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THE CALCULUS OF BOUNDARY PROCESSES

BY Jean-Michel BISMUT

ABSTRACT. — This paper is a systematic study of the transition probabilities of the boundary processes
associated to a class of reflecting diffusions. The main tools are the theory of stochastic flows, the Malliavin
calculus of variations on diffusions, the calculus of variations on jump processes, the Ito theory of excursions
and the stochastic calculus on continuous and non continuous semi-martingales. The smoothness of the
boundary semi-group is related to the degree of degeneracy of the second-order differential operator defining
the diffusion at the boundary.

AMS: 35H05, 60G44, 60G55, 60H10, 60J35, 60J60, 60J75.
Hypoelliptic equations and systems, martingales with continuous parameter. Point processes. Transition

functions, generators and resolvents. Stochastic ordinary differential equations. Diffusion processes, jump
processes.
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The purpose of this paper is to study the semi-groups associated to a class of jump
processes, which are the boundary processes of reflecting diffusions. The main technique
is the stochastic calculus of variations. Since we are using this calculus on diffusions
and on Poisson point processes, we start by giving a brief history of this technique.

Consider the stochastic differential equation:

(0.1) dx = Xo (x) dt + ̂  X, (x). riw1, x (0) = Xo,
1=1

where Xo, X^, . . ., X^ are smooth vector fields, and w=(w1, w2, . . . . w"*) is a Brownian
motion. Here (0.1) is taken in the sense of Stratonovitch [31], so that its infinitesimal
generator is the second order differential operator J^f0 given by:

m

(0.2) ^°=Xo+l/2 ^ X?,

This paper has been presented at the Katata Conference in Probability, July 1982.
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508 J.-M. BISMUT

J^f0 is written in the form of Hormander [15]. If xeR^, the transition probability
pt(x, dy) is a solution (in the sense of distributions) of the forward Fokker-Planck
equation:

^-^p=0, p,=^

where J^f0* is the adjoint of ^° with respect to the Lebesgue measure.
The existence of smooth densities for /?((x, dy) can be obtained by using Hormander'-

theorem on the hypoellipticity of second-order differential operators ([15], [24], [42]).
In [29] and [30], Malliavin described a purely probabilistic method to prove the

smoothness of p^ (x, dy). If (Q, P) is the probability space of the Brownian motion w,
he showed that it was possible to obtain an integration by parts formula
on (Q, P). Malliavin used as a main tool the Ornstein-Uhlenbeck operator ja^, which is
an unbounded self-adjoint operator on 1^(0, P), and the associated Ornstein-Uhlenbeck
process. Still using the Ornstein-Uhlenbeck operator, Shigekawa [34], Stroock ([36], [37],
[38]), Ikeda-Watanabe [17] simplified and extended Malliavin's original approach. In
particular the estimates which give the smoothness of T^OC, dy) were obtained in
Malliavin [30], Ikeda-Watanabe [17] and improved in Kusuoka-Stroock ([26], [38]) where
the full Hormander Theorem was in fact obtained.

Another approach to the Malliavin calculus was suggested by us in [7]. Instead of
relying on the Ornstein-Uhlenbeck operator, it uses the Girsanov transformation on
diffusions [39]. An integration by parts formula is then derived, which is also a conse-
quence of a result of Haussmann [14] concerning the representation of Frechet differentia-
ble functionals of the trajectory x as stochastic integrals with respect to the Brownian
motion w.

The Malliavin calculus on diffusions gave the result that if ^° is well behaved on a
neighborhood of the starting point x, then for t>0, p^(x, dy) is smooth on R^, which is
a result which is not a consequence of Hormander's theorem. By using a localization
procedure, Stroock [36] was able to use this first result to prove that if ^° is well
behaved on a neighborhood of y, then p^(x, dy) is smooth on this neighborhood, this
last result being a consequence of Hormander's theorem. As we shall later see, for
boundary processes—which have non-local generators—smoothness does not propagate
in a similar way from the starting point [see section 1 (/)].

Among the applications of the Malliavin calculus which will be useful to us, let us
mention the work of Bismut-Michel [10] on conditional diffusions. In [10], results on
conditional diffusions are obtained by doing the variation only on certain components
of the Brownian motion w.

In [8], we developed a calculus of variations for jump processes. Namely, we conside-
red in [8] the equation:

(0.3) ^=x+ Xo(x,)d5+^,
Jo
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THE CALCULUS OF BOUNDARY PROCESSES 509

where ^ is an independent increment jump process, whose probability law is modified
using the Girsanov transformation on jump processes in Jacod [19]. An integration by
parts formula on an infinite dimensional non Gaussian probability space is obtained
in [8]. The estimates which are necessary to study the regularity of the semi-groups
associated to such jump processes are very different from the corresponding ones for
classical diffusions. In particular it can take a strictly positive time for the transition
probability p,(x, dy) to get C°, then later C1...

We do four remarks on the results of [8].

(a) Although the law of the process x. given by (0.3) is modified by a Girsanov
transformation in such a way that y. is no longer an independent increment process, still
the basic work is done on a probability space where y. has independent increments. This
makes that the Levy measure M(x, dy) depends in a "weak" way of x.

(b) In [8], advantage is taken of the vector space structure of R^, so that the various
jumps are "added" to each other. This prevents us from working on a manifold, or to
work with a Levy kernel M (x, dy) strongfy depending on x.

(c) In principle it would be possible to use the technique of [8] to study more general
stochastic differential equations with jumps introduced by Skorokhod and studied in
Jacod [19]. However technical difficulties do arise, essentially because the jumps destroy
the local differential structure of R^.

(d) Even working as in (c), it would be difficult to describe non trivial interactions
between a vector field Xo and a non-local operator M so that the Markov process whose
generator is Xo+e^ would be given by densities, while the Levy measure M(x, dy)
associated to M would be concentrated on submanifolds (depending on x).

However there is a large class of jump processes which are naturally associated
to continuous diffusions. Namely let D be an open domain in R^ with a smooth
boundary 9D. Let x^ be a diffusion in R^ which is either non-reflecting or reflecting
on 8D. If Lf is one local time of x on 8D, if A( is its right-continuous inverse, then x^
and (A(, x^) are strong Markov processes, which are in fact jump processes. Such
boundary processes were used by Stroock-Varadhan [39] to prove uniqueness for certain
diffusions with boundary conditions.

In this paper, we study the semi-groups of a class of such boundary processes. Namely
in the first five Sections, we consider the stochastic differential equation:

m

(0.4) dx=Xo(x, z)dt+D(x)dL+ ̂  X,(x, z).d\v\ x(0)=Xo
1=1

where z is a reflecting Brownian motion, w=(w1 . . . ̂ m) is a Brownian motion indepen-
dent of z, L is the local time at 0 of z, D, Xo. . . X^ are smooth vector fields. A
Girsanov transformation is also performed on z so as to introduce a drift on z. If A^ is
the right-continuous inverse of L, we study the semi-group associated to the Markov
process (A,, x^).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



510 J.-M. BISMUT

The typical model for such a problem is the case where Xo. . .X^ do not depend
on z. If ^° is the operator given by (0.2), the formal generator of the boundary process
is given in this case by:

(0.5) "-V-2^^0)-

If instead of (0.4) we had considered the stochastic differential equation:

(0.6) dx=zW^-2Xo(x)dt+D(x)dL+{^z)^-2 f; X.(xMw',
1=1

where 0<P<1, using the results in Ito-McKean [18] (p. 226), the formal generator
associated to the process (A(, x^) is:

0-44-4
where kp is a given >0 Const. However we would have been forced to work with
non-smooth coefficients in the variable z. Although this would not be a serious difficulty,
we have prefered to work in the whole text with smooth vector fields.

Section 1 is devoted to the explicit construction of the diffusion (0.4). For this
construction, we closely follow Ikeda-Watanabe [17]. To (0.4), we associate a conti-
nuous flow of diffeomorphisms such that in (0.4), X(=((\((D, Xo), by using the techniques
in Bismut ([5], [6]), Kunita [25]. In particular it is shown that it is of critical importance
to study the process (Ap x^) and not x^, if we want that smoothness propagates in a
nice way.

In section 2, the calculus of variations is performed on the Brownian motion w, so
that the reflecting Brownian motion z does not vary. The technique is very close to
what is done in Bismut [7], Bismut-Michel [10]. Explicit computations are very similar
to [7]. As in Malliavin ([29], [30]), we make appear a process Q° valued in the set
of (d, d) symmetric nonnegative matrices. Contrary to what happens for the semi-groups
associated to hypoelliptic diffusions, the boundary semi-groups may well be slowly
regularizing, in the same way as the classical jump processes studied in [8]. This last
case is labelled "non locali2;able" for reasons which will clearly appear in section 5. We
consider two cases:

(a) The case where for any r>0, T^O, lA^i-ltCX0]"11 is in all the
Lp(\^p< +00). Theorems 2.4 and 4.9 show then that the boundary semi-group is

. given by C00 densities. This is the "localizable" case.
(b) The case where for a given r>0, for any T^O, XQ, lA^-rll^]"11 is in one given

Lq(q>2). Theorems 2. 5, 4.11 and 4.12 show that the boundary semi-group is slowly
regularizing. This is the "non localizable" case.

The conclusion of section 2 is that we know how to control the derivatives (in the
sense of distributions) in the variable y of the transition probability p^ (da, dy).

46 SERIE — TOME 17 — 1984 — N° 4
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Section 3 is preparing for section 4, where the derivatives of p^(da, dy) in the variable a
are controlled. Section 3 also contains results of independent interest. In fact by the
Ito's theory of excursions (see Ito-McKean [18], Ikeda-Watanabe [17]), we know that the
excursions of z out of 0 and the corresponding trajectory of w define a Poisson point
process. If {F,}^o is the natural filtration of(w, z), {F^}^o ls ^e natural filtration
of this point process. In section 3, we "embed" the stochastic calculus on {F^}^o
martingales—which are purely discontinuous martingales—in the calculus on {F,}^o
martingales — which are continuous. The effect of a Girsanov transformation is conside-
red on the {F,}^o an(^ the {F^J^o stochastic calculus, so that the results in Jacod [19]
on the effect of the Girsanov transformation on point processes, and more classical
results on the Girsanov transformation for the Brownian motion [40] are shown to be
deeply related. Section 3 also sheds some light on the computations of section 4.

In section 4, we develop a calculus of variations on the reflecting Brownian motion z,
in order to control the differentials of pf(da, dy) in the variable a. This calculus is based
on the characterization by Skorokhod of the reflecting Brownian motion. Even if we
still use the Ito stochastic calculus, we show that what we do is in fact a variation on
each excursion of the Poisson point process associated to z, i. e. something very similar
to what we did in our work [8]. Still the possibility of using the continuous time
stochastic calculus considerably simplifies the computations in comparison with an earlier
version of this paper, where the stochastic calculus on jump processes was explicitly
used. The main consequence of section 4 is to show that to each sort of random variable
corresponds one possible calculus of variations, so that several differentiable structures
can be put on the same probability space, in order to study different random variables.

In section 5, we start giving conditions under which Qo is a. s. invertible, which implies
that the boundary semi-group has densities. Non trivial interactions between D and
(Xo. . . XJ are exhibited so that densities exist even if the Levy kernels are fully
degenerate. It is a remarkable feature of the problem that the interaction between D
and the Levy kernel of the boundary process is expressed through the differential operator
which in fact defines the Levy kernel, and not by just looking at the global behavior of
the Levy kernel. This explains the difficulty we had in [8] to exhibit such an interaction
by direct methods, i. e. by constructing from scratch a vector field D and a Levy kernel
M(x, dy) such that such an interaction would appear.

The regularity of the boundary semi-group is also studied. The critical degeneracy of
the diffusion x. on the boundary is found so as to ensure that if on a neighborhood
of x, the diffusion x. is strictly less degenerate than the critical degeneracy, the boundary
semi-group is C°°, while if x. is everywhere degenerate at the critical degeneracy level,
the boundary semi-group is slowly regularizing. The estimates of Malliavin [30],
Ikeda-Watanabe [17] and Kusuoka-Stroock ([26], [38]) for standard diffusions are used
in the whole section.

In section 6, the reflecting Brownian motion is changed into a standard Brownian
motion, so that the diffusion x. is governed by the differential operator ^ in the
region (z>0), by the operator ^f in the region (z<0). If J^f, ^f do not depend on z,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



512 J.-M. BISMUT

the formal generator of the boundary process is exactly:

^[-(Mr^-2^-)]1"
where a, a" are > 0 constants.

The estimates are drastically changed by the introduction of two sorts of excursions
of z. In particular the non local nature of the perturbation introduced by the negative
excursions can destroy the smoothness of the semi-group when only positive excursions
appear. The Arcsine law of P. Levy (Ito-McKean [18], p. 57) gives us a good illustration
of this phenomenon.

When the union of some Hormander-like distributions associated to ^ and ^f span R^
in a uniform way, we still prove that the boundary semi-group is smooth. Apparently,
the classical {F(}^() stochastic calculus is not good enough to obtain the necessary
estimates. We have to rely on estimates on each individual excursion of z, the global
effect of piling up the excursions being analysed using the stochastic calculus on Poisson
point processes.

Some of the problems considered in this paper apparently fall out of the reach of
existing methods in analysis for two reasons:

(a) They are very degenerate.
(b) The generators of the boundary processes which we consider are not necessarily

pseudo-differential operators (see [42]) since they may well be not smooth out of the
diagonal (this is the case in section 6).

The techniques given here would apply without much change to study the harmonic
measures of a diffusion. Let us just say that the regularization effects are more interes-
ting to study on boundary processes. The case where the reflecting diffusion also diffuses
on the boundary has also been left aside.

In the whole text C^ (R^ [resp. C^ (R^] is the space of real functions defined on R^
which are C°° with bounded differentials (resp. which are C°° and have compact
support). The spaces Lp are only considered for 1 ̂ p< + oo (i. e. p== + oo is systemati-
cally excluded). The constants which appear in a priori bounds will be written C, even
when they vary from place to place.

The results of this paper have been announced and commented in [50].

1. The boundary process

In this section, we define the boundary process, which will be the object of our study.
In paragraph (a), the main notations are introduced. In (fc), the theory of stochastic

flows (Bismut [5], Kunita [25]) is applied to the considered reflecting diffusion. In (c), a
Girsanov transformation iis performed on the diffusion; related technical problems are
discussed in (d). In (e), the boundary process is defined, and technical details are

4® SERIE — TOME 17 — 1984 — N° 4



THE CALCULUS OF BOUNDARY PROCESSES 513

discussed in (/). Connections with the theory of hypoelliptic second-order differential
operators are underlined in (g),

(a) NOTATIONS AND ASSUMPTIONS. — m is a > 0 integer.
Q (resp. Q') is the space ^(R""; R"1) [resp. ^(R4"; R4')] of continuous functions defined

on R'^ with values in R7" (resp. R4'). The trajectory ofcoeQ (resp. o/eQ") is written
w,=(w,1, . . ., <)(resp. z,).

The a-field F, in Q (resp. Fy in 0') is defined by Fy=^(wj5^0 [resp.
F(=^(zj5^0]. 0 (resp. Q") is endowed with the filtration {F(}(^O (resp. {F(}^())-

Q is the space tlxQ', whose standard element is o)==(co, o/). F, is the a-field Fy(g)F^,
and {F(}^O is the associated filtration.

All the filtrations considered in this paper will be eventually regularized on the right
and completed as in Dellacherie-Meyer [11] without further mention and with no explicit
notation. Difficulties which may arise in this respect will be underlined when necessary.

For seR^ 65 (resp. 65) is the mapping from Q into Q (resp. from Q" into 0') defined
by:

o)=«» -^co=(w,+,-0

[resp. G/ = (z,) -> 9; o/ = (z,+,)].
Og is the mapping from 0 into Q, given by:

^(^(^(^((O),^)).

P is the Brownian measure on 0, such that P(wo=0)= 1.
For zeR"^ P^ is the probability measure on Q' associated to the reflecting Brownian

motion on [0, +oo[ starting at z, i.e. such that P^(zo=z)=l (Ito-McKean [18], p. 40,
Ikeda-Watanabe [17], p. 119). For notational convenience, when z==0, we shall write P"
instead of Pg.

On (O7, {F;}^o» ̂  4 denotes the local time at 0 of z^. By [17], p. 120, we know
that the process B^ defined by:

(1.1) B,=z,-z-4,

is a Brownian martingale such that Bo = 0.
Moreover it is standard ([17], p. 122) that B^ generates the same filtration as z,. In

particular, on (Q', PQ, we have:

(1.2) 4= sup (-B,).
O^s^t

d is a>0 integer. y=(x, z) is the standard element in Rd+l, with xeR^ zeR. In
the sequel, R^ will be identified to the subspace R^ x { 0 } in R^1, i. e. X e R^ is identified
to (X, 0) in R^1. n is the projection operator (x, z)eRd+l -^xe R<

Xo(x, z), Xi (x, z). . .X^(x, z) are m + 1 vector fields defined on R^1 with values
in R1', which are C°°, bounded, whose all differentials are bounded.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



514 J.-M. BISMUT

D(x) is a vector field defined on R'1 with values in R^, which is C°°, bounded, whose
all differentials are bounded.

b(x, z) is a function defined on R^ with values in R, which belongs to C^ (R^).
If X( is a continuous semi-martingale (defined on any given filtered probability space),

dX denotes its differential in the sense of Stratonovitch, and 8X its differential in the
sense of Ito (see Meyer [31]).

If h is a C°° diffeomorphism of R^ onto R^ and if K(x) is a tensor field on R^,
(h* ~1 K) (x) denotes the tensor-field on R'* obtained by taking the pull-back at x of
K(h(x)) through the differential 8h/8x(x) (for this notation see [5], [7], [10]). In particu-
lar if Y (x) is a vector field:

(1.3) (^-lY)(x)=^a/l(x)^ \(h(x)).
i8x J

(b) The reflecting process and its associated flow.

We now build a reflecting process as in Ikeda [16], Watanabe [43], Ikeda-Watanabe [17],
p. 203.

Fix (xo, Z t^eR^xR^ ^ (Q? ^^o)5 we ^^der the stochastic differential equa-
tion:

m

(1.4) dx=Xo(x, z)A+D(x)dL+^X,(x, z).dw\ x(0)=Xo
i

(where dw1 is the Stratonovitch differential of w1).
(1.4) can be written in the equivalent Ito's form:

(1.4') Ac=fxo+ 1 ^X,^, z))A+D(x)rfL+X,(x, z).8w1, x(0)=Xo
\ 2 8x )

/ ^ \
( from now on, all the summation signs ̂  will be omitted j.
\ i /

Of course, (1.4) has an essentially unique solution. But more can be said. Namely:

THEOREM 1.1. — There, exists a mapping defined on Q x R ' ^ x R ^ with values in
R^ (cb, t, x) -> (P( (co, x) having the following properties.

(a) For every (t, x) e R+ x R^, © -> (p; (co, x) is measurable, and for every o e 0,
(t, x) -> q)( (o, x) is continuous.

(b) For any coeQ, (po(co, .) is the identity mapping o/R^.
(c) For any ooeO, t->^(.^ • ) ls ^family o/C00 diffeomorphisms of^onto R^, which

depends continuously onteR'^ for the topology of uniform convergence o/C00 functions
and their derivatives on the compact sets o/R^.

(d) For any ZO^R^ on (;Q, P®^), for any XoeR^, (p((co, Xo) is the essentially unique
solution of equation (1.4).

46 SERIE — TOME 17 — 1984 — N° 4



THE CALCULUS OF BOUNDARY PROCESSES 515

(e) For any ZoeR-^, any compact set K in R-" xR^, any multi-index m, for any neN
and any p^ 1, ̂  random variables:

(1.5) am^(®^) . IL^H sup^n sup
(t, x )eK | Cb^ ((, x) e K L 9X

'^ (̂©, x)

ar6? m Lp(n, P®P^), and their norms in Lp(D, P®P^) way ̂  ^im^?d independently of
ZoeR-^.

On (D, P®P^), (p. (©, .) i5 essentially uniquely defined by properties (a) and (d).

Proof. - Consider the differential equation in R<-

(1.6) dx'
———DM, ^(O)^
at

and the associated group of diffeomorphisms of R^ \\ XQ -^ h,(xo)=x^ It is trivial to
see that for any n > 0:

S"1^
&C"1

-W,
pW]-1

L ax J
are uniformly bounded on [0, n] x R< Let z,e^(R+; R-"), and L, be a given continuous
increasing process. For ^eR^, consider the stochastic differential equation on (0, P):

(1.7) dx = (^-1 Xo) (x, z) dt + (h^-1 X;) (x, z). dw1, x (0) = XQ.

Using Theorem 1.1.2 and 1.2.1 in Bismut [5] we know that it is possible to associate
to (1.7) a How (pf* ^co, .) of diffeomorphisms of R^ onto R^, depending continuously
on t for the topology of the uniform convergence over compact sets of C00 functions and
their differentials. From [5], it is easy to see that cp2' ^(D, .) may be made to depend
measurably on (z, L, co). Moreover by [5], Theorems T . 1.2 and 1. 2.1, we know that:

(1.8) sup
(t, x)eK\ OX

^. L8^
—(<^)h sup

(t. x) e K

[8^^ ~|-1

parH •
are in Lp(Q, P) and that the norms in Lp(Q, P) of the random variables in (1.8) may
be uniformly bounded in Lp(Q, P) as long as the vector fields
(h^~1 Xo) ( . , Z(). . . (h^~1 X^) (., Z() and their differentials remain uniformly bounded.

We now set for ®=(o), CD'):

(1.9) (p,(cb, xo)=^(o>')[^ ^(o^xo)].

The argument in Bismut-Michel [10], Theorem 1.6 on stochastic differential equations
which depend on a parameter and the formula of Stratonovitch shows that (d) is
verified, (e) is a consequence of (1. 8). D

Remark 1. - The existence of (p (®, .) having the properties (a)-(d) also follows from
the results of Kunita [25].

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



516 J.-M. BISMUT

COROLLARY. - Let S be a stopping time on (0, { Fj). For any ZoeR^ on (S< -h oo),
P®P^a.5.;

(1.10) (PS+((®» .)=(P((SS®» (Ps(^ •)) /^ ̂  ^0.

Proof. — On (S<+oo), the conditional law of Qg® given Fg is equal to
P®P^g. Moreover the local time L^ is an additive functional of the strong Markov
process z,.

From the essential uniqueness of the solution of (1.4), it is then clear that on (S < + oo),
foranyxoeR^, P(g)P^a.s.:

(1.11) (ps + ((co, Xo) = (p, (9s co, (ps (®, Xo)) for any t ̂  0.

The corollary follows from the P(8Pzo a t s ' continuity of both sides of (1.11)
in (r, Xo). D

Remark 2. — It follows from Bismut [5], Kunita [25] that the usual rules of variations
of parameters on ordinary differential equations can be extended to stochastic differential
equations. For example, for:

^(o,xo) and Z;=f^(».Xo)T1

8x |_ 8x J
XoeR^, Z,=^(G),Xo) and Z^=[ ^(^ x,)}~\

8x |_ 8x J

are the solutions of the stochastic differential equations:

dZ=8xo(x, z)Zdt+ffD(x)ZdL+8x^(x, z)Z.dw1, Z(0)=I,
9x 8x 8x(1.12)

dT= -T ^(x, z)dt-T 8D(x)dL-Z/ ^(x, z).d^, Z'(0)=I.
8x 8x 8x

In (1.12), X( is of course the process (P((CD, Xo). We will use these facts without
further mention.

Remark 3. — The situation considered here is very similar to the situation studied in
Bismut-Michel [10]. As in [10], z^ and (Xp z^) are Markov processes. The analogy will
be better illustrated in the; sequel.

(c) The Girsanov transformation.

Take (zo, Zo)eRd x R'^. On (0, P®P^), consider the stochastic differential equation:

dx = Xo (x, z) dt + D (x) dL + X, (x, z). dw1, x (0) = XQ,

(L13) du=-]-[b^b2](x,z)dt^b(x,z).d^ u(0)=0.

It is of course possible to apply to the system (1.13) the same techniques as to the
smaller system (1.4). In particular, there is a function i^(co, x) defined on Q x R'^ x R^
with values in R, having the following properties:
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(a) For each (r, x), ©-^(co, x) is measurable and for each ro, (r, x)--^(©, x) is
continuous.

(fc) For any o>, M()(^ .)=0.
(c) For any ©, M,(o, x) is C00 in the variable x, and its differentials are jointly

continuous in (t, x).
(d) On (Q, Pg)P^), for any ^eR^, M,(CD, Xo) coincides with the process u in (1.13).
These facts will be used in section 2.
(XQ, Zo) is now kept fixed.

DEFINITION 1.2. - On (fi, P(x)P^), if x, is the process (p,(®, Xo), M, is the >0
continuous martingale:

(1.14) M,=exp{ r&(^ zJSB,-1 [b2^ z,)ds\
I Jo ^ Jo J

Using Ito's calculus, it is clear that M( is the unique solution of the stochastic
differential equation:

(1.15) * ^M=M^(x,,z,)5B, M(0)=l.

Since b is bounded, it is easy to see that M, is in all the Lp(D, Pg)P^). Also note
that:

M(=exp M,(®, Xo).

Proceeding as in Bismut-Michel [10] (and of course as in Ikeda-Watanabe [17]) we
now define a new probability measure on 0.

DEFINITION 1.3. - For (XQ, Zc^R^R^ Qcco.zo) is the Probability measure on 0
whose density relative to P on each F( is M(, i. e.:

(1 .16) ^Q(xo..o) p ^

^(P®P.o)l

By the fundamental property of the Girsanov transformation ([17], p. 178, [40]-6),
under Q(^ ^ the process:

^'=B,-r
Jo

B;=B,- b(x,z,)ds,
Jo

is a Brownian martingale, and (W(1, . . ., w", B;) is a m +1 dimensional Brownian martin-
gale.

(d) The Girsanov transformation at infinity.

The discussion which follows is based on the ideas of Follmer [13] (see also
Azema-Jeulin [2]). Since we do not need the full development of the theory of the
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Follmer measure, we will just illustrate a few points in the particular case which we are
treating.

In what follows, the filtration {F,}^o ls made right-continuous, but is not completed,
since we will deal with several probability measures on Q which are not necessarily
equivalent on F^. (xo, Zo) are as m (c)'

PROPOSITION 1 . 4 . — Let T be a { F(}^() stopping time, and A eF-p. Then:

(1 .17) Q(.o.zo)(An(T<+a)))=EP0p-o[lA.(T<+oo)MT].

Proof. - For any neN, A n(T^n)eFT ^ „, so that:

(1 . 18) Q^,.o)(A nCT^^E^O [MT 9 n IA n (T^^E11 0 ^0 [M^ IA n (T^)].

Making n -> + oo, and using Fatou's lemma, (1.17) follows. D
In particular for any stopping time T:

(1.19) E^'MlT^ooMT^l

(which of course also follows from the fact that M( is a ^0 martingale). It can also be
proved that for any stopping time T:

dQ=M^dP-}-(dQ-M^dP),

is exactly the Lebesgue decomposition of Q relative to P on F^ ([13], [2]).
We will now illustrate these various facts.

DEFINITION 1. 5. — A^ is the right-continuous inverse of L(, i. e.:

(1.20) A,=inf{A^O; LA>^}.

Of course for t > 0:

(1.21) A, -= inf{A^O; L^t}.

For any t^O, A, is a { F^ }^o stopping time. Moreover it is classical that for any r^O:

(1.22) A,<+O), P(g)P^a.s.

In general (1.22) does not hold for the probability measure Q(^ ^y
We give a trivial example of this fact.
Example. — Assume that b is equal to a constant 5^0. Then:

M^exp^SB^-^^y
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Using (1.1) and the fact that for any ^0, z^=0, we find that:

(1.23) M^expf-azo-Sr-^AA

(a) If 8<0, for 5^ A,, B,^ -Zo-t so that 5B,^ 8 (zo + 0. M,^ A( ts then a bounded
martingale, so that:

(1.24) E^texp-St- -^8^1= 1.

(1.24) illustrates the well-known fact [18] that A^ is a stable process with exponent 1/2
and rate /2. Due to (1.17), we find that:

(1.25) Q^o)(A,<+o))=l,

Q(xo, o) ls Ihen equivalent to P®F on F^ and its density on F^ relative to P®P' is
M^, '

(fo) If 8>0, MA, is < 1. Using (1.17), we find that:

(1.26) Q .̂ o)(A<<+oo)=exp-(25Q.

Let To be the stopping time:

To=inf{t>0; z,=0}.

