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FILTRATIONS OF COHOMOLOGY MODULES
FOR CHEVALLEY GROUPS

BY HENNING HAAHR ANDERSEN

Let G denote a Chevalley group and let B be a Borel subgroup of G. Suppose k is a field
of characteristic p>Q and let G^ denote the algebraic group over k obtained from G. In
this paper we construct filtrations of certain subquotients of the sheaf cohomology groups
H^Gfc/Bfc, ^(^)), where JSf(^) is the line bundle on G^/B^ induced by the character K
of B. The Weyl modules for G^ occur as the top cohomology groups of certain such line
bundles and in this case our filtrations coincide with the filtrations constructed by
J. C. Jantzen [13].

From our construction it is easy to obtain a bound on the length of the filtrations, see
Proposition 4.6. Moreover, we show that the formal characters of the filtrations satisfy a
nice "sum formula" which in the Weyl module case is Jantzen's sum formula. Thus we
prove (and extend) Jantzen's formula in arbitrary characteristic (J. C. Jantzen proved his
sum formula (in the Weyl module case) under some mild restrictions on p [13] and he
conjectured it to hold for all primes [14]).

Finally we consider the behaviour ofhomomorphisms between two "neighbouring" Weyl
modules with respect to the filtrations. We conjecture that when the highest weights
involved belong to the lowest /^-alcove and are not close to its upper wall then these
intertwining homomorphisms respects the filtrations (up to shift by 1). (Though not stated
anywhere (known to this author) this conjecture can be traced back to J. C. Jantzen. It is
analogous to his characteristic zero conjecture for intertwining homomorphisms between
Verma modules, see [15]). Following 0. Gabber and A. Joseph's approach for Verma
modules [10] we prove that this conjecture implies the conjecture of G. Lusztig on the
modular characters of simple modules for G [17].

In order to construct our filtrations we need to consider both sheaf cohomology on the Z-
variety G/B and Hochschild cohomology over the integers. A key result here is a universal
coefficient theorem. Theorem 1.18 below, which allows us to compare characteristic zero
cohomology with characteristic p cohomology. As a byproduct we prove a conjecture of
J. E. Humphreys concerning weight multiplicities in the cohomology modules
H^G^Bfc, JSf(^)), see Corollary 2.9.H.
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496 H. H. ANDERSEN

The paper is organized as follows. In section 1 we derive the results we need on
cohomology over the integers (actually in this section we work over any principal ideal
domain and G may be any affine group scheme whose coordinate ring is flat). Then in
section 2 we combine these general results with the Borel-Weit-Bott theorem and with the
strong linkage principle to obtain information about the cohomology modules
H^G/B, J^(X-)). Section 3 is devoted to the study of the semi-simple rank 1 case and the
results here are used in section 4 to construct the above mentioned filtrations and to prove
their basic properties. Finally in section 5 we show that it is possible to define the concept of
translation over a discrete valuation ring and we use this in section 6 to compare the
filtrations of two neighbouring Weyl modules.
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1. Cohomology over a principal ideal domain

In this section A will denote a principal ideal domain and G will be any affine group scheme
over A whose coordinate ring A[G] is flat (i.e. torsion free) over A. We denote the
comultiplication in A [G] by ^: A [G] -> A [G]®A [G] and the coidentity by e: A [G] -> A.

DEFINITION 1.1. — Let V be an A-module. Then V is called a rational G-module if V has
the structure of a comodule for A [G].

When V is a rational G-module then we let Ay: V -> V(g)A [G] denote the map defining its
comodule structure (occasionally we shall need also to consider right comodules).

J.-P. Serre [18] has proved that rational G-modules have the following properties
(1.2) The category of rational G-modules is an abelian category.
(1.3) Any rational G-module is a filtered union of submodules of finite type.
(1.4) Every rational G-module of finite type is the quotient of a free rational G-module of

finite type. In particular any such module V has a resolution

O^PI-^PO^V-^O,

with P,, ;=0, 1 rational G-modules which are free of finite type.
The words 'Tree", "of finite type" refer to the structure as A-modules.
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MODULES FOR CHEVALLEY GROUPS 497

Moreover, we have
(1.5) The category of rational G-modules has enough injectives.
This statement is very easy to prove once we have available the concept of induction:

DEFINITION 1.6. - Let H be a closed subgroup ofG. Then if E is a rational H-module we
define the induced module E|§ as follows

Elg^EOAtG])".

