N); A) and ^(F(No); A)) the space of functions
which assign an element of A' to each A'-isomorphism class of a compatible triple (E, ([), i)
(resp. (E, ()), P) and (E, ((), a) for a naive r(No)-structure a) over any /7-adic A-algebra A'
and which are compatible with any base change in the category of/?-adic A-algebras. Then,
in the same fashion as in (1.4^,b), one has an isomorphism

(1.7) ^(r(No), A)^V(r(No), A)(x)zzf— ^o
l_No _

where (30 is a primitive No-th root of unity.
Let 'Z^p((q)) be the p-adic completion of Zp((^)). Since the Tate curve Tate (q)/Zp((q))

is a quotient of G^ by the subgroup generated by q, we have a canonical trivialization
^:Tate^)^G,. By definition, the triples (Tate(^), ̂  icJ/^M) and

46 SERIE - TOME 19 - 1986 - N° 2
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(Tate {q\ ̂ , PcaJ/Zpto1^)) are compatible. It is known (for the proof, see [16, 1.4])
that the evaluation at the canonical Tate curves as above gives

(1.8^) V(N;A)c.A((5), V(F(N),A)c,A((^),
(1.8fc) // A'^A, V(N;A')nA((^))=V(N;A), V(^(N);A')nA((^N))=V(^(N);A),
(1.8 c) The quotient of A((^)) (resp. A((^N))) by the image of V(N; A) (resp. V(F(N); A))

is A-flat.

Thus the ^-expansion principle also holds in this case. The correspondence:
(E, ((), p)h-^(E, (|), p |^) again yields a ^-expansion preserving embedding

V(N; A) <-> V(F(N); A) for all /?-adic ring A.

By the compatibility condition (1.6), to give a level N-structure i on the trivialized curve
(E, (()) is equivalent to give a level No-structure i | j^o- This correspondence yields an
equivalence between the category of (E, (|), i) of level N and that of level No. Moreover,
this correspondence takes the canonical Tate curve to the corresponding one and thus
preserves ^-expansion. Then, as a subspace of A((^)), one has an identity

V(N;A)=V(No;A).

Thus, by (1.7), we can evaluate any element ofV(N; A) (resp. V(r(No); A)) at any trivialized
Tate curve (Tate(^), (|), a) over ZpK]((q1^0)) with any arbitrary naive F(No)-structure a.
Put for each 7?-adic algebra A,

(1.9a) W(N;A)= {/eV(N;A)|/(Tatete),(|),^)eAKo][tel/NO]] for all ^> and a},
^r(F(No);A)= {/e^H^i^l/^ate^.^^eAKolt^1^0]] for all (() and a},
W(F(No);A)= {/eV(^(No);A)|/(Tate(^^a)eAKo][ta l /NO]] tor all (|> and a},

where ^o is a primitive No-th root of unity. Then we have
(1.9^) W(N;A)=W(No;A),
(1.9^ ^(r(No); A) = W(r(No); A)®zZ [I/No, ̂  ].

Thus, W(F(No); Zp Ko ]) gives one irreducible component of ^T(r(No); Zp Ko ]) which may
be interpreted as the space of functions which classify the triples (E, (|), a) with det (a)=^o
and are finite at cusps. Thus the space W(F(No); Zp Ko ]) coincides with the space V^oo
defined in [16, (1.11)] (see also [16, Appendix I]). Let (E, (|), a) be the trivialized naive
r(No)-structure over A. For any yeGL2(Z/NoZ)= Aut ((Z/NoZ)2), we can let y act
on (E, (|), a) by (E, ̂  a) ̂  (E, ̂  a o y). Thus GL^Z/NoZ) acts on ^(F(No); A) on the
right. One can calculate the effect of this GL2(Z/NoZ)-action on ^-expansion and then
verifies that under the identification (1.7)

(1.10) W(No; Zp) = ̂ (F(No), Z^, W(No; Z^)®zZ Ko ] - ̂ (F(No); Zpf0

where U = { (^ ^eGL^Z/NoZ) I and Uo = { Q ^eGL^Z/NoZ) I. Put

Z=Z;x(Z/NoZ)x.
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Naturally, the finite group (Z/NoZ)" is a quotient group of Z. We define an action of
z^z^e^eZ^Zo^Z/NoZ)') on (E, ̂  i) by (E, ̂  i) ̂  (E.z^zo f). Thus the
compact group Z acts on V(N; A) and W(N; A) radically continuously. Let coo be
the canonical invariant differential on G^ induced by d x / x . With each trivialization
(E, ((>) over a/?-adic ring A, we can associate an invariant differential co/A on E by co= (|)*o)o.
This correspondence: (E, <))) \—> (E, o)) yields ^-expansion preserving embeddings

R,(r,(N);A)^V(N;A),
^(r(No);A)^^(r(No);A),
R,(r(N);A)^V(r(No);A).

The injectivity is guaranteed by the ^-expansion principle. For any /e^(N;A) with
aj9-adic subalgebra A ofQ, the above embedding sends / into (V(N;A)(x)zpQp)^A[[^]],
which is a torsion element ofV(N; A)\A((^)). Then A-flatness assertion (1.8 c) guarantees
that / is contained in V(N; A). By (1.5) and (1.9 a\ f is in fact contained in W(N; A).
Then the /?-adic continuity affirms that, for any p-Sidic subalgebra A of Q,

(1.11 a) W(N, A) ̂  3^(N; A).

Similarly, we have a continuous embedding

(1 .11 b) W(F(No); A) =3 ̂ (r(No); A).

To state one of the results of Katz which will be used repeatedly, we introduce some
notation. Let Ep-1 be an Eisenstein series in Mp- i(SL2(Z); Zp) given by the ^-expansion:

i-^Ed^),.
"p - l n=l Q<d\n

Then Ep_i satisfies the congruence Ep_ i= l mod/?Zp.
For a primitive No-th root of unity ^o? P^ F1=ZpKo]//?ZpKo]• Then F is a finite

extension of Fp. Write ^(r(No); F) for ^(F(No); Zp Ko ])®z^ Put

G(r(No);F)=©^(F(No);F),
k=0

which is a graded algebra. Since .J^(F(No);F) can be embedded into Ft^1^0]] for
each k through ^-expansion, there is a natural F-algebra homomorphism of G(F(No);F)
to F^1^0]], which sends any (pe^(F(No); F) to its ^-expansion for each k. The ideal
(Ep-i—1) in G(r(No);F) is contained in the kernel of this morphism. On the other
hand, the ^-expansion principle says that W(F(No);F) is embedded into F^^0]]. We
know that W(^(No);F)=W(^(No);ZpKo])®z^o]F(^ the construction given in [16]).

THEOREM 1.1 (Katz). — Assume that either No^:3 or p>.5. Let F= 1 -\-pLp as a sub-
group of Z and let W^No)^ be the subspace of r-mvariants of W(F(No);F). Then
\ve have

(i) w(r(No);z,Ko])=^(r(No);z,Ko]) in z,Ko] [^1/N0]];
(ii) W(r(No); F)^^G(^(No); F)/(Ep-i—l) and this isomorphism preserves q-expansion.
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This theorem follows from [16 ] § 2 for No > 3 and § 4 for No = 1 and 2, but some explana-
tion may be necessary. We use the same notation as in [16]. As already mentioned,
W(r(No);ZpKo]) coincides with V<^. Thus W(F(No);F) coincides with V^ in
Pj^i/Nojj The action of Zp" as a subgroup of Z on W(F(No);F) coincides with the action
of the fundamental group 7ii(Si) in [16, §0]. Since V^oo is the etale Galois covering
ofVij with the Galois group F, W(r(No); F^ coincides with Vij. Then the results of
Theorem 2.1 and 2.2 in [16] yields the above theorem when No>3. When N(;=I,
then W(SL2(Z),F) is W^-l^F)^2^"'1^ Similar fact is also true for No =2 (see,
[16, §4]). Then the theorem follows from [16, §2] even i fNo=l or 2 whenj9>:5.

COROLLARY 1.2. — Let ^(ri(N);Fp)=^(ri(N);Zp)®zpFp, and put

G(r,(N);F,)=©^(r,(N);F,).

Then we have

(i) W(N;Z,)-W(No;Z,)=^(N,Z,) in Z,[[^]],
(ii) W(No ̂ =^(N0)^)^-1-!) in ¥p[[q]].

Proof. — As for the first assertion, it is proved in [16, Appendix III], but we deduce
it from Theorem 1.1 in a more elementary manner. By (1.9c) and Theorem 1.1, we
can identify

^(r(No); z, Ko ]) = ̂ (r(No); z, Ko ])®zZ Ko ].
The action ofGI^Z/NoZ) is realized on the right-hand side as follows: (i) for yeSL^Z/NoZ),
we take a lift yeSI^Z) with 7=7 mod No. Then the action of y coincides on

^(F(No);Z^Ko]) with the action f^ f• |,y (cf. [3, VII.3.12]) and (ii) i f y = Q ^)

for ^(Z/NoZ)", then y acts on ZR] as an algebra automorphism which takes ^o ^ ̂
and on 3^(r(No); Zp Ko ]) trivially. This may be verified by checking the effect of y
on the Tate curve.

Let U and Uo be as in (1.10). Then we see

^(r(No); Zp Ko ̂  = ̂ (r(No); z, Ko I)"0 = w(No; z, Ko ]).
We claim that

(*) ^(^(No);Z^Ko])uo=^(No;Z,Ko]) in ZJ(;o ][[<?]].

One can check this as follows: Define

Tr : ̂ (F(No); Zp Ko ]) -^ ^(F(No); Zp Ko ])
by

Tr( / )=No l S/ |^ .
«eUo

This morphism gives at least a map of J^(r(No); Qp Ko ]) onto ^(No;QpKo]) and we
have the formula:

- /v. /n\ ^\ „ , . .
TrfE.^V)=E.W.

\neZ \JN/ / neZ
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Thus Tr is uniformly continuous under | \p; then, Tr gives a projection of ^(r(No); Zp[^o ])
onto 3^(No; Zp Ko ]). Thus (*) holds. On the other hand, we have by definition that

^(N;Z,)=^(N;Z,Ko])nZ,[[^]].

Similarly, by the ^-expansion principle (1.8^), one has

W(N;Z,)=W(N;Z,Ko])nZp[te]].

Then the first assertion for N=No follows from (*). The assertion for general N follows
from (1.9b). Now we shall prove the second assertion.

By Theorem 1.1, we have that

W(F(No); Ff = G(F(No); F)/(E, - , -1).

By (1.5) (or else [3, VII. 3]), we see G(r(No);F)=G(r(No);Fp)® F for

G(F(No);F,)= ©^(r(No);Z^)®z^.
k=0

This shows that
W(F(No); Vpf = G(r(No); F^)/(E^ -, -1).

The argument using the operator Tr in the proof of the first assertion works well even in
this case, since Tr (Ep-1 -1) = Ep-1 -1. Then we have

W(No; F.f = G(r\(No); F,)/(E^_ i -1),
which is to be shown.

Now we are ready to define the Hecke operators acting on ^(N; 0^). Recall that
z=(Zp,Zo)eZ acts on /e^N;^) as

(f\z)(E,^i)=f(^Zpl^zoi}.

Naturally ^(Z/NZ)" acts on ^(ri(N);K) through

(/|a)(E,(D,0=/(E,co,af).

If we take yero(N) with y^ ( )modN, then we see easily / \a=f\kj.
\0 a )

Since (zpl^)*{dx|x)=Zpl{^(dx/x)), we know

(1.12) f\z=zkpf\^ for /eWi(N);^L

where yero(N) with y= ( )modN. Thus the image / | z for any /e^(N; ̂ )

under the action of zeZ is contained in V(N; fi^) and hence has a ̂ -integral ^-expansion;
namely, / | z again belongs to J^(N; ̂ ) because / | z is an element in ̂ (N; K) by (1.12).
Thus the action of zeZ is uniformly continuous under the norm (1.1); hence, it can be
extended to ̂ (N; 0^}. This extended action coincides with that induced from V(N; ̂ )
through the inclusion (1.11 a).
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Now assume that N is divisible by p (r>0), and define Hecke operators T(Q and T(;, I )
on .^(N; O^} for primes / by

(1.13a) .(n,/|T(/))=< ̂ )+rl^/ /) it W,

. a^ /) if ( | N/?,

d.i3fc) ^/iTao)^^"2^^0 lf 4N/?9
l 0 if / | N / ? ,

where we understand a(m, /)=0 if m is not an integer. By (1.12), this action coincides
with the usual action of these operators on ^(Fi(N); ̂ ) under the assumption of the
divisibility of N by p. When fe .^(N; ̂ ) c= V(N; (9^\ f \ I has a ̂ -integral ^-expansion;
and hence, / | T(Q and / | T(;, Q have ^-integral ^-expansions. Since ^(N; K) is stable
under the operators T(Q and T(;, Q, / I T(Q and / | T(;, 1) are elements of ^(N; K) with
^-integral ^-expansion; hence, belong to ^(N;^). Therefore, ^(N;^) is stable
under the action of these operators. For any element / of^(N; (P^\ we see | /1 T(/) \p^\f\
and | / | T(;, 1} \p ^ \ f \p from (1.13 a, b). Thus these operators act naturally on "^(N; ̂ )
through their uniform continuity on J^(N; O^}.