Clearly:

M^exp^-azo-^ToV

Using (1.17) again, we find that:

(1.27) Q(^. ̂  (To < + oo) = exp - 2 §Zo

(here we use the known fact [18] that EP<s>p^e~PTO=e~>/2pzo).
Let L° be the last exit time of 0 for the process z i. e.:

(1.28) L°=sup{s^0; z,=0}.

We may write:

(1.29) M^=exp(5^--52At)exp-28r.

Using (1.29) and the argument in (a), it is clear that under Q(^ Q), the law of z^(s^L°)
is equal to the law of the reflecting Brownian motion z with drift —§ with a killing
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associated to the additive functional 28L,. This is made clear in
Jeulin-Yor [22]. Finally note that (1.26) is equivalent to:

(1.30) Q^o)(Loo>0-exp-25r.

Under Q(^ Q), L^ follows an exponential law (this also follows directly from Ito's
excursion theory).

Of course (1.26), (1.27), (1.30) may be obtained without effort using the methods
of [18]-[22]. However this example illustrates the fact that even if on (Q, P®P^), M, is
{F(}^o-martingale, M^ is in general a {F^}^o supermartingale and can even be a
decreasing process. As shown by (1.29), the process (Xy z^) (s^L°) (which is really
what will interest us) can be eventually described as a process for which L° = + oo
(associated to a new Girsanov exponential), and killed at a rate which is a multiple of L,.

(e) The boundary process.

We now define the boundary process which is the object of our study.
A is a cemetery point, so that R^R^l^A} is the state space of the boundary

process.

DEFINITION 1.6. — D is the set of functions (flp y^) defined on ̂ + with values in
(R'1' xR^l^A} which are right-continuous with left hand limits such that if ^ is the
function defined on D by:

(1.31) i;=inf{^0;(^)=A},

then if ^< + oo, for 5^, (a^ ^s)=A.
D is of course endowed with the Skorokhod topology (see Billingsley [4]) so that it is

a Polish space.

DEFINITION 1.7. — Let (ao, ^eR'^xR4 . On (Q, Q(^ Q))» ^e boundary process
(a^, y^) with values in (R'^ x R4) U { A } is defined by:

^ ^ f (^ Vt) = (^o + Ap (PA, (®, Xo)\ t < L^

\ A, r^L,.

Note that on (Q, Q(^.O)), Ao=0, so that (a (0), y (0)) = (ao, ̂ o).
Since L( is an additive functional of the strong Markov process (CP(((O, Xo),^), and

since for any r>0, on (A(< +00), 2^=0, it is easy to see that (a^y^) is a strong Markov
process.

DEFINITION 1 . 8 . — Take (do, Xo) as in definition 1.7. R^o^o) ls t^ probability law
on D of the process (a^y^) under Q^o.o)'

The system of probability measures { R^o.xo) } on D drf11165 a strong Markov process,
which is the object of our study. More precisely, we shall study the smoothness of the
probability laws of (a^y^) (t>0).
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(/) A few remarks on the boundary process.

Let Y (x, z) be a C°° vector field having the same properties as Xo, X ^ . . . X^. Consider
the more general stochastic differential equation on (Q, P®P') :

( 1 3 3 ) f dx/ = xo (^9 z) dt + D (x/) ̂ L + xl (x/? z) ^wi + Y (x/9 z) • dB9

[ ^(0)=xo.

Rewrite (1. 33) in the form:

(dx/=Xo(x\z)dt+(D(x/)-y(x/, O^L+X.OC'.Z^^+YO^Z).^,
1 ^(0)=xo.

Consider the differential equation:

(1.35)
^^Y^zQ; ^((^xo,

^=1; z'(0)=zo.

Let k, be the associated group of diffeomorphisms of R^1 onto itself. Consider the
stochastic differential equation:

(1.36) dx- = (k^-1 Xo) (x\ 0) dt + (D (x") - Y (x\ 0)) ^L + (fe^-1 X,) (x-, 0). dw\
^(0)=xo,

[of course the differential of k^ sends Rd into itself, so that
(k^~1 Xo) (x", 0), . . ., (fe^~1 XJ (x", 0) take their values in R^]. Clearly
x^ = 7i k^ (x[\ 0) is the unique solution of (1. 34). Moreover for any t > 0, on (A^ < + oo),
x^=x^. Since (1. 36) is of the type (1.4) we see it is equivalent to study the boundary
processes associated to (1.4) or to (1. 33).

Similarly, let m(z) be a function defined on R"*^ with values in R^ which belongs to
C^° (R4'), such that there exists a>0 for which m^a. Assume that instead of (1. 32),
we want to study:

/ fA, \

GO+ m(z,)ds,x^
\ Jo /\ J o

[where x,=(p, (oo, Xo)].
r'Let T( the time change associated to m (z,) dz i. e.:

Jo

f r 1T ( = m f ^ T; m (z,)ds=t >
I Jo J

T ( = i n f < { T; m (z^ds=t > .
Jo J
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Set:

G(z)= | [m^^du.
Jo

Clearly G is a diffeomorpliism of R + onto itself.
Now on (Q, POP) if z^--=z^ L,=L^, x^=x^ is the solution of the stochastic differential

equation:

dx' = ——— Xo (x,, z;) ds + D (x') dU + ———— X, (x;, z;). A?,w o7.) y^ oo
^(0)=xo

(where w=(w1 . . . w"") is a new Brownian motion).
Similarly it is clear that on (Q, POOP):

^=H+ r^=L,+
Joo ,/m (z;)

8B'

where B' is a Brownian motion independent of w. Now:

G(z;)=[m (O)]1/2 L;+ 1 P G^) ̂ u+B;.
2 Jo w (̂ u)

By lemma 4.2 in [17], \m(0)}112^ is exactly the local time at 0 of G(Zg). Moreover
by a trivial Girsanov transformation, G (z,) is transformed back to a reflecting Brownian
motion on [0, + oo[. Now the inverse of L^ is exactly:

r^fA,

H ]
Jo

A;= m(z,)ds,
J o

so that x^=x^. Of course the inverse of [m (O)]172 L( is A^ (o)]1/2-
By doing in succession a time change, the change of variables z -> G (z) and a Girsanov

transformation, we are back to the situation previously described. These transformations
will be studied from the point of view of differential operators in paragraph (g).

The arch-typical example is the case where ^=1, m=l , XQ=O, X ^ = l , D=0. If
;x;(0)=0, the probability law of x^ under P(g)P' is the Cauchy law:

(1.37) tdx
TT^+X2)

Now assume that Xi(x) is a one dimensional vector field which is in C^° (R), >0 on
]—oo, 1[ and which is equal to 1—x on a neighborhood of 1. Clearly, if x(0)=0, the
law of x^ is the image law of (1.37) through the mapping s -> y^ where y^ is the
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solution of the differential equation:

^=XiOO, ^(0)=0.
ds

i.e.

(1.38) _______ly<l tdy_______^x,oop+r rdx/x,(x)Tt
ry

Since for y< 1, y -)• 1, dx/X^ (x)^ —Log (1 —j0, it is trivial to see that the left-hand
Jo

limit at y==\ of (1.38) is +00. The law of x^ is not smooth. Such a phenomenon
does not happen if (1. 37) is replaced by a Gaussian law, and so, the explicit form of the
law of A( ([18], p. 25) shows that the law of (A^, x^) is still smooth.

In this example, the non smoothness of the law of x^ comes from the integration on
the possibly large values of A^. The introduction of the supplementary component A,
has the effect of smoothing out the considered probability law.

(g) Some analytical properties of the partial differential operators connected mth the
boundary process.

Let ^ be the second order differential operator acting onf(t, x, z) e Q° (R'^ x R^1) ;

(1.39) ^ / ( ^ , ^ ) = ( ' a + X o + f c a + l i ; X ? + l ^ ) /
\ dt oz 2 i 2 oz )

Let 2 be the first order differential operator defined on the boundary (z=0) acting
on /eCfc o (R + xR d + l )by :

(1.40) (^/)0, x)= ( D+ 8 \f(t, x, 0).
\ 8z }

Clearly, if/eC^R^ R^), under the probability law Q(^,O)» if ^==(p,(o), Xo):

(1.41) /(t,x,,z,)- F \^^f(s,x,z,)ds- r^/)(s,x,)d4,
Jo Jo

is a martingale. In fact by Ikeda-Watanabe [17], p. 203, Q(^,O) can be fully characterized
by this property.

The arguments which follow will be analytically formal but can be made rigorous in
some cases, like the elliptic case (see Stroock-Varadhan [39]). Let g e C ^ f R ' ^ x R^), and
consider the Dirichlet problem on/e Q° (R^ x R^):

(1.42) ^/=0 on(zw

[ f^g on (z=0).
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Assume that (1.42) has in fact a solution. Using (1.41) we see that:

^ •43) S (Ap x^)- f\^f) (A, x^) ds,
Jo

is a martingale, so that the operator ^ defined by:

(^)(5,X)=(^/)(5,X),

appears to be (formally) the "generator" associated to the Markov process (A^, x^). Of
course in (1.42), the condition J^/=0 is equivalent to a(t, x, z) o^/=0 when a is a>0 C°°
function. This makes clear that the boundary process (A(, x^) is invariant under time
change on the "inner" process on (z>0), i.e. under time change on the excursions of z^
out of 0. Of course this can be directly (and rigorously) proved using the results in
Ikeda-Watanabe [17].

We now consider a general second order operator S on Rd+2 written in Hormander's
form:

^ X o + ^ Z X ?
^ i

(where Xo,Xi . . .X^ are smooth vector fields). Let D be an open set in Rd+2 with a
smooth boundary 3D. Let y be a smooth vector field defined on 3D pointing inward D
(of course y is 7^0 on 3D).

Let 5 be the 1-differential form defined on 3D by the following two conditions:

(1.44) If x e 3D, X e T, (3D), 5 (X) =0, < §, y > = 1 on 3D.

Let g e Q° (3D). Consider the Dirichlet problem on / e Q° (D) (D = D U 3D):

CJ^/=0 on D,(1.45)
f=g on 3D

(we assume that the problem (1.45) is well-defined and has a unique solution). For g,f
as in (1.45), we define the jf unction S g on 3D by:

S g=yf'

We want to study the smoothness of the transition probabilities associated to the
semi-group e^ acting on Cg° (3D).

A natural assumption is that 3D is non characteristic for S (see Treves [42]). Namely
let S(x,p) be the principal symbol of S i. e. the function defined on rT*Rd+2 by:

(x,p)G^Rd+2^S(x,p)=^<p9xi(x)y.
i 2
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We then assume that, on 3D, S(x, §)>(). Using the construction of Ikeda-
Watanabe [17], it is possitble to construct the boundary process associated to (1.45)-
(1.46) explicitly.

We now will consider some of the assumptions which can be done on (o?, y), which
will be later be proved to imply the existence of densities or their smoothness, and we
will underline the difficulties.

_ DEFINITION 1.9_ -JFor xeR^2, T̂ - is the vector space in ^-(R^2) spanned by
Xo(x), Xi (x). . . X^ (x) and their Lie brackets at x.

It is natural to assume that JO verifies the hypoellipticity assumptions of
Hormander [15]; namely we will assume that XoeBD is such that T- is equal to T-
(R^2).
^Let (Y^, cp) be a local chart as XQ so that in the corresponding coordinate system

(x1. . . x^2), 8D U T is represented by (P-^O).
For xe ̂ , let e (x) e R^ be defined by:

(1.46) e (x)=( < dx^2, X, (x) > , . . . , < dx^2, X,, (x) > ).

Since 8D is non characteristic for 3, e(xo) is ^0. We can assume than i^ is such
that if xe^, e(x)^0. On a neighborhood of XQ in V— which we can assume to be
equal to Y^-it is possible to define a C°° mapping x -> A(x)e0(m /) such that on ^,
A (x) e (x) = (0,0, . . ., h (x)). If A (x) == (a{ (x)), set for xe V:

m'

(1.47) Y.(Jc)=^ af(;c)X,(x).
j = i

Clearly:

(1.48) <ri?+ 2 ,Y,(x)>=0 for l^i^m'-l, < dx^2, ?„, (x) >^0.

Now .S? can be rewritten in the form:

(1-49) ^=(Yo+&Y^)+ 1 S Y f + ^ Y ^ , ,
2 i 2

with:

(1.50) <dx a + 2 ,Yo>=0.

On -r, Yo, Yi, . . ., Y^_i are tangent to the fibration (xd+2= Const.).
Consider now the following assumption.
A l : Xoe8D is such that the vector space T^(aD) in T^(3D) spanned by

Yo, YI . . . Y^_i and their Lie brackets is equal to T^(3D).
Or course A 1 is stronger than the hypoellipticity assumption on J .̂
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We claim that A 1 only depends on 2 and D, and is invariant under multiplication
of ̂  by a C°° and >0. To see this, we define the following vector distributions.

DEFINITION 1.10. - F_or xeD, T^SD) is the intersection of T^D) and of the
vector space spanned by XQ (x), Xi (x). . . X^ (x).

Clearly T^(BD) depends only on 2 and ^D. It is then easy to see that T7 (8D) is
locally generated by Y(), Y\, . . ., Y^_i.

The assumption A 1 will be somewhat stronger than the assumptions which we will
later do. In fact under A 1, the brackets of Yo, Y ^ . . . Y^_i with Y^, are unnecessary
to generate T^ (R^ + 2).

Let us assume that the coordinate system (P, . . . .x^2) is chosen in such a way that
for xe3D 0 ̂ , dxd+2=6 (this is always possible). On ^, replace J^.by:

y
2'= _

2S(x,^+2)

If S^x,^?'^2) is the principal symbol of 2\ we have that on :̂

(1.51) S'(x,dxd+2)=]-.

Rewrite 2 ' in the form:
m'-i

1 V <7/2 . 1 -TT-/(1.52) ^ / = Y o + ^ Y ^ + - ^ Y^-?,2,
2 i 2

by proceeding on 2 ' the v/ay we did on 2 in (1.47)-(1.49). By eventually replacing
Y^ by -Y^, we have:

(1.53) ^F^Y^O, O^^m'-l; < r f ? + 2 , Y ^ > = l .

For xe9D, consider the differential equation:

(1.54) ^=Y,,(x), x(0)=x.
fl?

In (1.54) X(=^(x). Since Y^/ is transversal to the fibration (xd+2= Const.), it is
clear that (r, x) -> k^(x) defines a local chart of Rd+2 at XQ. Using (1. 53), it is obvious
that t=xd+2. In this chart, we have:

(••") ^-^.
so that:

(1.56) £"=^'+b'-8—+]- V Y;2^--1—32—.
Qx^2 2 " ' 2 (ax^2)2
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Since dxd+2==8 on 3D, it is easy to see that at least locally, for the process associated
to {2\ y), x^2 is a reflecting Brownian motion on [0, -+- oo[ with drift b\

Using (1. 55) [or (1. 53)], it is easy to see that the brackets of Y^ with Yo, . . ., Y^_i
whose length is ^2 are tangent to the fibration (xd+2= Const.). Since 2 ' verifies the
assumption of Hormander [15], we know that at XQ, the vector space spanned by
Yo(xo), . . ., Yni'-i (^o) an^ the Lie brackets at XQ of length ^2 of
Yo, . . ., Y,/_,, Y,, is equal to T^D).

However, this will not be enough to allow us to prove the existence and regularity of
the densities for the boundary semi-group. We will work under an assumption somewhat
weaker than A 1, but stronger than Hormander's, namely, we will do an assumption of
the type:

A 2 : The vector space spanned by Yo (xo), Yi (xo), . . ., Y^_i (xo) and the Lie brac-
kets at XQ of Yo, YI . . .Y^_i , Y^ of length ^2 in which at least one of the vector
fields YI, . . ., Y^_i appears is equal to T^(3D).

Now in general, A 2 depends on the fibration j?^2, i.e. it is not invariant under time
change on the inner process.

Observe that if in 2, Xo is a linear combination (with C00 coefficients) of X^, . . ., X^
(this is an invariant condition), A 2 is again equivalent to the hypoellipticity
of 2. However, as made clear in (1. 38), we need to have a purely "parabolic" compo-
nent in order to prove the regularity of the boundary semi-group.

The situation is then not entirely satisfactory from the point of view of partial
differential operators.

2. The calculus of variations on the Brownian motion \v

In this section, we develop the calculus of variations on the Brownian motion w, i. e.
the reflecting Brownian motion z—and the Brownian martingale B—are kept fixed. The
spirit of this section is then very close to what has been done in Bismut-Michel [10],
where results on conditional laws of diffusions were sought, in the spirit of the theory of
filtering.

Of course the computations are very similar to what appears in the classical Malliavin
calculus of variations ([29], [30], [36], [7]), but special care must be given to integrability
conditions. Moreover different techniques are presented to deal with "localizable" or
"non localizable" conditions (the full explanation of such a terminology appears in
section 5). In particular step by step integration by parts, as developed in [8] is used in
the "non localizable" case.

In (a), integration by parts on the Brownian motion w is presented as in [7]. In (b),
truncated integration by parts on x^ is obtained. In (c), integration by parts on x^ is
done under adequate assumptions in the "localizable" case. In (d), the "non localizable"
case is considered.
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(a) Integration by parts on the Bro\vnian motion w.

We will now apply the techniques and the results of [7] to perform an integration by
parts on the Brownian motion w. The reader is referred for more details to [7].

T is a > 0 finite real number.
(XQ, Zo) is an element of R^ x R^
h(w\ x) is a function defined on 0' X^([0, T]; R^) with values in T^R^), which has

the following properties:
(a) h is bounded; for any xe^([0, T]; R4), ©/ -» ^(o/, x) is measurable; for any co'eQ',

x -> h (a/, x) is continuous.
(b) For every o/eQ', x -> h(^\ x) is Frechet-differentiable on ^([0, T]; R^), and its

differential d^ h (co', x) is uniformly bounded.
Of course ^([0, T]; R^) is considered as a Banach space endowed with the norm:

||x||= sup |xJ.
O^t^T

The dual ̂  of ^([0, T]; R^) is the set of bounded measures p. on [0, T] with values in
R^, so that if xe^([0, T]; R^):

< H , x > = [ <x,,^(Q>.
J[0,T]

If xe^([0, T]; R^), the derivative dh^(w\ x) can be identified to a bounded measure
dv^^) on [0, T] with values in R^OOR^, so that if^e^([0, T]; R^):

(2.1) < dh, (G)-, x), >. > = f ^v0^ (t) (y,).
J[0,T]

From the point of view of differential geometry, dv^^^t) can be identified to a
generalized linear mapping from T^R^) into T^R^). In particular if ;e T^R^), the
action of:

f (pr'^xo)^01^-^^)^)
J[0,T]

on I is defined by:

(2.2) f (p* -1 (®, xo) ̂ ^-^^o) (() (;) = f rfv01^-^1^) (^) [<p* (̂  xo) /].
J[0,T] J[0,T]

DEFINITION 2.1. — On 0, the process C^((o) with values in the linear mappings from
T^R^) into T^R^) is defined by:

(2.3) p € T^ (R^) - Q (co) ̂  = $: p < ̂ , ((p? -1 X,) (xo) > (pF1 X, (x,) ds.
1 = 1 Jo
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Of course if /?, q e T^ (R^):

(2.4) < Q (®)^ >= ̂  I <;,, ((p^-i X,) (xo) > < q, ((pF1 X,) (xo) > ds
1 = 1 Jo

so that Q (o)) defines a non negative symmetric bilinear form on T^ (R4).
Of course Q(©) also depends on (xo,Zo). but we drop this dependence for simplicity.
We then have the following result:

THEOREM 2.2. - Let fe C^ (R + x R^), ^hose support is included in [0, T] x R< Then
ifx, is the process (p,(o, Xo), for any t, r^O, t ' - ^ t , the following relation holds:

(2.5) E^o [M^ < ̂ /(A, )̂, (pX, (0, xo) C ,̂ ^ (o', x^) >]

+EP0PZO f ̂  { f^' < cpr1 X,) (xo), f [(p?^ ̂ -..A, (,)]
L I JO J[s,T]

x((p^ lX,)(xo)>^l/(A„x^)1

+E^p.o [" M^ / f^ C,,̂  ((pF1 )̂ (xo)) 5B,-^ (x, z,) ̂ ),
L \ Jo

^(^^..A,))/(ApX^)1p.
Jo

=EP0p.o [" M^/ p' (cpr1 X,) (xo) 8w1, ft (G/, x.,^) \/(A, x^) 1.
L \ Jo / J

Proo/. - Observe that (2.5) makes sense. In fact /(A,, x^) or ^/(A,, x^) are ^0
only for A,^ T. Of course for s ̂  A(, L, ̂  (.

From Theorem 1.1, we know that:

3(p
(2.6) 1^, sup -^(o),^), 1^, sup ^t^^)3(p

Q^s^Af I L Sx0^s=A, &C

belong to all the 4(D, P(g)F^). As observed in section 1, M^ is in all the
Lp(Q, P(x)P^), and so by Doob's inequality I^T M^ is also in all the Lp(Q, P®F^ ).
Using (2. 6) and Burkholder-Davis-Gundy's inequalities, the same result holds for:

(2.7)
^A(AT c^A^r^K^sB , ^A,AT (pr'x.^aw1

It also holds for:

(2.8)
^A,AT

C^A.W^^o)^^^)^
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The principle of the proof is very close to the proof of Theorems 2.1 and 3.1 in
Bismut [7], as used by Bismut-Michel for the proofs of Theorems 1.9 and 2.11
in [10]. We only sketch the proof, the reader being referred to [7]-[10] for further details.

We first assume that XQ, X^, . . ., X^ and b have compact support. We then proceed
as in Haussmann [14], Bismut [7] as modified by Williams [47]. Let u=(u1. . . M"*) be a
bounded predictable process on (Q, P®Py, which is 0 for t^T. For ;eR, let Z\ be
the Girsanov exponential [40]-6:

(2.9) Z^=exp { -; [T u1 5w1- 1 1 2 F | u |2 ds I.
I Jo 2 Jo J

Clearly Z\ is in all the L,(Q, P(x)P^) and moreover E^o 7\= 1.

Let Rz be the probability measure on 0 given by:

(2.10) R^Z^CP®^).

Now, by the fundamental property of the Girsanov transformation [40]-6 we know
that if w1'1 is the process:

(2.11) w^=<+ | lu'ds
Jo

then under R1, (w1'1, w^2 , . . ., w^, B) is a { F(}^() Brownian martingale. In particular,
under R\ z^ is still a reflecting Brownian motion on [0, +oo[, which is independent of
^

On (Q, P®P^^), consider the stochastic differential equation:

f dx1 = Xo (x\ z) dt + X, (^ z). ̂ >l + D (x1). ̂ L,
( ) I ^(0)=xo.

It is then clear that under R\ the probability law of (x\ z) is identical to the law of
(x,z) under P®P^.

Set:

(2.13) M;=exp { P b (4 z,) 5B,- 1 f^ (4 z,)2 ̂  I.
I Jo 2 Jo J

It is clear that:

(2.14) E^o [Z\ M^ / (A,, x^) h (a/, x^, ̂ )] = E^o [MA, / (A<, x^) h (co-, x., ̂ }.

[where equality is taken in T^ (R^)]. Of course, (2.14) makes sense because of the
support condition on /
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Since the /.h.s. of (2.14) is constant, its differential at ;=0 is 0. Consider the
differential equation:

(2.15) dy1 = (q>? -' X,) (V, z) lu1 ds, y1 (0) = XQ.

Since Xo, . . ., X^ have compact support, if y does not belong to the projection of the
supports of X o , . . . , X ^ onto R4, ^(w,y)=y for any t^O. The vector fields
^* _1 Xo, . . ., cp*~1 X^jire then uniformly bounded (with an upper bound depending
on co), so that for^each ©, (2.15) has a unique solution. By Theorem 4.1 in [6], we
know that x\ = ̂  (co, ^).

Now a standard argument shows that in (2.15), l->y1. e^([0,T]; R^) is differentiable,
and the differential at 1=0 is given by:

9y\ (cpr'x.Kxo)^,(2.16)
91 \i=o Jo

I -> x1. e^([0, T]; R^) is then differentiable and moreover:

(2.17) a3̂x' ^
— =%* (^-'X,)^)^^.crt 1=0 Jo

The same argument applies to M^. In fact if M,(®, .) is defined as in 1 (c), we have
fors>:0:

(2.18) M^exp [' u, (©, ̂ )- f5 9U (c., ^). ̂  1
L Jo 8y J

[of course the r. h. s. is a regularized version of (2.18) in the variable 1}. I -^ M[ is then
differentiable at /=0. The explicit computation of the differential shows that:

(2.19)
8M1

81
pi / rs

(^(x,z,),(p?
Jo \ Jo

= MAJ ( ̂  (^, z,), (p? (pF1 X, u1 dv } (§B - b (^, z,) ^5).
^=o Jo \ Jo /

Using (2.17), it is clear that:

(2.20) ^ [^(A, x^)L.o = ( ̂ /(A, ̂ ), cp^ p (pr1 X, M1 ̂ \
x Jo I

h^',x[^ = f ^-•-.̂ .(i,)^
Jl=0 J[O.T]

r'i8l

r^z ' t = - f
L^ ^1=0 Jo

1=0 ^[O.T]

•T

r pi»AA, -i

I.J. "••"^"''"J
M1 §W1.
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By reasoning as in [7], Theorem 2.1 and [10], Theorem 2.11-and of course using
the fact that/(Ap x^)=0 if A^T-it can easily be seen that differentiation under the
expectation sign is possible in the I. h. s. of (2.14), so that the following equality holds.

(2.21) EP0p.o^M^/4/(A,^),(pX, r^^-'^u-ds^h^x,^)]
L \ Jo / J

+Ep^o |~ M^/(A, x^) [TAAt [' f (p?^ dv^^ (v) 1 (pF1 X, u1 ds 1
L Jo L J[S.T] J J

+Ep^o^MJ [^/(pr1^, {^r^i^dv}
L L Jo \ Jo /

(§B, - b (x, z,) ds) f (A,, x^) h (o/, x ,̂ ) 1

^EF^o I" M^ J' ̂  Bw'/CA, x^) h (co-, x^) 1.

As in [7], Theorem 2.1, it is easy to extend (2.21) to the case where Xo, . . .,X^,
b do not necessarily have compact support. Using the integrability conditions pointed
out at the beginning of the proof, (2.21) can also be extended to predictable processes

n
u = u1. . . u^ which are 0 for t ̂  T, such that E^o [ u [ 2 ds < + oo.

Jo
We now proceed as in [7], Theorem 3.1. Observe that in (2.21), the scalar processes

M;(I ^ f ^m) may be replaced by processes with values in T^R^), so that equality (2. 21)
becomes an equality in T^ (R^OOT^ (R^). Take then in (2. 21):

(2-22) ^=l^T.A,((P?-lX,)(xo)

and take the trace in T^ (R^T^ (R^) of the corresponding equality. Using the fact
that / (A,, x^) and d^f (A,, x^) are 0 for A, ̂  T, we obtain (2. 5). D

Remark 1. — The fact that/has compact support is crucial for (2.5) to be true. In
this respect, we now refer to (1.38), since in fact it is at this stage that the introduction
of the supplementary component A( is seen to be necessary from the point of view of
the calculus of variations. However if one of the components of x, say xd is strictly
parabolic, i. e. we have that:

dxd=Xi(x,z)dt,

where X^a>0, the introduction of A( is unnecessary for (2.5) to make sense since if
fe C^ (R4),/^) would be ^0 only for uniformly bounded A,.

Also note that for p^l, if for a given (z, L), Z, T are given by (1.12), an obvious
application of Ito's formula and Gronwall's lemma to the processes [Zj^ and [ Z, V
shows that:

(2. 23) E111 Z, |^C ^S+L^ ^ | Z; |^C ^'(S+L.)
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(where C, CV are fixed >0 constants). It is then feasible to take 5=A((co') in
(2.23). However, since for r>0, E? ^^-j-oo, we find no adequate bound for
gp ® p' j ̂  j p ̂  gp ® p' j ̂  j p v^g ̂  another explanation of the necessity of introdu-
cing the component A^, strongly connected with the result in (1. 38).

However assume that b is equal to a constant 5^0. If 82^2C /, then
E? exp (C'—S2/!) A,< + oo. It is then obvious that for any p^ 1, if 8 is large enough,
Z^ and Z^ are in Lp (Qxo,zo)' ^e tnen ^ln<^ tnat tne slze °^ tne ^"^ ^ nas a direct
influence on the regularity of the law of x^. For other problems connected with the
regularity of the law of x^ we refer to Remark 3 in section 5.