Here upper H means fixed points under the action of H (recall that if F is a rational H-module
then the set of fixed points in F are given by F" = { x e F | Ap(x) = x® 1}). The action of H
on E®A [G] is the right diagonal action and E |S becomes a G-module through the left action
of G on A [G]. We will only consider subgroups H for which A [H] is flat.

Recall that the induction functor |§ has the following properties, see [7]
(1.7) (Universal mapping). Let E^: E |S -> E be the map induced by the counit e. If

/: V -»- W is an H-homomorphism from a rational G-module V to a rational H-module W
then there exists a unique G-homomorphism/: V-^W|^ such that /=Ei^o/

(1.8) (Reciprocity). With V and W as in (1.7) we have

HoniG(V, W|S)^HoniH(V, W).

(1.9) (Transitivity). If K is a closed subgroup contained in H and F is a rational K-
module then

F |H|G^TT|G
I K I H ^ I K -

(1.10) (Tensor identity). If V and W are as in (1.7) then we have

W|g®V^(W®V)|g.

(1.11) If I is a rational H-module which is injective in the category of rational H-modules
then 11^ is injective in the category of rational G-modules.

Now we can prove (1.15) easily: let 1̂  denote the trivial group scheme over A and suppose
V is a rational G-module. Then if I is an injective A-module containing V then by (1.7)
and (1.11) we see that I |P is an injective G-module containing V.

Q.E.D.
The properties (1.2) and (1.5) of the category of rational G-modules (resp. H-modules)

allow us to define the right derived functors

H"(G, -) of the fixed point functor V -^ V0

and
H^G/H, -) of the induction functor E -^ E |g.

The relation between these two functors is (just as in the case where A is a field, see [8]).
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498 H. H. ANDERSEN

PROPOSITION 1.12. - Let E denote a rational ^-module. Then we have

Jf"(G/H, E)^H"(H, Eg)A[G]),

for all n>0.
To prove this we need a useful

LEMMA 1.13. - If E ^ ̂  rational H-module then both H"(G/H, Eg)A[H]) and
H"(H, E®A[H]) vanish for n>0.

Proof. — Let E -> I. be a resolution of the A-module E by injective A-modules I,. Since
A [H] is flat the complex I. (x)A [H] = I. |̂  is a resolution of E®A [H] = E |̂  by injective H-
modules (1.11). Now by reciprocity (1.8) we have

(I.I^Hom^A, I.I^Hom^A, 1̂ 1,

It follows that H"(H, E®A [H]) = 0 for n > 0. On the other hand we have by transitivity
(1.9)

aW^^®^0]
and since A[G] is flat we conclude that H^G/H, E®A[H])=0 for n>0.

Q.E.D.
Remark 1.14. — The above lemma allows us to use the standard resolution

0-^A^A[H]->A[H]®A[H]-^A[H]®A[H]®A[H]^ . . .

tensored by E to compute both H"(G/H, E) and H"(H, E).
Proof of Proposition 1.12. — For »==0 the statement is just the definition of

H°(G/H,E). Now by Remark 1.14 we may compute H"(G/H, E) as the n-\h
cohomology of the complex

0 ̂  (E®A [H]) |g -^ (E®A [H]®A [H]) |g -. . . .

while H"(H, E®A[G]) is the n-th cohomology of the complex

0 ̂  (E®A [G]®A [H])" ̂  (E®A [G]®A [H]®A [H])" -> . . .

However, these two complexes are identical.

Q.E.D.

As an immediate consequence of(1.9) and (1.11) we get

PROPOSITION 1.15. — IfK is a closed subgroup contained in H and E is a rational K-module
then we have the spectral sequence

7T(G/H, H^H/K, E)) => H^^G/K, E).

4° SERH; - TOMI: 16 - 1983 - ?4



MODULES FOR CHEVALLEY GROUPS 499

We can also generalize (1.10)

PROPOSITION 1.16 (Generalized tensor identity). — Let V be a rational G-module which is
flat over A. Then for any rational H-module E we have

H"(G/H, E®V)^H"(G/H, E)®V
for n^Q.

Proof. — Let I. denote the standard complex

0 ̂  A [H] -> A [H](x)A [H] -^ A [H]®A [H]®A [H] -^ . . .

Then using (1.14) and (1.10) we get

H^G/H, E®V)^Hn((L®E®V)|g)^Hn((L®E)|g®V)
^H"((I.®E)|g)®V^H"(G/H, E)®V.

Q.E.D.