One can give a more geometric and direct definition of the operators T(f) and T(?, I )
on the bigger space V(N; ̂ ) by using the modular meaning of V(N; ̂ ) stated above
(cf. Katz [14, 1.11 and 3.12]), but we rather prefer being elementary and the definition
we adopted is sufficient for our later use.

Now we are going to define Hecke algebras by assuming the divisibility of N by p.
Since ^(N;^) and ^(N;K) are stable under T(Q and T((, 1) for all primes ;,
^(N;^K)=^J(N;K)n^(N;6?K) is also stable under these operators. For A=K
or ^K, let us denote by .^(N; A) the A-subalgebra of the A-linear endomorphism ring
of ̂ (N; A) generated by T(Q and T(/, Q for all /. Since ̂ (N; A) is naturally embedded
into ̂ "(N; A) for/ >j\ we have a natural ring homomorphism of ̂ "(N; A) onto Jf^N; A)
by the restriction of operators to the subspace J^N; A). Let us take the projective
limit of these morphisms:

(1.14) ^f(N; ̂ ) = Hm JHN; ̂ ) •
j

This naturally acts on the inductive limit JT(N; ̂ )= lim ̂ (N; ̂ ). Since the action

of ^(N; (9^ on ^(N; ̂ ) is uniformly continuous, it can be naturally extended to that
on ^(N; (9^. We know that ^(N; ̂ ) is free of finite rank over ̂  (cf. [29, Th. 3.51 ]);
hence, is compact; therefore, their projective limit ^f(N; ̂ ) is a compact ring. By our
definition, the restriction morphism of Jf^N; ̂ ) onto -^(^op ; ̂ ) indices a morphism
of J^(N; dy onto ^(No/?; ^ic). Then, by Corollary 1.2, it must be injective and we know

(1-1^) ^(N;^)=^(No^K),
and

(1.15fc) ^(N;^) acts on ^(No;^).
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Even if we define Jf(N; K) by (1.14) for K in place of ^, these assertions are false
for ^f(N; K). The point of this fact is that the natural action of ^f(N; K) on JT(N; K)
is certainly not uniformly continuous.

For any finite extension M/K, we see that

^(N; ̂ ) ®^ ̂  ̂ (N; ̂ ),

and these two spaces are of finite index. This shows that

^(N;^M)=^(N;^K)®^M,

since the right-hand side contains all generators T(?) and T(J, Q. Then, by its definition,
we know

(1 • 16) -^(N; ̂ )=^(N; ̂ K)®.A .

Now we recall the definition of the idempotent e attached to the Hecke operator T(p)
given in [10, § 4 ]. The natural image T(p) ofT(^) in jr'(N; ̂ )/p^\^; ̂ ) can be decom-
posed uniquely into the sum s+n of a semi-simple element s and a nilpotent element n
with ns=sn. Then, for a sufficiently large t, t^)^ becomes semi-simple, and there-
fore, we can find a positive integer m so that ^^(p)^ gives an idempotent of
^(N; ̂ //^(N ; (9^). This idempotent can be lifted to a unique idempotent ^ of
^(N; ̂ ) (cf. [1, III. 4.6]). In ^(N; ̂ ), ^ can be explicitly given by [8, p. 236] as
(1 ' 17 a) ^ = Um T^)^ for a suitable 0 < meZ.

Obviously, the formation of ^ is compatible with the projective limit (1.14); therefore,
we can define an idempotent ^eJ^(N;^K) by
(1.17fo) ^lim^..

^
This idempotent will be called the idempotent attached to T(p). For any module M over
J^(N; ̂ )» the eigenspace M° = ̂ M of e with eigenvalue 1 will be called the ordinary
part of M.

So far, we have discussed only on the space of modular forms ^(N; (9^ but by defining
(1 • 18) ^(N; ̂ )= Hm ^(N; ̂ ) for N divisible by p

j

with the ^-subalgebra ^(N;^) of End^ (^(N^ ̂ )) generated by T(0 and T^,^)
for ̂ 11 ^, we see that all the assertions proved for ^(N; ̂ ) can be naturally generalized
to ^(N; ̂ ) with suitable modification. Especially, we have

(l- l9^) ^(N;^K)=^(NO^;^K);
(1.19ft) ^N;^K)=^(NO/^K).

By restricting operators of ^f(N; ̂ ) to ^(N; (9^\ we know that

(1.20) ^(N;^) ^ ̂  ^o^n^ ring of ^(N;^) ^ ̂  annihilator of ^(N-^) m
^(N;^). ? •

We can similarly define the idempotent e attached to T(p) of ^(N; fl^)-
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A normalized eigenform / of J^(ro(N), \|/) is called ordinary if

(1.21 a) N is divisible by p ;
(1.21 fc) f' \-e= f for the idempotent e attached to T(p).

The condition (1.21 b) is equivalent to the fact | a(p, f) \p= 1 and if fe^2, we can attach
to any primitive form / with [ a(p, f) |p==l a unique ordinary form /o by fo=cf [ -^ for
ceQ with | c \p = 1 (cf. [10, Lemma 3.3 and Lemma 4.2]). The associated ordinary form fo
is characterized by the property:

(1.22) a(n, fo) = a(n, f) for all n outside p .

§2. Duality between ^-adic modular forms and their Hecke algebras

In this section, we continue to use the same notation as in § 1; especially, K is a finite
extension of Qp and Q^ is its j^-adic integer ring. We now define a bilinear form on
^(N; A) x ^(N; A) for A = K or ̂  by
(2.1) (^f}^=a(l,f\h) for ^e^(N;A) and /e^(N;A),

00

where we write the ^-expansion o f / a s E a(n, /)<f for all fe ̂ (N; A). This pairing
n=0

obviously induces a pairing between ^(N; A) and ^(N; A). Now we define

(2.2 a) ^(N;^K)=(K+^(N;^))/K and ^(NiK^^N; K)/K.

Since for any ceK, we know (h,c)^=0 for all heJ^\1^,K), the pairing (2.1) induces a
pairing on ^(N; A) x ̂ (N; A) with values in A. We see easily that

(2.2 b) ^(N; 0^ \ fe © ̂ (r\(N); K) | a(n, f)e^ for all n^ 1 \.
[ f c = i j

We will identify the both sides of (2.2fc).
Let us define an auxiliary Hecke algebra Jf^N; A) for A= (9^ or K andy> i>0 by the

A-subalgebra of EndA (^'(N; A)) generated by T(Q and T(?, 1) for all primes I, where

^(N; K) = © ̂ (r\(N); K)
k=i

and
^(N; ̂ )= { /e^(N; K) | | / |̂  1}.

By definition (2.2 a\ ̂ (N; ̂ ) is stable under T(Q and T(J, 1) for all J, and by (2.2 b),
we know

^(N; W®^ = ̂ i(N; (PK) 0^ = ̂ (N; K).

Thus ^f{(N; fiy faithfully acts on ^^(N; (9^} and may be regarded as the ^K-subalgebra
of End^K (^(N; ̂ )) generated by T(Q and T(f, Q for all /. The following result was essen-
tially proved in Lang [19, Th. 4.4, p. 43], where the result is attributed to V. Miller:

PROPOSITION 2.1. — For A=K or (9^ and j>0, ^(Is^A) (resp. ̂ (N; A)) is dual to
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J'f{(N; A) (resp. ^(N; A)) over A under the pairing (2.1). Thus \ve have natural isomor-
phisms:

.^fi(N; A) ̂  HOIUA WN ; A), A) and ^(N; A) ̂  HomA (^(N; A), A).

Proof. — We only discuss the duality between ^f{(N; A) and ^(N; A), since the case
of cusp forms is similar and much easier to prove. For simplicity, for a fixed j, we write
J'f(A) and ^(A) for ^fi(N;A) and ^(N;A), respectively. First we consider the case
A=K. Since these spaces are finite dimensional over K, we are going to prove only
the non-degeneracy of the pairing (2.1). By the definition of the action of T(?) as in
(1.13 a, b\ we know, for the Hecke operator T(m) for general 0<meZ, (T(m), /)=a(m, /)
(for the expression ofT(m) as a polynomial ofT(?) and T(?, I ) with coefficients in Z, see [29,
Th. 3.24 and Th. 3.34]). Thus, if (h, f)=0 for all /le^f(K), / must be constant; there-
fore, /=0, since / is a linear combination of forms of positive weight. Conversely,
if (h, /)=0 for all /e^(K), then we see

a(m, f | ̂ )=(T(m), / | h)=(rT(m)h, f)=(h, f \ T(m))=0

for any 0 < meZ. This shows / | h = 0 for all /e^(K) and thus h = 0 by definition of ^f(K).
Now we prove the proposition when A=^K- It is sufficient to prove

^(^K)^Hom^(^f(^K),^K),

since the desired assertion: ^(^^Hom^^O^O^) follows from this. Take any
^K-lmear form (() on ^(f)^}. Since ^(K)=^(^K)®C?K^ ^ can ^e extended to a K-linear
form on J^(K), which we again denote by ((). Then, we can find /e^(K) so that ^(h) = (h, f)
for all /ze^f(K). Then, we see a(m,/)=(T(m),/)=([)(T(m))e^K, since T(m) belongs to
^?0) tor all m. This shows that fe>w((9^) by (2.2 b) and the assertion has been proved.

Let us put for positive even integer k>2

Tt oo

G,=-^+ Z( Z^-^eQtb]],
2k n=l Q<d\n

where B^ is the fe-th Bernoulli number. Then, it is well known that G^ belongs to
2k

^(SUZ),Q) and for E^= - _ G , ,
"k

l^p-D-lIp^"""1 if /^5.

Thus ^'(N;^K)=U^(N;^K) is dense in ^(N;^) for any f and hence is dense in

^(N; ^ic). This shows that we can construct Jf(N; (9^)(= lim ̂ (N; ̂ ) as in § 1) by
'T

taking ^f^(N; ̂ ) instead of ^f^N; (9^\ and after doing this, we see

(2.3) ^(N;^K)^lim^(N;^K).
7
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Now we are going to discuss duality between Jf(N; fi^) and ^(N; fi^). Let us put
forT,=Q,/Z,,

(2.4 a) ^(N; Tp) = ̂ (N; Q?)MN; Zp),
(2.4 fc) ^(N; T,)= ^(N; Qp)/(^(N; Z^)+ Q^)= lim ̂ (N; Tp),
(2.4 c) ^(N; Tp) = ̂ (N; Qp)/^(N; Zp), r

{2 Ad) .^(N; T,) = -^(N; Q,)/^(N; Z,).
More generally, we put, for any finite extension K of Qp,

(2.5 a) ^(N; K/d?K) = ̂ (N; K)/.^(N; ̂ ),
(2.5 fc) ^(N; K/^) = -W; K)/(^(N; ̂ ) + K),
(2.5 c) ^(N; K/^J = ̂ (N; K)/^(N; ̂ ) •

We equip these Jf(N; ̂ -modules with the discrete topology. Then we can naturally
define a pairing

(2-6^) ( , )T,^(N;Z^)X^(N;T^) ̂  T^
^ (^7)T,=(^/)Q,modZ^T^,

where / is the class in ^(N; Tp) containing /e^(N; Qp). The projective limit (2.3)
is naturally compatible with the inductive limit (2.4fc) under the pairing (2.6 a); thus,
(2.6 a) naturally induces a pairing:

(^fo) ( , )T,:^(N;Z^)X^(N;T^T^

THEOREM 2.2.—If p^ 5, then Jf(N; Zp) anrf ^(N; Tp) (resp. ^(N; Zp) and ^(N; T^))
ar^ mutually compact-discrete dual in the sense of Pontrjagin (cf. [30, §28]) under the
pairing (2.6 fc).