Remark 2. — If h (o/, x) is F^ measurable in the variable o/, we can now use
Proposition 1.4 to replace everywhere Ep®pzo [M^...] by E^o'^t. . . ].

(b) Truncated integration by parts on the variable x.

Let a be a C00 function defined on R^R^ with values in [0,1] such that a(D)=l if
[|D 11^1, and CT(D)=Oif | [D | |^2 .

For N^1, the function PN is defined on R^R^ by:

/D"^D invertible pN(D)=a( —— ) ;
\ N /

D non invertible p^(D) =0.

PN is clearly a C^ function with bounded differentials. Also observe that the functions
D -> y PN/^D^ (D) (D"1)1 can be everywhere defined on R^R^ by setting:

^k
(2.24) —^ (D) (D -1)' = 0 if D non invertible.

These functions are of course C°° bounded with bounded differentials on the whole
R^R^.

Using the convention (2.24), we now have the following result.

THEOREM 2. 3. - Let f e C,°° (R + x R^). Let Y (x) be a bounded C°° vector field defined
on R^ mth values in R^, \vhose components belong to C^ (R^). Then for any N^1,
t, r '>0 with t ' ^ t , XoeR^ ifx, is the process cp,(G), Xo), the following relations holds:

(2. 25) E^o [PN (C^) M^ (Y, /) (A, x^]

=EP0p-o [PN (C^) M^ /(A, ̂ ) { / cpX,-1 Y, C^ [At' cpr1 X, sA
I \ Jo /

- [At' < C^ W -1 X, (p^-1 Y], (pF1 X, > ds
Jo

+ [At ds < c^ (pr1 x, (px,-1 Y > [s < c^ [cp?-1 x,, cpr1 x,], cp?-1 x, > dv
Jo Jo
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+ F' ds / c^ (pr1 x,, f5 < [(pr1 x,, (pr1 x,], c^ cpx,-1 Y > <pr1 x,} dv
Jo \ Jo /

- ( C^ <pX,-1 Y, F C ,̂, <Pr1 ̂  (8B,-fc (x,, z,) ds) \ I]
\ Jo / J

-E^o | M^/(A, x^) / ̂  (C^), [At' ̂  (pr1 X,
L \ ^c Jo

(x) p [(p?-1 x,, (pr1 xj (< c^ cp^-1 Y, cpr1 x,»dv
Jo

+ f^ rfs p < c^1 ^-1 Y, (pr1 x, > [(p?-1 x,, (pr1 x,] ̂ ®(pr1 x, \ 1.
Jo Jo / J

Proo/ — Observe that (2.25) still makes sense because of the crucial fact that / has
compact support. In comparison with the arguments given in the proof of Theorem 2. 2,
the only difference comes the introduction of C^1, but in fact, since p^ (C\,) or
5pN/5C(C^,) also appear, they make the corresponding expressions to be bounded.

To obtain (2.25), it suffices to choose h given by:

(2.26) ^PN^C^cp^Y.

Of course h does not satisfy the assumptions of Theorem 2.2, since it also depends
on the trajectory of 8^/8x(o), %o), and moreover it is not bounded. Using the argument
in [7], it is in fact easy to extend Theorem 2.2 to such a h. The explicit computations
being very similar to what is done in Theorem 4.2 of [7] and in [10], Theorem 2.11,
we refer to [7]-[10] for the details. D

(c) Integration by parts in the variable x: the localizable case.

We proceed here as in Malliavin ([29]-[30]), Stroock ([36]-[37]), Bismut [7].
We will in fact obtain a formula of integration by parts on the boundary semi-group

in the "localizable" case. This is in fact the case where the estimates which we will later
do are "localizable" (see section 5).

THEOREM 2.4.- Assume that (xo, Zo)e Rd x R + and t ' > 0 are such that:
(a) POOP^ fl.5., C^, is a.s. invertible.
(b) For any T^O, and any p^ 1, I^T | C^1 | is in 4(Q, P®P^).
Then for any multi-index m, and any t^t\ there exists a random variable B^ such that:
(a) For any T>0 and any p^ 1, I^T Bm is in Lp(Q, P®P^).
(b) For anyfe Q° (R x R^), if x, is the process (p,(co, Xo):

(2-27) E^o [ MA, |̂ (A, x^) j =Ep^o [/(A, x^) B-].
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Proof. — For t^t\ we first consider formula (2.25). Observe that if D is invertible,
we have the uniform bound:

(2.28) ^ ^IID-1!!.
ou

Make then N -> +00 in (2.25). Clearly, since C^, is a. s. invertible, PN(CA^) -)> 1
a.s. Recall that/has compact support; namely there is T^O such that/(a,x)=0 for
a^T. In the r.h.s. of (2.25), we can then write everywhere E^^o [IA^T- • • ]
instead of E^^o [ . . . ] . Now all the terms appearing in the r. h. s. of (2.25) are in all
the Lp(Q, P®I^o). Using the uniform bound (2.28), it is then possible to take the
limit in (2.25) and obtain the formula corresponding to PN=I. (2.27) has then been
proved for [ m | = 1.

Using the fact that IA('^T | C^1 | is in all the Lp(D, P(x)P^), it is possible to iterate
the procedure as in [29]-[30]-[36]-[37]-[7] so as to get (2. 27). ^ D

Remark 3. — Any function / defined on R + x R" can be extended to A by setting
/(A)=0. If in Theorem 2.4, ZQ=O, we find that, under the assumptions of this theorem
and using Proposition 1.4, for any OQ ̂  0:

(2.29) E<^o.o) I" J^ (oo + A, x^) 1 = E '̂ \f (a, + A, x^) B-].

(d) Integration by parts in the variable x: the non localizable case

We will now treat the case where the necessary estimates are in general not
localizable. This will be especially useful when the boundary semi-group is slowly
regularizing [see section 5 (e)].

We will use here a procedure of step by step integration by parts, which reflects the
Markov property of the system in a stronger way than what has been done before (of
course the fact that C, increases with t—in the sense of quadratic forms—is related to
the Markov property of the considered processes). This procedure had been developed
by us in [8]-[9] for the calculus of variations on jump processes, and it is no suprise that
it should appear again here, since the boundary processes are jump processes.

We will write now C^° instead of C,, since the explicit dependence of C^° on XQ will
be needed.

THEOREM 2 . 5 . — Assume that t ' > 0 is such that:
(a) For every xeR^, C^. is P®P a. s. invertible.
(b) For every T^O, there is q>2 such that for any xeR^, IA(^T | [^XJ-1 | ls ln

L^(Q, P0P"), and its norm in L^(0, P®P') can be bounded independently o/xeR^.
Then for any (JCo.^eR^xR'1', any multi-index m, and any t^\m\t\ on (Q, P(X)P^),

there exists a random variable D^ having the following properties:
(a) For any T^O, 1^^ D;" is POOP^ integrable.
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(b) For any /€ Q° (R x R^), f/x, is t/u? ̂ roc^ss (p,((o, Xo):

(2. 30) E^o f M^ 3W/ (A, x^) 1 = E^o [/ (A,, x^) DT].L 3x'" J

Proof. — First assume that Zo=0, and [ m [ = l . We can then proceed as in
Theorem 2.4. In fact since / has compact support, everything in (2.25), except the
terms where C^, appears are in all the Lp(Q, POP). Now [ C^1 [ is in LJO, POP")
with q>2. Noting that at most | C^ |2 appears in (2. 25), and still using the uniform
bound (2. 28) we obtain formula (2. 25) with PN = 1.

The critical step will now come from a different iteration procedure. We will develop
the argument for [ m [ = 2. Set:

Y^T^ ^=1^ 1^1- l2^8x1^ 8x1^

We rewrite formula (2.25)-with pN=l-with Y=Y 1 and/replaced by Y2 / in a
slightly different way. We have for t^t':

(2.31) E^M^Y^A,^)]

r M
=EPW• I MA,, ̂  (Y^ /) (A,+A,-A,, ((PA, ° (pA,1) (XA,,))

{ (^l (<PA, ° ̂ A,1)*"1 Y1, C^ f^' (pF1 X, SviA
I \ Jo /

- f^ < CA,1 (pA;1 [(<P, 0 (PA,1)*"1 X,, (<PA, ° (pA,1)*"1 Y1], (pF1 X; > ds
Jo

+ !AI' ds < c;,1 <pr1 x,, <px,-1 (<PA, 0 (pA,1)*-1 Y1 > p < c;,1 [(pr1 x^ (pr1 xj,
Jo Jo

(pF1 X, > dv+ [^' ds /C;,1 (p?-1 X., r < [(p?-1 X,, (pF1 XJ,
Jo \ Jo

CA,1 <PX;1 (<PA, 0 <(>A,1)*"1 Y1 > (p?-1 X, \dv

- (CA,1 (pV1 (<PA, 0 (PA,1)*"1 Y1, f^' C, (p?-1 ^ (8B,-& (x,, z,) ds)
\ Jo

+CA,, (PA;1 f^ (<PA, 0 <PA,1)*"1 &x (̂  ̂ ) (8B-fc (X,, 2,) d5)\ I 1 .

Now since L is an additive functional for z, it is clear that:

(2.32) A,-A,=A,_,o^..
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Using the corollary of Theorem 1.1, we find that:

(2. 33) ^ (co, .) =((PA^) (9^ ®) ° <PA<- (̂  .).

In the r.h.s. of (2.31), we can take conditional expectations with respect to F^, of
the terms which are not F^-measurable.

Moreover since z^, = 0, it is obvious that the conditional law of S^'(0 given F^, is
equal to P0P'. We will use these facts to rewrite the r. h. s. in a still different way. Due
to the length of the equation, we write explicitly only the first term (we use M"0 instead
of M since the starting point is now important):

(2.34) f d (P0P') (oo)®d (POPQ (co') I" M^, (co) M^, (oo-)
/ - -

x (. (Y^ /) (A,, (O))+A,^ (a/), (P^_^) (o)-, XA, (co)))

J / (p^-1 (co, .) ((p ,̂ (̂ , .) Y1) (XA, (co)), C^1 (co)

r^'^ - . - \ 1 1
x (cp? X,) ((D) 5w1 (co) ^ - . . . ^ .

Now observe that for each fixed ®eQ, we can restart the calculus of variations in the
variable o/, since as functions of a/, all the random variables which appear in (2. 34) are
of the type already met in the proof of Theorem 2.4. If t - t ' ^ t ' , i.e. if r^t', for
each co, we can then produce a variation of co' on the time interval [0, t ' ] so as to express
(2. 34) in terms of:

/ (A,. (®) + A,_,. (o)'), (PA(-^') (®'» ̂  ((»))»

i.e. the differentials of/disappear.
Or course [C^^ (o)')]"1 appears (at most in square form), but this causes no difficulty

because of assumption (b) in Theorem 2.5, and of the fact that/has compact support.
Using (1.12), it is obvious that if in (1.5), K is equal to [0 ,T]x{x} (xeR4), the

bounds in Lp(Q, P®Py of the random variables appearing in (1.5) can be made
independent ofx,Zo- Using the fact that in the assumption (b) of our theorem the
bounds can be made independent of x, it is then clear that for each co, the random
variables appearing in the integration by parts process in the variable CD', as functions
of co', are integrable in co', with a L^-norm bounded independently of co. Using Fubini's
theorem and deconditioning the obtained formula, we obtain (2. 30) with Zo==0, |m|=2.

Another way of formulating what we have done would be to start again with formula
(2. 25) for PN= 1 with Y =Y1 and /replaced by Y^and to make a calculus of variations
on the interval [A^, A^'] (which means that in the proof of Theorem 2.2, u would be
9^0 only on the interval [Ay, A.^'])'
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Also observe that in the final formula the fact that (C^°,)~1 and (C^'-^V1 appear
both in square form is no obstacle. In fact for any T^O, t ^ l t ' :

lA^Tllcl0,]-1! |[c^-A,]-1!,
is in 1^(0, POOF), because of the Markov property of the considered processes (do not
use Holder's inequality).

The case of a general m is obtained by applying repeatedly the Markov property, or
equivalently by applying the calculus of variations on [0, A^],
[A^, A^'J, . . ., IA(I^I-I)^, A[^J.

When ZQ is 9^0, the same procedure is applied by starting the variation after Ao (which
is ^0), i. e. doing the corresponding calculus on [Ao, A^], [Ap A^']... D

Remark 4. — Step by step integration by parts is described in detail in
[8]-section 4. As indicated in the proof of Theorem 2.5, the basic idea is to use the
calculus of variations repeated by on [0, A^], [A(/, A^'], . . .,[A(|^|_^,A(^]. Details
can be worked out easily.

Remark 5. — So far, we have been able to obtain an integration by parts formula in
the variable x. If the assumptions of Remark 1 are verified, this would be enough to
study the regularity of the semi-group associated to the Markov process x^. In this
case, the reader can directly read section 5. If we are interested in (Ap x^)—as we
must be if the assumptions of Remark 1 are not verified—we must find a way of
developing a calculus of variations on the variable A(. This is what we will do in the
next two sections.

3. The stochastic calculus on the excursions of the reflecting Brownian motion

This section is somewhat independent of the remainder of the text. The reader who
is essentially interested in the analytical aspects of the calculus of variations only needs
to read paragraphs (a), (b) and (c). However a complete understanding of the results of
section 4 is easied by a quick look at (d), (e).

In (a), we recall the main results of the Ito theory of excursions when applied to the
reflecting Brownian notion. Special attention is given to the results of Ito-McKean [18]
and Williams ([45], [46]).

In (fc), a point process description of (w,,z^) is given using (a) and also
Ikeda-Watanabe [17]. A Poisson point process is then defined, whose natural filtration
is{F^}^o.

In (c) the main results on the stochastic calculus on point processes are recalled
(Meyer [31], Jacod [19], Ikeda-Watanabe [17]). The relation between the { F^ }^o stochas-
tic calculus and the { F^ }^o stochastic calculus is developed. In particular the quadratic
variation of two {F^J^o martingales N',N', which is written [N',N^ is computed in
terms of the representation of N', N' as {F,}^o stochastic integrals.
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In (d), the effect of a Girsanov transformation is studied on the filtrations {F(}^()
and { FA, }t^o' Cto { F( }^o? tne situation is well known (Stroock-Varadhan [40]-6). On
{ FA }r^o» using the results of Jacod [19], the effect of the Girsanov transformations is to
produce an absolutely continuous transformation on the Levy measure of the considered
point process. The corresponding Doleans-Dade equation [19] is exhibited.

In (e), special attention is given to the relation between the effects of the Girsanov
transformation on {F^}^o and {F^}^o stochastic calculus.

In the whole section, we use the results of Ikeda-Watanabe [17] (p. 307-320), who give
us the essentiel tool which is the excursion stochastic integral.

(a) The Ito's theory of excursions on the reflecting Brownian motion.

We first recall a few facts concerning the Ito's theory of excursions applied to the
reflecting Brownian motion on [0, +oo[. Our main sources are Ito-McKean [18], Wil-
liams ([45]-[46]), Ikeda-Watanabe [17], and Jeulin [21].

We use the notations in Ikeda-Watanabe [17].

DEFINITION 3.1. — ^+ is the set of continuous functions e(s) defined on R'^ with
values in R + such that:

(a) ^(0)=0;
(b) There exists a(e) such that 0<a(e)^ + oo, for which

0<s<cr(^), e(s)>0,

s^a(e), ^(s)=0.

^+ will be the set of excursions of the reflecting Brownian motion z,.
For notational convenience, we take 8 to be a point isolated from ^+, corresponding

to the empty excursion.

DEFINITION 3.2. — On (0', F), we define the process ^ adapted to { F^}^o with
values in ̂ + U { 8 } in the following way:

(a) If A^- <Ap ^ is the element of ^+ defined by:

e,(s)=z^^- for s^A,-A,-,

=0 for s>A,—A^-.

(b) If A,-= A,, ^=8.
Now the Ito's theory of excursions tells us that ^ is a stationary Poisson point process

on (0', {F^J^o? p/) (see I17]? P- 123). Its characteristic measure n^ is a a-finite ^0
measure on ̂ +.

Here are a few facts about n"\
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DEFINITION 3.3. - B denotes the probability law on ^+ of the Bes (3) process
starting at 0, conditioned on <?i=0, and stopped at time 1. C denotes the probability
law on Q" of the Bes (3) process starting at 0.

For Bessel diffusions, we refer to Ito-McKean [18], and Ikeda-Watanabe [17].

THEOREM 3.4.- Let fbe the mapping defined on R'^ x ̂ + \vith values in ̂ + defined
by:

(3.1) (t,r)eR+xir+ -> e (s)^172 7(s/t), O^s^r.

Then n^ is the image by f of the ^-finite measure F onR'^ xiT^ given by:

(3.2) riFar)=l,>o—£_®dB(F).
- /In t3

Proof: This result is contained in implicit form in Ikeda-Watanabe [17], p. 123 and
224 (also see Ito-McKean [18], p. 75-81). D

Observe that the mapping (3.1) is one-to-one, since in fact in (3.1), t=a(e). For
e e i ^ ' ^ ' , r is its scaled excursion i. e.:

(3.3) r(s)= 1 e (s a (e)) 0^^ 1.

We will use the notation r without further mention.
Also observe that (3.2) implies that under P, A, is a stable process of exponent 1/2

and rate /2 ([18], p. 27).
A second useful description of n " is provided by Williams ([45]-[46]).

DEFINITION 3.5.- For (b, r) e R + x Q', we define T(b, r) by:

(3.4) T(fc , r )=inf{^0; r(t)>b}.

We then have:

THEOREM 3 . 6 . — Let g be the mapping defined onR+ x^l' xQ' mth values in ̂ +:

(3.5) (^r.rQ ^(s)=r(s), O^s^T(^r)

=4(b.r)+T(^')-.. T^.rK^T^+T^rQ.

Then n+ is the image by g of the v-finite measure G onR+ x^l' x^l' given by:

(3.6) l^o^^CM^C^).

Proof. — The full proof of this result appears in Rogers [33]. D
Obviously (3.6) also reflects the known fact that the law of \\e\\= sup \e{t)\

0^t^a(e)
under n^ is l^o db/b2.
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Of course Theorems 3. 5 and 3. 6 imply each other. In the sequel, we shall use these
two descriptions of n+ in the most convenient form.

(b) A point process description of the process (Wp z^).

We still follow Ikeda-Watanabe [17].

DEFINITION 3.7. - i^o is the subset of Qx^ consisting of the element
(c, e)e0, x ̂ + such that for any s^O, £(s)=e(s A CT (<?)).

DEFINITION 3.8. - On (Q, P0P'), we define the process (e,, e,) adapted to {F^}^o
with values in ^o U { 8 } in the following way:

(a) IfA,-<A,, then:

£((5) =^Ar+s-^A^ ^(^^A,^ for s^A,-A,-,
^ (5) = WA, - WA,-; ^ (s) =0 for 5 > A, - A,-;

(b) If A,- = A,, (8,,^) =8.
We then have:

THEOREM 3.9. - The process (s^, ^) 15 a Poisson point process on
(£i,{¥^}^o, POOF). Jt5 characteristic measure n on i^o is the image measure by the
mapping i:

(3.8) (^e)EQxi^+ ^(w.,^,^)

of the a-finite measure I on Q x ̂ +:

(3.9) ^(nOO^O?).

Proo/: - Since for any t^O, the law under P of (w,+s-0^o is still equal to P,
using the independence of w and z under P®P, the result obviously follows from the
corresponding result on the process z. For more details, see [17], p. 215, p. 307). D

Let P° be the law of \v^ i under P. We have:

COROLLARY. — The measure n on i^o is the image measure by the mapping]:

(3.10) (r, w, 7) e R + x ̂ o -. (e (s), ^ (5)) = (t112 w (s/t\ t1'2 r(s/t)\ s ̂  t,

^r^wO.O), s>t,

of the a-finite measure ^/onR'^xOx')^:

Proof. - Using Theorems 3.4 and 3.9, and the scaling invariance of P (3.11) is
obvious. •
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Remark 1. — (w,r) represents the scaled excursion of (w,z). In the sequel, we will
use this notation without further mention.

DEFINITION 3.10. — On Q", the stochastic processes D( and L( are defined by:

r D ,= inf{s>^ ;z ,=0} ,
(3t l2) {L ,=sup{ .< t ; z ,=0} .

Clearly D, is a right continuous increasing process and L^ is a left continuous { F ^ }
^o-predictable increasing process.

We have the following elementary result.

PROPOSITION 3.11. — On (n, P0P"), the filtration generated by the point process (6p e^)
is equal to {F^J^o-

Proof. — For Ag-^iKA^, we know that Z(=^(M—AS-). Moreover on the comple-
mentary set of U [A,-, A,[, z is equal to 0. For each r>0, the trajectory z^^ils ^en a

s

function of the excursions e^ (s ̂  t).
Moreover on (0, P0P'), w is a { F^(x)F^ }^o martingale. Since P®P" a. s., the

complementary set of U [A,-, A,[ in R"^ is A-negligible, we see, using Doob's inequality,
s

that:

(3.13) H,=lim lD»-L«>e8w^
e l O Jo

where in (3.13) the limit is taken in probability uniformly on every compact set in
R+. Now the r. h. s. of (3.13) is equal to:

(3.14) S,<. MA.-A,-)]+l^-i>s £L,(5-4),'-V ^v /J • ^Us-Ls>e "Ls '
Ay-Ay" >6

Now the set (z,=0) is the complementary of U ]A,-, A,[. It is then easy to see that
s

if 5^A^, (3.14) only depends on the trajectory of Ay(r^) and the excursions ̂ (v^t).
The proposition is proved. •

(c) The stochastic calculus on the point process associated to (w^ z^).

At this stage, we start using systematically some general concepts of the theory of
stochastic integration. The reader is referred to Jacod [19], Meyer [31], Ikeda-
Watanabe [17] for a complete information.

Recall that for each ?^0, D, is a {Fj^o stopping time. The filtration {F^J^o is
then well defined.

The filtration {F^}^o has been studied—in the frameworks of regenerative sets—by
Maisonneuve [27] (also see Maisonneuve-Meyer [28]).
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DEFINITION 3.12. - ̂ ^^ (resp. d?,^,^ denote the predictable (resp. optional)
o-fields on R + x 0 associated to the filtrations { F( }^o, { F^ }^o» { ̂  }^o-

The filtration {F^}^o corresponds to the filtration {F^J^o m natural time-
scale. Namely, we have the following well-known result:

PROPOSITION 3.13. — If H( is a predictable (resp. optional) process on (Q,
{FA,}^O» P®P') then HL, is predictable (resp. optional) on (Q, {F,}^o, P®?") [resp. (Q,
{FD^^O? P0P')]. Conversely, ifH(' is predictable (resp. optional) on (ft,
{FD^^ P8)P') ^n H^- (resp. H^) 15 predictable (resp. optional) on (Q,
{FAJ^O. P®P'), and H^ i5 predictable on (U, {F,}^o» P®^).

Proof. — We only sketch the proof. It is easily verified that the mappings:

(3.15)

(t, (o) e (R+ x 0, ^) ^ (L,, (o) e (R+ x 0, ^/),
0 ®) e (R + x Q, ^//) -^ (L,, ®) e (R + x Q, ^/),

(r, ©) e (R"" x Q, ^) -> (A,-, ©) e (R-^ x 0, ^//),
((, ®) e (R-' x Q, (PO -^ (A,, ©) e (R4- x Q, (P"),

are measurable (this is plain algebra). Since L(=A(L()-, the end of the proposition is
obvious. •

Since D(=A^, if H' is optional on (R'1" xO, {F^}^o) (i.e. (9" measurable), then H^
is still optional on (R+ x0, {F^J^o). The ^"-measurable processes H' which can be
written in the form H^, with H measurable, are exactly those for which Ĥ ' = H ,̂ and H
can be taken to be equal to H^. Similarly ^"-measurable processes H' which can be
written in the form H( == H^ with H measurable are exactly the processes H' such that
H('=H^. H can then be taken to be equal to H^-, and H' is then also ^-measurable.

Observe that if N^ is a { ¥^} ̂ -martingale, N^=N1^. Moreover all the natural sets
of { FI^ }^o martingales (like Hp for 1 ̂ p^, + oo, BMO) are in one-to-one correspondance
with the corresponding sets of {FAj^o-^^gales. Toeach{FDj^o martingale
N;', we can in fact associate the { ¥^ ̂ o-^rtingale N; =NA,, and the reciprocal map-
ping is N; -^ N;/=N^. The stochastic calculus on {F^J^o and {FAJ^O martingales
are in fact formally the same, so that we will concentrate on the calculus on {F^ }^>o
martingales and its relation to the calculus on {F(}^() martingales.

We will now describe the stochastic calculus on {F^}^o martingales.

DEFINITION 3.14. — Let H,(o),e,^) be a function defined on (R+xfi)xi^'o with
values in R, which is ̂ '(g^^o) measurable, and such that for any r^O:

(3.16) E^T fT f [H,(cD,e ,^) |dn(8,^)1^1<+oo,
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I resp.

(3.17) ^TfTf \Hs^^e)\2dn^e^ds^<+ooY

Then S^H,(©,e,,^) [resp. S^H,(©, £„ e,)]_ denotes the 0' measurable right-
continuous bounded variation process (resp. {F^}^o square-integrable martingale)
which is the sum (resp. the compensated sum) of the jumps H,(co, e(s), e(s)) before t.

Recall-s^ Jacod [19], Meyer [31], Ikeda-Watanabe [17], p. 61-that:

(3.18) S^H,(®, £„ ^)=lim S,<, H,(co, e,, e,)
r\l0 |As-As-|^n

( resp.

c

(3.19) S^ H, (©, £„ ^) = lim [S^, H, (®, £„ e,)
n i o |As-As-|^ii

- d5 ^(^^n ̂  (c0' e' )̂ dn (£' ^)] ) •
JO JiTo /

where in (3.18) and (3.19), the limit is taken in probability uniformly on the compact
sets of R\

We now have the fundamental result of Dellacherie, Jacod and Yor [20].

THEOREM 3.15. — Any square integrable martingale N(' on (Q, {F^J^o? P8)PQ such
that NQ==O can be represented in the form:

c

(3.20) N;=S^HJ®,£,^),

where H is taken as in Definition 3.14 and verifies (3.17). H 15 dt®dP®dn essentially
unique.

Proof. — This follows immediately from [20], the Poisson point process characterization
of the process (e,, ^), and from proposition 3.11. •

Theorem 3.15 shows in particular that the {¥^}^o-msirtmgales are pure jump
martingales. It is then feasible to set the following definition.

DEFINITION 3.16. — Let N(, N( be two {F^}^o-maTtingales on (Q, P0P') such that
No=No=0. [N^N']^ is the bounded-variation ^'-measurable process defined by:

(3.21) [N'.N^ECAN'UAN'),
s^t
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Recall that by [31], if N', N" are taken as in Definition 3.16, then:

(3.22) N; M; = p N;- 5N,- + F N,- 8N, + [N-, N^.
«Jo Jo

Moreover, by Burkholder-Davis-Gundy inequalities, for any p such that 1 <p < + oo
the following norms on the { F^},^o-ma.rtmgales N" defined by:

(3.23)
||N/||;=[EP8p'[Ny,

N'll^E''81^ sup |N;n]1/",
O^s^+oo

llN'l^^tE^'tN'.N^2]1^

are equivalent and exactly define the set Hp of {F^^Q-martingale which are 0 at t=0
and whose terminal value is in L (0, P®P').

Similarly, recall that if N( is a square integrable martingale on (Q, P^P") with respect
to {F^}^o, such that N()=O, there is I^ . . .1^, ^defined on R'1' xQ with values in R,
which are predictable with respect to {F,}^o ̂ ^ Aat:

(a) For any tGR+:

(3.24)

(b) P^P'a.s.:

(3.25)

B^ [T E | I J 2 +[^ | 2 ^^<+oo;
Jo L » = i J

N < = z ri.sw^ r^sB.
1=1 Jo Jo

Moreover by Burkholder-Davis-Gundy inequalities [31], for any p>\ the following
norms on the {F^^o-msiTtmgsdes N defined by:

(3.26)

llNll^tE^^J]^,
INH^E^ sup [Nj^,

O^s^ +00

t r r'^00 "i^211^
N||;= E-^ (El l^+l^ l 2 )^

I L Jo i J J

are equivalent and exactly define the set Hp of {FJ^o-11^11111^1^ which are 0 at ^=0
and whose terminal value is in Lp(Q, P®P').