We will now examine how the cohomology behaves under base change. We let A -> R
denote a homomorphism into a commutative ring R and we denote by Gp the extension of G
to R (i.e. Gp is the affine group scheme over R with coordinate ring R[Gp]=A[G]®R).

LEMMA 1.17. — Let V be a rational G-module which is flat over A. Then

V^R^V^R)^.

Proof. — V° is the kernel of the map V -^ V ®A [G] which takes v into Ay (v) — v 001. As
V®A[G] is torsionfree so is the image of this map. Hence V^^R is the kernel of the
induced map V(x)R ^(V®R)®RR[GR] which by definition is (V^R)^.

Q.E.D.

THEOREM 1.18 (Universal coefficients).

(i) Let V be a rational G-module which is flat over A. For each i ̂  0 we have a short exact
sequence of R-modules

0 -̂  H^G, V)(x)R -^ H^GR, V®R) -^ TorKH^1 (G, V), R) -> 0.

(ii) Let E be a rational H-module which is flat over A. For each i ̂  0 we have a short exact
sequence of rational G^-modules

O^H^G/H, E^R-^GR/HR, EOR^TorKH^^G/H, E), R)-^0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPER3EURE



500 H. H. ANDERSEN

Proof. - (i) Let ^(VgiAtGpQ0 and set Bj(resp. C,) equal to the image of the natural
map Ij_ i -»• lj (resp. the kernel oflj ->• Ij+1). Then Bj and C, are torsionfree and we get the
diagram ^ ^

t (
O^Tor^H^a.^R^B^^R^C.^R

Ij-i8)R->-I^®R->-Ij+i®R

B,(2)R -^ C,®R ̂  ?(1. )®R -^ 0

By Lemma 1.17 we know H^GR, V®R) = W(l. ®R) and hence we easily get (i) from this
diagram. Now (ii) follows from (i) by Proposition 1.12.

Q.E.D.

Let now E and F be rational H-modules. There is a natural G-homomorphism

E|g®F|g^(E®F)|g

coming from the H-homomorphism

Ei;E®Ei;F:E|g®F|g^E®F.

This homomorphism is functorial in both E and F and gives rise to natural G-
homomorphisms

(1.19) H^G/H, E^H^G/H, F) -> H^^G/H, E®F).
We end this section by considering the case where the quotient G/H exists (as a

scheme). Then we let K : G -> G/H denote the quotient map and we will assume that n is
locally trivial. In this case every rational H-module E induces a locally free sheaf JSf(E) on
G/H. The sections of JSf(E) over an open subset Uc=G/H are

F(U, ^(E^nTi-^U), ̂ O^B)^

where the action of H on ^(7l-l(U) ^o)®11 is the right diagonal action.
Note that the set of global sections of ^ (E) is just the induced module E |g. In fact we

find

PROPOSITION 1.20. — In the above situation we have

H^G/H, E^H^G/H, JSf(E))

foralli^O.

4eSERIE - TOME 16 - 1983 - ?4



MODULES FOR CHEVALLEY GROUPS 501

Proof. — It is enough to prove that for any rational H-module F we have

H^G/H.J^F^AIH]))^ for f>0.

Note that J^(A[H])^TI^G and hence J^(F®A[H])^J^(F)(x)7r^G^7^(7i* J^(F)) where
the last identification is the projection formula. Since n is an affme homomorphism we have
R^^TC* ^?(F))=0 for />0 and hence

H^G/H, ^(F^ACHD^H^G/H, n^ ^(¥)))^W(G, 7i*J^(F)).

The proposition now follows via the fact that G is affme.

Q.E.D.
Remark 1.21.- From this proposition it follows that H'(G/H, E) =0for ;> dim G/H and

any rational H-module E. If E is finitely generated over A and G/H is projective then it
also follows that H^G/H, E) is finitely generated over A for all i.

2. Induction from a Borel subgroup of a Chevalley group

Let G be a Chevalley group. Thus G is an affme group scheme over Z and if k is an
algebraically closed field then G^ is a connected reductive linear algebraic group over k. We
fix a (split) maximal torus T in G and a Borel subgroup B containing T. Denote by R the
root system of G with respect to T and choose a basis S in R such that the roots of B are the
negative roots R_ = — R+. We let W denote the Weyl group and we set X(T) equal to the
character group of T. In addition to the usual action of W on X(T) which is given by
s^K) = ̂  — < oT, X > a when a e R, s^ is the corresponding reflection, a^ the coroot, 'k e X(T)
we also consider the t (dotaction"givenbyw.X,=w(^+p)-p. Here pis half the sum of the
positive roots. We assume peX(T).