Proof. — For simplicity, let us write ^ ] for .^{(N; Zp). By definition ̂  is Zp-free
of finite rank; thus, by applying the functor Homz^(^7,*) to the exact sequence:

O^Z^Q^T^O,

we have the upper exact sequence of the commutative diagram:

0 ̂  Homz, (^J, Zp) ^ Homz, (Jf< Qp) ^ Homz^ (^, Tp) ^ 0
"^ P ^ y ^ J

0 ——. MN;Zp) ————. MN;Qp) ———. ^(N;Tp) ——. 0.

The existence of the isomorphisms a and P follows from Proposition 2.1 and shows the
existence of the isomorphism y. Note that Honiz,, (^f< Tp)= Horn (^f< Tp). Then we
know that ^3 is the Pontrjagin dual space of ^(N; Tp). Then the assertion is obvious
from (2.3) and (2.4fc). The assertion for cusp forms can be also proved in the same
manner as above.

From the definition (2.6 a, b\ we see easily that

(2.7) (h,f\h^=(hh\f)^ for h, /i'e^(N; Zp) and /e^(N;Tp).

By this duality theorem combined with (1.15^), we know ^(N;Tp)^^(No/?;Tp).
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Furthermore, since ^(No; Qp) is dense in ^(No; Qp), we know

(2.8) ^(N; Tp) = ̂ (No; Tp) (= ̂ (No; Qp)/(.^(No; Zp) + Qp)).

COROLLARY 2.3. — Put, for the idempotent e attached to T(p), ^o(N;Tp)=^(N;Tp),
^o(N;Tp)=^(N;Tp), ^o(N;Zp)=^?f(N;Zp) ana ^o(N;Zp)=^(N;Zp). T/!CT, i/
p ̂  5, ^o(N; Tp) and ^fo(N; Zp) (resp. ̂ o(N; Tp) and ^o(N; Zp)) are wMtua«y aya/ under
the pairing (2.6 b).

This follows easily from (2.7) and Theorem 2.2. These results imply that

(2.9) the modules ^(N; Tp) ana ^o(N; Tp) (resp. ̂ (N; Tp) ana ^o(N; Tp)) are equipped
with a continuous action of the compact ring ^f(N; Zp) (resp. ^(N; Zp)).

Note that the definition of the action of ^f(N; Zp) on ̂ (N; Zp) as in § 1 only guarantees
its continuity under the/?-adic topology, which is much stronger than the topology defined
by the projective limit.

§ 3. Statement of Main Results

We begin by explaining how to consider the space of^-adic modular forms and their
Hecke algebras as modules over the Iwasawa algebra. Put

F = Fi = 1 +/»Zp and r, = 1 +^"Zp

as subgroups of Zp . Let K be a finite extension of Qp, and let (9^ denote its ̂ -adic integer
ring. The Iwasawa algebra AK of F is defined by the following projective limit:

AK=iim(pK[r/rj,
n

which can be identified with the formal power series ring (9^ [ [X ] ]. We specify this iden-
tification by assigning y-1 for 7= 1 +peF to the indeterminate X (cf. [25] or [20, Chap-
ter 5]). We simply write A for AQ^. As in the previous sections, we fix a positive inte-
ger N divisible by p and write N=No// with (No,^)=l. As seen in §1, the group
Z=Zp' x(Z/NoZr naturally acts on ^(N;K); hence Zp' as a subgroup of Z acts on
^(N; K). If /e^(N; K) is a sum ̂  /„ of f^J/^V^); K), this action of Z; is explicitly
given by k

(3 -1 ) /|z=iy/Jo^ for zeZp\

where ̂  is an element of Fo(N) with congruence CT, = (z 1 mod pr and o, = 1 mod No.

By (1.12), this action preserves the space .-^(N;^) and therefore induces an action
on ^(N;K/(PK). Take /=I/»e^(N;K) with /,6^(r\(N); K) and assume that

p"f, is (^-integral for all k. Then, for zeF, with m^r, we see that <r, acts on each /„
trivially, and we have an inequality:

1/1^-4,= lE^-i)/^'--.
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This shows that the class of / in ^(N; K/(9^) is invariant under F^ if m>n. Thus
the discrete modules ^(N; K/^), -^(N; K/^) and e^(N; K/Cy are unions of F^-inva-
riants. Then they are equipped with a continuous Abaction (cf. [12, §2]). By the
duality in § 2, the universal Hecke algebras Jf(N; ̂ ) and ^(N; ̂ ) are also continuous
A^-modules. We now show that the A^-module structure of the Hecke algebras is
compatible with their ring structure. In fact, if / is a positive integer with 1= 1 mod No,
then / may be regarded as an element of Z^ and the action of ?eZ^ on the Hecke algebras
coincides with the multiplication of the Hecke operator ^T^, I). Then the density of
such integers / and the continuity of the action show
(3.2) Jf(N; ̂ ) ^d ^(N; (9^) are continuous A^-algebras .

Let H be the subgroup of Z^ consisting of (p— l)-th roots of unity. Via (3.1), ^ also
acts on the Hecke algebras. Thus, we can decompose the Hecke algebras according
to the character of [i; namely, we have the following decomposition of the ordinary parts
of Hecke algebras:

^(N^^e'w^;^),
a=0

^(N^-V^N.a;^),« = = o

where [i acts on the component corresponding to a by the character: [i3^ »—>• ^°eZp. Let A
be either K or (9^. Then, we have a similar decomposition at each weight k:

Wi^oP); A)= V^r^No^), a; A),
o=0

Wi(^p); A)= "(SW^op), a; A).
i l - 0

Define the Hecke algebra .^ffe(ri(N);A) (rcsp /^(r\(N);A)) to be an A-subalgebra of
End A (- ̂ c(ri(N); A)) (resp. End A ('^(^(N); A ) ) generated by T(?) and T(/, /) for all primes I
(we allow A even to be a subfield of C for this definition of Hecke algebras). Then one can
decompose the Hecke algebras accordingly to the decomposition of the spaces of modular
forms:

W^op); A)= Ww^No^), a; A),
a=0

4(ri(No^); A) = W 4(ri(No^), a; A) .
a=0

Let 0 denote the congruence subgroup ro(/?)nri(No). Then the Teichmuller charac-

ter CD of Z^ can be considered as a character of 0 via ( ) h-> co(rf). Then, we know that
\c d;

Wi(No^), a; A)=^(<D, ̂ -k; A),
Wi(No^), a; A) = ̂ (0, ̂ -k; A).

Naturally, we can define the ordinary part of these spaces and they will be denoted by
^°(0,03°-'; A) and ^{Y^p\ a; A), etc.
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THEOREM 3.1. — Assume that p^5 and that N is divisible by p. Then the ordinary
parts J^o(N ; ̂ ) an^ ^o(N; ̂ ) of the universal Hecke algebras are free of finite rank over
AK. Moreover, we have that

rank^ (Jfo(N, a; ̂ ))= rankz, (^°(0; Z^)),
rank^ (^o(N, ^; ̂ )) - rank^ (^°((D; Z^))

y fe^3 and k=amodp—l.
The restriction of operators in the universal Hecke algebra J^(N; ̂ ) to the subspace

^(ri(No7?), a, (^K) or -^(N; Cy induces an algebra homomorphism of ^fo(N, a; ̂ ) o^o
the ordinary ^(ri(No^), a; ^K). A similar morphism also exists between ^o(N, a; ̂ )
and ^(N,O;^K). Define a polynomial P^l+X^l+^eA for each integer k and
associate an integer j (n) in the interval [3,/?+1 ] with each integer n byj(n)=nmodp-l.
Then we have

COROLLARY 3.2. — The natural morphism induces the following isomorphism:

(3.3 a) jTo(N, a; ̂ )/P^o(N, a; ̂ ) ̂  ̂ ?(N0^), a; ̂ ) if k ̂ 7 (a),
(3.3b) ^o(N,a;^K)/P^o(N,a;^K)^4°(ri(No^),a;^K) if ^2.

Now we shall bring the notion of primitive forms in the language of Hecke algebras.
For each positive integer t, define a morphism:

[t] :^(N;K) -^ ^(Nr;K)
oo

by / I [^]= Z^,/)^- Clearly, this morphism takes ^-integral forms into itself,
n=0

and induces an injection of ^(N; K/^) into ^(N^; K/^)? which will be denoted by
the same symbol. Let us define subspaces of old forms by

(3.4 a) ^(N;K/^)= Z ^(N/r;K/^)IN+ Z ^(N/t;K/^),
l<t |No l < f | N o

(3.4fc) ^(N;K/^)= Z ^(N/^;K/^K)I [^]+ Z ^(N/?;K/^K).
l ^ r i N o l < ? | N o

Since tin (3.4 a, b) is prime to p, T(^) and ^ acts on ^P(N; K/^) and ^(N; K/^). Thus
we can define the ordinary parts:
(3.4 c) W; K/^) = ̂ (N; K/^) ̂  ̂ o(N; K/^),
(3.4 d) ^°(N; K/^)= ̂ .(N; K/^K) ̂  ̂ o(N; K/^).

DEFINITION. — We define ideals ̂ (N; ̂ ) (resp. ̂ (N; ̂ )) ̂  ^o(N; ̂ ) (resp. ^o(N; ̂ ))
fc}; ̂  annihilator o/ ^o(N;K/^) (resp. ̂ °(N; K/^)). ^ Corollary 7.2 ^zd (2.8),
r?i^ s/?ac^ ^(N; K/^K) ̂ ^ ^s(N; K/^K) ^^^ independant of the exponent of p in N. Thus
-^(N; ^(J r/^^ /(N: ^K) r/r^ (7^ independent of the power of p dividing N.

Then \\'c hare

COROLLARY 3.3. — The intersection of the ideal ^(N; (9^) (resp. ^(N; (9^j) with the
nilradical of Xo(N; ̂ ) (resp. ^o(N; ̂ )) ^ r^MC^ to null. Moreover ^(N; ̂ ) ^^d
^(N; fi?K) are fr66 of finite rank over AK.
Theorem 3.1 and Corollaries 3.2 and 3.3 will be proved in § 5.

46 SERIE - TOME 19 - 1986 - N° 2



IWASAWA MODULES OF CONGRUENCES OF CUSP FORMS 251

Let us now explain the relation between Theorem 3.1 and congruences mod? among
ordinary forms. By Theorem 3.1, the Hecke algebra ^o(N,a;^) is a direct sum of
local rings. Each local ring is free over AK. Take one of local rings of ^o(N, a; ̂ )
and denote it by R. Then, for each weight k^j(a\ the residue ring R^R/P^R is local
and is a direct summand of the Hecke algebra W^p); ̂ ). Now we fix one weight
k^j(a). Let 1^ be the idempotent of Wi(No/?); ̂ ) corresponding to R^, and let S
be the semi-simplification ofR^^K (i. e. the quotient ofR^K by its nilradical). Then,
the arguments in [29, p. 82] show that there are ri-normalized eigenforms /i, . f\
in ^(Wop)) (d= [S :K]) such that fi\\^=f,. Moreover, every ^-linear'homo-
morphism ̂  of S into Q can be realized by one of f/s, say /, as /1 T =5l(T)/ for all TeR^.
Since R^ is local, any pair f,, /, satisfies either of the following two conditions:

(3.5 a) There is an automorphism a of Q over K such that ./;•=//mod ^3;
(3.5fc) a(m,fi)=a(m,fj)mod^ for all m>0,

where ^ is the maximal ideal of the /?-adic integer ring of Q. Furthermore,

(3.6) the set { /i,..., /^ } is maximal among subsets of normalized eigenforms in ^k(^i(^op))
satisfying one of the properties (3.5 <:/, b\

Let n be a prime element of ̂  and m be the maximal ideal of AK. Then the algebra
Rfe/TtRfe is isomorphic to R/mR and is independent of fe. Thus we have

(3.7) If (3.5 b) is satisfied for all pairs (i,j) at one weight k>j(a\ then this is true for
all weights (>_j (a)).

If the field K contains the numbers a(m, fi) for all m and f, we have the congruence:

a(m, /i) = a(m, f^ = . . . = a(m, f^) mod ^ for all m > 0 .

Then (3.7) shows that

(3.8) By replacing K by a suitable finite extension M, we can make the condition (3.5 b)
hold for all pairs (i,j) at every weight (^j(a)\ We obtain such an extension by
adjoining to K the numbers a(n, fj) for allj and m>0 at one weight k^j(a). Every
finite extension of M has the same property.