PROPOSITION 3.17. - For any p(\ <p< + oo), the mapping:

(3.27) N,eH^N;=N^eH;,

is a Banach space isomorphism.
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Proof. — This result is obvious since (3.27) corresponds exactly to the identification
of the terminal values [in Lp(Q, P®P')] of the elements of Hp and Hp. D

Remark 2. — I f / ?= l ,7 t i s only continuous and 7i(Hi) is dense in H\, but is not Hp
In the sequel, we write N' instead of 7i(N).
We then have a technical result.

THEOREM 3.18. — If Ne Hp (l<p< +00), if K is a bounded {F(}^() predictable
process, then P0P' a. s., /or any t^O:

(3.28) r'K^aN^ FK^-SN,
Jo Jo

Proof. — K^ is a bounded {F(}^() predictable process, so that the martingale
p - r^Ki^ SN^ e Hp. This implies that K^ 8N, is a { F^ Ĵ o"111^1111^̂  which is in
Jo s Jo s

Hp. Similarly, K^- is a bounded { F^ J^o-P^dictable process, and so K^- 5N, is
Jo s

a { FA } ̂  o"111^111^6 which is in Hp.
To prove (3. 28), we only need to show that both sides of (3. 28) have the same jumps.
First assume that K,= !„>-?, where T is a { F(}(^O stopping time. We must prove that

for any k eN, P(g)P a. s.:

(3.29) I|A,-A<-|^ [At K;̂  5N,=l,^-A,-|>i/fc K^- (N^-N^-).
JA(-

Le! { S? }^N be the {F^}^o stopping times:

(3.30) { , ss=09

I S?^=inf { ^S?,| A,-A,-|^ 1/fc }.

Then as i T + oo, S? T + w Pg)?' a. s.
Writing S instead of S^, we are then left to prove that:

(3. 31) [As K:̂  5N,=K^- (N^-N^-),
JAs-

Now K^= IS>DT» an(^ DT ^s a { F(}(^O stopping time. Clearly:

(3. 32) p K^ 8N,= \^ (N,-N^) = 1^ (N,-N^).
Jo

If As-^T since Ag=D^_, AS^DT. Using (3.32), we see that on (Ag-^T), both
sides of (3.31) are 0.

46 SERIE — TOME 17 — 1984 — N° 4



THE CALCULUS OF BOUNDARY PROCESSES 547

If As->T, then AS-^DT. If AS->DT, AS>DT, and so using (3.32), we see that
(3. 31) still holds. We claim that (Ag- =0^) is negligible. In fact since D^ is a { F, }^
stopping time, the zeros of z accumulate on the right of DT. But recall that
^ = U^s- > ̂ -^ (3 • 31) has then been proved.

(3.28) holds when K=l^. (3.28) follows' easily using the monotone class
Theorem [11]. D

We then have the following result, which expresses [N'.N'] in terms of
{ F^ ̂ o-^chastic integrals:

THEOREM 3.19. - J/NeH^, NGH^(l<p,;/<+oo), then:

(3.33) [N^N^N^- ( A t N^ §N,- f^N^N,
Jo Jo

Proof. - For neN, let T" be the {F^J^o stopping time:

Tn=mf{t^0; |N; | v |N;[^n}.

Then A^'n is a { Fj^o stopping time. Since T" ^ + ooP®P' a. s. it suffices to check
that:

(3. 34) [N-, N^=N^^ N,^- [A?AAT" N^ 8N,- S^" N^ 8N,
Jo Jo

or equivalently to check (3. 33) when N(, N, are replaced by N^T' ^AT-

We can then suppose that on [0, + oo[, | N;- |, [ N^- [ are uniformly bounded processes.
Since L,=A^-, N^ and N^ are bounded {F^^o-P^dictable processes. (3.33) fol-

lows from (3. 22) and (3. 28). •
Remark 3. — Of course (3.33) is true in general if N and N' are only supposed to be

uniformly integrable {FJ^o-martingales.
Note that (3.33) gives us [N', N'], by using the classical Ito calculus on the martingales

N(, Ny. Practically, this expression is not very useful. Moreover the Burkholder-Davis-
Gundy inequalities corresponding to the equivalent norms (3.23) are not "obvious"
consequences of (3. 33).

(d) The Girsanov transformation on the filiations {F^}^o and {F^J^o-

For obvious reasons, we limit ourselves to studying the Girsanov transformation
on B, which leaves w untouched. The Girsanov transformation on w would in fact be
essentially trivial to study.

Let c^ be a {F^}^o predictable bounded process on (Q, POP"). To simplify the
discussion, we will assume there exists T>0 such that if r>T, c^=0.

The process:

(2-35) G.=expri\8B,-j f'c^l,
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is a {F,}^o-martingale stopped at T. Moreover it is easy to see that the random
variables:

(3.36) sup [ c , 8 B , , sup G,, sup G,-1,
0 ̂  « + oo Jo 0 ̂  t < + oo 0^t< + oo

are in all the Lp(ft, POOP) (1 ̂ p< + oo).
Let P be the probability measure on 0 defined by:

(3.37) dP=G^d(P®y).

Clearly, for any r^O:

_^_F=G dp

dp^y t t? dp®y(3.38) -___F,=G,, _——FA=GA.
^D/C\iy l l /7T>/CMV ^ A?

By the fundamental property of the Girsanov transformation on the Brownian motion
[40]-6, we know that if B( is the process:

(3.39) R = R - S ' r d s ,,=B,- r <
Jo

then (W(1. . . w^, S^) is a { F(}^Q Brownian martingale under P.
Now the second equality in (3.38) expresses the fact that the probability law of the

point process (£p ^) under P is equivalent to P on each ¥^ (by Proposition 3.11,
{FA^^O is the natural filtration of this point process). We will now use the results
relative to the extended Girsanov transformation on point process given by Jacod [19].

DEFINITION 3. 20. — fe( denotes the process:

- r^
"JoG,

(3.41) k^= -s.
JO °L,

Of course, we also have:

(3.42) k,= r^SB,
Jo GL,

Using (3. 36), we see that k^ is a {F^^Q-marting^e stopped at T, which is in all the
H^(l^<+oo).

Set:

(3.43) G;=G ,̂ fe;=feA,

G;, k\ are { F^ J^o-^rtingales which are in all the Hp(l ̂ p< + oo).
We now have the fundamental.
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THEOREM 3.21. — G(' is the unique solution of the stochastic differential equation on(a{F^}^p®p'):
(3.44) ' G;=l+ FG;- 5fc;.^=1+ r^-

Jo
's " ' " s -

0

Proof. - By the result of Doleans-Dade (see Jacod [19]) we know that (3.44) has one
and only one solution. We must prove that G(" is in fact solution of
(3.44). Theorem 3.18 shows that:

(3.45) rG,-8fe,= f^G^Sfc,
Jo Jo

Using (3.41), (3.44) follows. •

COROLLARY. — k\ is a { FA, } ̂ o-martingale, which belongs to Hp(l^p< +00), and is
the compensated sum of the jumps:

(3.46) exp f | c SB- 1 [At c2 ds \ -1.
I JA»- 2 JA(- J

Proof. — Since feeHp, fe 'eHp. Moreover, using (3.44), we see that the jumps Ak'
of V are such that:

(3.47) Afet/=^'

Now:

(3.48) (^.-^-^-^-[^{J^SB-l^c-„}-!],

G;-=G^-.

(3.46) follows. •
Now if coeQ, we can write for any s;

(3.49) ®=(®|Lj9i:^),

i.e. the trajectory co=(w,z) is decomposed into two parts: the part before L, and the
part after L,.

Recall that in Ikeda-Watanabe [17], p. 209, stochastic integrals on (i^o, dn) are natu-
rally defined. Namely, observe that i^o is endowed with the natural filtration {^}^o
given by:

(3.50) ^=^(e,,^ | s^t).
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Then if 0, is a {^ } predictable process on R + x ̂ o such that:

(3.51) | | [ I O J ^ I A K + O O ,
JiTo L JO J

the stochastic integral:

0,56?,

can be defined and moreover:

(3. 52) f [ l̂  <D, be I2 dn= f [ F <D,2 ds 1 dn,
J^o L Jo J J^o L Jo J

Of course this is not surprising since by Theorems 3.4 and 3.9, on (i^Q, dn), conditio-
nally on CT, e is a {^}^o semi-martingale.

DEFINITION 3.22. — The function d, (0, e, ^) is defined on R + x Q x i^o by:
r F<r(e)

(3. 53) d, (o), e, ^) = exp CL^« (co | 4 | (e, e)) be (u)

1 r<s(e) _ _ ~]
-^ \c^^\L,\^e))\2du .

(3. 53) makes sense. In fact, it is not hard to prove that for each (s, ©) e R + x 0,

(u, (e, e)) e R+ x ̂ o ^ ^+u (® I Lj fe ^))

is {^}y^o"Predictable. Moreover, for each v>0:

- , . . ^ t A v d tf ^ . ^ f''00 ^ A vdt
CT A rdn(£, ^)= ^==7 <

J^O Jo xA71^

CT A r dn (e, ^)= • < + oo.
J^-O Jo x/2 7l r

Since c is bounded for each (s, co), we can define on (i^o, dn):

(3. 54) f^ CL^ (® | Lj (e, e)) be (u).
Jo

Finally by making v -> + oo in (3. 54), the integral:

r°
CL,+U (<o I Lj fe )̂) 8^ (M)

Jo

is well-defined.
Also observe that by standard results on stochastic integrals depending on a parameter,

d can be defined so as to be ^(S^(i^o)-mGSismab\e.
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DEFINITION 3.23. - The function d; (0, e, e) is defined on R + x Q x ̂ o by:

(3. 55) d, (©, e, 0=^- (<o» ^ ^)-

Using Proposition 3.13, we see that d' is ̂ (S^^o) measurable.

PROPOSITION 3.24. — We have the following inequality:

(3.56) E '̂ r00!' f|d;(co,£,e)-l|2^(e,^1d5<+oo,

k^ f5 ̂ r^n by:
c

(3.57) fe;=S^Jd;(co,£,,^)-l].

Proo/ — By the Corollary of Theorem 3.21, k ' is the compensated sum of the jumps
(3.46). Using (3. 53) and (3. 55), we see that k ' is the compensated sum of the jumps
d, (co, £„ e,) -1. Since k' is in H;, (3. 56) is verified. D

Remark 4. — Inequality (3.56) will be reproved in a much stronger form in
Proposition 3.26.

THEOREM 3. 25. — Under P, (e? e^) is a point process whose Levy measure is given by:

(3.58) d, (®, e, e) dn (e, e).
c'

In particular, (/'H,((D, e, e) is taken as in (3.17), the process S^H,(co, £„ ^), defined
by:

c' c

(3. 59) S^, H, (®, 8,, e,) = S,^ H, (©, £„ e,)

- ^ ds L; (®, e, e)-1] H, (o, e, e) dn (e, e),

is a {F^}^o local martingale on (0, P).

Proof. — Using (3.44) and (3.57), (3.58) is a direct consequence of
Jacod [19]. Observe that the r.h.s. of (3.59) makes sense because of (3.17) and
(3. 56). The end of the theorem is also a consequence of Jacod [19]. •

Remark 5. — Theorem 3.25 shows that the effect of the Girsanov transformation
P0P' -> P=G^ dP is to create a "Girsanov transformation" n -^ d^ dn at the level of
each excursion.

The analogy is in fact obvious by formula (3. 53).

(e) The Girsanov transformation and its effect on the stochastic calculus.

We will now show how (3. 39) —which gives the effect of the Girsanov transformation
on {F(}^o-martingales—and (3.59)—which gives the corresponding effect on {F^}^o
martingales — are related.
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In fact let NeH2. We can represent the {T^^o-msiTtingale N( as in (3.25). Now
under P we know that:

(3.60) N,=N,- f^c^s,
Jo

is a { F( }-martingale. But:

-r r'^00 ~i r ^ "i172
"'[I 1/.^]SC[E-JJ/,|^] .

Since GyeHp(l^/?< +00), it follows easily that N( is a uniformly integrable
{F(}^o-martingale on (fi, P).

N^ is then a {FA^^o"11^11111^^ on (^? P)-
Now we know that NA, e H^. Then:

c

(3.61) N^=S^H,(®,e,^),

where:

H, (©, e, ^)= | I,,^-+, (® | A,- | (e, e)) Se1-^- \ /^-^ (co | A,- | (e, e)) 6e.
Jo Jo

From now on we will simplify the notations as much as we can, i. e. co, L^, e, e will be
generally omitted.

Now for fixed (s, o^eR4 ' x ft, on (^o, n), we know that if d, (u) is defined by:

f fA,-+« 1 fA,-+u -)
(3. 62) d, (u)=exp ^ c 8e- - c2 di; ^

t JAS- ^ JA^- J

then:

,3 ^ f ̂ / (") = d, (u) c^- ̂  6e (u\
\ ^(0)=1.

In fact (3.63) is obvious, because e(u) is a semi-martingale on (^o» n) 'wlt^ respect
to {^u}u^o (m ^e sense than conditionally on o,e(u) is a semi-martingale). Since:

(3.64) . E^' f + o o ( | I J 2 +|J | 2 )^<+oo,
Jo

we find that:

(3.65) E-8-- fds f I" ^(|I,A,-+J2+|A,-+J2)^1^<+°o.
Jo JUTQ L Jo J
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Using Theorem 3.25, we see that:

(3. 66) N^- | ds r f (d, (®. e, e)-1) H, (®, e, e) dn (e) ] ,
JO L JiTo J

is a { FA, }^o ^cal martingale for P.

PROPOSITION 3. 26. - \d,-\\ldn is uniformly bounded on R + x Q, anrf won?o^r:
JiTo

<3-67) f i ^ - i p ^ f f ri^^^-.j2^]^.
J^o L J^o Jo J

Proo/: - Set:

fs(u)=d,(u)-l.
Then by (3. 63):

(3.68) ^f;(u)=(f;(u)+l)c^^6e(u)
I //(0)=0.

Let afc be the {^}^o stopping time:

(3 • 69) ^=inf { t^O; | // (u) | ̂ k } A CT.

Using (3. 52), we get for t^O:

(3-70) J^ l / y^AOl^n^c r f ^^ | / / ( cT ,AM) | 2 ^+aA,Ln1

Now:

f (a A ^)dn=^L^l/2

J^o ^2n

and moreover both sides of (3. 70) are finite.
Using GronwalFs lemma, we find that if t remains in a compact set,

I fs (^ A t)\2 dn remains uniformly bounded. Since // is stopped at T (because
JiTo

c^- +„ = 0 for u ̂  T), we find that [ // (t) |2 dn is uniformly bounded. Now:
J^o

(3.7i) f r r'l^o^-.j^'L
J-TO L Jo J

^cF f r f1'^ )//(«) |2 dM+o A Tldn1<+oo.
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Using (3. 52), (3.63) and (3.71), (3.67) follows. •
We then find:

PROPOSITION 3.27. - On R+ xQ, ds®dP®dV a.s.:

(3. 72) f (d, -1) H, dn = f [ | d, (u) c^- ̂  /^- ̂  du \ dn.
Juro J^o L Jo -1

/•+00

Proof. - Since E^' | ̂ J2 ds< + oo, we know that:
Jo

(3.73) E '̂ [+ G O ds f [a\/^-^\2dudn<-^co.
Jo JiTo JO

Then:

(3. 74) | /^- +^ |2 du dn < + oo, dsOO^POO^P' a. s.
J^o Jo

Using (3. 74), Proposition 3. 26 and (3. 52), (3. 72) follows. •
We now have the key result.

THEOREM 3.28. - On R~^ xQ, ds®dP®dP' a.s.:

(3. 75) [ (d,-1) H, dn= f [ F c^- +, / ^- ̂  du 1 d, dn.
J^-o J^o L Jo J

Proof. — If (s, co) is chosen in such a way that:

(3.76) f dn\ ^|^-+J2^1<+oo,
JiTo L JO J

using Proposition 3.26 and the Lebesgue Theorem, we find that:

(3.77) f I" f0 d, (u) c^- ̂  /^- ̂  du | dn
J-^o L Jo J

=lim 1^ d,(u)c^-^/^-^du \dn.
n i o J-ro L Jn J

For T|>O, let n^ be the probability law n(./<7^r|). By [17], p. 309, under n^^-^
isa{^+ , ,}y^o continuous martingale, whose quadratic variation is t A (a—r|) (i.e. it is
a Brownian motion stopped at the time where it first hits —e^). Since c^-+u is 0 for
M^T, (3.63) immediately shows that under n^, ^(r|+u) is a uniformly integrable
{^.^}^o-martingale, stopped a CT. This shows that:

(3. 78) f f" p d, (u) c^- ̂  /^- ̂  du 1 dn^ = f I" F c^- ̂  / ^- ̂  du 1 ^/ ̂ ,
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so that:

(3.79) j^ l^n[J° ' <l'A^c^^/^^du~\dn

= j ^sj j c^-^u/^-^du\d',dn.

Now since c^- +„ is bounded and is 0 for u^T:

(3.80) f [\c^.^/^^\dudnJ\[ ^c^-^dudn]112

^o Jo \_ Jury Jo J

x [ i f<'l^-.«|2^^T/2
L J-TO •'0 J

/-^r f^ ^ dt 'i1/2? r r0, , i1/2

^LJ. "'^FJ LLJ.^—^^"] <+co-
and moreover:

(3.81) f [ r ic^-^^- .ui^T^
^CT f r f<T |^-+ul2^1^<+oo.

Using the identity:

(3. 82) f 1,̂  f° c^- ̂  /^ - ̂  ̂  d; Az
•/TO •/TI

= la^n c^-^u/^-+udu(d,-\)dn
JT-O ^n

+ ^^n CA,-+u/^-+u dudn,
^o •/n

(3. 80), (3.81) and Lebesgue's theorem, (3. 75) follows. •
Remark 6. - In the proof of Theorem 3.28, we have essentially used the "martingale"

property of d, (u) on (/^ { ^u }^o, ")• (3. 75) shows that the effect of the "Girsanov
transformation" n -^ d,dn on the "excursion martingales"-which are stochastic integra-
tes with respect to (e, e^. . .e^-is^ formally identical to the effect of the Girsanov
transformation P®F -> P on the {F(}^Q martingales.

A consequence of Theorem 3.28 is the following result:
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THEOREM 3.29. - Under P:

(3. 83) N^- P ds f r (c^- ̂  ̂ - ̂ ) du d, dn,
Jo J-ro ^o

fs a { F^ } t^Q-martingale.

Proof. — First observe that (3. 83) is well defined. In fact using the same decomposi-
tion as in (3. 82), we get:

(3. 84) E '̂ p ds f FI c^-^ /^-^ | du d, dn^E^' [AtAT | c^J ̂
Jo Jî o Jo Jo

+ E-8-' f ds f f | c^- +„ /^- ̂ \du\(d,-\)\ dn.
Jo J^o Jo

By (3. 64), the first integral in the r. h. s. of (3. 84) is finite. Using Proposition 3.26
and (3. 81), the second integral can be bounded by:

r n r ra -11/2
(3.85) Cm E^' \ ds\ \/^-^\2dudn .

L Jo J-To Jo J

The r. h. s. of (3. 85) is < + oo by (3. 73).

Theorem 3.29 is then a consequence of Theorem 3. 25 and Proposition 3.26 [which
imply that (3.66) is a { F^ ̂ o"111^1111^̂  f01" F] ̂ d of Theorem 3. 28. •

COROLLARY. — Under P

r^ r' r r"(3. 86) c, / , ds- \ ds\ c^- ̂  /^- ̂  du d, dn,
Jo Jo J-WQ Jo

is a { ¥^ } ̂ o-martingale.

Proof. - We know that NA, is a { ¥^ ô-111^111^1® under P. Using Theorem 3. 29,
the corollary follows. •

Remark 7. — As should be expected, the corollary of Theorem 3.29 is a triviality. In
fact we know that:

(3. 87) ff [At | c^J d^E '̂ G, [AtAT | c^J ds
Jo Jo

[ F+oo -| 1/2
^CT1/2 [E '̂ G^]172 E^ | / , |2 ds \ ,

which is < +00 since GeH2.
(3.86) is then an obvious consequence of Theorem 3.25. In fact, by the effect of

r^the Girsanov transformation on {F^}^o martingales, N^— c ^ / ^ d s is a
Jo
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/•A,

{ F^ }t ̂  o-^rtingale. But c, /^ ds is a { F^}^ o-cp^onal process, while point proces-
Jo

C^tses are characterized by their predictable compensator. Another compensation of
- ^oc s / s d s ls needed to obtain the {F^J^o predictable compensator:

fA, r ra
ds \ \ ^-^u/^-^dud.dn.

Jo JiTo Jo

4. The calculus of variations on the reflecting Brownian motion

In this section, we develop a calculus of variations on the reflecting Brownian motion z
in order to obtain the adequate estimates on the component A( of the boundary process
(A? ^A,)-

The main difficulty is that the local time L. is not "naturally" a differentiable function
of the trajectories of z . or of B., so that the calculus which we developed in section 2,
and which was based on the Girsanov transformation, fails.

In an earlier version of this paper, we used the point process description of (z, w) in
section 3, and in particular the description of the characteristic measure n in the corollary
of Theorem 3.9. Each excursion of z was renormalized so as to have length 1, the
length of the excursion CT being made a component of the point process, and the calculus
of variations on the point process CT^ was developped as in [8]. Although this calculus
was simple and intuitively appealing in its principle, the computations were made difficult
because jump martingales had to be explicitly used.

Later on, we discovered that the stochastic calculus in natural time scale could be
"twisted" in such a way that an integration by parts could be proved without explicitly
using the Ito theory of excursions. This point of view is developed in subsections
(a), (fc), (c), rather independently of its later applications to the calculus of variations.

In (a), we define a class of transformations on the reflecting Brownian motion z under
which the law of z is quasi-invariant. After the adequate inclusion of (w1. . . w^) in this
transformation, it appears that the "right" class of perturbations for the reflecting
Brownian motion has been found. These transformations are interpreted as transforma-
tions of the point process (Sp ^) described in section 3, under which this point process is
quasi-invariant. They are the infinite dimensional analogue of what we did in [8] for
finite dimensional jump processes.

In (fc), we obtain the fundamental equality which extends (2.14). In (c), an integration
by parts formula on the reflecting Brownian motion is proved. This formula is given a
direct short proof based on Ito-Tanaka's calculus when simple functionals are
considered. Its relation to Ray-Knight's theorem on the local time process
(Ito-McKean [18], p. 65, Jeulin-Yor [22]) are underlined.
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In (d), a truncated integration by parts formula is derived on the component A( of the
boundary process (A(, x^). In (/) and (g), the full integration by parts formulas on
the component A( are given and the corresponding implications on the regularity of the
boundary semi-group are exhibited in the localizable and the non localizable case. In (h\
the existence of non necessarily regular densities for the boundary semi-group is conside-
red.

In the whole section, we have taken a more naive approach than in section 2, i. e. we
first prove integration by parts formulas on "simple" functionals, and later guess for
what functionals such formulas should be extended so as to get the desired result on the
boundary semi-group.

The results and notations of the previous sections (and especially of section 3) are
used.

(a) Quasi-invariance properties of the reflecting Brownian motion.

On (D, {Fj^o, P®P) we consider a continuous semi-martingale H, having the follo-
wing properties:

(a) It is bounded and ^0.
(b) His0on(z=0) .
(c) The Ito decomposition of H is:

(4.1) H,= | K d 5 + [ R d L + [ E 5 B ,
Jo Jo Jo

where K, R, E, are bounded {F(}^o-predictable processes.
Since the support of dL is (z=0), and since by Proposition 3.13, RL is still {F^}^o

predictable, we may, and we will assume that:

(4.2) R,= R^-

Using a resultat of Ikeda-Watanabe [17], p. 306-307, it can be proved that if E is
continuous, then R,=E^. We will not need this result.

Let L" be the standard local time at 0 of H. Since H is ^0, we know by Meyer [31]
that:

(4.3) L»= plH^SH.
Jo

Since L" is an increasing process, l^=o ^L" is also increasing. Since (z=0) is
Jo

negligible for the Lebesgue measure, and since H is 0 on (z=0), we find from (4.1)
that:

(4.4) r^o^L^ !\dL.
Jo Jo

So we may assume that R is ^0.
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Finally, we will assume for technical reasons that:

(4.5) E>--!-.
~ 2

DEFINITION 4.1. - N, is the >0 {F,}^o-martingale:

(4.6) N^expj-rj^B-irfJ^y^i
I Jo 1+E 2 U l + E / J '

S is the probability measure on Sl whose density with respect to P®P on F is N i. e.:

(4.7) _^__| =M.
d(PS>P')\F,

T( is the time change:

(4.8) T,=infL^O; ^l^EVds>t}.
I Jo \ 1 + R / J

Since 1 +E^ 1/2, K/(l +E) is bounded, and N, is indeed a { F,}^o-martingale.

DEFINITION 4 . 2 . — The following processes are defined by:

-(t^l; L '̂(4.9) ^= "]-+E^...,^=^^m.-J:^8-1-—!:'o 1+R Jo 1+R

Since R,=RL,, and z+H is 0 on (z=0), (z,+H,)/(l+R,) is clearly a continuous
process. Z(, L',, w',1, . . ., w,"" are then continuous processes, which are adapted to
{F„}tiO•

We now have the fundamental result:

THEOREM 4.3. - Under the probability measure S, (z',-L',, w;1, . . ., w ' " ) is a m+l-
dimensional Brownian {F^} ̂ -martingale, and z\ is a reflecting Brownian motion, whose
local time at 0 is L(.

Proof. — Let B, be the process:

(4.10) B^B.+r-1^.
Jo 1+B

Under S, (B', w1, . . .,w'") is a w+1-dimensional Brownian {Fj^o-inartingale.
Clearly:

(4.11) z,+H,= ^ ( l+E)8B / +^( l+R)dL.
Jo Jo
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Using Azema-Yor's formula [49], we know that since R^=R^ and since Z^+H(=O on
(z=0), (Z(+H()/(I+R() is a continuous semi-martingale, whose Ito decomposition is
given by:

(4.12) ^^'^^L,,
l+R, Jo l+R

/ PT( _ \
Under S, (1+E)/(1+R) SB', w',1, . . ., w'" j is a m+1-dimensional Brownians (I:
{ F ^ }^o"martmgale• Obviously:

(4.13) z;-J;^J8B-+L;.

The support of dL is included in (z=0), and (z=0) coincides with (z+H=0). The
support of dU is then included in (z" = 0), and z ' is a ^ 0 process.

r^I"Jo
Since (1 4-E)/(1 +R) 8B' is a Brownian motion, we know by a result of Skorokhod

given in Ikeda-Watanabe [17], p. 120 that under S, z' is a reflecting Brownian motion
whose local time at 0 is I/. The proof is finished. D

Remark 1. - The mapping (w1, . . ..w^z) -> (V1, . . ..w^z') induces a natural
transformation of the corresponding excursion point processes.

Namely let (£p e^ be the point process associated to (w1, . . ., W"1, z) which has been
defined in Definition 3.8. Similarly let (£p e^) be the point process associated to
(w'1, . . ..w'^z'); this process is still defined as in Definition 3.8, using the local time
L'. and its right-continuous inverse A', instead of L. and A.

Both processes (e^, ^) and (e? e^) are adapted to {F^J^o- Moreover the jump times
of these two processes—which take place at the times t where (£p ^) or (£p e\) are
^§—are the same. To see this, it suffices to note that the jumps of (£p ^) coincide
with the image of (z^O) by L. An obvious time change argument shows that this is
also the image of (z' ̂ 0) by I/., which gives the jump times of (e? ^).

We now express (e;, e[) in terms of (e,, e,). For teR^ (co, e, e)eQ x ̂  consider the
excursion time change:

f fP [- 1 +E.- +, (® | A,- | (e, e)) -y \
(4.14, p;-"'{pa».U——^T®——J^}

[for simplicity, we did not write explicitly that p depends on (co, £, e)}.
The reader can easily check that (e^ <) is given by the following formulas:
If (c,, ^)^5, (e;, e,)(s) is stopped at o; where:

^-A,- r i +EA,- ̂  (co [ A,- | (£„ ^)) -|2
CT^ ———————————————— du1 Jo L I+RA,- J
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and for O^s^c^:

,.. ^i+E^^iA,-ife,e,)),
£r(s)= ————^—_———————S£((M),

Jo I+RA,-(O))
^(p;)+H^-^(®|A,-|(e^))

(4.15)
^;(5)=

l+R^-(co)

The transformation (©, E(, ^) ^ (e;, ^) is clearly ^'(g^-measurable. This transforma-
tion is closely connected with the transformation which we used in [8] for finite-
dimensional jump processes.

A^ is given by:

(4.16) A^im^A^O;!^^},

Clearly:

r^ r I+E ~i2
(4.17) A;= -r- \ ds.