From now on we will write H1 (E) instead of H1 (G/B, E) and if R is a commutative ring we
set HR(E) = H^GR/BR, E ® R). By Remark 1.21 Hp(E) = 0 for ;> dim G/B and if E is of
finite type then Hp(E) is a finitely generated R-module for all i.

Set X (T) + = { ^ e X (T) | < o^, K > ̂  0} and recall the following result on the cohomology of
line bundles on G/B.

(2.1) (Borel-Weil-Bott) ([6], [9]). Let ^ + p e X (T) + and w e W.
Then

HQ(W,^
'HS(?I), i=l(iv)
0 otherwise.

Here / denotes the length function on W.
(2.2) (Kempfs vanishing) ([16], [3]). Suppose k is a field of arbitrary characteristic. If

?ieX(T)+ then

HJ^)=0 for ;>0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



502 H. H. ANDERSEN

Fix now a prime p and let in the following k denote an algebraically closed field of
characteristic p. Denote by Wp the affme Weyl group, i.e. the group generated by
{sa,m\QLe^+9me^} where s^ ^ is the reflection given by s^ „,. X = s^. ̂  + mp a. Recall that
the irreducible representations of Gj, are parametrized by X(T)^. We let L(^) denote the
irreducible G^-module with highest weight ^eX(T)+.

(2.3) (The linkage principle) [1]. Let neX(T), ^eX(T)+. If L(^) is a composition
factor in 1-4 (u) for some ; then ^eWp.u.

The proof of the strong linkage principle shows also
(2.4) Suppose ̂  is minimal in X(T)+ (with respect to the ordering induced by R+). Then

for w e W we have

H[(wA)^
Hg(X) if i=l(w)

0 otherwise.

In particular if N = | R j = = dim G/B then H^(-2p)^.
Remembering that H^(^) is the cohomology of the line bundle J^(^), Proposition 1.20,

and noting that ^ f ( — 2 p ) is the canonical sheaf on G^/Bj^ we have
(2.5) (Serre duality). Let E be a rational B^-module. Then for all i

HKE^Hr^E*®^?))*.

Combining these results with Theorem 1.18 we obtain

COROLLARY 2.6. - Let u, XeX(T)+ andweW:
(i) H^w.^-) is a torsion module for i^l(w).

(ii) H°(X) and H^-Pi-2 p) are free Z-modules.
(iii) 7/'L(u) is a composition/actor in W(w.K)®kfor some i then \ieWp.'k.
(iv) H^^p^Z.

Suppose V is a rational T-module of finite type. Recall that V= @ V^ where
peX(T)

V^= {i;eV|Av(i?)=i; ® u} (note that an element in X(T) corresponds to a homomorphism
Z [X, X~1] -> Z [T] and thus may be identified with an element in Z [T]). If V is free as Z-
module we define

chV= ^ rank(V^)^eZ[X(T)].
H6X(T)

Then ch V=ch(V®A:)==ch(V ® Q) where the last two expressions denote the usual
character of a T^, resp. T<Q, -module.

W e s e t f o r H e X ( T )

xOO^C-iychH^u)
i

(i. e. ^(u) is the Euler character of the line bundle J^(H) on G^/B^).

4 e SERIE - TOMI: 16 - 1983 - ?4



MODULES FOR CHEVALLEY GROUPS 503

COROLLARY 2.7. - Let'k(=X(T)+ andwE^f. Then
(i) x(w.?l)=(-l)z<o)>chH^W)(u;.)l)==(-l) J (w)chHga)= (-1)^^70).

(ii) ch{Hl(w\w.^)=^), where H1^^.^ denotes the free quotient of ̂ ^(w.^),
i.e. the quotient of \\1 (w) (w . "k ) modulo the torsion submodule H^"^^.^.

Proof. — (i) is a consequence of the invariance of the Euler character and (ii) follows from (i)
via Theorem 1.18. Alternatively the following lemma combined with Theorem 1.18 show
that

^(-l) lchH^(w.^)=^(-l) i(chH l(w.^)(8)A;+chH l+ l(w.^®A;)
i i

=(-l)^w)chHJ (w)(w.^ee+E(- l) l(chHl(w•^)(®yk-hchHl+l(M;•?L)(®A:)

=(-1)^011 H^(w.)^,

Q.E.D.

LEMMA 2.8. — Let V be a finite rational ^-module. Then

chV®A:==chTorf(V,A:).