Therefore, each local ring of Jfo(N; ̂ ) corresponds to a unique maximal class of ordi-
nary forms which belong to the same eigenvalues modulo ̂  of Hecke operators. We
cannot separate ordinary forms congruent with each other modulo ̂  only by using the
decomposition of the universal Hecke algebra into the sum of local rings.

In order to distinguish ordinary forms with mod ̂  congruences, we need to have a
finer decomposition of the Hecke algebra. Let JS^ be the quotient field of AK and put

J2=J2(N; K)=^o(N; ^)®AK^K,
^=^(N;K)=^(N;^K)®AK^K,

^(N;K)=^(N;^)®AK^K,
^(N;K)=^(N;^K)®AK^K.
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Then, 3. and (^ are finite dimensional artinian algebra over Jzf^ and they are direct sums
of local artinian algebras. Since ^(N; K) and ^(N; K) are ideals without intersection
with nilradicals, they are semi-simple algebras, which are thus a product of finite exten-
sions of J^K-

Terminology. — A local ring Jf of ^(N; K) is called primitive of conductor No if Jf
is a direct algebra summand of ^(N; K). When Jf is contained in ^, we say that Jf is
cuspidal.

PROPOSITION 3.4. — Let Jf be a simple direct algebra summand of S. Then, the alge-
braic closure M of Qp in JT 15 a finite extension of K. Furthermore the index [M : K ]
divides the index [Jf i^id-

proof. — Since AK = GK [ [X ] ] is a subalgebra of Jf, the indeterminate X is transcendental
over M. For any subfield M' of M finite over K, ̂  [ [X ] ] = AK OO^M' is contained in Jf,
and hence its quotient field J^M' is a subfield of Jf. This shows

[M' :K]=[^M' :^K] | [^ :^K] .

Thus M must be finite over K, and its degree over K divides that of Jf over J^K-
When the algebraic closure ofQp in Jf coincides with K, we say that Jf is defined over K.
THEOREM 3.5. — For any finite extension M/K, ^e have that ^(N; K)®KM^^(N ; M)

and ^(N; K) ®K:M ̂  ̂ (N; M). If Jf is a primitive component of ^(N; K) (resp. ^(N; K))
defined over K, then ^^=^®Y^ is afield and can be regarded uniquely as a primitive
component of ^(N; M) (resp. ^(N; M)).

Proof. — By (1.16), we have that Jfo(N; ^M)==^o(N; ̂ c)®(pA but we know from
the finiteness of ^fo(N; ̂ ) over AK that ^o(N; ̂ )= ̂ o(N; ̂ )®^M. This shows
that J?(N;M)==J?(N;K)(X)KM. The second assertion obviously follows from this
identity.

Let V be a finite dimensional vector space over J^K ^d 1̂  ^ be a Ale-lattice of V in
the sense of [1, VII .4.1]. Define another lattice °JC containing °K by the intersection in V:

^=n^p,p
where P runs over all prime ideals of AK of height 1 (i. e. prime divisors) and ^p denotes
the localization of °£ at P. We call 3C the free closure of ^, because it is the smallest
free module in V containing 3E. In fact, it is known that °JE\°K has only finitely many
elements; namely, it is pseudo-null [1, III. 4.4] and 3^=^ if and only if °K is AK-free
[1, VII. 4.2, Th. 2].

We shall now apply this formation of free closures to our algebras Sl and ^. Let Jf
be a primitive component of J?(N; K) (resp. ^(N; K)). Since Jf is by definition a direct
summand of ^ (resp. <^\ we can decompose ^=Jf©j^ (resp. ^=Jf©^) as an algebra
direct sum. We write simply ^f (resp. £) for J^o(N; ̂ ) (resp. ^o(N; (9y^\ and we denote
by ^f(Jf) and JT(^) (resp. ^(Jf) and ^)) the projected images of ^ (resp. A) in Jf
and ^ (resp. Jf and ^). Put Jf' = ̂ (Jf) C ̂ (^), ^' = ̂ (Jf) © ̂ ) and denote by ̂
and ^ the free closures of J'f' and ^', respectively.
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DEFINITION. — We define A^-modules ^, ̂ , ^ and J^ by

(3.9a) ^= ^(JT;K)=^f/jf, /r=^(Jf;K)=^f',
(3.9fc) ^=^(JT;K)=^, ^=^(Jf;K)=^'.

THEOREM 3.6. — Let ^ (resp. ̂ ,) be the local ring of ^o(N; ̂ ) (resp. ^o(N; (9^) such
that ^®A^K (resp.^OOAK^K) contains Jf. FV^ fl55Mm^? ^ to be cuspidal in the fol-
lowing statements concerning ^(Jr;K) and ^(Jf : K). Then we have:

(3.10 a) S'(Jf; K) and ^(.Jf; K) are finite torsion A^-modules.
(3.10fe) If Jf is defined over K and M/K is any finite extension, then JTM=^®KM

is a primitive local ring of J?(N; M) and

WM;M)=W;K)(g)AKAM,

^(JfM;M)=^(JT;K)®^AM.

(3.10c) gT(Jf;K)=0 (resp.^(JT;K)=0) y anrf ^ ;/ ^®A^K=^ (resp.
^®AK^K=^).

(3.10rf) T^ annihilator of ^(^;K) anrf ^(^;K) in AK are principal ideals of AK.
(3.10 ^) ^r(jf; K) anri ^(^; K) ^u^ on;}; yznf^^ many elements.

Let Jf be a local ring of ̂ , and ^f(Jf) be thejmage of ̂  in Jf. Then, we have a natural
projection map of J^ into the free closure Jf(;f) of J^(Jf). By tensoring AK/P^AK to
this morphism, we have a natural morphism of ^(^i^op); ^ic) into Jf(JT)/PfcJf(;r)
by Corollary 3.2. We write Xfc for this morphism at each meight k. On the other hand,
to give an ^-algebra homomorphism X, of -^(F^No/?); ̂ ) into Q is equivalent to giving
a normalized eigenform / in ^(^i^op)) such that f|T(n)=)i(T(n))/ for all n>0 (c/ §2).

DEFINITION. — Let f be a normalized eigenform in ^^i^op}) ^d let ^ be the (9^-
algebra homomorphism of ^(F^No/?); (9^ into Q corresponding to /. Then, we say
that f (and ^) belongs to ^ if \ factors through \.

Any ordinary form belongs by definition to some local ring of A By the theory of pri-
mitive forms, one can associate with any normalized eigenform in ^(ri(N)) a primitive
form whose n-th coefficient gives that of the original eigenform if n is prime to the level N.

COROLLARY 3.7. — Assume Jf to be primitive and cuspidal and write d for [Jf : ̂ ].
Then, for each k>2, the residue algebra ^kW=if(Jf)®AKAK/PfcAK can be naturally
embedded into ^(^i^op) \ KL) as a subalgebra, and there exist exactly d ordinary forms
in ^(ri(No/?)) belonging to Jf. Moreover, the primitive forms associated with forms
belonging to Jf has conductor divisible by No. Conversely, if f is an ordinary form in
^(ri(No/?)) for k>2 and if f is associated with a primitive form whose conductor is divi-
sible by No, then the local ring of ^(N; K) to which f belongs is unique and primitive.

Even if Jf is non-cuspidal, the whole assertion of this Corollary holds under the con-
dition that k>j(a) if Jf is contained in Jfo(N,a; ̂ (^AK^K-

Let Jf be a primitive component of ^(N^^KJ^AK^K? and put

F=Ffc=(.^(Jf)/P,.^(Jf))®^K.
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Then F is semi-simple and is an algebra direct summand of^ffe(ri(No7?); K) by Corollary 3.7
and [10, (4.4c)]. Thus we can decompose

^?(ri(No7?); K) = Ffe © Ak as an algebra direct sum.

If JT is cuspidal, one also has an algebra direct sum decomposition:

4°(ri(No^);K)=F,©B,.

Clearly, these decompositions are unique. Let jr(FJ and Jf(Ak) (resp. ^(F^) and ^(B^))
be the projections ofWi(No;?); ̂ ) (resp. ^(Fi(No^); ̂ )) in F^ and A,, (resp. F^ and B^).

DEFINITION. — Define finite /?-power torsion modules T^Jf) and C^JT) for each k by
(3.11 a) T,(.^)=(^(Ffc)©^(A,))/jrfc°(ri(No^;^K) if (fe^).
(3.l ib) C,(Jr)=(^(F,)©^B,))/^(r,(No^);^K) if k^2.

They will be called the module of congruence of Jf at weight fc. The reason for this
appellation will be clarified later. These modules give the fibres of 15 and ^ at each
weight k: __

COROLLARY 3.8. — Assume Jf to be cuspidal in the statement for ^(Jf; K). Then
\ve have canonical exact sequences:

0 -^ Tfc(Jf) -> ^( ̂  ; K)/Pfc ̂ (Jf; K) -> ^(JT; K)/P^(Jf; K) -. 0 /or 6?ac/i k >j(a);
0 -> Ck(Jf) ̂  ̂ (Jf; K)/P^(Jf; K) -. ̂ (Jf; K)/Pk^(Jf; K) -^ 0 /or ^ac/i fe ̂  2 .

Theorem 3.6 and its corollaries will be proved in § 6. Now let us give a heuristic expla-
nation of these modules. For simplicity, take a primitive cuspidal component Jf of
^(N;K) with [Jf :J^K]=I . Then, the image ^(Jf) coincides with AK, because ^(^)
and AK have the same quotient field and ^(^f) is integral over AK. At each k, we can
identify AK/P^AK with (9^ by assigning to each power series its value at (1 +/?)fc— 1. On
the other hand, the projected image of the Hecke operator T(n) in ^(Jf) is a power series
A(n;X)eAK. Then, the following formal Fourier expansion for each k>:2:

fk= ZA(n;(l+^-l)6?(nz)

gives in fact the actual Fourier expansion of a unique ordinary form in ^(Fi(Noj9))
belonging to Jf. Note that the conductor of the subalgebra ^(Fi(No7?); ̂ ) of the
algebra ^(Ffc)©^(Bfc) is the annihilator of ihe module of congruences Cfc(Jf). By this
fact, we can conclude that

(3.12) There is a normalized eigenform g in <9^(Fi(Nojp)) such that g= f^mod. ̂  if and
only if Cfc(Jf) is non-trivial.

Moreover, the module of congruences may be considered as an invariant which gives
us a quantitative measure of congruences satisfied by the ordinary forms belonging to Jf.
A remarkable fact is by Corollary 3.8 that the module C^JT) depends 7?-adic analytically
on the weight fe. In fact, the Iwasawa module ^(Jf; K), whose annihilator is a principal
ideal H(X)AK by Theorem 3.6, is pseudo-isomorphic to the quotient AK/H(X)AK. Then,
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Corollary 3.8 says that Q(Jf) can be approximated by the module ^N((1+^-1)^
up to finite errors, which are bounded independently of k. If J^J^; K) is null, one
can show (see below) that ^(Jf; K) exactly coincides with AK/H(X)AK and thus, there
is no error at all. In fact, if J^s = 0, we have an isomorphism induced by the projection map:

^(Jf; K) ̂  ̂ (.Jf)/(Jr n A).

By assumption, we have that ^(JT)=AK. On the other hand, the intersection Jfn^
is reflexive. Thus jTn^ is a principal ideal which coincides with H(X)AK. Therefore,
our next goal is to know when the module of errors .y^ vanishes. There is an effective
criterion for this: let jf be a primitive cuspidal component of ^(N; K), and let ^ be the
local ring of ^o(N; ̂ ) suc^ Aat Jf is contained in ^®AK°^K- We do not assume here
that [Jf : J^K]= 1- Decompose

^ ®AK°^K =^@SS as algebra direct sum,

and denote by ^(Jf) and ^(^) the projections of 91 in Jf and 3S. Then, ^(Jf; K) is
by definition isomorphic to (^(Jf)©^(^))/^, where t( - " indicates the free closure.
At each weight fe, ̂ /P^ is a local ring of ^(F^op); ^ic). Put F^ = (J(Jf)/PfeJ(jr))®^K,
and decompose

WP^)(8)^K=F,©B,.