Jo L 1 + R j

Since under S, z\ is a reflecting Brownian motion, we know that A^< + oo S a. s. Since
l+E^l/2, and since R is bounded, we find that S a.s., A^<+oo. From
Proposition 1.4, we find that:

(4.18) ——ds—— =NA.
d(P(Sy) ^ '

Because of (4.18), the result stated in Theorem 3.25 is still true, i. e., under S, (e^, e,) is
a point process whose Levy measure dn[^ (e, e) is given by:

^t-^t- / K \
(4.19) dn[^ (e, e) = [ exp { - (At At ( K ) (co | A,- [ (e, e)) 5e, (u)

L I Jo \ i+b / A ( - + M
1 F^-^- / K \2 _ 1 "I

~d TT,J ^|A,-|(e,.))^ dn(e,.).
z Jo \ l+C' / A(-+« J J

JO \ 1-t-^ /A(-+U

FA<-A, - / K y
— (G) A(-Jo U+EA,-^ 1 (

An equivalent formulation of Theorem 4. 3 is that under dn[^ (e, e\ the law of (e', e ' )
is exactly n. This result can be better formulated by assuming that R is constant (i. e.
not random), and that K, E only depend on (e, e) (i. e. do not depend on © before A,-)
so that co, t can be considered as parameters.

(b) The basic equality.

XQ e R'1 is now fixed.
On (Q, {Fj^o, P®F), we consider the stochastic differential equation:

«.») ^(^(«.^)^X,(,,^).J;^0^,

x(0)=Xo.
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r'Here d (1+E)/(1+R) 8w1 denotes the Stratonovitch differential of the Ito integral
Jo

| ( l+E)/( l+R)8w 1 .
Jo

Set:

t A ^ o f f7 1+E i^-^^ K ^o(4.21) M,=exp^ — — b [ x,——— -—— 8B
Uo\ 1+R V l + R / l + B /

1 p/ l + E / - z + H \ K V 1
— - ——— b x, ——— — —— } ds > .

2 j o \ l + R \ 1+R/ l + E / J

THEOREM 4.4. — Let Xs be the process (p,(®,Xo). Then for any t>Q, any
/eC^ROOR^), the following equality holds:

(4.22) E^M,^ J^^jy^^^j=E^'[M^/(A, x^)].

Proof. — As in section 2, it is essential that/has compact support. Since l-t-E^l/2

QA, _ \
and R is bounded, there is T^O such that if A,^T, / ((1+E)/(1+R))2 ds, x^ )

) ( /
and / (A^, x^) are 0.

Set x^=x^. It is clear that:

,4 ^ f dx' = Xo (x\ z') A + X, (x', z'). dw'1 + D (xQ rfl/,
I x /(0)=xo.

From (4.17), we know that TA;=A(, and so:

(4.24) XA;=^,

Moreover, if B^ is defined by (4.10), we have:

( A ^ o XT f (\^- ^ + H \ l+E ._, 1 f T , / - z + H \ l+E ~|2 1(4.25) M,=N,exp^ b{ x,——— ——SB'-- \ \ b[ x ,——— ——— ds >
Uo \ 1 + R / l + R 2 j o L V 1 + R / 1 + R J J

(4.22) is then an obvious consequence of (4.23)-(4. 25) and of Theorem 4.3. D

(c) An integration by parts formula on the reflecting Brownian motion.

We will now use (4.22) in the same way we used (2.14) in the proof of Theorem 2. 2,
i. e. we will differentiate (4. 22).
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We have:

THEOREM 4 . 5 . — Take XQ e R< Let x^ be the process (p, (co, Xo), anri to U, be the
process mth values in T^ (R^):

(4.26) U,= F (p?-1 f2 (E-R). Xo (x,,, z,,)+(H-R z) axo (^, z,)}dv
r5 /

d^'lJo \ 8z )

+ S^r^i^z^d f(pr'X.^z^d (E-R),8w,
Jo Jc

8X+ (pr^-R^——^z,).^.
Jo 3z

Then for any r>0, and anyfeC^ (R x R^), the following equality holds:

(4.27) E^' I" M^ dj(^ x^) f^ 2 (E-R) ds 1

^-E^' [M^ < ̂ /(A, x^), < U^ > ]

+EP0P' [ M^/(A, x^) [^ (-K+(E-R) ^ (^ z,)
L Jo

+< &x (^ ̂  <P? Us >+(H-R z) fc, (x, zj) (5B,-fc (x, zj ds) 1=0.

Proof. — First observe that (4.27) makes sense. In fact / has compact support, so
that T exists such that if A,^T, /(A(, x^)=Q. Now IA,^T M^ is in a11 the

Lp(0, P0F). Moreover sup z, is in all the Lp(fl, POP). Using Theorem 1.1 (e)
O^s^T

it is clear that IA^T ^P I <P? ̂  I is in a11 the Lp(^ P®^)-
O^s^A.

This shows that:

(4.28) IA^T [ A

Jo

is also in all the L,(iS, P0P').

(4.28) IA^T f A t ( -K+(E-R)fc+<^, (p? U,>+(H-Rz)fcJ(5B-fcd5),
Jo

For f e R ^ , ! ^ ! , consider the stochastic differential equation:

. , / 1 + ; E \ 2 / , z + ^ H \ .dx^ ——— Xo x1, ———— }ds
\ 1 + ; R / ^ 1 + ? R ;

(4.29) -.(-•t^)-!^)—^---
x'(0)=xo.
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Set:

i A i^ i^i f f ' / i + ' K L / i z + ^ H \ ;K \ .(4.30) M = e x p < ———b{ x1,——— -——— 5B
U o \ l - l - ? R \ 1 + < R / 1+/E;

1 f ' / 1 + ? E , / , z + / H \ J K \2

— - I ——— b I x, ——— — ——— | ds
2 j o \ l + ? R \ 1 + / R / 1+;E/

From Theorem 4.4, we know that:

(4.31) E^' [ M^f( P ( ̂ | V ds, <} 1 =EP0P' [M^/(A, ̂ )],

so that the ;. h. s. of (4. 31) does not depend on ;. The differential of (4. 31) at ?=0 is
then 0.

Using the results of Bismut [5], Kunita [25], we know that it is possible to define
x1. (co), M1. (co), so that a. s., / -> (x1. (©), M1. (©)) is a C°° mapping from [0,1[ into
C([0, T]; R^'^1), and moreover the standard rules of variations of parameters also apply
to stochastic differential equations. An easy computation shows that:

[ 9x1 18x1 , . _ _
-,t\ =<P*Up
ol Ai=o77' =cp*L ^ J^=o

(4.32) j r ^ t =Mj'(-K-KE-R)^<^<p?U,>
f L ^ -h=o Jo

+(H-Rz)^)(8B-fc(^,z,)ds).

By reasoning as in [7], Theorem 2.1 and [10], Theorem 2.11, still using Theorem 1.1 (e)
and the fact that/has compact support, it can be easily proved that differentiation of
the 1. h. s. of (4. 31) under the expectation sign is possible. The Theorem follows. D

Remark 2. - By Proposition 1.4, in (4.27), E^F' M^ [. . . ] can be replaced by

E^o-^t. . .]. Also recall that under Q^o)'^— b (Xy z^) ds is a Brownian {F(}
Jo

^o"™1"1111^ -̂ Using the results of section 3, the reader will check that formula
(4.27) is strikingly identical to the result given in Theorem 2.5 in [8]. Namely, for
(x.e.^eR^x^ set:

f f0 I f 0 1(4. 33) m1 (x, e, 6?)=exp ^ b (cp, (s, e, x), e) 6e- _ b2 (cp, (e, e, x), e) ds ^
I Jo z Jo J

It suffices to use the fact that at least when b has compact support, under Q(^,O)? ^e
Levy measure of the point process (£p e^) is m1 (x^-, £, e) dn (e, e), where
^=(p^(®, XQ\ The comparison with [8] is then easy.

Also observe that the condition E^ —1/2 can be dropped (it suffices to replace H by
K H, with ^ small enough).
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Also (4.27) extends to semi-martingales which are the difference of two ^0 semi-
martingales having the same properties as H. If I-T is a non necessarily ^0 semi-
martingale which has all the other properties of H, and is ^Cz,, we may write:

(4.34) H^-^-f-^-H;^.
z,+l \ z ,+ l /

For C large enough, H^C zj(z^ 1) and so (4.27) applies to H'.

Remark 3. — Let m be an element of C^° (R) which is such that m^a>0. If
g e C,°° (R), Theorem 4.5 shows that:

(4.35) E^' [ g ' ( F m (z) ds } ? (2 (E - R) m (z) + (H - R z) m' (z)) ds 1

-E-[,(J;'»(^,)J;K8B]-0.

It is most instructive to give a direct proof of (4.35) using the usual stochastic
calculus. By eventually replacing H( by h(t) H( [where h e Q0 (R) and is ^O], we will
assume that for t^T, H, K, R, E are 0.

We will then prove (4. 35) for ^(a):^"0 (g does not have compact support but this is
irrelevant). Replacing m by pm(P>0), (4.35) will then be proved for g(a)=e~^a and
readily extends to g e Q° (R).

Let u be the only decreasing ^0 C°° function which is the solution of the Sturm-
Liouville problem:

(4.36) u--mu=0, M(O)=I .

Let Gf be the {P^^Q-ma.rtmgs^G:

(4. 37) G^u (z,) exp [ - [t m (z) ds-u' (0) L, I.
I Jo J

It is easy to see that G^ is a {F^J^o-111^111^16 and moreover:

(4.38) dG=GU-(z)6B,
u(z)

Using (4. 38) and Ito's calculus, we find that:

E-[G,J;'K5B]-E-[G,J;-K^].
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Now using the fact that H is 0 on (z==0), and Ito-Tanaka and Azema-Yor's formulas,
we have:

(
/ \ (*t f

(4. 39) (H,-R, z,) u- ) (z,)= K u- (z) ds
M / Jo U

+ p r 1 (H-R z) f ^ y (Z)+(E-R) (u- y (z) 1 ds
Jo L 2 \ M / \ M / J

+ fT (E-R) u/- (z)+(H-R z) ( u- V (z) 1 5B.
Jo L u \ u ) J

Another application of Ito's calculus shows that:

(4.40) E^' f G^ [At f (E-R) u- (z)+(H-R z) ( u- \ (z) 1 8B 1L J o L u V M / J J

=E— r G^ p1 r (E-R) f ̂  y (Z)+(H-R z) f ̂  y (z) f ̂ ) (z) 1 ^ 1 .L J o L \ M / \ u ) \ u ) J J
Using (4. 36)-(4.40) and the fact that H^-RA( ^A(=°» we find easily that:

(4.41) E^TG^ | K 8 B " |
L Jo J

= -E^^ [ GA, f^ [2 (E-R) m (z)+(H-R z) m' (z)] ds 1,
L Jo J

which is exactly (4. 35) with g(a)=e~a.
In the case where H^=h<Z() (with h e C^ (R), ^(0)=0), (4. 35) writes:

(4.42) E11' LY p m (z) ̂  ") (At [2 (h- (z) - h- (0)) m (z)

+(/i (z)-^ (0) z) m- (z)] ds 1 -E^f ^ f [At m (z) d5 ) [At ! ̂ / (z) 8B 1 =0.
J L \ Jo / Jo z J

(4.42) is also a consequence of Ray-Knighfs theorem, which states that if L^a) (a^O)
is the standard local time of z. at a at time Ap then as a function of a, V (a) is half of a
Bes^O) process starting from 2t at time 0 (see Ito-McKean [18], p. 65,
Jeulin-Yor [22]). Namely, we have:

fA, /-A, ^ p,
(4.43) /f(z)8B= /r(z)rfz-- ^(z)rf5

Jo Jo 2 Jo
r^t ^+oo

h' (0) dL = - ^/// (a) V (a) da - h" (0) t,
Jo Jo
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so that (4.42) writes:

(4.44) E1" I g' ( 2 ] " m (a) V (a) da\ [+w [4 (h' (a)-h' (0)) m (a)

+ 2 (/i (a) - h' (0) a) w' (a)] V (o) da 1

^^r^^^r*^-^)]-0-
Let P, be an auxiliary Brownian motion, and (Sl", P") be its probability space. Using a

result of Yamada (Ikeda-Watanabe [17], p. 168), we know that in law, L*(a) is the
unique solution of:

(4.45) dV (a) = ̂ /2 V (a) 5p (a), L' (0) = t.

Let k e C," (R) be such that k (0)=0, | k \ ̂  1/2. For l^ 1, we have:

d (1 + lk (a)) V (a) = (1 + Ik (a)) ^/2 L' (a) §P (a) + lk' (a) V (a) da,
(l+/fe(0))L'(0)=t.

(4.46)

Let 0' be the Girsanov exponential:

(4.47) 0-expr-r00^^- /^^^(a^ir'r^^-TL^a)^
L Jo l+/k(a)V 2 4 Jo Ll+^(a)J
r f^ lk'(a) IL^O) 1 f^rj'^Ll2!^ w Ii — l ————— /———op ( a ) — — I ————— L (a) da >
L Jo l+/k(a)V 2 4 Jo il+lk(a)] J

r-r ^(a) _3/JfcKg)_yiL»(q)dal
Jo L 2(l+/fe(a)) 4 V l+/fe(a)/ J J

=exp{^+ rr ^^--^^^-yiL^da
I 2 Jo L 2(l+«c(a)) 4 V l+/fe(a) 1 1 ^

and let y^ be the time change:

(4.48) Y,=inf{ySO; r ( l+/k (&)) db>a}.
I Jo

r^O; r(l+/k(&))flfc>al,
Jo J

Using (4.45)-(4.47), we see that under the probability measure 0' dP", the process
(1 + lk (y,)) L* (Y,) has the same law as U (a) under P".

It is then clear that:

(4.49) E1"' ] 0' g [ 2 [ m ( [ " (1 +lk (b)) db \ (1 +lk (a))2 V (a) da \ 1

r / r'1'00 \ ~i
=E1'" g [ 2 \ m(d)L'(a)da .

L \ Jo / J
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By differentiating (4.49) at 1=0, we find:

(4. 50) ff" |~ g' ( 2 f^ m (a) ̂  (a) da \ [+ao f 4 k (a) m (a)
L \ Jo / Jo \

+2 [fl fe (fc) db m' (a) ^ V (a) rfa 1
Jo 7 J

r-p-r /.r''00 ^ T t ^ . v r''00 fe'ooL^a), ^(O^M .+E K2.!. "w1-'(">•")(]„ —r—'^-r-JJ-0-
If k (a) = ̂ / (a) - V (0), since /i (0) = 0, we find that (4. 50) is exactly (4.44).
(4.44) can also be derived using Ito's calculus on I/(a). We will prove (4.44) with

g(b)=e~b. If M is given by (4.36), then it immediately follows from (4.45) that Q,
given by:

(4. 51) Q,=exp { -2 F m (b) V (b) db+ u(a) V (a) \,
I Jo u(a) J

is a martingale on (Q", F') (this is the basis of Jeulin-Yor [22]) and moreover:

(4.52) dQ^Q^^SL^a).
u(a)

Now:

(4 53) r00 ^/ (^ ̂  (^ da ^ ^// (0) t ^ _ r00 ^(ajaL^a)
Jo 2 2 Jo 2 •

Using Ito's stochastic calculus and (4. 52), we find:

(4. 54) -E'- [ Q. ̂ " >'('•)a-•M ] - -E" [ Q. ̂  „• (.) ̂  (.) L. («) .« ].

Now:

(4. 55) - r' V (a) ̂  I/ (a) da= f^ (W (a)-fc' (0)) f M- - ul \ V (a) da
Jo ^ Jo \ M u2 /

+ r' (h/(a)-h-(P))U^^Lt(a).
Jo M

Using (4. 52) again we find from (4. 54) and (4. 55) that:

(4.56) -E^r^)81^)]
L Jo 2 J
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=BP" f Qoo f^ W (a)-y (0)) ( ^ + ̂  ) (a) I/ (a) ̂  "|
L Jo • \ u u2 / J

= Ep" Qoo ( ( 4 (^ (a) - A' (0)) m (a) I/ (a) da

f + °° / i/ \ / \ ~ 1
(^(^-^(O)) - } V(a)da .

Jo \ M / /J

Using the fact that A(0)=0, we have:

(4. 57) -E- f Qoo [+ w (^ (a)-^ (0)) ( u- \ V (a) da ~]
L Jo \ u ) J

=BP•• Q» f" (h (a)-h' (0) a) ( ( u- Y+2 ( u- \ ( u- \ (a) ) V (a) da
«/0 \ \ U / \ M / \ U ) )

r+ao

= Ep Qao 2 (h (a) - h' (0) a) m' (a) V (a) da.
Jo

From (4. 51)-(4. 57), (4.44) holds with g(b)=e-b.

(d) Truncated integration by parts in the variable A.

Recall that we want to obtain a formula of the type:

(4. 58) E^' [M^ d,/(A, x^E^' [^(A, x^) D,1].

From (4.27), it is clear that we must try to apply the calculus of variations to
/r^^/(Ap x^) 2 (E-R) ds instead of applying it only to M^/(A(, x^).

I Jo
In this section we will-somewhat arbitrarily-select one special H(, which will be z,2

(which is unbounded, but this will be irrelevant).
Let T be an element of C^ (R), with values in [0,1], such that ^(u)= 1 if \u\< 1 and

T(u)=0if\u\^2. ' 1- 9

For N^1, the function 7^ ls defined by:

XN(M)=I-T(NM).

For fe, /eN, the functions u -> ̂  ̂  (i^/dt^] u~1 can be extended to M = O by setting:

[^].-.o „..,.

These functions are in C^ (R).
We have the analogue of Theorem 2.3.
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THEOREM 4.6. - Take XoeR< Let x, be the process (p,(co,Xo) and let V, be the
process mth values in T^ (R^):

(4. 59) V,= p cp?-1 f 4 z, Xo (x, z,)+z,2 axo (xo, z,) ) dv
Jo \ 8z )

+ [s (p?-1 f 2 z, X, (x, z,)+z,2 axl (x, z,) ) . rfw1

Jo \ 8z )
. . . . •v ^i^v^v^^v ~~~ \^v^v}
Jo \ 8z

Then for any N^ 1, (, r'^0, t^r, and any/e C^ (R x R^), the following equality holds:

fA.

(4. 60) 4 E '̂ I" XN ( f^ ^ ds} M^ dj (A, x^) 1 + E1101"

<rXN( | z ^ s l
,0————/- MA. ^ < d,/(A,, x^), ̂  VA,,, >+/(A,, XA,)
'" , ^zds

x ( F'" ( -1+ 2 zfc (x,, z,) + z,2 fc, (x,, z,) + < b, (x^ z,), (p? V,»

(5B,-fc (x,, z,) ds)+ ( f^ <p,* b, (x^ z,) (5B-fc (x^ z,) ds), VA,,, \ ) I
\ JA(" / / J

aA,,, \ / /•A,., \ \

N zds XN zds]\
3 / _ Uo / I I"'" 5 ^2

XN| z < i s } XN| z^
+EP®P' | MA /(A,, x^) | —XJO————/ - V J O

| A( J \ P A^ | ^ . / /• AA(» / FA("
5z2^ =0.

f^" . / f^" .V I Jozds I zds I /
Jo \ Jo / /

Proo/. - Observe that for any T^O, sup z, is in all the Lp(Q, P®F). Moreover
O^s^T

fA(
since 7^ or XN appear everywhere, the fact that z ds is in the denominator of the

Jo
various expressions does not raise any difficulty. (4.60) makes sense for the same
reason as (4.27). Also recall that as pointed out in section 1, q>? b^ (x^, z,) is the
element of T^ (R^ given by ff^J8x(w, Xo)b^(x^z^) (- is the sign for transposition).

We now prove (4. 60). We first take H as in (a) with R =0. Using the notations in
the proof of Theorem 4.5, we claim that:

xj f A t " ( l + ^ E ) 2 ( z + ; H ) ^ )
(4.61) E^ M^—^^——————————————^ rO^E)2^

) (" (1+^)^4-^)^ V J O
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r / r^" \ nXN N zds \
^ \Jo / f fA v 1'"At ^ J V^p x^)

z ds
— Jo

(4.61) is an obvious consequence of Theorems 4. 3 and 4.4. If we differentiate (4.61)
at 1=0 the way we did in the proof of Theorem 4.5, we get:

(4.62) E^' <rX N ( z d s r^
, -————- MA, d, f (A,, x^) 2 Eds

{ " ' . d s Jo
L— Jo , -

aA,»

X, ^ ^»
M», ( < d, / (A. x,i,), <?!, U», > +/ (A. x^)+EP0P' L r

x [^(-K^+E^^z,)
Jo

+H, fc, (x,, z,)+ < ̂  (x,, z,), (p* U, > (SB,-fc (x,, z,) ds) \

r /xNfr'"^.
+EP8P• | M^/(A,,^)( —v^——

z^s(J:""(r^) (•A,,,
(2Ez+H)ds | =0.

For feeN, we apply (4.62) to H,=H^ where H^ is given by:

^ l2^^) 2
S I , I SAAf

Clearly:

p A A ^ / / ^ \ 2 / Z \ 1 , , / ^ \ 2 \

^•^ "^Jo ^(J^^j^^^fc)2)k2

/•SAA,.-

Z2 dM

nz+iT'fnz^sB.r'"(^(2-}Jo \ \ fc /k k \ k } )
+
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so that the corresponding K^, E^ are given by:

(4.64) ^(D-KD-.Mt)^-
^-(-(D-r-d)2.2)--

We now make k -^ + oo in (4. 62) calculated with H\ K\ E\ Clearly as k -> +00,

(4.65) H? -. z^,, K^ -. l ,̂,, E^ -. 21 ,̂ z.

and moreover H^, K^, E^ may be uniformly bounded by C(l+z,2). Using
Theorem 1.1 (<?), the fact that sup z, is in all the L (Q, P0P'), and since /has compact

O^s^T

support, we can take the obvious limit of (4.62) calculated with H^K^^ E1' and obtain
(4.60). D

Remark 4. - Since <z,w l>=0, the integrals zdw1 and ) z 8 w 1 are equal, so that
Jo Jo

the difficulty we had in writting U, disappears in V,.

(e) Integration by parts in the variable A.

We will now show that ̂  may be replaced by 1 in (4. 60).
We have the easy result.

PROPOSITION 4 . 7 . — For any r>0, the random variable:

(4.66) ——L_
r\

z d s
Jo

is in all the Lp(Q, P®PQ.

Proof. — Since t z . / t 2 has the same law as z., z ds has the same law as t3 \ 1 z ds
Jo Jo

f^. Since under F, z ds is a stationary independent increment process, it is clear that
Jo

fA,
z ds is a one-sided stable process with exponent 1/3. Now:

Jo

(4.67, ̂ '^)"]-^y-y'-<-^

'r^r^'""^00-
The proof is finished. Q
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We now claim:

THEOREM 4.8. — Formula (4.60) still holds when the function %^ is replaced by the
constant function 1.

Proof. — Since T'(M)=O if M^ 2, we have:

^XN (U)

du
(4.68) = N | T ' ( N M ) | ^ c .

We now make N -^ -h oo in (4.60). Since
r^j . !

ds>0 a. s., it is clear that:

(4.69) -(f z ds } -̂  1 a. s.,

^fr2*)du Uo /
0 a.s.

Using again Theorem 1.1 (e), the fact that / has compact support. Proposition 4. 7 and
the uniform bound (4.68), it is easy to take the limit of (4.60) by using Lebesgue's
theorem. Theorem 4.8 is proved. D

(/) Regularity of the boundary semi-group: the localizable case.

We now give the result of integration by parts of any order on the variable A when
the assumptions of section 2 (c) are verified.

THEOREM 4.9. ~ Assume that (xo, Zo)6 Rd x R + and t/>o are such that:

(a) P0P^, CA,, is invertible.
(b) For any T^O, p^ 1, 1̂  I c^ I is in L?^ p®p^o)•
Then for any neN, any t^t\ there exists a random variable D^ such that:
(a) For any T>0, and any p^ 1, 1^^ D? is in Lp(Q, P®P^o).
(b) For anyfe C^ (R x R4), ifx^ is the process (p,(co, XQ\ then:

(4. 70) E^o ^ M^ |̂ (A, ̂ ) ] =EP0p.o [/(A, ̂ ) D?].

Proo/. — We first consider the case where ZQ=O. We prove (4.70) with n=l . By
Theorem 4.8, we know that for 0<t//^t, (4.60) holds with /N=1- (4.60) can be
rewritten:

(4. 71) 4 E^' [M^ dj(^ x^+E^ [M^/(A, x^) J1]

MA(+EP0P' <d,/(A,x^),<V^> =0.

z ds
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Now we claim that the calculus of variations of section 2 can be restarted on the third
term of the ;. h. s. of (4. 71) so as to equal it to:

(4-72) E^M^A^J2]

and so (4. 70) will be proved for n= 1. Indeed, recall that in section 2, only (w1. . . w"1)
r f^" ~|-i

is made to vary, while z is unchanged. Since z ds \ is in all the L (Q, P®P'),

and since (p^ V^,, is a term of the sort we already met in section 2, there is no major
difficulty to use the technique of section 2-as long as l^,^ [ C^1 | is in all the
Lp (Q, P®P) - and obtain (4.72).

We now prove (4. 70) for ZQ==O and for a general n.
Take g e C^ (R x R^) and consider formula (4.60) with:

XN== ][' r= ^' /(fl9 x)= 1^(a9 x))

(4.60) writes:

(4. 73) 4 E^' [ M^ ̂  (A, x^) 1 +EP0P' [ M^ ̂ f (A, x^) J11

+Ere'[M^^I<A-.>•K•)]-o•
We now reapply the step by step integration by parts procedure described in the proof
of Theorem 2.5. Namely we will do on the last two terms of the f.h.s. of (4.73) a
variation of z'on the time interval A^^s^A^.

Observe that:

(4.74)

/ r^/n \-i / r^
^ =JA^+ z d s ) ( (p? &, (x, z,) (8B,-fc (̂  z,) ̂ ), V^

\ Jo / \ JA(/^

i / r^/" \~ 1
K^N zd5j (p^V^.

where J'SV are {F^^o-optional processes. J^, V^ are then left invariant by this
new variation of z. It is easily checked that the previous procedure of integration
by parts can be repeatedly applied on the remaining time intervals
]A.2tfn, AS^/J, . . ., ]A(^_ i^, AJ, so that we make all the differentials of g in the variable A
disappear. We finally arrive at:

(4.75) «E-[M^(A,^]+^E-[M^(A,^6-]-0

and moreover the variables I^T im ̂  in all the Lp(Q, POOP).
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Now we claim that using the techniques of section 2, we have:

(4. 76) E- [ MA, ̂  (A,, XA.) ̂  ] =E- [, (A., ̂ ) ̂

where TT has the required integrability properties. Indeed as clearly shown by (4. 60),
the random variables y which are produced by the calculus of variations in z can be
submitted to the calculus of variations in (w\ . . ., w"-). Since l^gr I C;,.1 | is in all the
Lp(0, POP"), it is not difficult to obtain (4. 76).

When ZQ^O, the proof is almost identical. In fact, formula (4.60) remains true if

the integrals are replaced by . The way to see this is to note that Ao is the hitting
•'0 JA()

time of 0 by z. (4. 60) can then be written in conditional form (with Xy replaced by
^Ao) ^d then interpreted so as to get the new formula. A direct procedure is also
possible, n

Remark 5. - Under the previous assumptions, to integrate by parts in the variable z,
we could as well use a technique similar to what is done in Theorem 2.4 instead of
using a step by step procedure. In this case the step by step procedure is useful when
the vector fields Xo(x,z). . .X^(x,z) are not C°° in the variable z [as in (0.6)].

We have the fundamental.

THEOREM 4.10. - Under the assumptions of Theorem 4.9, for any t^t', the law under
Q(XO,ZO) °f (̂  -"A,) is given by p, (a, y) da dy, where p^ (a, y) e C" (R x R1').

Proof. - Let h(a,y) 6 Q° (R x R"). For /eC^RxR") and for a given
multi-index m, we have classicaly:

(4.77) f^)^ S (-l^f"1} 8M~m' \f8m'h^
\8^} lA,/ / \m')8xm-m•\_j~8^ [

Using (2.27) in Theorem 2.4 and (4. 77) we find that sincef^'h/Sx^eC^iR x R"):

(4.78) ^{^(^h)(A.,x^]^ sup \f(a,x)\.
L \ox / J (a.x^xR''

Applying (4.78) to the function:

(4.79) ./'(a.x) '̂"'-^^

we find that if p.(da,dy) is the law of (A,, x^) under the measure M^P®!^), the
Fourier transform ̂  (a, ?) of h (a, y) p, (da, dy) is such that:

(4.80) |p" 1 1 ̂ (o,p) | ^Q-.