Proof. - Use the resolution 0-> Z -^ Z -> J - l p J - ->Q to see that the T^z-modules

V (g) Z/^ Z and Tor^ (V, ~Llp Z) have the same characters.

Q.E.D.
If W is a finite dimensional G^-module and ^eX(T)+ then we let [W : L(T)] denote the

composition factor multiplicity of L(^) in W.
As a consequence of Theorem 1.18, Corollary 2.6 (i) and the above lemma we get the

following

COROLLARY 2.9. - Let [i, ?ieX(T)+ and weW. Then

(i) [H^w.^) : LaOl^H^Cw.^)®^ : L^+lH^-^fw.^)®^ : L^i)]
=[H^) : LaOl+tH^Cw.^®^ : LOOl+tH^^Cw.^)®^ : L(n)];

(ii) dim H^^w.^^dim H^^(w.?i),=dimHSa),=dim H^(?i),.
Here H^CW.^ denotes the torsion part of H^CW.^).
Part (ii) was conjectured by J. E. Humphreys.
Finally Serre duality gives:

PROPOSITION 2.10. — Let E be a rational B-module which is free of finite type. Then the
natural homomorphism (1.19)

H^E) ® H^^E* ®(-2 p)) -. H^E ® E* ®(-2 p)),

combined with the homomorphism induced by the canonical map E ® E* —> Z gives a non-
singular pairing

H l(E)„, ,xHN- /(E*®(-2p))„,^HN(-2p)^Z.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



504 H. H. ANDERSEN

Proof. - We shall prove that the homomorphism H^E)^-^ H^^E* ®(-2p))^
induced by this pairing is an isomorphism. The injectivity follows by taking A: = Q in (1.18)
and (2.5). To prove the surjectivity we consider first the case ;=0.

If the rank of E is 1 then it follows from (2.2), (2.5) and (1.18) that for any field k have
H°(E)(x)^H2(E) and H^E* ®(-2p)) ®^H^(E* ®(-2p)). So in this case the
proposition follows immediately from (2.5). An easy induction on the rank of E gives then
the case where all weights of E are in X(T)+. For a general E pick n so big that
n p + v e X (T) + for all weights v of E. As - n p is the smallest weight in H° (n p) we have a
short exact sequence of free rational B-modules

(2.11) 0 -> Z -> H°(n p) ® (n p) -. Q -. 0

(with B acting trivially on Z). Tensoring this sequence by E [resp. dualizing this sequence
and tensoring it by E* 0 (— 2 p)] we obtain the commutative diagram where for the middle
terms we have used (1.16)

0 ̂  H°(E) -^ H^p^H^EO^p)) ̂  H°(Qg)E)

H^E* ®(-2p))^ ̂  H^pXgH^E* ®(-(^+2)p))* -^ H^Q* (8E* ®(-2p))^

(note that all the H°'s are free and that so is H^E* 0 -(w+2)p) because all weights in
E* ® (—n p) are in —X(T)+). By the above the middle vertical map is an isomorphism and
hence so is the left vertical map.

Next, consider the case ;>0. Choosing n as before we have
H i(E®A^p)=HN- l(E*®-(^+2)p)=0
(2.2). Hence we get via the exact sequence (2.11) the commutative diagram

H-^Q^E^-.H^E^^O

HN-l+l(Q*®E*(8)(-2p))^^HN-i(Eslc(8(-2p))^^0

By induction on ;' we may assume that the left vertical map is surjective and the proposition
follows.

Q.E.D.

3. Filtrations. The rank 1 case

We preserve the notation from section 2.
In this section we fix a simple root a and we let P, denote the minimal parabolic subgroup

corresponding to a(i. e. P^ contains B and has a as its only positive root). When E is a

46 SERIE - TOME 16 - 1983 - ?4



MODULES FOR CHEVALLEY GROUPS 505

rational B-module we will use the notation H;((E), H[ p(E) and H[ ^(E) for the cohomology
modules H^P^/B, E), H^P^/B^, E (g) Zp) and H^P^/B^, E ® k), respectively. Here Zp
denotes the localization of Z at the prime p. By abuse of notation we also write p for the
generator of the maximal ideal in Zp.

Recall that H^(E)=0 for ;> 1 and that if ^eX(T) then

H^kW^O if and only if (a^ ?i>^0

and

H^(^)^0 if and only if ^ )i><-I .

It follows from Theorem 1.18 that H^(X) is always a free Z-module and that
HS(,R(^)^H^) g) R for any commutative ring R.