Denote by R(F^) and R(Bfe) the projections of(^/P^) in F^ and B^. Again by definition,
Cfe(JT) is isomorphic to (R(Ffc)©R(Bfe))/(^/P^). Then our criterion is

PROPOSITION 3.9. — If one of the following two conditions is satisfied by ^S/P^ for
at least one k>2, then yrs(.Jf;K) vanishes. The conditions are:

(i) R(Ffc)©R(Bfe) ;5 integrally closed in (^/P^)OO^K;
(ii) ^/P^^Hom^((^/P^),^K) as (^/P^-module, and R(Ffe) is integrally closed

in Ffc.
Here are some remarks about this criterion, whose proof will be given in § 6. Firstly,

the same criterion is also valid for ^(JT; K). Secondly, the first part of (ii) is equivalent
to saying that ̂ /P^ is a Gorenstein ring [22, II. 15], and the second part of(ii) is always
true if [Jf : J^K]= 1. Thirdly, it is known by Mazur [22, Cor. 15.2, p. 124] that ^/P^
is a Gorenstein ring if ^/P^ is contained in ^^(q); fiy to1' a prime q. This case can
happen only when p = q and N9 = 1, or No = q. Thus, if^/P^ is contained in ^(F()(^); ̂ )
and [Jf : J^K:]= I? ̂ ^ we know the vanishing ^(^T; K)==0. This is the only known
case where the vanishing of J^JT; K) is theoretically proved. In § 7, we shall discuss
some numerical examples of ^(Jf;K) with ^(^f;K)=0. Some other examples can
be also found in [31, § 4]. No example of ^ with non-trivial ̂ (Jf; K) is so far known.

Now we shall discuss briefly about a (conjectured) relation between the modules of
congruences and the special values of a certain L-function associated with ordinary forms.
Let / be a primitive form in ^(ro(N), \|/) with fe>2, and let F be a finite extension of Q
containing all Fourier coefficients of / Then, the Hecke algebra ^(Fi(N); F) is decom-
posed into an algebra direct sum F©B, where F is the local ring of ^(Fi(N); F) corres-
ponding to / As introduced in [29, Chap. 8], there is a cohomological interpretation
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of spaces of cusp forms. To describe this, let L^(Z) ==Zn+l for each non-negative integer n,
and let M2(Z) act on L^(Z) through n-th symmetric tensor representation as specified
in [29, 8.2] and [8, § 1 ]. Define a M2(Z)-module L,(A) by L^(Z)®zA for any algebra A.
As shown in [29, 8.3], the Hecke algebra 4(Fi(N);F) for f e=n+2 naturally acts on the
parabolic cohomology group H^(ri(N); L^(F)) defined in [29, Chap. 8 ]. Therefore, we
can decompose H^(Fi(N),L,,(F))==H(F)©H(B) accordingly to the decomposition of the
Hecke algebra. Let (9y be the valuation ring of F corresponding to the fixed embedding
of Q into Q. Let V(k) be the image of H^Fi(N), L^p)) in H^Fi(N), L^(F)). Write
W(F) and W(B) for the projections ofV(fe) in H(F) and H(B), and define W(/) and V(F) by

W(/) == W(F) C W(B), V(F) = V(fe) n H(F).

Then, we can relate the index [W(/) :V(fe)]== [W(F) :V(F)] with the special value at
weight k of the L-function of / defined by the Euler product:

L(^ /)=^[(l-woa??-s)(l-wo^^'-s)(l-wopf'-s)]-l,
where \|/o is the primitive character associated with \|/ and a^, P/eC are the two roots of
the equation:

X^aO^X+vl/W'^O.

Here we shall explain this relation only when
(3.13) F 15 contained in R;

otherwise, we have to consider the cohomology groups with coefficients in L^(C), which
require further technical complexity (cf. [28, §4]). We will discuss this in full generality
in a subsequent paper [11 ]. By (3.13), we can extend scalar to R and know from a result
of Shimura [29, Th. 8.4] that

H^Fi(N); UF))(X)FR^H^(N) ; UR)) ,

which can be identified with e^,+2(1^1 (N)) as vector space over R. Then, the subspace
H(F)®pR is spanned by / and ̂ If. Thus W(F) and V(F) are ^-lattices of H(F).
Take a basis 5i and 82 of V(F) over Qy and define a real matrix XeGI^R) by

(8i,82)X=(/,v^T/).
Put

U,(/) = n^11 det X | /(k -1) !NCW<|)(N/CW),

where C(\|/) is the conductor of \|/ and (|) is the Euler function. The number LU/) is
determined independently of the basis (81,82) up to units in (9^. Let K be the closure
of F in Q. Then, a fundamental identity is
(3.14) | L(fe, /)/LU/) l;2^^ [W(/) : V(k)]= [W(F) : V(F)].

This can be shown in a similar manner in [7,§6], and the transcendental factor Uoo(/)
can be also given by the period determinant of / as in [7, (6.17) ] if k = 2. Now we shall
state a conjecture:

CONJECTURE 3.10. — Let jf be a primitive cuspidal component of ^(N;K). Assume
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that [JT :£'^]=1. Let (|>K be the unique ordinary form in ^(F^No/?)) belonging to JT
for each fe>2, and let fj, be the primitive form associated mth (j)^. Then \ve have

ic^jr)!;2^^^^/,):^^].
Here are some remarks about this conjecture: Firstly, if the /?-part of the character of f^
is non-trivial or No== 1, the conjecture is true for k==2. When N9= 1, this follows from
[22, II. 15], and the other case is a consequence of [9, (3.17)]. Secondly, one can define
a canonical transcendental factor Uoo(/) without the assumption (3.13) and show that
(3.14) still holds. Finally, assume that yTs(Jr;K)=0. Then the combination of the
conjecture and (3.14) shows the existence of a /?-adic unit \Jp(fk) for each k>2 such that

L(fe,/,)/UJ/fc)U,(./,)=H((l+^-l) for every f e>2 ,

where H(X) is the characteristic power series in AK of ^(JT; K). Thus, the function
5 \—> H((l 4-^)s— 1) gives a j^-adic interpolation of L-values L(fc, fk)/^w(fk)-

§ 4. Finiteness of c^o(N; ̂ ) over AK

In this section, we firstly review a result of Jachnowitz [13], and then, we shall prove
the finiteness of J^o(N; (9^ over AK by using her result. As in § 1, we write ^(Fi(N); Fp)
(resp.Wi(N);Fp)) for ^(Fi(N);Zp)(x)z^ (resp.^(Fi(N);Z^)®z,Fp). By regarding
^fe(Fi(No); Zp) as a subspace of Rfe(Fi(No); Zp) through (1.5), one can let the finite group
(Z/NoZ)" act on ^(Fi(No);Zp) by (/1 a)(E,co, 0==/(E,co,af) for ^(Z/NoZ)". Then
the action of Hecke operator T^p) on ^(Fi(No); Zp) is given by

(4.1^) a(n, f | ̂ (p^a^np, /)+^- ̂ (" / p ] ,
\P /

where p acts on / as an element of(Z/NoZ)x. On the other hand, on .J^(Fi(No/?); Zp),
T(/?) acts as
(4.1^) a{nj \J(p))=a{npJ).

Thus, the actions (4.1 a, fo) are generally different, but they coincide on ^(F^Noj?); Fp)
if k >2. In this manner, the universal Hecke algebra ^f(No/?; Zp) acts on ^(Fi(No); Fp)
for fe> 2. The Eisenstein series Ep-1 e^p- i(SL2(Z); Zp) has congruence Ep-1 = 1 mod^Zp;
therefore, the multiplication by Ep-i defines an isomorphism of ^(ri(No); Fp) into
^k+(p- i)(ri(No); Fp), which is a morphism of J^(No/?; Zp)-modules if k>_l. For each
aeZ/(^-l)Z, define an injective limit of these morphisms

G,(Fp)= lim ^(,)+,(P- i)(Fi(No); Fp),
~7r

where j{a) is an integer satisfying 3<j(a)<p-{-l sind j(a)==amodp-l. By definition,
we have, with the notation of Corollary 1.2,

(4.2) G(F,(No);Fp)/(E^-l)^ @ G,(Fp)
amodp— 1

as Jf(No/?; Zp)-modules. The following fact is proved in [13, Lemma 1.9].
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LEMMA 4.1 (Jochnowitz). — If k ^ 3 and p ^ 5, T(p) annihilates the quotients:
^k+(p- i)(ri(No); F^)/^(r\(No); F^) and y^(p- i)(Wo); F^^No); F^).

In [13, Lemma 1.9], this lemma is proved for the forms on ro(No), but the proof given
there works well without any change even for ri(No).

For each A-module M, put

^h']= {^^l^x=0}, ^^= { x e J / \ y . x = x for all yeF }.

Let ^o(N;iy (resp. ^(Wo) \ Fp), ̂ o(N; Tp) and ^(^(No); F^)) be the ordinary
part of ^(N;T^) (resp. ^(^(No); F^), S(N;Tp) and ^(r\(No); F^)) as ^(No7?;Z^)-
modules.

THEOREM 4.2. — Assume that p > 5. T/i^n w^ hai^ q-expansion preserving isomorphisms
of ^(^oP^p)-modules:

(^o(N; T^) h l)1^ ̂  © ^UWo); F,),
a mod p — 1

(^o(N; T,) [p y ^ @ .^(Wo); F^).
a modp — 1

Proo/ — By the multiplication by p, one has an isomorphism:

^(N;T,)b]^(N;Z,)®z,F,.

By Corollary 1.2 and (4.2), we have that

JT(N; Z^)(x)^F^W(No ; F^ G(Fi(No); F^)/(E^_ i -1)^ C G,(F^).
a modp— 1

Then, the assertion for modular forms is clear from Lemma 4.1 and the definition of
the idempotent e in (1.17 a). The assertion for cusp forms can be proved similarly,
since T(/?) takes cusp forms into itself.

COROLLARY 4.2. — If p ̂  5, then ^fo(N; ̂ ) and ^o(N; ̂ ) are finite over AK. Further-
more, we see that

-^o(N; ̂ )= ^o(N; Z^)®z^K and ^o(N; ̂ )= ^o(N; Z^A •

Proo/: — Since ^fo(N; ̂ )=^o(N; Z^)®zA (<'/ (1.16)), the second assertion follows
from the first one and we may assume (9^ = Zp in order to prove the first assertion. Let m
be the maximal ideal of A. We have an exact sequence of A-modules:

O - ^ T p ^ ^(N;T^) ^ ^(N;T^) -^ 0.

Since on Tp, TQ?) acts trivially (cf. (1.13 d)\ by applying the idempotent e to this sequence,
we have another exact sequence:

0 - ^ T p ^ ^o(N;Tp) -^ ^o(N;Tp) ^ 0.

Let M be the Pontrjagin dual module of ^o(N;Tp). Then by Theorem 2.2, we have
an exact sequence of A-modules:

0-^^o(N;Z^M-^Z^O,
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where F acts trivially on Zp. By definition, M/mM is a dual space of (.JT(N; Tp)[^]f,
which has only a finitely many elements by Theorem 4.2. Since M is a continuous
module over a compact ring A with the m-adic topology, M is finite over A. In fact,
as seen in § 3, if we put

^o(N; T^) [m^ ] = { xe. ̂ o(N; Tp) | Kx = 0 for all ^ern^'},

then ^o(N;Tp)= IJ ̂ o(N; Tp) [m7 ]. By duality, this shows
j

M = limM/m^M.
^7"

Then, by [1, III. 2.11, Prop. 14], we know that M is finite over A and any subset S o f M
whose image in M/mM generates M/mM generates M over A. Since A is noetherian,
^fo(N; Zp) must be finite over A. Since ^o(N; Zp) is a quotient ring of ^o(N; Zp), the
finiteness of ^o(N; Zp) follows from that of ^o(N; Zp).

§ 5 . Proof of Theorem 3.1 and its corollaries

Let the notation be as in the theorem. We only prove the theorem for (9^ = Zp, since
the general case follows from this by Corollary 4.2. As seen in § 3, the group Z^ = [i x V
naturally acts on the spaces ^o(No;Tp) and e9o(No;Tp). Thus we can decompose
them into the sum of eigenspaces of ^i:

^o(No; Tp) =J® ̂ o(No, a; T^) and ^o(No ; Tp) = ¥^(N0, a; Tp),
a=0 a=0

where ^o(No, ^ ; Tp)= ; ./e.///o(No ; Tp) | / ^^f for ^e^i} and

^o(No, ^ ; T^)=- //o(No, a; T^)n^o(No ; Tp).

For any Zp-module M, put M [?'}= { xeM \prx=0 }, and for simplicity, we write M, ̂ ,
M{d) and ^(a) for ^o(No; T^), ^o(No ; Tp), ^o(No, a; Tp) and ^o(No, a; T^), respectively.