Similarly, by using (4. 70) we find that for any n eN:

(4.81) \^\\^^^W.
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Using (4. 80), (4.81), we find that for any neN:

(4. 82) [| a p+l p |2 ]"/2 | ̂  (a, P) | ^C .̂

Using (4.82), we see that h(a,y)p,(da,dy) is in C^ (RxR4). Since this is true for
any h e C,°° (R x R^), the result follows. D

(g) Regularity of the boundary semi-group: the non localizable case.

We now have the result which corresponds to Theorem 2. 5.

THEOREM 4.11. — If the assumptions in Theorem 2.5 are verified, for every
(XQ, Zo)61^ x R^ any neN, and any t^nt\ on (0, P®P^), there exists a random variable
D^ such that:

(a) For any T^O, IA^T D? is P®P^ integrable.
(b) For anyfe C^ (R x R4), ifx, is the process (p,((i), Xo):

(4. 83) E^o I" M^ J^(A, ̂ ) 1 =Ep^o [/(A, ̂ ) D?].

Proo/ — The proof is identical to the proof of Theorem 4.9 except that the step by
step integration procedure of Theorem 2.5 will be used to get rid of the differentials
8mg/8xm in (4.76). This is no problem since IA^T ^w is in all the Lp(Q, P(g)P')
(l^/?<+oo). D

We now claim:

THEOREM 4.12. — Under the assumptions of Theorem 4.11, for any fceN, and any
t^(k+d+2)t\ the la\v under Q(^.^) of (A,, x^) is given by p^(a,y)dady, where
p,(a,y)eCk(RxRd). D

Proof. — Proceeding as in the proof of Theorem 4.10 and using the same notations,
we have for (^(fe+d+2) f:

(4. 84) [| oi l^l P pf^2)/2 | ̂  (a, P) | ^C .̂

Since (a, x)eRd+l, a trivial exercise in Fourier transform shows that h(a,y)pf(da, dy)e
C^RxR^). D

Remark 6. — As pointed out in section 1 (d), pf(a,y)dady is not necessarily a probabi-
lity measure, i. e. its integral is in general ^ 1.

(h) Existence of densities for the boundary semi-group.

We now give the final result in this section, in the manner of Malliavin [29].

THEOREM 4.13. - //(xo.Zo^R^xR^ and t'>0 are such that P®P^ a.s., C ,̂ is
invertible, then for any t^t\ the law under Q(^,^) o/(A,, x^) is given by p,(a,y)dady.
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Proof. — Using (2.25), we find that if h is taken as in the proof of Theorem 4.10,
then for any fe C^ (R x R^):

(4.85) EP0p-o^pN(C%)MA/^/)(A,,^)1I^Cfcsup|/(a,x)|. \^d.

Similarly, by introducing the mollifier PN(C^°,) in formula (4.60) with ^=1, its is
not hard to get:

(4. 86) E^o I" PN (C%) MA/ ̂  ) (A,, x^) 11^ sup | / (a, x) |

[of course a new application of a formula similar to (2.25) is needed to get rid of 8f/8x
in (4.60)].

Now using a result of harmonic analysis [29], [37], (4.85), (4.86) show that the law
of (Ap x^) under p^ (C%) M^ h (A(, XA() dP(g)P' has a density with respect to the
Lebesgue measure. Since C ,̂ is a. s. invertible, as N -> + oo, p^ (C^,) -+ 1 a. s. The
Theorem follows. D

5. The analysis of boundary semi-groups

In this section, we describe conditions under which the boundary semi-group is given
by absolutely continuous measures, and we study the smoothness of the corresponding
densities.

As pointed out in Theorem 4.13, a.s. invertibility of C^ implies the existence of
densities. In (a), we give conditions under which C^ is a. s. invertible. Surprisingly
enough, we show that such a property may hold even if the support of the Levy measure
of the boundary process does not span R^, essentially because of the possible interaction
between D and ^f. To prove the a. s. invertibility of C^° under non standard conditions,
we use a result which we proved in [51] on the zeros of certain semi-martingales. In (b)
estimates of Malliavin [30], Ikeda-Watanabe [17], Kusuoka-Stroock ([26]-[38]) on stan-
dard hypoelliptic diffusions are recalled. In (c) conditions are given under which for
every (>0, T^O, IA^T 11^]"11 ^ in all the 1-̂ (0, POP"), so that by Theorem 4.9,
the boundary semi-group is smooth. This is true even for diffusions such that ^ is
very degenerate at the boundary, i.e. does not verify Hormander's conditions [15] at the
boundary. In (d) the localization of such conditions is studied, so that they only need
to be verified at the terminal—i. e. not the initial—value of the boundary process. In (/)
the limit case of slowly regularizing boundary semi-groups is studied, which corresponds
to a critical degeneracy of ^ on the boundary.

(a) Invertibility of Q°.

We first give conditions under which for r">0, Cf° is P®P a.s. invertible. As we
have seen in Theorem 4.13, this will imply that the boundary semi-group has a density
relative to the Lebesgue measure.
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We will concentrate on conditions which exhibit in the most striking way the possible
interaction between the operators oSf and 2 defined in (1. 39)-(1.40).

Recall that if A (x, z) is any vector field with values in R^, then [8/9z, A] is also a
vector field with values in R<

If E=(6?,),gi is a family of vector fields on R^, if yeR^^ E(y) is the family of
vectors of R^1 given by E (y) = (e, (y)\^

If E=(^.),gi, F=(/,)^j are two family of vector fields, [E,F] denotes the family of
vector fields:

[E,F]=([^^])(,^,J.

DEFINITION 5.1.- For ?eN, E(, F, are the families of vector fields in R^ defined by:

/ E,=(X,,X,, . . . ,X,) ; F ,={0} ,

(5.1) ^ ,= r^Xo ,X , , . . . ,X , , ^VE,1 ;

( F^=[D,EJU[(D,X,, . . . ,XJ,FJ.

We have then the following result, which was first proved in [50] using a different
technique.

+00

THEOREM 5.2. - Ifxo is such that U (E,UF,)(xo, 0) spans R^, then P®P a.s., for
i

any t>0, C^° is invertible.

Proof. - Let U, be the vector space in T^ (R^) spanned by ((p,*~1 X,)(xo)(l ̂ i^m)
and V, the vector space spanned by U (U^). We define V^ by:

s^t

v^^nv,
s>t

By the zero-one law, we know that P®P a. s., VQ' is a fixed space, not depending
on co. Let us assume that Vo' ̂ T^ (R^). If S is the { Fj^o stopping time:

(5.2) S==inf{r>0;V^Vo-},

then a. s. S is >0. Let/be a non-zero element in T^ (R^) orthogonal to V^. Then:

(5.3) ^((pr'X.Kxo))^ for s^S.

Now using equation (1.12) (see [5]), we know that:

(5.4) (p^X-X^ ^(p^l[Xo,X,]^+ f^ -^rD+^X. I .dL
Jo Jo L 8z J

+ r (p?-1 [x,, x j . ̂ + r (p?-1 r 1 x, i. d^
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or equivalently:

r1 X,=X..+ r (pr'f [Xo, X,]+ J [X,, [X,, X,]](5.5) (p?-l X, = X. + (p?-l [Xo, X,] + , [X,, [X,, X,]]
Jo \ A

^[^[^D-M-^]-"
+ ^(p^l[x,,xJ.5^+ rcpr1]"^, X.I.SB.

Now (5.5) gives the Ito-Meyer decomposition of the {F,}^o semi-martingale
</, (p?~1 X; >, which is 0 for s^S. By canceling the martingale terms, we find that
for5<S:

(5.6)
P </, q>r1 PC,, XJ > 8^=0; l^f,^m,
Jo

/ rs
0

fY^<P?- l ^^X.1 \8B=0.
Jo\ L^z J/

An elementary reasoning on the quadratic variation of the local martingales (5.6) and
the continuity of the processes (pj*- x |X,., Xj, (p?~1 [8/8z, X,] (see [7], Theorem 5.2)
show that P0P' a. s., for s^S:

(5.7)
</, (pF1 P,, X..] >=0; l^i,7^'»,

(/,,.-[^.x.])-..

Reapplying (5. 5) on (5.7), we find that for s^S:

( (/.(pr^p^x.]])^,
(5.8) ;M^^]])-0-
We now cancel the bounded variation process in the Meyer decomposition of
< /, (p,* -1 Xi > (s ̂  S), i. e. using (5. 7)-(5. 8), we get for s ̂  S:

(5.9) 4Jo
/, (pr'tXo.x..]^ ) + < / ,-r n.*-l [D,X,]dL )=0.

Since P®? a. s., the support of the measure dL is exactly the closed set (2^=0) which is
negligible for the Lebesgue measure dt ([18], p. 44), from (5.9) we deduce that for s^S:

(5.10)
/, (pr^X,]^} =0,

Jo /

(/, f^r^x^L^o.
\ \ Jo /
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and so using the continuity of (p?-1 [Xo, Xj, <p;»-1 [D, XJ and the support property of
dL, we get from (5.10):

(5H) f </,(prlPo,X,]>=0 for s^S,
[ < /, (pF1 P, Xj >=0 on (z,=0) 0 [0, S[.

By iteration of the previous procedure on (5.7) and on the first line in (5.11) we find
that for any ?eN, if Yi, . . .Y, are taken among (Xo,X^ . . .,X^, 8/8z), then P®F
a.s., for l^i'^m:

( 5 1 2 ) <? ^tPr'r^rY,^, ...,[Yi,X,]]...]>=(), s^S,
I < /, (PF1 [D, [Y,_i, . . ., [Yi, Xj] . . . ] > =0 on (z,=0) 0 [0, S[,

so that in particular at s=0, we get:

(5 13) [ </' [Y" [Y'-1' • • •' ̂ r^ • • -K^ 0) > =0, l^i^m,
1 </,[D,[Y,_i[, ...,[Y,X.]] ...](xo,0)>=0, l^i^m

and so/is orthogonal to ( ( U E, j (J \ D, U E, 1 \ (x^, 0).

We will now exploit the second line of (5.11). Let H(x) be a C°° vector field defined
on R1' with values in R'1 such that:

(5-14) < /, <P,*~1 H > =0 on (z,=0) 0 [0, S[.

This is the case for H=X;(x, 0) or H=[D,X,](x, 0).
We claim that:

/5 i5. f < /, <Pr1 [D, H] > =0 on (z,=0) H [0, S[,
1 < /, (pF1 PC,, H] > =0 on (z,-0) U [0, S(, 1 ̂ j^m.

Note that in (5.15), we may as well assume that [D, H] = [D, H] (x), PC,, H] = {Xj, H] (x, 0),
so that the previous procedure can be iterated.

We have:

(5.16) ((p?8-1 H)=H (xo)+ F (pF1 ( [Xo, H]+ j [X^ [X,, H]] ) ds

+ (p^l[D,H]dL+ |'((),*-'[X,, H].8w^
Jo Jo

^ it is crucial at this stage H does not depend on z so that no stochastic integral

f \( . . . SB appears I .
Jo /
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Set:

(5.17)

J^./^r'tD.H]),

K,= //, (pF1 ([Xo, H]+ J [X,, [X,, H]]} (xo, 0)\ ,

m

M,= E ^(pr^P^HD^O))2.
j=i

By eventually enlarging the filtration {FJ^o» we know that there exists a Brownian
martingale ̂  orthogonal to the Brownian martingale B^ such that:

(5.18) < / , ( ( p * - l H ) ( x o ) > = < / , H ( x o ) > + rK,ds+ (\rfL+ f / M ; 8p,
Jo Jo Jo

From (5.14), (5.18) and Theorem 2.1 in Bismut [51], we find that:

f Js=0 on (z,=0)n[0,S[,
( ' ) [M,=0 on (z,=0)n[0,S[.

(5.19) is equivalent to (5.15).
By iterating the same procedure on (5.15), and by taking 5==0 on all the analogues of

+00

(5.15), we find that /is orthogonal to U (Ej U F,)(xo, 0). The assumption which is
i

done in the Theorem shows that/=0. This is a contradiction to S>0. D

Remark 1. — It should be pointed out that if Xi . . .X^ do not depend on z, in
Definition 5.1, F,+i can be enlarged to be:

(5.20) F,^ = [D, EJ U [(D, Xo, X^, . . ., XJ, Fj.

The proof is as follows. We will show that if H(x) is such that (5.14) holds, then:

(5.21) < /, (p?-1 [Xo, H] > =0 on (z,=0) 0 [0, S[,
For 1^/^m, set Y .̂ (x) = PC,, H] (x). Now q>*-1 Y .̂ is a semi-martingale whose Ito

decomposition is of the same type as in (5.16); in particular no stochastic integral with
respect to B appears in the decomposition. From (5.16) and from Theorem 2. 3 in [51],
we immediately find that (5.21) holds. This procedure can be also iterated, so that we
may take F,+i as in (5.20).

Note that it is here crucial that X^, . . .,X^ do not depend on z in order to use the
result of [51].

(b) The basic estimates.

We first recall the basic estimates of Malliavin [30], Ikeda-Watanabe [17] and Kusuoka-
Stroock ([26]-[38]) in the form given by Stroock in [38]. Recall that Kusuoka-Stroock
([26]-[38]) obtained the most general result on hypoelliptic semi-groups for standard-i. e.
non reflecting diffusions.
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Xo(x'), Xi (x'). . .X^ (x') are w'+l vector fields defined on R" with values in R",
whose components are elements of C^ (R").

On (0, P), we consider the stochastic differential equation:

f dx'=Xo (x ' ) A+X; (0 d\v\
[ x(0)=xo

(5.22)

and its associated flow of diffeomorphisms of R^^co, .). [See Bismut ([6], [7]),
Kunita [25]].

DEFINITION 5 . 3 . — C^° is the process of linear mappings:

(5.23) /eT^R^C^o/

= Z r < /,^* ~' X, (xo) > ̂  -1 X; (xo) ds e T,, (R").
1=1 Jo

DEFINITION 5.4.- For ?eN, E, is the family of vector fields defined by:

f E,=(X1,X,...X,Q,(5.24)
I ^'+1 =[(XO» ̂  • • • » Xm')? ^l-

DEFINITION 5. 5. - If XoeR", /e T^(R"), (eN, //^o denotes the continuous process:
i

(5.25) f^o= ̂  ^ < (<p;*-i Y) (xo),/>2,n L^ 2L, \ vK( A ^ ^o/
"=1 YeE,,

<j is the stopping time:

(5.26) a=infL^O;|^^ps(^Xo)1- l-I ^ 1 } .
I I L ̂  J 2 J

a is the constant 21/211.
We have:

THEOREM 5 . 6 . — For any JeN, there are constants 8, k, K in ]0, +oo[ depending only
on I and on:

sup sup |Y(x) | ,
1^1^1+3 YeEf

X€R"

such that for any XoeR", T|>O, and NeR'^ such that:

(5.27) N^^+iy-^/ri,

then ifm^lO1'^^ for any feR'1 such that ||/||=1:

(5.28) Pf< C^3 /,/> ^ ̂ , f^^Ti on ["0, ̂  1, a^ ̂  1 5.K exp(-feNa).
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Proof. — This result is contained in the proof of Theorem 8.31 of the result of
Kusuoka-Stroock in Stroock [38]. To make the comparison possible, note that our /
would be /-1 in [38], and in [38] (8. 37) and (8.42), m^ should read m^. Observe that
the condition (8. 39) in [38] has been absorbed in the constant K. D

We will use (5.28) in a different form. Set:

"•w ^-^- D'-t<28'-•
From (5.28), we get that for any e>0:

(5.29) P [ < C^a^ /, / > ^e; //'^D^ e3^ on [0, D, e3^]; a^D, s3^]

^Kexp-[D3 e-^].

(c) Regularity of the boundary semi-group: the localizable case.

We now prove the regularity of the boundary semi-group under some assumptions on
the vector fields Xo, . . ., X^.

Recall that the families of vector fields Ej have been defined in Definition 5.1.

DEFINITION 5 . 7 . — For ?eN, the function ^(x.z) is defined by:

f ' 1
(5.31) kl(x,z)= inf \^ Z <Y(x , z ) , /> 2 }.

/6R<||/||=1 U=l YeE, J
We have the key result:

THEOREM 5.8. - J/XoeR^ is such that for a given /eN, 0>0:

( 5 - ^ ) lim zlog[ inf k1 (x, z)]=0,
z>0z-^0 \X-XO\^Q

then for any t>0, T^O, 1^^ | [C^]-1 | is in all the Lp(Q, POP).

Proof. - For simplicity, we write P instead of P0P", C, instead of Qo. ® will also
be omitted. For s^s\ C^ is the mapping:

(5.33) /eR^Q/

= E f5 < [(<P. ° <P,-1)* -1 X,] (cp, (xo)), / > ((p, o cp,-1)* -1 X, ((p, (xo)) dt.
/ »=1 J s

We can of course take t as small as we want, since if the result is proved for t, it is
proved for any t ' ̂  t.

K is a >0 real, which will tend to +00, y is a >0 real number, depending on 'k,
which will become arbitrary small as ^ -+ +00. We will determine y at the end of the
proof. We have:

(5.34) P[|CA/|^?i;A^T]^P[A^2rY^/2]+P[|C;/ |^?L;2rY^/2^A^T].
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Now L. has the same law as sup H^—[18], p. 41—so that:
O^s^.

(5.35) P [ A ^ 2 ( y / 2 ] = P [ sup w^r]^2exp ( - ———— V
o^^2^2 \ 4 y ^ 2 /

Let To to be the stopping time:

(5.36) To=inf{^0; \X,-XQ\^Q}.

Using equation (1.4), since on (A^2 t y /2), on [0,2r y /2] , L,^, we have classi-
cally [40]:

(Q-E(t+2ty /i)Y1

(5.37) P[T^2ty^AWd€xp--———^^ < v

where:

(5.38)

1 8XE= sup Xo (x, z)+ - —l Xj (x, z) v sup | D (x) |,
2 8x

F=m sup |X,Oc,z) |2 ,
(x,z)

l^i^w
(x,2)eRd+l

t will be chosen such that:

(5.39) ^-9-- 8E

and of course y is "small" in the r. h. s. of (5. 37).
We have then:

(5.40) PlICA/l^^ty^A^T^dexpr--92-]
L Cg t y J

+P [| C2^|^; A, A To^2 t y /̂2].
Let T[ be the stopping time:

(5.41) T;=inf{^0;z,=Y}.

We now have the key estimate:

(5.42) P[T^t y 72]̂  exp- t^2 =72 exp- ̂

(this can be proved using the well-known equality ([18], p. 205):

(5.43) Ep\ exp 3-1 exp-" [ Wds\= 1 --[exp-fj;(^]=
[ch a T}1'2
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and Cebysev's inequality). Moreover if T^ is the stopping time:

<5-44) TI=inf^TL|^-^|=jl,

we have clearly:

(5.45) P[TY2-T^D,[2/^]3/w^2exp-^—^-X3^1.
L 8 DI 23/w( J

We will choose y so that:

f5-46' .^D.r-T-
L ^/A J

Now:

(5.47) P[| C -̂̂  1^^; A. A To^2t Y^/2]^/2 expf - (^/2 )
\ 8y /

/ -Y2 ̂ l2"' \ _r
+2exp(iD^^•".'J+PLIC2'^ l^?l;AtAT0^2fY^/2'

TI^ty^Tl-T^D^——j37""!
2 "j3/1"!"

^-1
Now if T^ t Y ^/2, using (5.46), we have:

C.^[^YC^^..[^-
[where the inequality (5.48) is taken in the sense of nonnegative quadratic forms].

So using (5.48), we obtain:

(5.49) P^ | C^ |̂ ; A, A To^2 t j ^2, T^t y^/2,

T.-T^D^FJ^I^,.^ ^-TI^y^A.]

+F[ I ̂ l.o,̂ -̂1 l̂ - To A T^TI+DI [ —— J^'] .

Using Theorem 1.1 (e), we know that for any p^ 1:

<9(pTY
(5.50) F[|-^&^ a^TI^Y^SA,]^.F^ (»,,„) 6^,TIS,^SA,]^.
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Let T^ be the stopping time:

f I r ^(pt-T7 _ _ I-1 l
(5.51) T^=inf^Td ———1 (6^ G), (p^ ((o, Xo)) -I ^ -

l I L ox J 2

-^{.STI.ir^O,,.)^^,.)]--! ^'l.•'V,,- ..^T;'- ,1- , | , 1

t I L Sx 8x J 2 J

When T^T7! +Di [l/^]3 ,̂ L does not increase on [T\, T\ +Di P//^]3^] and so
using the Markov property of the flow (p. (co, .) we get:

-r r 2 "i37^ r 2 "p/^i2 i3/^ r 2 ~p/^^J ,^T,.D,[^1(5.52) P T^TKDj -^ ,T^Tl[+Dj ^ k C exp (- C ̂ 0.

Moreover by lemma V.8..4 in [17], we know that given e>0, R>0, there are N(R, e)
elements of the unit sphere of R^/i. . ./N(R.S) such that it A is a symmetric nonnegative
(d,d) matrix such that |A|^R, if for every /;, <Ay;,/f>^e, then A"1 exists and
lA-^^/e. Moreover N(R,e)^C(R/e)d-l.

We find then that:

(5.53) ^[llC^^^^]-1!^^2,

To A T^TKDi [" —— T^t ^C exp(-C X3^)

+z, p[< c^^3fmlfi9fi^ ̂ r To A TY2 A T^T1i+D^ [ ̂ ]3/w! ]
and:

(5.54) N^C^"^2.

Now assume that y is chosen in such a way that if |x—Xo|^9, y/2^z^3Y/2, then:

2 "l3^r 2 "i3^(5.55) k l(x,z)^4DJ _7^
Clearly on (To A T; A T^T];+Di P/^]3^), using (5.55) we see that on
[TLTI+D.P/^X]3^]:

(5.56) k^z^Dj——'F

and moreover on the interval [T{, T^+D^ P//^]37"11], L does not increase, so that the
flow ^(Qjv 0), .) behaves like an ordinary flow of the sort described in (fc). It is then

4° SfeRIE — TOME 17 — 1984 — N° 4



THE CALCULUS OF BOUNDARY PROCESSES 587

elementary to use the estimate (5.29) to conclude that for one (3>0:

(5.57) ^ P[<C;|^^3/.J,y;.>^ ̂ ,

r ^ ~i3/"*i~i n ^P/2

To A ̂  A T^TI+D, |̂  2 j j ^C ^-1)/2 exp- D3^- .

We now will choose y so that (5. 55) is verified. Using (5. 32), we know that for any
5>0, there is r|8>0 such that for z^r|g, then for any x such that | x—Xo|<6:

(5.58) Logfe^z)^-5 .

For (5. 55) to hold, it is then enough that:

(5.59) z^, ^^
Log X

We choose:

(5.60) y ^ 2 ^ 5

Log ^
(5.46) is clearly verified.

For ^ large enough, 3y/2^r|g, and moreover (5. 55) holds.
Using the estimates (5. 34)-(5. 57), we find that for X large enough:

(5.61) p[[C,-/|^^A^T]^^^

+^^+5,^^

A / —D 'X.^2 \
+ ". +C exp (-C ^"•Q+C X<<'-l)/2 exp ( \ ) .

A \ 2 /

Since 8 is arbitrary small, we find that for any /?^ 1, for ^ large enough:

(5.62) P[|C;/|^;A^T]^.

The Theorem follows. D
Remark 2. — Due to Theorem 4.9, this result implies the smoothness of the boundary

semi-group. The importance of the estimate (5.42) will appear in section 6.

(d) Localization of the estimates.

Following the ideas of Stroock in [36], we will show how the previous estimates can
be localized.
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We will show that under adequate assumptions, the regularity of the boundary semi-
group associated to the process (Ap x^) at j^eR4 depends only of the behavior of ^ at
ye R/*. We will also show in what cases the law of x^ itself is smooth in a neighborhood
ofyeR^

THEOREM 5.9. - If yo^R'1 is such that for ;eN, 9>0, there exists a^O increasing
function z e [0, 9] -^ h (z) such that:

(5.63)
inf ^(j,z)^/i(z), ze[0,6],

ly-yol^e

lim z log h(z)=0.
z>0
z-»0

then for any XoeR4 such that \Xo-yo\^9, if x^ is the process (p,(o),Xo), the law of
(Ap x^) under Q^o.o)? ^hen restricted to R x B(^o, 9) is given by a C°° ^nsf^ wKfc res/?ecr
to the Lebesgue measure.

Proof. - Take 9i, 62 >0 such that 0<92<9i <9. Let Si, 83 be the stopping times:

Si=inf{^0;|x,-^o|+^=9i},
S2=inf{^Si; |x,-^o|+^==92} A inf{^Si; | x.-y^ \ +z,=9 }.

Theorems 2.4 and 4.9 show that we must prove that ^^A^T I c^ \ is in all the
Lp(n, P0F). If P=P(g)P/, by reasoning as in (5.48)-(5. 50) we have:

PnC^I^^S^A^Tl^pr i^ l^Xol^^ 4 ,
9x

(5.64)
SI^A^T"[ +P[|[C^]-1|^?L1/2; S^A^T].

Now by Theorem 1.1 (e):

(5.65) ^[^(^o) ^VS^A^T]^.

Setfor8>0:

(5.66)

Clearly:

Y=
4W( 8
Log^,'

(5.67) PUCj^l^^S^A^T]

^P[S2-S^2Y]+P[|[Cj;^Y]- l|^^ /2;^^Y;S2-S^2Y;S^A^T]

+P[| [CJi+2y]~1 l^172; ^>Y; S2-S^2y; S^^A^T].
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Since L. has the same law as sup w^, we have:
O^s^.

(5.68) P^-Si^Yl^exp-0.
Y

If Zg^Y, we know that since h is increasing on [0, 9], and since Zg^9, | x^—yo |^9,
we have:

(5.69) ^Ocs,,Zs^(zs^(Y).

and moreover if | x ' —YQ | ̂  9:

k1 (x\ zs, - 1) ̂ h (zs, -Y/2) ̂  (y/2).

The estimation of the last term in the r. h. s. of (5. 67) can then be done in the same way
as after (5.44) with T^ replaced by:

(5.70) T7=inf{^Si; |z,-zsj=y/2}.

Let T^ be the stopping time:

(5.71) T7=inf{^Si;z ,=Y}.

Using the reflection principle and (5.42), we have:

(5.72) P[zs^y;T7-S^y]^^/2exp-^-

and so:

(5.73) pcltcj^s^r1!^172,
ZS^Y; S,-S^2 Y; S^A^T]^ exp- ̂ - + ̂

+P[| [G^]"1 l^1^ S^T3^T7+Y^S^AJ.

After (5.73), we can restart the procedure as after (5.53) and so we obtain the final
estimate:

(5.74) PiC^I^S^A^T)^ 0 D

Remark 3. — The result of Theorem 5.9 is not exactly of the type given by Stroock
in [36]. Such a result would state that the smoothness of pt(da, dy) on the neighborhood
of (^o.^o) would depend only on the behaviour of ^ [given by (1.39)] on this neigh-
borhood.
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The local smoothness of the law of x^ raises other difficult questions. It can be
easily proved that under the global condition.

(5.75) ^Oc.z^ooO onR^O.O] (a>0)

and if fc=0, for any r>0, the law of x^ is smooth. To see this, it suffices to modify
the proof of Theorem 2.2. In fact (2.14) is still true if u is taken to be { F,®F^ },>o-
predictable. It is then feasible to choose instead of (2.22):

(5. 76) ^= 1 ,̂ I^A, (<PF1 (®) X,) (xo)

-HA^I l^-i^^W-A1^! (QA,-I ®) X,(x^-i).

The problem of the necessary boudedness of A^ in (2.5) disappears, since if A(^I ,
conditionally on F^-i®F^, we are back to a bounded interval. C^° is replaced by:

(5. 77) 1 ,̂ C?o (co) +1^, c^-1 (9^_, c,).

It is then a trivial matter to prove the estimates on (5.77) under (5.75).
The introduction of b raises a first difficulty since it is not possible to bound adequately

r^the "anticipating" stochastic integral b (x,, z,) SB. Moreover if the condition
JA(-I

(5. 75) is only local, new difficulties arise.

(e) Regularity of the boundary semi-group: the non localizable case.

We now give a sufficient condition under which the assumptions of Theorem 2.5 are
verified.

THEOREM 5.10. — Assume that for a given /eN, there exists a constant C>0 such
that:

(5. 78) Inn z Log inf ki (x, z)= -C.
z>0.z-»0 xe^

Then for any t> 16^/2 m^ C, T^O, there is q>2 such that for any XQ^R^

^Titc^r'ieLjap®?)
\vith a norm in L^(Q, P®P) bounded independently of XQ.

Proof. — The proof is identical to the proof of Theorem 5.8 with a few
changes. Observe that 9= + oo in (5. 37), and that no restriction on t exists any more.

Take c>0. By (5. 78), we can choose 5=C+£ in (5. 58). (5. 61) still holds for each
given teR+, and for X large enough. From (5.61), we get:

(5.79) P[| C;1 \>^ A,<T]< ———c
'•1 At '- ' ?- J- nW2/16mj(C+e) •
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I f r / 2 / 1 6 m ^ ( C + £ ) > 2 , IA^T |CA/ | ^ clearly in one given L^(Q, P0P) with
^>2. Since e is arbitrary, the result is proved. Q

COROLLARY. — Under the assumptions of Theorem 5.10, for any r>0, the law under
Q(xo,zo) °f^ x^) is Siven by p^(a,y) dady which is such that:

(a) For any t>0, pt(a,y) is C00 on ]0, + oo[ x R^;
(b) For any feeN, and any t>(k+d+l) 16/2mlC,pt(a,y)eCk(RxRd).

In particular the singular support of p^ (a, y) is included in {0 } x R^.
Proof. — (b) is an obvious consequence of Theorems 4.12 and 5.10. To prove (a),

we only need to estimate for any given £ > 0:

(5.80) P[|CA/ |̂ ; 2e^A^T].

The estimate (5. 35) is no longer needed, since only (A^2e) is considered. The estimate
(5. 37) is still valid with 9= +00, for any t>Q, i.e. it is not needed. (5.42) is replaced
by:

(5.81) P(T^E)^^/2exp-^.

Taking 5=C+£ and choosing y as in (5.60), it is clear that the leading term in the
estimation of (5. 80) is the r. h. s. of (5. 81), i. e.:

(5.82) /lexp-8^0^2,v / v 32(m,5)2

which is ^A/^. ^A^T I GA/ | ̂  then in all the Lp. (a) has then been proved. D

Remark 5. — Assume that (Xo,Xi. . .X^) do not depend on z, and that moreover
D=0, fr=0. x, and z^ are independent processes. G( is then independent of z. If the
assumptions of the previous Corollary are verified, it is easily seen, by reasoning as in
(5. 80)-(5. 82) that for any s > 0:

(5.83) ^C^I^l^Cexp-^^,^,

so that for q > 2:

(5.84) E^IC^I^C+C f °° ^q'1 exp-^s(Log?i)2^.
Jo

By doing the change of variable fk=eu, we find that as s -> 0:

(5.85) E ^ C ^ I ^ C + ^ — — e x p - ^
/ 2 ks 4 ks
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Now by [18] (p. 25), the law of A, under P is:

(5.86) - ^ ^ t e x p - ^ d s .
^Jl n s5 2 5

Now using the general results on the Malliavin calculus, we know that if p^ (y) dy is the
law of x,, the norm of p,(y) in (^(R^) can be adequately estimated by E^l C,~1 |4] (with
q depending on k). Since the law of (Ap x^) is now:

(5. 87) -^ t exp- t2 p, (y) ds dy,
^Jl n s'5 2s

from (5. 85)-(5. 87), we see that for t small enough no adequate bound on (5. 87) exists
as s -> 0.

Let us finally remark that the condition (5.78) is in a sense minimal. In fact by
Theorems 3.4 and 3. 6, for fe > 0, a > 0:

(5.88) n+( | e~k/z^ds^\^C+n+ ( \ e-^ ds^a, o^ l )
\ Jo / \ Jo /

^C+n-r sup z^ k 1=C+Log( l / (x ).
LO^<T Log (I/a) J k

It then follows that for P> 1:

(5. 89) | °° | exp- [ P | e-^ ds ̂  -1 | dn+ ̂ C

-J^-^fc+'^i^^'l^C-CLogP.
Jo \ k )

with C' > 0. From (5. 89), we get:

(5.90) E1" exp- P | e-^ ds^ D .
Jo P

Consider now the stochastic differential equation:

(5.91) dx=exp f - ]- ) dwj, x (0)=0.
\ ^7

If C, is the process:

(5.92) Q= Fexp-^ds,
Jo z,
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it is clear that conditionally on z, the law of x^ is a centered gaussian whose variance
is C^. Since:

(5.93) E^C;172^ —1— [+a> —— ff' e-^dftv / L A t - r (1/2) Jo P172

we see from (5.90) that for (>0 small enough:

(5.94) E^CA/^+OO.

Since the law of x^ under P®P is h^(x)dx where:

x2

(5.95) h, (x)= —== exp- —— dP"
2C.

it is clear from (5.94)-(5.95) that for t small enough lim ^(x)=4-oo. For t small
x-*0

enough, \ is not even continuous.
(5.78) is then seen to be minimal.

6. The analysis of two-sided boundary processes

In this section we assume that the reflecting Brownian motion z is replaced by a
standard Brownian motion, which is still written z. The diffusion process x is now
governed by two second order differential operators ^f and J^ in the regions (z > 0) and
(z<0).

(a) and (b) are devoted to a quick definition of the two-sided diffusion and its associated
boundary process. In (c) we do some remarks very similar in their spirit to what has
been done in section 1 (/). In (d) the principle of the calculus of variations is briefly
sketched, and the key quadratic form C^° is again exhibited.

In (e), conditions of a. s. invertibility of Q° are given. Non trivial interactions of o^f
and ^f are exhibited, which imply that Hormander-like interactions of Levy kernels are
possible.

In (/) the crucial problem of the possible localization of the condition of regularity
for the boundary semi-group is considered. In fact in section 5 (Theorems 5.8 and
5.9), we had seen that for a diffusion with one type of reflection, a local condition on
the diffusion operator 5€ could ensure the smoothness of the boundary process. The
introduction of a second type of excursion, associated to a new type operator ^ '
drastically modifies the situation. In fact if J^f' is badly behaved, it is shown that the
process may go out of the region of regularization before getting "regularized" enough

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



594 J.-M. BISMUT

by the excursion governed by J^f. The Arcsine law of P. Levy ([18], p. 57) helps us to
give a striking illustration of this phenomenon.

In (g\ the case where the Hormander's distributions associated to the operators o^f
and ^ ' span the whole R'1 at each point or the boundary (z=0) is considered. Under a
non-local condition, and using the stochastic calculus on Poisson point processes, the
boundary semi-group is shown to be smooth.

(a) The two-sided process and its associated flow.

We first do a change of notations with respect to section 1.

Q' is now the space ^(R^R). The trajectory of o/eQ' is still z. The a-field F^
on Q" is ̂  (zj s ̂  0. 0' is endowed with the filtration { F ^ }^o.

For zeR, P^ is the standard Brownian measure on 0' such that P^ (z (0)=z)= 1. P"
is the measure PQ.

All the notations of section 1 are otherwise preserved, including the definition of
Q,Q,P,e,9,...

L( denotes the local time at 0 of the reflecting Brownian motion | z, | (i. e. L is twice
the standard local time at 0 of z), so that:

^H^K |
Jo

(6 .1) | z J= |zo |+ sgnz,8z,+4,
Jo

z^z" are defined by:

(6.2) z^z.vO, z,-=z, A 0.

Xo(x, z), . . ., X^(x, z), D(x) are taken as in section 1. Xo(x, z) . . . X^ (x, z) is another
family of m + 1 vector fields, having the same properties as Xo (x, z). . . X^ (x, z).

a, a' are >0 real numbers.

On (^, POOP^) consider the stochastic differential equation:

dx= l,>o [Xo (x, z) A+X, (x, z) dw1]
(6.3) + l.<o [Xo (x, z) dt+X[ (x, z) riw^+D (x) rfL,

x(0)=Xo,

(6. 3) still defines a flow (p. ( G), .) of diffeomorphisms of R^ so that in (6. 3), q\ (©, Xo) = x^
and the results of section 1 (b) hold without any change.

b(x,z) is taken as in section 1, and fc'^.z) is another function having the same
properties as b(x,z). In (1.13), the first equation is replaced by (6.3) and the second
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equation by:

(6.4) du= l,>o | b (x, z) 8z- ^ fc2 (x, z) dt 1 + l,<o |~ b' (x, z) 8z- ^ b'2 (x, z) A 1.

Of course, if we use Stratonovitch integrals, the reader will check that (6.4) is
equivalent to:

(6.5) du=b (x, z) dz+ 4-fo' (x, z) dz-

+ ̂ "^^ dL- lz-0 (b^b2) (x, z) dt- 1^0 (fc.+y2) (x, z) dt.
z, z, z,

The results of 1 (c) still hold. (1.14) is replaced by:

M,=exp [ p l,>o ( b (x, z) 5z- 1 b2 (x, z) ̂ )
L Jo \ 2 /

+ p l,<o (b' (x, z) §z- ! b'2 (x, z) ̂ ) 1.
Jo \ 2 / JJo \ 2

For (XQ, Zo)eRd x R, the probability measure Q^o.zo)ls stl^ defined by:

^QGco.zo) =M.
^(P®P,,)|F,

(fc) Th^ boundary process.

A^ is the right continuous inverse of L^. Definition 1. 6 is unchanged.

DEFINITION 6.1. — Take (OQ, Xo) e R + x R^. On (Q, Q(^,O))» ^e boundary process
(^, ̂ () with values in (R + x R^) U { A } is defined by:

/ fA, p, _ v

^ ^ (f lp^)= ^o+a l,>o ^4-a' l^o ^, (p^ (o, Xo) , «L^
(6.6) < \ Jo Jo /

A,^L^.

We will still study the semi-group associated to the boundary process (a^y^) which is a
strong Markov process.

(c) Some remarks on the boundary process.

Let Y(x,z), Y'(x,z) be two vector fields which have the same properties as
Xo(x,z). Consider the more general stochastic differential equation on (Q, POOP):

(6.7) dx= 4>o [Xo (x, z) A+X, (x, z) dw1]
+ lz<o Po (^ ^) A+Xf (x, z) dv^+Y (x, z) dz-" +Y' (x, z) rfz- +D (x) dL.
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For ZQ', ZQ 6 R consider the differential equations:

/ dx*
=Y(x+,z+), x+(0)=xo;

dt

(6.8)

^+

~A~
dx_
~dt~

=1, z+(0)=zS;

=Y'(x-,z-), X-(O)=XQ;

dz_
dt =1, 2-(0)=Zo.

Let fe,"1', fc(- be the groups of diffeomorphisms of R1'"1'1 onto itself associated to
(6. 8). Of course S k ^ / S x , 8k^ /8x map R'' onto itself.

Consider the stochastic differential equation on (fi, P<g)P'):

(6.9)

dx"^l^[(k^-1 XoKx;7, 0)dt+(k^-1 X,)(x'/, 0)riw']

+4<o[(fc„'l•-l Xo)(x;', 0)dt+(k^-1 X^x'/, 0)dw']+D(x").dL,

x"(0)=xo.

Recall that n is the projection operator (x, z) € R'*'1"1 ^ x 6 R'*. We claim that in (6.7):

(6.10) x,=n k^ ° k^ (x ' / , 0).

Of course if z,"1' >0, z,~ =0, and if z,~ <0, z^ =0, so that in (6.10), we can write:

(6.11) x,=itk,-ok^(x'/,0).

We check that x, given by (6.10) is a solution of (6.7). In fact:

(6.12) dn k^ ° k^ (x',', 0)=Y (71 k^ o k^ (x ' / , 0), ̂  +z,-) ̂ +

8k^ r
+ -^- (̂ - W, 0)) Y' (7t k^ (x'/, 0), z,-) dz,-

8k- ( r Sk^ -l-i
+ —— (x'/, 0) \ l^o —— W, 0)

3x [ |_ 8x J3x v " '[ ""L 8x v" 'J

(Xo (7t k^ (x'/, 0), z,) dt+X, (TI fc^ (x;', 0), z,).dw'
V 8k^ -l-i

+ lz<o -^- (x',', 0) (Xo (7t ̂  (x,", 0), z,) dt

+X; (7t ̂  (x;', 0), z,) dw^+D (x"). dL 11 +7t 9kz!- (k^ (x'/, 0)). dz-.
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Now 7.^ +Z(~ =z,, and n 8^/82=0, n82 k j ^ / 8 x 8z=0, n82 k^/Sz2^. Moreover:

f' 8k^
(6.13) \ —— (k^ (x,', 0)) Y- (TC k^ ( x ' / , 0), z,-) dz,-

Jo (7X

- f v .
Jo

= Y'(7r^ofe^(^0),Z,).rfz,-.
Jo

essentially because < z + , z - > = 0 « z + , z - > i s t h e quadratic variation of z^ and z~) and
because on (z^O) 32 k^+/9x 3z=0. Moreover:

(6.14)

8k,+ afe7- rafe^ -1-1iz>o -^- (fe^- ( '̂, 0)) -̂ - (x;', o) -^ (x;-, o) = 4>o i,/ afe^ afe;- r^1 z^ /?,- /,^' n\\ ^ /«,^ n\ ^

afe^ 9k,- r 8k; -1-1
lz<o —^ (fez7 (^//, 0)) —t- (x;-, 0) —t (x;', 0) = l,<o I.

8x ' 8x \_ 8x J

It is then obvious that x^ given by (6.11) is the solution of (6.7) on (Q, POOP"). Now
clearly, since z^=0, we have x^==x^. Equation (6.9) is of the type (6.3), and defines
the same boundary process as (6.7). It is then not a restriction to study equation (6.3)
instead of (6.7).

Let ^ (resp. J^f') be the second order differential operator acting on feC^
( R - ^ x R ^ x R - ^ ) [resp. C^R-" x R^x R-)]:

(6.15) ^ f = L 8 ^ X ^ b 8 ^ 1 i x ^ l y \ f
\ ot oz 2 i = i 2 oz )

(r^.^f=(.'8+X^b/8+lix^l8-}f\
\ \ 8t 8z 2 » = i 2 8z2 ) )

DEFINITION 6.2. - ^^(R'^ x R ^ x R ) is the set of functions f(t,x,z) defined on
R + x R^ x R with values in R whose restriction to R + x R4 x R + and R + x R^ x R ~ are
in Q° (R-^ x R^ x R-^) and Q° (R4^ x R^ x R-).

When z=0, /has generally distinct right and left first derivatives in the variable z,
which we write 8f/8z+ and 8f/8z~.

2 is now the differential operator defined on the boundary (z==0) acting on fe C^
(R^R^xR):

(6.16) ^[^K^-^)]^^-

Then if/eC^R'-xR^x R), if:

-rJo
(6.17) X,=(P(((O, Xo), s,= (a l^o+a' 4<o)ds,

Jo
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then under Q^oy

(6 .18) /(5^,z,)- | (l,>o^/+4<o^/)(^^,z,)^- r(^/)(s,,x,,0)^L,
Jo Jo

is a martingale. To obtain (6.18), it suffices to apply Tanaka's formula to the process
/(s,, Xp z,).

We now proceed as in Section 1 (g). Take geC^(R+xRd). Consider the two
Dirichlet problems on / + e Q° (R + x R4 x R +), / - e C^ (R + x R4 x R -):

J^/^O on z^O,
(6.19) ^y-^Q on z^O,

f+=f~=g on z=0.

Assume that (6.19) has a solution. Let / be the element of C^ (R^ x R^ x R) which
coincides with/^ on (z^O), with/" on (/^O).

Using (6.18), we see that:

FA,
^(5A^A<)- (^/)(5A,,^0)^,

Jo

is a { ¥^ }^o-martmgale. By setting:

(6.20) (^)(s,x)=(^/)(5,x,0),

we see that at least formally, ^ is the infinitesimal generator of the process (s^, x^).
Of course the same discussion as after (1.44) applies. In particular let ^ and ^f be

two second order operators written in Ftormander's form as before (1.44). D is an
open set in Rd+2 with smooth boundary <9D. y and Y are two smooth vector fields which
are pointing inward and outward D (they could as well point both inward). § and 5' are
the 1 differential forms associated to y and Y as in (1.44).

Take g e C^ (BD). Consider the Dirichlet problem on / + e C^ (D), / - e C^ CD):

J^/^O on D.
(6-21) J^T=0 on ̂

f^==f~=g on 8D.

(If Y and Y point inward, the condition ^f f~ =0 on ''D should be replaced by ^f f~ =0
on D.) Set:

(6.22) ^y/^r/- ,̂

We want to study the smoothness of the transition probabilities associated to the
semi-group e^.
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A discussion very similar to what has been done after (1.44) is interesting but we
leave it to the reader.

The coordinate systems (P. . .x^2) and (P1. . .P^2) associated to (J^, y) and7

(J^, Y) are in general distinct. /

Some computations very similar to (6.9), (6.12) show that, to build the semi-group
6? ,̂ at least locally, a stochastic differential equation living on the boundary BD of the
type (6. 3) must be solved, whose solution is x,. If k,, k\ are the Hows of diffeomorphisms
associated to Y^, Y^ (which are obtained in the reduction of ^ and ^ to the form
(1.52)), then (k^ o k^- (^), z,) is the true solution in R^1 of the stochastic differential
equation from which the boundary process is built.

Assume temporarily that Xo, X,. . .X,, Xo. . .X, do not depend on z, and that
b = b' = 0. Let J^f0, ̂ /0 be the differential operators acting on C^ (R^):

^Xo+^EX 2 , ^o^^+^x;2.
^ i 2 i

In this case ^ is given by:

(«.23) ^-^(.l;^)-^^.).

At this stage, the reader can ask how to construct the process associated to:

(6.24) ^=D- /-a^-^°- /-oc^-j^0- l-^l-^o
V ^ \1 8t ^ 8t

where ^//0 is similar to J^f0, j^'°.
The complete answer lies in the Poisson point process properties of the reflecting

Brownian motion and the standard Brownian motion. To see this, we give a few
definitions.

DEFINITION 6.3. - i^~ is the space -^+.
We now have the basic result.

THEOREM 6.4. - On (Q'.P'), let e, be the process adapted to {F^}^o taking its
values in ̂ + (J ̂ ~ U { 8 } defined by:

(a) If:

A,-<A,, e,(s)=z^^-, 0^5^A,-A,-,

0 for S>A,-A(-;

(b) If:

A,-=A,, e,(s) =8,

Let n~ be the image on i^~ of the measure n+ on i^+ by the mapping e -> -e.
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Then e^ is a Poisson point process whose characteristic measure n± is given by:

(6.25) n±=]-(n++n-\

{ FA( }r>o ls tne natural filtration of e^

Proof. — This result is contained in Ito-McKean [18], p. 75 and Ikeda-Watanabe [17],
p. 123. The proof of the result on the filtration { F A , } ( ^ O ls ^ same as m

proposition 3.11. D
Theorem 6.4 tells us in fact that the Poisson point process ^ (s) of the excursion of z^

is obtained by marking with the marks (+, —) and the weights (1/2, 1/2) the excursions
of the reflecting Brownian motion |zJ. To study (6.24) as well as more complex
systems extending (6.3), the excursions of a reflecting Brownian motion must be marked
with three (or more) marks and equal weights (taking unequal weights does not change
anything, since by time change on the excursions, we can equalize the weights). Such a
construction is elementary and left to the reader.

However, we will take much advantage of the fact that estimates do exist on the
standard Brownian motion, which would be hard to obtain on an abstract marked
reflected Brownian motion.

(d) The calculus of variations on the two-sided process.

The calculus of variations is identical to what we have done in sections 2 and 4. The
key process of linear mappings from T^ (R^) into T^ (R^) is now:

(6.26) p -^ C?o p= p 4,, < ((p^-i x,) (xo), p > (P?-1 X, Qco) du
Jo

+ f iz^cpr'x^xo^/^cpr'x^o)^.
Jo

To control the differentials of the law of A(, the technique of section 4 can be
adapted. We now consider semi-martingales H which have the following properties:

(a) H is bounded and ^0;
(b) H i sOon(z^O) ;
(c) The Ito decomposition of H is:

(6.27) H,= F l,>o K ds+ p l,>o E 8^
Jo Jo

where K,E are bounded {F,}^o-predictable processes and E^ -1/2 [to simplify, we do
not assume that L appears in (6.27)].

Except for the boundedness conditions, H^=z^2 is an adequate choice.
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The arguments of section 4 can be reproduced almost identically. In section 4 (a),
the exponential martingale is now changed into:

N•-exp{-I'••>OT^52-^MT^H•
T, will be the time change:

T,=inf { T>O; | (l,>o (1 +E)2+ l,,o) ds>t\.
I Jo J

Then if S is defined as in (4.7), it is easily proved that under S, if z;, L;, w^. . . w^ are
the processes given by:

z;=(z+H)^, L;=4, '

^= | (4>o(l+B)+l ,<o)8w 1 , . . . ,<»= Po^oO+^+l^W"
Jo Jo

then (z', w'1. . . w^) is a { F^ }^o-Brownian martingale, and I/ is the local time at 0 of
[z ' l . The proof that under S, (z^w71. . .w^) is a Brownian { F^ }^o-martingale is
trivial. Moreover since H is ^0 and is 0 on (z^O), we have the obvious:

|z,+Hj=|zJ+H,,
sgn(z+H)=sgnz,
(sgnz) l^>o= lz>o»

so that:

(6-28) |^+H,|= |sgn(z+H)(5z+5H)+4.
Jo

From (6. 28), we deduce easily that I/ is the local time at 0 of z'.
The calculus of variations on s^ is then done in the same way as in section 4, using

C^t
H(=z^2, and the fact that since z^ ds is a stable process whose exponent is 1/3, for

Jo

any t>0, ( z^ ds is in all the Lp(Q, POOF).

Statements strictly similar to Theorems 4.9-4.13 are easily proved. Details are left
to the reader.

However the estimates of section 5 must be in general drastically modified.

(e) Existence of densities for the boundary semi-group.

We first study the a. s. invertibility of C^°.
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DEFINITION 6.5. - For ;eN, E(, E;, F( are the family of vector fields defined by:

E,=(X,, . . . ,XJ, E1=(X,, . . . ,X,), F i = { 0 } ,
8

== ( xo» xl» • • • •> Xnp a~ ) ) Ef ?

^i=[(xo,Xl...X,,^U;1,

^i+i

E;

F^i =[(Xi. . . X^ D), Ej U [(Xi, . . ., X^, D), E;]

U[(Xi, . . . ,X , ,X , . . .X , ,D) ,FJ .

We then have the following result, which was first given in [50], Theorem 2.19.
+00

THEOREM 6.6. - If U (E^ U E; U Fj)(^o» 0) 5/7ans R^ ̂ n ̂ ^ a- ̂  /or an^ ̂ ^
(=1

C^0 fs invertible.

Proof. — U^ is the vector space spanned by:

l^oWX.Kxo) (l^^m) and l^<o ((p?-1 X^) (xo) (l^^m),

V( is the vector space spanned by U U, and V^+ is defined by:
s^t

v^=nv,
s>(

We then proceed as in the proof of Theorem 5.2. Namely assume that Vo+ (which
is a non random vector space) is ^T^ (R''). Then if S is the stopping time:

S = m f { t > 0 ; V , ^ V o + } ,

S is >0 a. s. Let/be a non-zero element of T^ (R'1) orthogonal to V^. Then:

(6.29)
< /, (<p; -1 X,) (xo) > = 0 on (z,. > 0) H [0, S],
< /, (<P? ~' XD (xo) > = 0 on (z, < 0) U [0, S].

Using the optional selection Theorem [11]-IV-84, it is easily proved that (z=0) is included
in both closures of (z>0) and (z<0). (6.29) can be replaced by:

(6.30) </, ((pr1 X, (xo) >=0 on (z.^0) 0 [0, S[,
</, ((pF1 XO (xo) >=0 on (z^O) 0 [0, S[.

From (6.29), we find that:

(6.31) ^ < /, (p? -l X,) (^o) > = 0 on [0, S].
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From Ito-Tanaka's formula, we know that:

^ [X,, X,(6. 32) ^ <p* -l X, (xo) = P z; (pF1 ( [Xo, XJ + ' [X,, [X,, X,]]
Jo \ 2

^^•[i-^]]}'"^^^^^
+{'l.>.<P?-(x,^[^,X,])8^J;^<p..--[^X,]z>o<pr1 -,x. \ds

o i8z J

/ f \

I there is no integral . . .dL because the support of dL is (z=0), and of (6.30) j.
V Jo /

easily that for l^/'^w:
\ Jo
From (6. 32), we find easily that for 1 ̂ j^m:

</, (pr1 [X,, Xj >=0 on (z,>0) U [0, S],

(6.33) ^[^•D-/. <pr X, )=0 on (z,>0) U [0, Sj.

By iteration, using (6. 33) again as in (5.8), and reasoning as in (6.30), we find that
forO^/^w:

< /, <P,* -' [X,-, X..] > = 0 on (z, ̂  0) 0 [0, S[,

(6.34) ^.-[^,x.])=</, (pF11 ^, X, \=0 on (z^O) U [0, S[.

^We now will use the following result in Ikeda-Watanabe [17], p. 307. Namely if g is
{Pf^o predictable right-continuous process with left hand limits, then for any r^O:

(6.35) 'i^.-S-J;::-——]-}:-lim
eUO L Ay-Ay-^

l z>o^8w 1 = l^>o^§w1 ,

""•^-s-r;—]-!'-lim
e i i O L Ay-Ay- l 2<0^ 5 W l = lz<o^8<

A y - A t J JO

where the limits as e [ [ 0 are taken in probability.
In [17] such a result is proved in the case of a reflecting Brownian motion. The proof

of [17] can be mimicked so that (6. 35) holds. Also note that if G(, K^ are the processes:

(6.36)
°t= 4>o^,

Jo
K,= in f{y , c^>t},

then by [17], p. 123, z^ is a reflecting Brownian motion, and moreover ( 1 >n 8w1

(1 ̂ i^m) are also Brownian motions independent of z^.
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Let H(x) be a C°° vector field defined on R^ with values in R4. Assume that:

(6. 37) </, (p*-1 H >=0 on (z,=0) U [0, S[,

We claim that:

(6.38)
</, (p*-1 [D, H] >=0 on (z,=0) 0 [0, S[,

</, (p*-1 [X,, H] > =0 on (z,=0) U [0, S[, 1 ̂ j^m

</, (p*-1 [X;., H] >=0 on (z,=0) 0 [0, S[, l̂ m.

We first prove the first line of (6. 38). We have:

(6. 39) (p*-1 H=H (xo)+ P 4>o (pr1 ( [Xo, H]+ 1 [X,, pC,, H]]} du
Jo \ 2 /

+ r lz<o <P?~1 f [Xo, H]+ 1 [X;, [X^ H]] ) du
Jo \ 2 /

+ p (pr1 [D, H] ̂ L+ p 4>o cpr1 [x,, H] 5^
Jo Jo

+ r i^o^r ' tx^Hlaw^.
Jo

Let G,, G; be the {FJ^o predictable processes [11]-IV-90:

G,=lim l^>o,
s T T t

G;=nm l^,o.
s T T t

(6.40)

We claim that for any t^O:

^Ay A ( A S

Z f^"" lz>o8</,(p^ lH>=G„s</,cp?t,-s lH>.(6.41)
J A « - A t A S

In fact:
• if t<S, if Z(>Q, using (6. 37), the sum is </, (p*-1 H >, (z,=0) is negligible, and if

z^<0, the sum is 0.
• if t^S, if Zs>0, the sum is </, (p^~1 H>.
If Zs=0, and if S is a left cluster point of (z=0), the sum is still 0, and moreover by

(6.37), < /, (p^ ~ 1 • H > = 0. If Zg = 0 and z is > 0 on a left neighborhood of S, the sum is
</, (piT1 H> and /s=l. If Zg=0 and if z is <0 on a left neighborhood of S, both
sides of (6.41) are 0. Finally if Zg<0, the 1. h. s. of (6.41) is 0 and Gg=0.
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Let E^, E,' be the processes:

E.= f lz>o (( /, cp?-1 ( [Xo, H]+ 1 [X,, [X,, H]] )\ ^
Jo \ \ \ 2 y /

+ f ^o^cp.r'P^HpS^,
Jo

E;= [ 4<o f/ /, (PF1 f [Xo, H]+ 1 [X,, [X;, H]] ) \ du
J o \\ \ 2 ) I

(6.42)

+ f lz<o</,(pr lPC;,H]>8^.
Jo

By using line 1 in (6. 35) as well as (6.41), we find that for any r^O, a. s.:

(6-43) Et^G^sacp^H).