First we treat the case of J^o(N;Zp). By Theorem 4.2, we know, as ^-modules,

(^hD^'e^r^No);?,).
k=3

By decomposing this through the action of ^ we have by (3.1)

(5-1) (-^^hD^-^/r^No);?,)
where j(a)eZ with 3^j{a)^p+l and j(a)==amod(p- 1). Let us put

^k= {fe^\f\z=zkf for any zeZ; }.

Then, we know that if k=a mod(p— 1),

(5.2) ^[P] ^ {W[p}Y=^(Y^)^,).
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Naturally, ^=^(^(N0); Qp)/^j°(ri(No);Zp) is injected into ̂ . By Lemma 4.1,
if fe>3 and k==a mod (/?-!), we have

< LP ] ̂  ̂ °(ri(No); F,)^ ̂ Ur,(No); F,).

By counting the number of elements in ^k[p] ̂ d ^k[p\ we conclude M\\p\ =^k[p]'
As already seen, M'^ is contained in ̂  and is /^-divisible. Therefore, M^ must coincide
with Ji^ Namely, we have

(5.3) ^=^°(ri(No);Qp)/^°(ri(No);Z,) if f e^3 ,

and for any fe=3 with fe= a mod (/?-!),

(5.4) ^k^p for r=^)=rankz,^)(ri(No);Z^).

Now fix Q^a<p—l and let M(a) be the Pontrjagin dual space of ^(d). Note that
for any positive integer k with k = a mod (p — 1), ̂  is contained in J^(a). Thus, by (5.4),
there is an exact sequence of A-modules:

(5.5) 0 -^ Ker -^ A' -^ M(a) -> 0.

Let us put P^^X+^-^l+^eA for any feeZ. Then, for any k^3 with
k=amod(p—l), the exact sequence (5.5) induces a surjection: AVP^ -> M(a)/PfcM(a).
Since M(a)/PfcM(a) is the dual space of ̂ , M(a)/PfcM(^) is isomorphic to Tfp by (5.4).
On the other hand, we know A/P^A^Zp as Zp-modules; hence, we have a commutative
diagram:

^ ————— Z-,
n n

(A/PfcA)' -^ M(a)/PfcM(a) -> 0.

This shows that (A/P^A)'= A'/P^ ̂  M(a)/PfcM(a). Thus we know that Ker is con-
tained in PfcA' for all k ̂  3 with k == a mod (p -1). This shows that Ker c F| P^V = { 0 },

A:
since {Pk}k^ 3,k=a mod (p-1) are mutually different prime elements in A. This implies
that M(a) is'free of rankr=r(a). Since T^ acts on ^0(^1 (N); Zp)(=Zp) trivially, we
see ̂ ) = ̂ o(No, a; Tp) = { / €^o(N; Tp) | / | ^ = ̂ fl/ for all ̂  } if a ̂  0. Thus, by the
duality as in Corollary 4.2, we see that

^(N^Z^M^A^ if a^O.

Thus, the assertion for ^fo(N,a;Zp) has already been proved for a^O. Now assume
a=0. Then we have an exact sequence of discrete A-modules:

0 -> Tp -̂  (̂0) -̂  (̂0) -̂  0,

where ^(O)=^)(N(), 0; Tp). By duality, we obtain another exact sequence of compact
A-modules:

(5.6) 0 -> Jf(0) -^ M(0) -> Zp -> 0,

where ^f(0)= ^fo(N, 0; Zp) and F acts trivially on Zp (^A/XA). We have already seen
that M^^A' (r=r(0)), and (5.6) induces a surjection 0:M(0)/XM(0) (^Z^) -> Zp.
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By choosing a suitable basis ofM(0)/XM(0) (^Z^), we know that this morphism can be
realized as

ijr Q , rj
L?————^ z?
UJ 0>

'(Xi,. . .,^,) ̂  ^i.

Write this choice of basis as e^ . . . , ̂ ,eM(0)/XM(0). Then we see <D(?i) = 1 and 0(^) = 0
for i> 1. Take a free basis e^ . . . , e, ofM(O) so that e,=e, mod XM(0). In fact, if^i, . l . , e,
satisfy the above congruence, A^i+ . . . +A^ is dense and complete in M(0); hence,
coincides with M(0). Thus { e^ . . . , e,} must be a free basis of M(0).

Then, 0 can be explicitly given by the commutative diagram:

M(0) ——^——> Z,
n n
A' ———>z.' p
ID (I)

\.\^. . . , .v,)^.VimodXM(0).

This shows that ^o(N,0; Zp)= Ker^^A'-^XA^A'; hence, the assertion for
J^o(N, a; Zp) has been proved.

The assertion for cusp forms can be proved in exactly the same fashion as in the case
of modular forms.

Proof of Corollary 3.2. — By the reason already mensioned, we may assume that
^K=Zp. For any 0<feeZ, put

.//,(f/)= ; / e . /^ l . / lz^z ' / forany zeF ; .

Then, Theorem 3.1 asserts that

( 5 - ' 7 ^ //^/)^=T;; for r=r(a) as in (5 .4) .

Thus, if k=amod(p-1) and k^j(a), ̂ (a) coincides with ^4. (This fact is essentially
proved in the proof of Theorem 3.1 and in fact, independent of Theorem 3.1, since ̂
is by definition the same as M^a} when k=amod(p-l)). Thus we may assume that
k^amod(p-l).

On the other hand, by the definition of the action of F as in (3.1), we know that

^kW= ^(UiNo/?), ci: Q/,)/. //^ritNo/?), a; Zp)

is contained in M^a\ The surjectivity of the natural morphism of ^o(N, a; Zp) into
^fj°(ri(No7?),^;Zp) is obvious from the definition of these algebras. Note that

^k{a)= [fe^{a)\f P,=0}.

This shows that if we prove ̂ (^)= J^), by the duality in Corollary 2.3, we know that

Wi^op), a; Zp)= .^o(N, a; Z^)/P^o(N, a; Z^).
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To see ^(a)=^(a), it is sufficient to know that

rank (^(a))^ rank (^(a)),

since both modules are ^-divisible. By (5.7 a), this follows from the inequality:
(5.7b) dim^Wa)[p])^r(a).

Now we are going to prove (5.7fc). We may assume fe^ a mod (p—1) as already
mentioned and further assume k>j(a) as in the corollary. For any 0<^eZ with
X ^ O mod (p-\\ put

G^-^+Zd:^-^-^))^,-'^(O-^.

^ V \ ' ^—J V ^—< "
2A n=l 0<d|n

where co is a character ofZp defined by co(x)= limx^ and B^, ;i is the generalized Ber-
(-+ 00

noulli number for the character o)~\ It is known by Hecke [6] (see also [10, (6.5 b)])
that G[ belongs to ^(ro(p\w~^,Qp). Let us further put

E;-̂ G;.
^,(0-^

Then, by Carlitz [2, Th. 3], we know that

E^=lmodpZp.

Thus, the multiplication ofE^-^ for k>j(a) and k ̂ 7^) mod (/?-!) defines an isomor-
phism of ^j^[p] (=^j(a)(a)[p]) into ^k(d)[p} (cf. the definition of ^(^(No/?), a; Zp)
in § 3). This shows

r(a) = dim^ (^,) [p ]) ̂  dimp^, (^(a) [p ]).

Thus the assertion for J^o(N, a; Zp) has been proved.
Now let us discuss the case of cusp forms: What we have to show is

(5.8) dimF^(^(a)[^])^dim^(^(ri(No);F^)) for k^2 ,

where y^d) = Wi(No.p), a; Qp)/W^op\ a; Zp).
Write simply s(a) for the right-hand side of (5.8). By [8, Prop. 6.2] (see also, Ribet [24 ]),

we know that
dim^(y,(a)[p])=s(a).

Then for any k^ 2, the multiplication ofE^- 2 (or E^_ i for n= (k- 2)/(^-1) ifk= 2 mod (;?-1))
induces an inclusion of y'^a) [p} into ̂ (a) [̂  ]. This proves (5.8), which was to be shown.

Proof of Corollary 3 .3 .— Let us first examine the intersection of ^(N; (9^) with the
nilradical ^ of ^(N;^). We may assume that K=Qp. Let us put

^'={/ze.^o(N;Z,)|(/z,/)^=0 for all /e^(N;T^)}.

By definition, ^o(N; Tp) is stable under ^ = e^o(N; Zp). Thus, for any HE^ and /z'ejf,
we see

(hh\f)^=(h\f \h)^=(h,f\h^=0 for any /e^(N;Tp).
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This shows that ^' is an ideal and ^ c= ̂ =^(N; Zp). The converse inclusion 9' =D 9
is obvious, and therefore ^ = ̂ '. Let (^j be the projection map of J'f onto ^J^^(No^; Zp)
as in (2.3). Then (j)j(^) can be characterized by

(|)/^)== {/ze^.^i(No^;Zp)|(/z,/)^=0 for all /e^o(No^;Tp)n^"(No^;Tp)}.

Then, in a similar manner as above, we know

(|>/^) annihilates ^o(^oP ; Tp)n^(No^; Tp).

On the other hand, we know

^(No^;Tp)n^i(No^;T^ E ^(No^A; T,) | [t ] + E ^(N/t;T^).
10|No K?lNo

Thus
(|)/̂ ) annihilates old forms in ^^(Nop ; Tp).

Then the theory of primitive forms ([23]) combined with [10, Prop. 4.4] shows that
<t>/(^)OOzpQp is a semi-simple subalgebra of ^i(Noj?;Qp). If he^ is nilpotent, (|>//i)
is nilpotent for ally, and hence, ())//i)=0 for ally. This shows h=0 by (2.3). The asser-
tion for ^(N; fiy can be proved in exactly the same manner as above.

Next, we are going to prove that ^ and ^ are free over A. Let us put W=^®A^K-
Then, for any weWn.X7, we can find heA (h^O) so that h\ve^. Then we see that

w^o(N; Tp) = whfi?o(N; Tp) = 0,

since (?o(N;Tp) is A-divisible by its definition and Theorem 3.1. This shows that
^=Wn^f. Since Jf is free, ^ must be reflexive ([1, VII. 4, Prop. 6]). By a result of
Serre [25, Lemme 6 ], any reflexive A-module is free; hence, 9 is A-free. The assertion
for ^ can be proved in exactly the same manner as for .̂

§6. Proof of Theorem 3.6 and its corollaries

Proof of Theorem 3.6. — We only prove the result for ^fo(N; (PK\ because the other
case concerning ^o(N; fiy can be verified in exactly the same manner. By definition,
we know j2=j2(N; K)=^f®A^K for .T=Jfo(N;CU and by Theorem 3.1, ^ is a
lattice over AK of the ^-vector space ^ in the sense of [1, VII. 4.1 ]. This shows that
^(Jf;K)=5f/^f is a torsion A^module with the notation of (3.9 a), since ^/^f is a
torsion Afc-module. Since .̂ f is free of finite rank over AK, its images ^f(Jf) and ^f(^)
are Ale-lattices. This shows that ^=^f(Jf)©^f(^) is a AK-free lattice of ^; therefore,
^(Jr;K)=Jf/^f is a finite torsion Ale-module. This shows (3.10<3).

The first part of (3.10 b) is a restatement of Theorem 3.5. Now we prove the rest
of (3.10 b). For a finite extension M of K, define W^ and J^M^u) and ^(^M) for
jf^=jf0^Mc=^(N;M) and J^M==^®KM in the same fashion as for 5F, ^f(Jf) and
^f(^). Then we see easily by Corollary 4.2, ^M=^®(PK^M and ^M==^®C?K^M.
In fact, Jf(x)<^M ̂  ^®AKAM is AM-free and (^®^M)/(^'®^6?M)=^(^; K)®^M
is pseudo-null for ^'=^f(Jr)®^f(j^). Such a A^free module containing J?T(X)^M
is unique and coincides with the free closure of ^'®Q^OU (cf. [1, VII. 4, Th. 2]). By
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definition, we know that ^'(X)^M=^M(^M)©^M(^M). This shows I^M=~^®O^M'
Thus we know ^(JfM;M)= ^(Jf;K)(x)^M. Note that AM=AK®^M. This shows that
^(JfM^^Jf^K^AK^, which proves (3.10b). (3.10c) is obvious from the
definition of ^(^;K).