Now the process G^g</, <P*A"s1 H > is continuous. This is clear if r<S, by using
(6. 37). If S is a left cluster point of (z=0), </, (ps*-1 X, >=0 and continuity at S still
holds, while if S is isolated on the left from (z=0), G will be continuous at S. From
(6.43), we find that a. s.:

(6.44)

Similarly:

E^G^/.^^H) on [0,S].

E^G^/.q)*-1!!) on [0, S].(6.45)

We claim that for t^S:

(6-46) (G.+G;)</, (p*-1 H > = < / , (p?-1 H>.

We only need to prove (6.46) if z,=0. If t<S, </, (p*-1 H > = 0 and (6.46) is
true. If t=S, and S is a cluster point on the left of (z=0), the same reasoning
applies. If S is not a cluster point on the left of (z=0), Gs+Gs=l, and (6.46) still
holds. From (6.44)-(6.46), we see that:

(6-47) </, q>r1 H >=E,+E; on [0, S].

Comparing with (6. 39), we find that:

/. rcpr'D^HHL =0 on [O.S]^
< Jo /

(6.48)

so that:

(6-49) <f, OP*"1 P, H] >=0 on (z=0) H [0, S[.

The first line in (6. 38) has been proved.
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Now from (6. 37), (6.44), it is clear that:

(6.50) E,=0 on (z=0) U [0, S[.

Cp K^ have been defined in (6. 36). Set:

K,= </, (pr'f [Xo, H]+ 1 pC,, [X,, H]] ) > ,

f^ . - f^
^^ ^= l^>o 8w1, B(= l^o 8^

Jo Jo

r.*-!

(6.51) - -, f^
"Xy9 '"( | ^Z^ vrv » ^t"

Jo Jo
(̂ = ̂ x(» E, = E .̂

We know that z is a reflecting Brownian motion, and that (w1, . . ., vP", B) is a
{ F^ }^o Brownian martingale. Moreover Cg is a { F^ }^o stopping time. Using (6. 50),
we have:

(6. 52) E, = 0 on (z= 0) U [0, c^[.

Moreover using standard results on semi-martingales we know that Ey is a continuous
process. Using (6.42), we find that:

(6. 53) E,== p K, ds+ p </, <-1 [X,, H] > 5w<
Jo Jo

We can now proceed as in the proof of Theorem 5.2.
Using (6. 52), (6. 53) and Theorem 2.1 in [51], we know that for l^j^m:

(6. 54) < /, q)^-1 [X,, H] > = 0 on (z== 0) U [0, c^t.

Note that the result of [51] is proved under the assumption that all the integrands are
continuous processes, but the proof adapts without any change when they are only
right-continuous.

It is easy to see that (6. 54) implies the second line in (6. 38). The third line of (6. 38)
is proved in the same way.

Of course we may take H to be equal to X;(x, 0), X^ (x, 0) or to any Lie bracket
appearing in the iteration of (6. 34), (6. 38).

It is now easy to proceed as in the proof of Theorem 5.2 and prove the Theorem. D
Remark 1. — If X ^ . . . X^, X\. . .X^ do not depend on z, F^+i can be enlarged to

be:

F^ =[(Xo, . . ., X,, D), EJ U [(Xo, . . ., X,, D), E;]
U[(Xo, . . . ,X , ,Xo, . . . ,X,,D),Fj.

In fact note that from Theorem 2. 3 in [51], we find that because of (6. 52), (6. 53):

K,=0 on (z=0)U[0,Cs[.
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It is then easy to proceed as in the proof of Theorem 6.6 with the enlarged F(.
Of course, under the assumptions of Theorem 6.6, the analogue of Theorem 4.13

holds.

(/) Local and non local regularity of the boundary semi-group.

We now study systematically the regularity of the boundary semi-group associated to
the two-sided reflecting diffusion.

Ei, Ei have been defined in Definition 6.5. fe, has been defined in Definition 5.7
(for the family of vector fields Ej). Similarly we can define k\ calculated on E,.

THEOREM 6.7. -- J/XoeR^ is such that for a given ;eN, 0>0:

( lim zLog[ inf ^(x,z)]=0,
/^ ^\ J z>o,z-»o |x-.«col^e

lim z Log [ inf k1 (x, z)] = 0,
z<0,z-»0 \x-xo\^9

then for any r>0, T^O, I^T | [<%]~1 I is in all the Lp(D, P®P).
Proof. - The proof is strictly identical to the proof of Theorem 5.8. Of course the

definition of T\ in (5.41) is changed into:

(6.56) T^= in f{ r^0 ; | ^ |=y}

and the estimate (5.42) is still valid. The proof can proceed as the proof of
Theorem 5.8 because (6.55) is a two-sided assumption, so that in both cases (z^=y)
and (z^ = —y), the estimates of the proof of Theorem 5. 8 are valid. D

Assume now that Xo^R4 is such that for a given 9>0, T|>O exists such that:

(6.57) inf fe^z^ri,
\x-xo\^Q

which means that on (Zs>0), x, is an elliptic diffusion for s small enough. By
Theorem 6. 6, we know that the boundary semi-group has densities.

However, we are going to show that if 9 < + oo — i. e. the assumption (6.57) is
local-and if on (z<0), the diffusion x, is very degenerate, then the boundary semi-group
may well be not smooth. The introduction of badly behaved negative excursions destroys
then the regularity result of Theorem 5. 8.

The reader can assume that XQT^O, X{ = . . . =X^==0.
The estimates on C^° are then only possible on the positive excursions of z. The

stopping time T\ should now be replaced by:

(6.58) T^inf^O.z^y},
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where z is a standard Brownian motion. Now contrary to the sharp estimate (5.42),
we have:

(6.59) P[T7^y /2]< C Y = c yl/2
1 - yv ^(ty^2)1'2 (t^29

This follows from the fact that sup z, has the same law as | z^ |.
O^s^h

(6. 59) is an insufficient bound. In fact, to dominate P(| [C;/] |^X; A,^T) by A/3^
we should take y^A/^, but this makes the estimation (5.45) lousy.

The phenomenon which can happen is that the negative excursions of z push x far
from the region | X—XQ | ̂ 9 fast enough so that the semi-group is prevented from getting
smooth.

Although it is difficult to construct an explicit counter-example, we build something
which is very close to that.

T is a > 0 real. Consider first the stochastic differential equation:

(6.60) f^=l^T^1,
I x(0)=0,

which can be put in the equivalent form:

dx==l^dw\

(6.61) ^^x(0)=0,
dh=dt,

/i(0)=0.

Of course the system (6. 61) is not smooth in the variable h. However the calculus of
variations of section 2 can be applied to (6.61). Bq),/&c(co, 0) is of course equal to I,
so that we can analyse the process x^, without needing to look at the component A,. Of
course, C° is given by:

(6.62) C ° = t A T .

Since the law of A( is classically ([18], p. 26):

(6-^) l^————e-^ds,
~ I TV 0°

we find that for any t>0, 1/C^ is in all the L^(Q, P®P').
The calculus of variations tells us that x^ has a smooth law. Of course this is entirely

obvious because x^=\v^^, and the law of WJ^T can be explicitly calculated.
Now consider the two-sided equation:

fdx=l^Tlz>o^
I x(0)==0,

(6.64)
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which can be rewritten:

(6.65) J ^^ol^T^, x(0)=0,
I dh= l^o A+ l,<o A, h (0)=0

(6. 65) appears as a two-sided perturbation of (6. 61). We claim that the law of x^ is
not smooth. In fact C° is now: (

f ? A T/•(AT

"°- 1-^ ~ [ ^X)
Jo

C°= l^ds.

Conditionaly on z, the law of x^ is a centered gaussian whose variance is C^, i. e. is
given by:

1 ^ -x2 ̂
y27^ 2c^

The law of x^ is then given by k (x)dx, where:

^^^J "^C^^i^^^Jn' ^/^ TC CA, 2 CA,

Now fe is clearly C°° for x^O, and moreover k (0)=lim fe(x), so that:
jc-^O
x^O

fe(o)= f "Tr-h^^010-Jn' »/2 7t C*,

Of course C^C?. Moreover by Levy's Arcsine law (Ito-McKean [18], p. 57), the law
of C? is given by:

^OSsST
ds

T I [ S ( T - S ) ] 1 ' 2 '

so that:

k(o)^— r ds =+^
./2^Jo Tts(T-s)1/2

fe (̂ ) is then not even continuous at 0! In fact 1/C^ does not belong to any Lp (ft, P®F)

(1^/»<+oo) because ( l/(C^)l/2dP/=+00.
Jn'

The effect of introducing negative excursions of z prevents the process x to take
"advantage" of the region t^T to have a regular density, since the negative excursions
are pushing it far enough from this region.
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Remark 2. — If XQ=X{== . . . ==X,,=0, we come back to the situation studied in
sections 1-5. In fact on (z<0), x does not move. Using the fact that if T( is the time
change:

T,=inf^ T; l^o ds>t ^
I Jo J

T,=int < T; l^>o ds>t >

z^ is a reflecting Brownian motion whose local time is L^ (see Ikeda-Watanabe [17],
p. 123), we would be back to the situation studied in sections 1-5.

(g) Non-local regularity of the boundary process.

The results of section 6-f show that when the two sides of the diffusion x^ are not
equally regularizing, then the regularity of the boundary semi-group is in general a non
local property.

We will now show that under a condition which states basically that if /eN exists
<

such that for any XQ e R^, U (E,, U E;,) (xg, 0) spans R^, the boundary semi-group is
i

smooth.
The reasoning in the proof of Theorem 5. 8 does not work any more. Note first that

the estimate (5.42) is useless here. In fact if T/7 is the hitting time of y by | zj, it may
well be that if z^'y== —y:

i
Z Z a^Y-^o))2,

J= l Y'eE;.

I

is small if for instance/is orthogonal to U E,, (xo). Of course in this case:
i

i
Z E </,Y(^o)>2,
j = l YeEj

will be large, and it would be "better" to choose the stopping time T^ defined in (6. 58)
instead of T/7. However the estimate (6. 59) is lousy.

The reason for which the arguments of section 5 do not work any more is that the
stochastic calculus in real time-scale is not good enough to take into account the fact
that the regularity of the boundary semi-group comes from piling up heterogeneous
excursions. This fact could not be clearly seen in Theorem 5.10, where there were
excursions of only one type. We will then do an analysis of the individual excursions
of the two-sided process.

DEFINITION 6.8. - For eei^+ (resp. -T-), ̂  (e, e, .) [resp. ̂  (e, e, .)] is the How
of diffeomorphisms of R^ associated to the stochastic differential equation on (Q, P):

(6. 66) dx = Xo (x, e) dt + X, (x, e). d^.

[resp. (6. 66') dx = Xo (x, e) dt + X^ (x, e). de1].
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Of course the notation (e, e) is used to underline the fact that we are working on
excursions.

DEFINITION 6.9. - Q(e,<?) [resp. C^^e)] is the linear mapping from T^R4) into
T^R'):

(6.67) /eT^ -. Q(e, e) f= f; f^W-1 X,)(x),/>W-1 X,) (x) d5
1 = 1 Jo

^ resp:

(6. 67') /e T? R^ -. C;V= ][: ? < OF;* X^) (x), /> (^*-1 X,) (x) ds}.
i = = i Jo /

Recall that m^lO1-1 x 6. T| is a >0 real number.
We have then the key result.

THEOREM 6.10. - For any TI>O, there exists C>0, |LI>O such that for any xeR^ any
feT^ R^ with ||/||=1, then if:

(6-68) £ £ ^^(x^O))2^
w = l YeEn 2

( resp.:

(6-68') £ £ < / ,Y / (x ,0 )> 2 ^ 7 1 ) ,
"=1 Y'eE^ 2 /

^n for 0 < p < n:

(6- 69) ^ ( < C^ (e, ^)/, /> ^p)^ c

p1/^

( ^5 .̂:

(6•69/) "«C^(8, -^/^p). ,0) .
pl/wj y

Proq/: - We will only prove (6. 69). We will use the description of n+ by Williams
([45]-[46]) and Rogers [33] given in Theorem 3.6. The measure n has been described
in Theorem 3.9.
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X is a >0 real number such that x^1/^. The value of ^ will be chosen later. Let
To, T[ be the stopping times:

(6.70) To=inf{^0,- | ̂ (e, e, x)-x \^} \ A inf{^0;

i rw|r^(s,^)i-1-(e, 6?, x) -I ^7
(7X|L 8x J

T^(e)=M{t^O; ^=p1 /^}.

By fixing temporarily e in (6.66), we have:

fv—fTP (p\\^1

(6.71) PrTo^^T^^Cexp-^ ,_1^ ^C,(T^) A 1).
CT^ (^)

By Theorem 3.6, under n and conditionally on (T^ (^)<+00), ^(O^^T^(^)) is a
Bes (3) process starting at 0, stopped when it hits ^llml. Since we have the obvious:

p2/m^

(6.72) E^^T?^-—,

we get from (6.71) that:

(6. 73) n (To (e, e) ̂  T? (e) \ T? (e) < + oo) ̂  C, p2/^.

We define C^ (e, e)(s^s') in the same way as in (5. 33) (we drop the dependence on x
for simplicity).

Set: _____

r a^ t-1
(6.74) g^e)=\ ——l(e,^x) /

Clearly:

(6.75) n«C^/,/>^p|T?<+oo)

^C.p^+n ( < CJ; ,̂ g >^p, T?^To | T?< +00).

Recall that the components of Xo,Xi. . .X^ are in C^ (R^'^1), so that for p17^/,
ifT^To:

j
(6. 76) ^ Z < ̂  (e, )̂, Y (^ (e, ^ ̂  P '̂O >2 ̂  ? - C x2.

w = l YeEn 2

We choose 7 so that C y2 ̂  r|/4, and so the 1. h. s. of (6. 76) is ^ r|/4.
Set:

(6.77) ^ (£,.)= /(8?g), .
II ̂  (e' )̂ II
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Of course if T^ ^To, since x^ 1/2:

(6-78) |^h(^)||^J,
so that:

i
(6. 79) £ E < g' fe ̂  Y (^T; (c, ^ ̂  P^O >2 ̂  5

n = l YeEn 9

and moreover:

(6. 80) n ( < C;TI g, g >^P, T^To | T?< +00)

^n « Cj! ̂ , ̂  > ̂ 4 p, T!^To | T? < + oo).

Recall that the canonical filtration {^}^o on ^o has been defined in (3. 50).
We know that for the conditional law n ( . |T^<+oo), conditionally on ^p, for

^T^, (£p e^) is a m+ 1-dimensional Brownian motion stopped when e hits 0 (the result
on E( is the basis of Williams ([45]-[46]), Rogers [33]).

On (fl, P®Ppi/m,) let S be the stopping time:

(6. 81) S=inf { t^O; | z,-p1^ |=p1^ }.

Let x' e R4, and h e T^ (R^) such that [| h |[ == 1, and moreover:
(

(6.82) ^ ^ ^Y^p1^))2^.
n = l YeEn 9

We are then led to estimate:

(6. 83) (P^Ppi/m,) « Q' (CD) ,̂ h > ̂ 4 p).

Of course the estimation of (6.83) will be used in (6.80), with x^^-y^p^, e, x),
h^g'^e).

Let %' be a real number such that 0<%/^ 1/2.
Let U be the stopping time:

(6.84) U=inf{^0; [^(w, x^-x' \^ }

.. f .. i r Q^.( r Q^¥ - ~}~1 1A inf^ t^O; —^((0, x') -I ̂  \ A S.
[ i 9x ] jI - I L 9x

For t^U and 2 p1^^', we get, still using the fact that the components of Xo, X ^ . . . X^
are in (^(R^):

<
(6.85) S S ^-'Y^^^^S-C^2.

n = l YeE, 9

We choose 7' so that C ̂ ^ri/^.
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Now for p small enough:

(6. 86) (P®I^) (U^D, (4 rt^Q^C exp f" - ep2/mf 1 <C exp |" —c^ 1
L (4 p)3^ J - p |_ pi/^z J ?

so that:

(6.87) (P®Iypl/m,)(<Q /(®)A,fc>^4p)^Cexp^--^1
L P /WJ J

+(P(g)Iypl/mO ( < C^(4p)3/m, (®) ̂  /I > ^4 ?; U^ (4 p)3/^).

Using the estimate (5.29) and (6.85), we know that for p small enough, the second
term in the r. h. s. of (6. 87) is dominated by K exp [-03 (4p)-a/^].

So for p small enough:

(6. 88) (Pg^pi/H,) « Q (®) h, h >^4 p)^C [ exp--^ +exp--^- ~|.L ^ilml p01/^ j

Note that the estimate (6.88) is uniform in x'eR/ as long as (6.85) is satisfied,
essentially because the components of Xo, . . ., X^ are in C^ (R^).

Now since (T^To), ^^(^e^x), ^(e,e) are ^-measurable; since moreover
[l^ (e, e) [[ = 1, we can use the estimate (6. 88) in conditional form as previously indicated,
so that:

(6. 89) n ( < Cfi g\ g- >^4 p, T^TQ | T? < +oo)^C ( exp--^ +exp--c^ ^ .
\ p17^ p01/^ /

Using (6. 75), (6. 80), (6. 89), we get for p small enough:

(6.90) n«C^/,/>^p|T?<+oo)^l-Cp2^-cfexp—c^+exp—c^^
\ p 1 1 " 1 1 p^i ) '

By Theorem 3. 6, we know that:

(6.91) n(T5<+oo)=-L
p1/^

(6. 69) follows from (6. 90) and (6.91). D

DEFINITION 6.11. - For ;eN, ^(x) is the function defined on R^ by:
r- I

(6.92) ^(x)= inf ^(^ ^Y^O))^ E < /, Y- (x, 0) >2) 1 .
11/11=1 L n = l YeE, y^ J
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Note that if xeR" is such that %l(x)>Q, this means exactly that (J (E, U E,)OC, 0)
spans R''. "=1

We have then the essential result of this section.
THEOREM 6.12. - Assume that ;eN, T)>O exist so that/or any xeR4:

(6.93) X'OO^il.

Then for any x^eR4, T^O, t>0, 1^ \ [C%]-1 \ is in all the L,(H, P®py.

Proof. - We will write P instead of P®P'. Take fe T^ (R<*) such that ||/[|= 1. We
estimate first for 8 > 0:

<6-94) P[<CX°/,/>^8,A^T].
x, is again the process (p, (©, x^). Let Tg be the { F, }^o stopping time:

(̂ ) T.-^{,,0;[|^(,,^ .j[^fe;,]-[]^}.

Now L^ is a {FAJ^O stopping time. Moreover by Proposition 3.13,
8(f>^-/8x (o, xo) is a { F^^o predictable process. Obviously, for t^L^ :

[^<«,,).[[^<«,,>j-[]^.'(6.96)

Observe that since:

(6.97) <€%/,/>= f^oacpr'X.Kxo),/)2^
Jo

FA
+ fAtl.<o<((P^ lX^(Xo),/>2d5,

Jo

then we have:

(6.98) < C^o /, / > = S^, 1^ .̂ < C^,- (e, ^) cp^- (^ x,) /, (p^- (co, x,) f >

+s^^ L, e nr- < ̂ ^ (^ )̂ CPX,- (», Xo) /, (PX,- (®, ^o) /> •

In (6. 98), we use the notation:

(6-99) ^-^^^[^^xo)]"1/

To prove (6. 98), take £;>0. Let S, be the sequence of { F^ },>o stopping times defined
by:

So=0,
S^+l=inf{r^S; ,A,-A(->e /}.
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For every feN, A^- is a { F^ }^o stopping time. Since w is a { F,®F^ } ̂  martin-
gale, the Markov property of (p can be used at the {F^}^o stopping time Ag -, so that
if^.e^:

(6 •100) ^As, (^ ^o) = ̂ os, fe, ̂  <PAs,- (^ ^o)).

A similar relation holds when e^ e ̂ ~. Now clearly:

(6.101) <C%/, />=l im $; I" p1 ^r'X,,/)2^"!
s'10 Sf^t LJAS;- J

e^

+ Z ff^^^^x,,/)2^].
Sf^ L JAs,- J

eeTT"

Using (6.101), (6. 98) is now obvious.
Now by Theorems 1.1. 2 and I. 2.1 in [5], we know that for every eei^^ and every

/^l:

(6.102) f sup |r^(£,,^)1[^p(e),
Jn o^ t^ i \\_ 9x J|

is uniformly bounded by a constant not depending on x,e. It follows that using
Theorems 3.4 and 3.9:

(6.103) f l^J ̂ \m-l^e)X,)(x)\2ds]dn^e)^C f1 -vd——<+ao.
J^o L Jo J Jo ^/27i v3

For p>0, let < (©, P) be the function defined by:

(6.104) T{(CO.P)= f 1 ,̂
J-TO

x {exP-P[<c^)-(">(£^) <- (^ ^o)/, <- (», xo)/> 1 -1 Ln(e, e).

Using (6.103), (6.104) is finite and moreover if 5^L^, we see by (6.96), (6.103)
that T^ (o), P) is uniformly bounded. Similarly if T/ (co, P) is the function:

(6.105) T/(CO,P)= f 1,̂
Jn^o

x { exp-p [ < C^;-^ (e, -^) (p^_ (^ xo)^ (p^- (CD, xo)/> ]-1 } dn (e, 4

then for s<Lrg, T/ (®, P) is uniformly bounded.
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Using Theorem 6.4, (6.98), the stochastic calculus on point process in Jacod [19],
and the boundedness of T^^ (co, (3), T^LT (CD' P)' we ^ow that if N(((O, P) is the process:

(6.106) N, (o, P)=exp f -P < Qo/, />- 1 F (r{ (©, P)+T/ (©, ?)) ̂  1,
L 2 Jo J

then N^Ly ((0' P) ls a {FA(}(^O supermartingale, and so:

(6.107) E^tN^^P)]^1-

As 5 -> + oo, Tg -> +00, L^ -^ + oo, so that by Fatou's lemma:

(6.108) E^tN^l.

For x'eR^, g e T^ R^ with |[^[|= 1, P>0, we define:

0' (^/, P)= f l^i { exp (-P < C^ (e, e) g, g »-1 } Ai (e, ^),
JiTo

(6.109)
9^ (x', P)= f 1,̂  { exp (-P < C^ (e, -^) ̂  ̂  »-1 } rfn (s, 4

J-ro

We now do the key observation that due to (6. 93) either:

i
(6.110) ^ ^ (^YOc'.O))2^/^

??=! YeEn

or:

J

(6.111) E E ^.Y^.O))2^^
"=1 Y'eEn

[of course (6.110) and (6.111) can be simultaneously verified]. If (6.110) is verified,
by Theorem 6.10, we know that for p^n:

(6.112) n(<C^(£,^,^>^p)^-^.

Since n(cr>l)< +00, we find that (by taking eventually smaller constants |LI and C) if
P^

(6.113) n ( < %) (e, e)g, g >^p, a^l)^ -^.
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Now we have the trivial:

(6.114) O^P)——? f + o o e - ^ n « C ^ ( £ , ^ ) ^ ^ > ^ p , a ^ l ) r f p
Jo

r^ ^-PP rpp /,-"
^ -c P — ^p= -c p1^ -^— ̂ .

Jo P'^ Jo u1^

If P^ I/H, we get from (6.114) that for a given D>0:

(6.115) W(x\ P)^-D P1^.

If (6. Ill) is verified, we obtain similary for P^ 1/n:

(6.116) e^Qc', P)^-D P1/^.

Recall that Wj ̂  6. Set:

[ T\ f ~\mi/(mi-l)
(6.117) p(8)=p v / 2m,81-< l /2^J

Clearly as 8 -> 0, P(6) ^ + oo. We now have:

(6.118) P[<C%/,/>^§;A^T]^P[T^A^T)

+P [N, (®, P (a))^"^8"^2^7 ("' p (8))+T^ ( f f l 'p (5))] ds, A,<Ts].
Now by Theorem 1.1 (e) :

(6.119) PCr^A^T^CS^.

Set:

(6•120) ^-j^^- *•<«»-ii<-<-.)/».
We then have the trivial:

(6.121) [ ^ (ra' P) = e9s(ffl) ^A,- (^ P ^2 (»)),
1 T/ (o), p)=e^<(;;» (x^- (©), P hj (co)).

NowifTg>A(, for s^t:

(6.122) /,, (o)^ ^ — — 1 ^ — — ^ § i / 4
II 3cpA,-/3x (co, Xo) II

so that as 5 -> 0:

(6.123) p (§) ̂  (co)^ 1 f D! r'^s v 8[m'/2(m'-l>'|_2wJ

4° SfiRIE — TOME 17 — 1984 — ?4



THE CALCULUS OF BOUNDARY PROCESSES 619

Of course as 8 -^ 0, the r. h. s. of (6.123) tends to + oo. For 8 small enough, if A,<Tg,
for s^t we get using (6.115), (6.116), (6.121), (6.123):

r n t ~\l/(ml~^ 1
(6.124) ^ (o, p (8))+x/ (o, p (§))^ -D —— —————.

| _ 2 m ^ J §l/2(m^-l)

From (6.124), we find that the second term in the r. h. s. of (6.118) is dominated by:

(6.125) P^N.(.,p(8))^expf-p(8)84mr("-l)-^^
L \ l_2m,J 81/2(W^1)/J

Now:

(6.126) ^(^r^r""'^ m' =(m^)[ ^V1' l
|_2mJ §i/2(",-i) (ml ^ |_2m,J §i/2(",-i)-

Using (6.108), (6.126) and Cebysev's inequality, we obtain that (6.125) is dominated
by:

r r n f ~i'"i/('"i-i) i ~i
(6.127) exp -(m,-l) -D-t- 1 I

L l_2mj §l/2(m,-l)J-

From (6.118), (6.119), (6.125), (6.127) we obtain as 8 ->• 0:
(6.128) P[<C^f,fy^;A^'T]^Cy

r r Dt "i'"!/*'"!-!) ir / ,,rDt i'"^"1'"1' i i) — ( w , — l ) ——— ———————
L L2mJ §l/2(m,-l)J-

+exp -(m,-l) ljr '
L L2mJ §i/2(m,-i)

We now use the result stated after (5. 52). Namely as 'k -> + oo, we get:

(6.129) P[|[C%]-ij^;A^T]^P[[C%|^V/2;A^T]

N(».l/2,2ft) ,-

+ Z P <cxoy;.,y;.>^-;A^T ,
j=i L ^ J

where f, e T^ (R^) with || f, [[ = 1 and N (X1/2, 2/K) ̂  C •^md-1). Now by Theorem 1.1 (e),
for anyp^l:

(6.130) PlIC^I^^^A^T]^-^.

Using (6.128), we find that:

(6.131) P[|[q[o]-i|^;A,;gT]^.

The proof is finished. D
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Remark 3. — As we have seen after Definition 6.11, (6.93) implies that at any
XQ e R/, the process x^ "tends" to jump in a family of directions which in a loose sense
span the whole space. Under the assumptions of Theorem 6.12 the boundary semi-
group will have C°° densities.

We have vainly tried to prove Theorem 6.12 using the normal time scale, that is the
classical {F^}^o stochastic calculus instead of the {F^}(^O stochastic calculus, as we
did in Theorem 5.8. The reason of the failure is that the behavior of the Brownian
motion z at 0 becomes here of critical importance.

As made clear in (6.110), (6. Ill), (6.115), (6.116), the excursions in ^\i^~ can
both contribute to the smoothness of the boundary semi-group. It would be apparently
quite hard to keep track in normal time scale of the two types of excursions. This is
why we have prefered to slower the computations that is:

— estimate the contribution to regularity of each type of excursion;
— compute the effect of piling up the excursions using the stochastic calculus on

Poisson point processes.
Remark 4. — There is no "natural" assumption under which Theorem 6.12 would

hold when J^f and ^f are degenerate on the boundary in the same way as in section 5.
However, it is interesting to use the technique of Theorems 6.10-6.12 to give another

proof of Theorem 5.10 in the one-sided case. Under the same assumption as in
Theorem 5.10 we would find that if fe T^ R^, ||/||= 1, then for p small enough:

(6.132) n ( < C^/, />^p)^ - ̂  -1.
mi C

The estimates follow then the same line for Theorem 6.12. In particular, instead of
(6.117) we will take P==l/§.

Of course (6.132) is also useful when ^ verifies the conditions of Theorem 5.10, ^ '
does not verify any special condition, to obtain the equivalent of Theorem 5.10 for the
two-sided process. Details are left to the reader.

We have vainly tried to find an "excursion" proof of Theorems 5.8 and 6.7. This
is rather natural due to the results of section 6 (/).
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