To prove (3.10 d\ we recall the divisor theory of integrally closed noetherian domains
[1, VII]. First, note that AK is a unique factorization domain; hence, is integrally closed
noetherian [1, VII. 4.9, Prop. 8]. For any ideal a of AK, put div(a)= H^AK, where

x

x runs over all elements of AK such that xA^ => a. Then, div (a) is again an ideal. When
a = div (a), we call a a divisor of AK. Any divisor can be expressed as a product of powers
of prime divisors. Prime divisors coincide with prime ideals of height one of AK. Since
AK is a unique factorization domain, any divisor ofAK is principal [1, VII. 3.2, Th. 1].
Let a be the annihilator of ^(.Jf; K) in AK. We want to prove that a is a divisor. By
Theorem 3.1, J^= ̂ o(N; (9^) is a AK-lattice in the finite dimensional ^^-vecior space ^
in the sense of [1, VII. 4.1]. Since ^ is AK-free, ^ is reflexive. By the definition of
div (a), div (a)/a is pseudo-null in the sense of [1, VII. 4.4, Def. 2 ]. Thus div (a)^(Jf; K)
is also pseudo-null. For simplicity, we write X for div (a)^(JT; K). We know
X=(div(a)^+.^f)/^fc^/^f. By [1, VII.4.2, Th. 2], the associated primes of ^/^f
are prime divisors since ̂  is reflexive; hence, the associated primes ofX are prime divisors
if they exist ([1, IV. 1.1, Prop. 3 ]). Since X is pseudo-null, the set of associated primes
must be empty and hence X=0 (cf. [1, IV. 1.1, Cor. 1 to Prop. 2]). Therefore, div (a)
annihilates (F(Jf;K); hence, a = div (a) because div (a) =3 a. This shows (3.10rf). By
our definition of yT(Jf;K), (3.10^) follows from [1, VII. 4.2, Th. 1 and 4.4, Ex. 3].

Proof of Corollary 3.7. — Let Jf be a primitive cuspidal component of A = ^o(N; 6^)-
Put L=^n^. Then, by [1, VII. 4, Prop. 6], L is reflexive, and hence, is free
([24, Lemme 6 ]). Thus, for P = P^, L/PL is injected into Lp/PLp for the localization Lp
of L at P. We have an exact sequence:

0-^L-^-^/L-^O.

Naturally, ^/L is A-torsion free. By localizing at P, we have another exact sequence:

0 -> Lp -^ ^p -^ ^p/Lp -> 0.

Since the local ring Ap of A at P is a discrete valuation ring, /^p/Lp = (^/L)p is Ap-free. Note
that by Corollary 3.2,

^p/P^p=^(r,(No^);K)

and as in the proof of Corollary 3.3, Lp/PLp is an ideal of ^p/P^p which annihilates old
forms. Since ^p/P^p is an artinian ring over K, Lp/PLp must be a semi-simple ring.
This shows that Lp itself is a subring of Jf and Lp must coincides with the localization
J'f(jf)p of^f(Jf) at P, since both the rings over Ap have the same residue ring modulo P.
Thus, the semi-simplicity of Lp/PLp shows that J'f(Jr)p is unramified over Ap. Since
^f(JT) is AK-free, ^(Jr)=Jf(.jr)/Pjf(Jf) is (P^-hee. Since ^f(Jf)p=^f(Jf)p is unra-
mified at P, L/PL is a ^K-^bmodule of ^(JT) with the same ^-f^k. This shows
that ^ffc(JT) is embedded into Lp/PLp. We have already seen F^ = ̂ (Jf) 0^ = LP/^P
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is a ring direct summund of ^(F^oP) \ K-)» and thus, ^(^T) is isomorphically embedded
into4°(ri(No^);K).

Since F^ annihilates old forms and is a semi-simple direct summand of ^(F^No/?); K),
there are d ordinary forms (for d= [F^: K]= [Jf : ̂ 1) ̂ h the properties required by
the corollary (cf. [10, Prop. 4.4]). Now we shall prove the converse. Let / be an ordi-
nary form in c9^(ri(No/?)) and assume that the primitive form associated with / has con-
ductor divisible by No. What we have to show is that the local ring to which / belongs
is primitive. Our method is rather indirect; indeed, we shall show that the number of
ordinary forms belonging to primitive components coincides with the number of ordinary
forms with this property. The forms belonging to primitive components, as already
shown, automatically satisfy this property concerning the divisibility of conductor by No,
and hence, the assertion of the corollary follows. To see this, for each pair of divisors t, s
of No with ts | No, define an injection [t], of y^sp ; K/^) into ^o(No^; K/^) by

f\[t]s= E^,W.
n=0

By duality, this morphism induces a surjective A^-linear map of ^o(Nop; ̂ ic)onto ^o(5?» ̂ K\
which will be denoted by the same symbol [t]s. Let (|>^ be the combination of [t]s with
the projection of ^(sp ; K) onto ^(sp; K). Then, we can define a morphism (|) of ^(No/?; K)
into Q)^(sp; K) by (|)(^)= © ̂ iM\ where the summation is taken over all pairs (5, t) of
divirors of No with st \ No. By the definition of /i(sp; K), ^ is injective. Put
d(s)=dim^/i(sp;K). Then, we have an inequality:

dim^No^;K)< Z v(Orf(No/0,
C K t j N o

where v(r) is the number of positive divisors of t. Let dk(s) be the number of ordinary
forms in y^F^sp)) with which associated primitive forms have conductor divisible by s.
Then, by [10, Prop. 4.4], we have an identity:

dimK«W,(No^);K)= S v(t)d^o/t).
0<?|No

As already seen, we know an inequality:

d(t)^dk(t) for all 0 < ^ | N o and k>2.

By Theorem 3.1, we know that

dim^ ̂ op ; K) = diniK ̂ (Fi (No/?); K) for all k > 2 .

Thus rffe(No) is independent of k and coincides with rf(No) if k>.1. Note that d(No) is
the number of ordinary forms belonging to primitive local rings of ^(No/?; K). This
finishes the proof of Corollary 3.7.

Proof of Corollary 3.8. — We shall prove only the assertion concerning the module
^(Jf; K), because the other case can be dealt with in exactly the same fashion. We shall
use the symbols defined in §3. We recall some of them:

^=^, ^=^(JT)©^), <^=^ and ^=^',
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where ^=/I()(N;(PK)- Put %"=^'/^- By definition, we have a commutative diagram:
0 0
i i
y yn = n

\ \
O-^'-^-^J^-^O

i i I I
o-^'-^-^j^-^o

\ \
0 0

whose vertical and horizontal lines are exact. After localizing this diagram at P=Pfc,
we have that (J^)p=0 (since ^ is pseudo-null) and ^p=^p if fe^2. Thus ^/P^ is a
subalgebra of ^?(ri(No^); K). By tensoring A^/PAic to the above diagram, we have
another commutative diagram:

c IT) f> /> /-r> y^VH = fzfVft

[ J_^ / p ^ A ^/p^ -. ̂ /p^r, -> o
i ip I I^'/p^' -^ ^/p^ ^ ^/p^r, -> o,
4- '!•
0 0

whose vertical and horizontal lines are exact. Then the image of a (in the diagram)
coincides with h(¥k}<Sh(^k) in (3.11 b\ Thus we see that

y(^'/p^')= p(a(^/P^))=(/z(Ffc)e^(Bfc))/^(ri(No^); ̂ )=Cfc(Jf).

This shows the exactitude of the sequence:
0 -^ Cfe(Jf) -^ ^/P^ -^ J^/Pfe^ -> 0 for each fc>2 .

Proof of Proposition 3.9. — We shall assume that R(Ffc)©R(Bfc) is integrally closed
in (^/P^)®^K for some k>.l and show the vanishing of ^y For simplicity, write ̂ '
for ^(Jf)©^(^) and ^ for the free closure of '̂. In the same manner as in the proof
of Corollary 3.8, we have an exact sequence:

0 -, R(Ffc)CR(Bfc) -^ ^/P^ ^ ^s/P^s -^0 for P=Pfe.

Meantime, ^/P^ is a subalgebra of WP^)®^K integral over R(Ffe)©R(Bfc). Thus,
we know from the assumption of normality the vanishing: J^/P^/T^O, which implies
the expected vanishing ^=0 by Nakayama's lemma.

Next, we shall assume the existence of an isomorphism:

(^/Pk^) ̂  Hom^ ((^/Pk^), (9^ as ^/P^-modules

and the normality of R(Fk) in Fj, for some k>2. Since ̂  is AK-free, we know for P=Pfc
that

Hom^ (WP^), (9^ Hom^ (^, AK)®A,AK/PAK
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as ^-modules. Thus, by the assumption combined with Nakayama's lemma, we know
that

Hom^ (-^. AK) ̂  ̂  as .^-modules .

Then, we can find a dual pairing < , > on ̂  with values in AK so that < ra, b > == < a, rb >
for all a, fo, re^. On the other hand, a similar argument as in the proof of criterion (i)
shows that ^(.^r)==^(.^f) if R(Ffe) is normal in F^. Thus, ^(Jf) is AK-free. Let a be the
kernel of the natural projection of ̂  onto ̂ (Jf). Then, by definition, a is the intersection
^n^ in Jf©^, and thus, a is reflexive [1, VII. 4.2, Prop. 6]; hence, a is AK-free [25,
Lemme 6]. Namely, we have an exact sequence of AK-free modules:

0 -^ a -^ ^ -> .̂ (-r) -^ 0.

Write M* for Hom^K (M, A^ for any AK-module M. Then, we have another exact
sequence:

0 -> ^(jf)* ̂  .̂ * -^ a* -^ 0.

Since we have already identified ^* with ^ by a pairing < , >, we see that

^(jf)* = { re^ | < r, a > =0 for any aea }
= { re^ [ < ra, 1 > =0 for any aea }
={re^\ar=0 for any aea}
=Jfn^.

Thus, we know that
a* = HoniAK (a, A^ ̂  ̂ (^) as ^-modules.

By [1, VII. 4.2, Th. 1 ], we know that a* is reflexive; hence, a* is AK-free. This shows
by definition the vanishing: ^=0.

§ 7. Primitive components attached to imaginary quadratic fields
and Eisenstein series

Let M be an imaginary quadratic field with discriminant — d such that

(7.1) the fixed prime p (^ 5) is split.

We consider M as a subfield of Q and let p be the prime factor associated with this
embedding of M into Q (i. e., p=^3nM). Fix an integral ideal c of M outside p, and
let I(pc) be the group of the fractional ideals of M prime to pc and P(pc) the subgroup
of I(pc) consisting of all principal ideals (a) with a= 1 modx pc, where " mod" pc " means
the multiplicative congruence modulo pc. Fix a complete set S of representatives for
H=I(pc)/P(pc) consisting of integral ideals. For aeS and O^veZ, put (according to
Shimura [26, p. 203])

(7.2 a) do= [aea\a=l modx pc},
(7.2 b) g,(a; z) = S fl^(N^)z/N(a)).

aeao
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Then, it is known by Hecke [5] (see also [26, Lemma 3] and [10, Prop. 1.1]) that
(7.2c) ^(a;z)e-jr^i(F^No)) for No=^N(c).

We have a natural morphism of (Z/N^Z)" into H. Thus the group (Z/N^Z)"

acts on H. Since r^NVr^N^Z/NZ)' through I b) ̂  d, Fo(N)/Fi(N) acts on H
\c d }

for N=No/?. Then the explicit action of y= ( )eFo(N) on g^(a; z) is given by
\c d]

(7<3) §vW\7=7^)§vW,

where yeFo(N) acts on aeS through its action on H as described above and ^ is the qua-
dratic residue symbol associated with M.

For any prime idele I of M, let M( be the I-adic completion of M and Ui be the group
of all I-adic units in M(. Further let Moo be the completion of M at the infinite place
(M^C). Let us put U(c)= {x=(x i )enUi |x= lmodc} ,

i^p
W=M^/U(c)M^M\

where M^ is the idele group of M and L^M^M" is the closure in M^ of U^MooM".
Any XGMA with XieUi for 11 pc naturally acts on the fractional ideals of I(pc); then, we
put il{x)=x<3{ for the ring 91 of integers in M. The inclusion F c> UpcM^ and the
morphism x \—> il(x) of M^ into I(pc) gives an exact sequence of topological groups:
O - ^ r - ^ W - ^ H - ^ O . Hence, as topological spaces, we have W^HxF. Any
Hecke character ^ modulo c^ (O^reZ) can be considered as a continuous character
of W (e. g., [9, § 1] and (7.8) below in the text) with values in Q.

Let A be the maximal 7?-profinite torsion free subgroup of W containing F and [i be
the torsion part of W; thus, W^A x u. Let L' be the extension of Qp containing the
values of all characters of (A/F) x a. For any Hecke character X, modulo cp with
(7.4) U{a))==a if a = l m o d ' c p

X automatically induces an isomorphism of A onto ^(A) c= Q. We fix such a character ^
and adjoin all the values of ^ on I(pc) to L' and denote by L the subfield of Q obtained.

Then L is still finite over Qp and contains all the values of all Hecke character satisfying
(7.4). Put q = [A : F ] and define the Iwasawa algebra AL of A over (9^ (i. e.,
AL= lim ^PL [A/FJ). Take a generator 8 of A so that 8^= 1 +/?. Then AL is isomorphic

to ^[[Y]] through 8^ 1+Y and AL^AL[Y]/F(Y)AL[Y] for F(Y)=(1+Y)^-(1+X).
Then the quotient field J^L °f AL is defined over L.

THEOREM 7.1. — Let the notation be as above. For any character ^ of [i, let £ be the
conductor of ^-o = ̂  ̂ ? \vhere X is the restriction of X \vith (7.4) on A and put 'kj =^J for
7>0. Put N==dN((£) and write N=No^ with (No,^)=l. Then there exists a unique
primitive cuspidal component Jf of conductor No in ^(N; L) such that Jf ^ J^L an(^ /or

each 7^0 and all character s of A/F, /^.e=^8^•(a)^N(a)e^•+l(^l(N); L) belongs to Jf
a

in the sense of Corollary 3.7, where a runs over all integral ideals prime to pC.
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Note that the condition : " q= 1" is equivalent to " rf(Jf)= [Jf : J^iJ= 1 " ; thus, the
primitive cuspidal components as in Theorem 7.1 provide infinitely many examples
of these with rf(^)=l.

Proof. — By our assumption, the closure of M in Q (that is, Mp) coincides with Qp.
By a theorem of Mahler [21, § 10 ], every continuous function <|) on Zp with values in K
for any finite extension K of Qp can be expanded as

(7.5^) (MX)= E^)^) (xeZp),
n=o \n/

where c(n)eK with lim | c(n) |p=0, ( x } = x(x-l) " '(x-n+l) and f^ = 1. Since F isn^00 \n/ n! \0/
an open subset of Zp, every continuous function on F can be extended to Zp. Thus
every function on W has an expansion of the form:

(7.5fc) ^z)=ic(h,n)(z} (AeH, zeF),
n = o \n/

where we have identified W with H x F and c(h, n)eK with lim | c(h, n) |.,=0. For any
n-^oo

topological spaces T and T', let us write C(T; T') for the space of all continuous functions
on T with values in T'. Let r act on C(W; T) through

(|)(A, z) | z' = ())(/z, zz') for (|)eC(W; T).

It is well known {cf. [12, §5]) that

(7.6 a) C(F; Tp) is the Pontrjagin dual A-module of A,
(7.6^) C(F ; K/6y ̂  C(F ; K)/C(F ; ̂ ).
The latter assertion is equivalent to the density of locally constant functions in C(F; K).
We see easily as A-modules

(7.6 c) C(W; T) ̂  C(F; T)" for T = Tp, Zp or more generally, K or K/^ .

Furthermore C(W; K) is equipped with a p-'ddic Banach norm defined by

(7.7) | | ( ) ) | |=Sup |^(w) |p .
weW

For (()eC(W;K), put

9(<1>) = I Z Wa), a)q^^eK [ [q ] ],
aeS aeao

where h(a) is the class of a in H. Any Hecke character (p modulo cp with values in Q c Q
can be considered as a character of W. Especially, we know

(7.8) if (ptt^^ for aEElmod" cp, then (p(x)=(p(«(x))~1^ for xeM^ with j^eF
and Xi= 1 mod c for 1 1 c .
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Let S(v, c) be the set of all characters satisfying the assumption of (7.8). Then, it is well
known that 6(cp) is a normalized eigenform in .9^+i(ro(N), (p/) with

(7.9) a(!,9((p))=

(p(I)-Kp(I) if ;=II inM (1^1),
(p(I) if ?=I2 i n M ,

0 otherwise,

where I is a prime and cp(m)=(p((m))m-v for O^meZ (cf. [26]). Furthermore, as shown
in[26,§4],

(7.10) { 9((p) }<pes(v,o ^pans h-dimensional subspace of ^v+i(r\(N)) for h= \ H |, if v^ 1.

Let P(W ; K) be the subspace of C(W; K) consisting of all polynomial functions on F.
Since P(W;K) is dense in C(W;K) by Mahler's theorem already mentioned, we see
from (7.5fc) that

(7.11) P(W; K)/(C(W; ̂ )nP(W; K))^C(W; K/^).

Now one may give a proof of (7.10) as follows: Let us put for aeS, R(a)= {aeao \ N(a)/N(a)
is a prime outside N(cp), a= 1 mod N(cp) }, and for any topological module T and a func-
tion <|)eC(W;T), define a formal series 9((|))= E S <|)(/i(a), a)q^a)/ma)erT [ [q ] ]. We may

aeS aeao

assume that any aeS is prime to N(cp). Then for any aeS, we can find an element a*
in S in the class of the ideal ap. Then for aeR(a), (aa~ ̂  can be written uniquely as a*(a*)~1

for a unique a*ea$. We now embed R(a) into F x r through a \—> (a, a*)eF x r. The
Tchebotarev density theorem shows that R(a) is dense in FxF. If 6((|))=0, then
(|)(/i(a),a)+(()(/i(a*),a*)=0 for all aeR(a). Now we define a continuous function <D(y,8)
on r x r by <D(y, §)= (|)(^(a), y)+ ()>Wa*), §) for any y, SeF. The density of R(a) in F x F
shows <D(y,8)=0 on F x F and thus (|>(/i(a),y)= - ()>(/i(a*), 5) for all y, 8er. Therefore,
4>(/i(a), y) is constant on F, and hence, is a function in C(H; T). Especially, the kernel
of 9 :C(W;K/^) -^ ^(N;K/^) is contained in C(H; K/^^KI^f, which shows
(7.10).

Comparing the definition of the action of F on ^(N; K/fi^) with that on C(W; K/^),
we see

(7 Ala) z9((|)|z)=9((t))|z.

We define a A-module Zp(r) by A/P,A for P,(X) = (X +1) - (1 +pY. Then, (7.12 a) shows
that 9 gives a morphism of A-modules:

(7.12 b) 9 : Z^(l) ®z,C(W; K/^) ^ ^(N; K/^)
wiT/i ^rn^? contained in Zp(l)OOzpC(H; K/^).

When K=Qp, we see C(W;Tp)^E(oo)H for the Pontrjagin dual space E(oo) of A from
(7.6^) and (7.11). Note that

(7.13) Z^^z^^^E^) as ^-modules.
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Since all 9((|)) for (|)eC(W; L) is a linear combination of 9()i) as in (7.9), 9(C(W; L/^J)
is stable under the action of Jf(N; (9^) by (7.9). Furthermore, we see from (7.9) that

(7.14^) QW\T(p)=Hp)6(^ and |?i(p)|p=l.

In fact, for a generator a of p^ with a = 1 mod x c, we have Up^ = ̂ (p^) = a\ Since/?= pp and
p = ̂  n M, we see | a \p = 1. This shows (7.14 a). Then, by [10, Lemma 4.2 ], we know
that
(7.14fo) 9(X) belongs to ^o(N;L) and 9(C(W;L/^J) is a submodule of ^o(N;L/^)

stable under Jfo(N; ̂ ) •

Naturally, we can consider C(W; L/^J as a module over W through (<)) | w')(w) = (|)(mv').
Then, we have isomorphisms as W-modules:

C(W; L/fi^P(W; L)/(P(W; L)nC(W; ̂ ))^C(A; L/^)®zZ [a],

where Z [u ] is the group algebra of u. Decomposing this space into the sum of eigenspaces
of the action of the finite group a, we see that

C(y={/eC(W;L/^)|/|m=^(m)/ for all meu}

is isomorphic to C(A; L/^J as a module of AL. The restriction of the operators in
^N;^) to the subspace ©(^)=9(C(^)) defines a homomorphism of ^(N;L) into ̂
by (7.14 b) and (7.9). For any k > 1, by the definition of L, we have AL/P^- i^0^L^ L4.
Since the image of ^°(Fi(N); ̂ )®^L in End^(©(yn^(Fi(N); L/^))®^L has
dimension ^ over L (c/: [29, Th. 3.51]) if fe>l, it must coincide with (AL/Pfc-iAJOO^L.
In fact, we see Q(yn^(Fi(N);L/^L)=) E(L/fiy/^ by definition, where s runs over

s

all the characters of A/F. Therefore the homomorphism of ^(N; L) into ̂  is surjective.
The primitivity of the component J^L follows from the fact that the conductor of /^
is divisible by No (cf. Cor. 3.7). This shows the theorem.

Now we consider the irreducible component corresponding to the Eisenstein series.
Let ^ and \|/ be primitive characters o^Z/M^Z)" and (Z/JIV^Z)". Then, for any positive
integer fe^3 with (-\)k=^(-\\ put

(7.15) B,OC )̂= -SW^ + £ ( E x^vl/^V-1^,
2k n=l\0<d|n \d/ /

where 8(\|/) = 1 or 0 according as \|/ is trivial or not, and Bj^ is the fe-th generalized Bernoulli
number with character ^

Let us denote by Q(^, \|/) (resp. Qp(^ v|/)) the field generated over Q (resp. Qp) by all
the values of ̂  and \|/. Then, it is well known by [6 ] (see also [4, Th. 4.7.1 ]) that E^, \|/)
belongs to J^(Fo(N), ̂ ; Q(7, \|/)) for N=MiM2. Furthermore, E^.v)/) is a norma-
lized eigenform. The eigenvalue of T(/?) at Efc(^, \|/) is given by

(7.16) vK^)+xW-1.

Thus, if M^ is prime to p, then (1 -vhc(/^~1). Efc(X, v|/) I ^ is a ^-ordinary form for the
idempotent ^ attached to T(^) [10, Lemma 4.2]. We write simply S^^f) for
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^-^(p)Pk~l)^k{^^)\^ When p divides Mi, S^, v|/) = E^, \|/), and when Mi is
prime to /?, ^(7, \|/) can be given by (7.15) by putting ^(d)=0 ifp divides d.

THEOREM 7.2. — Let ^ and \|/ be primitive Dirichlet characters modulo Mi and M^ respec-
tively. Assume that Mi and M^ are prime to p. Then, for No=MiM2, 0^a<p—l
and K= Qp(x» ^)? ̂ ^ exists ^ unique irreducible component JT m J?(N; K) of conductor No
such that Jf is isomorphic to the quotient field ̂  of AK and ^k(%(Qa~k,^^) belongs to Jf
for any fe^3, w^re co is a character of Z^ defined by co(x)= limx^.

This can be proved without any conflicts if one understands the essential points of the
proof of Theorem 7.1; so we leave it to the reader as an exercise.

Now let us discuss some numerical examples of the Iwasawa module ^(Jf; K). For
a while, we use the same notation as in Th. 7.1. By Theorem 7.1, we can separate the
cusp forms belonging to a primitive component J^L obtained from the imaginary qua-
dratic field M and others even if they are congruent mod p. If there exists a congruence
/^=/ mod ̂  for ^e5(v, c) and another /^-ordinary form / with exact level dN{c)p and
of weight v +1, which is not obtained as a theta series ofM, the torsion AL-module ̂ (J^L \ L)
of Theorem 3.6 must be non-trivial by Corollary 3.8 and (3.12). We can list some
primes p with non-trivial ^(J^L?L) from Maeda's table given in [7, (8.11)] when
M = Q(-\/ — 3) and c= 1 : p= 13, 30842593. In this case, we can take Qp as L and check
the criterion (i) of Proposition 3.9 numerically at k=13 for p= 13 and k=31 for
;?= 30842593. Thus, for these primes, we know -^s(^L; L) = 0. Note that the latter
prime is an irregular prime for Q(^/ — 3) (c/. [9, p. 438]). In view of [9, (7.5)], one may
conjecture as a special case of Conjecture 3.10 that the characteristic power series ̂ (J^L »L)
interpolates radically the special values (or more precisely, their algebraic part) of Hecke
L-functions of M at certain integers. By [9, (7.5)], one can of course specify the eva-
luation points and the Hecke L-functions to be interpolated. Hence, if the conjecture
is true, the characteristic power series gives a part of the /?-adic measure constructed
in Katz [18] associated with the imaginary quadratic field M.

A similar conjecture can be made for the primitive components attached to Eisenstein
series as in Theorem 7.2. In this case, the corresponding p-sidic L-functions must be
those of Kubota-Leopoldt, which interpolate generalized Bernoulli numbers.
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