Let now X,eX(T) be fixed such that <a\ ^>=r^0 . It is easy to see (compare e. g. with
Lemma 2 in [1]) that we may choose a basis {1:0, Vi, . . . , v,} for H^ W (resp. { v'o, v\, . . . , v,}
for H^ (v^-)) such that

i;fGH2(^\_^, resp. i;;eH^(^.^^+(,+i)a

and such that the action of the root subgroup U^cP^ is given by

AH^)(^)=I;CV^®xl-^ ^P- ̂ (...^^-E^)^®^-1).
j V/ j v ' /

Here we have identified Z[UJ with Z[X].
It is now straight forward to check that the two maps

T^: H^.^)-.H^),
T^H2a)->Hi(^ .?L),

defined by

and

^(^).-,.T^;)=(j^-., <=0,1, . . . , r

T^(^)=(r-0!<!^-. <=0,1, . . . , r ,

are P^-homomorphisms. Note that the composite of these two maps in either order is
multiplication by r !

Let Vp : Z -> N denote j?-adic evaluation, i. e. m =^("1) s where (p, ^) = 1. We will need the
following.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



506 H. H. ANDERSEN

LEMMA 3.1. — Suppose re N has p-adic expansion
r=fl^n+^-l^ - l+.. .+^+^o(^{^ 1. ... ,/?-1}).

Then

(i) v,(r!)=fr- f a^/p-1.
\ i=0 )

(ii) Ifa^0andr<pn+l-l then max^ Vp^ r: ) ^==^-v/r+l).

Proo/. ~ This is of course elementary, ̂ ^ e. g. ([11], p. 263), with (ii) following from (i) (the
maximum is achieved for ;=/?"— 1).

Q.E.D.

From this lemma and the above discussion we get remembering that
H^ p(^) ̂  H^OI) ® Zp for all; and ̂

PROPOSITION 3.2. - Let\ e X (T) such that p " -1 ̂  < ̂  , X, > <;?"+1 -1. 7%^ w^ ̂ ^
two homomorphisms of rational Py^ -modules

T^: H^(^.^)^H^a)

and

T^: H^a)-H^(^.^),
such that

(i) 77^ induced maps H^ fc(^or^) ̂  H^, k(^)» r^lyP• H^, fcW -> H^ fc(^oc^) ar^ non-zero.
(ii) 77^ composites T^oT^ ^W T^oT^ fl^? &o^ multiplication by ^"-vp«a'^+P».

These two homomorphisms betwee free Zp-modukes give rise to filtrations:

H^(^.^)=H^(^.^)03H^(^.^)12 . . .

and

H^^H^)0^^)1^ ...

defined by

H^(^.^={i;eH^(^.^|T^e^H^a)}

H^ay= {yeH^a)|T^e^H^(s,.^}.

The image of these filtrations under the natural map

H^. /^) ̂  H^ /^.?i) ® k^ ,(^.?i), resp. H^, /^ -^ H^ /^) ®/r^H2, ,0)

give filtrations (H^(^.^),^ and (H^ay'^o of H^(v^ resp. H^O). By
Proposition 3.2 (ii) we see that

H^(s,.^=H^W=0 for 7>^-v,«a^+p».
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Moreover, if we by subscripts denote filtration level (e. g. H^ fc(^.=H^ kW/H^ kW^1)
then the map

p-^^. H^/s^-H^),

induces an isomorphism

(3.3) H^(^^),^H^(^-^<^,^p»-,.

If now neX(T) then we set

X,(H)=chH^ai)-chH^Oi)

i.e.

^4-^-<x+.. .+^-"« ;y <a \H>=^0 ,
Xa00= 0 if < O C \ H > = - I ,

_^+"_^+2<x_ _^+(n- l )a y ^Q^ ̂  =-^>1

With this notation we have the "sum formulas".

PROPOSITION 3.4. — Let ^ be as before. Then

(i) ^ ch(H^ ,(s,. ̂ ) = ^ vp(mP) ̂ . rn • ̂
w w.

0<mp<<a , X+p>

(ii) ^ch(H^(^)J)= ^ v/m^)x«a-^a)+(»-v/<a\^+p»)Xa(^
y'^i ' m ,

0<mp«a,^+p>

Proo/. — By the construction of T^ we see that the image of v\ in H^ ],(s^.\) belongs to

H^ fe(s^. K)3 if and only if Vp ( r ) ̂ j. Hence the statement in (i) says

vp( r- j^^^i^-Z^^^
\ l / mi m^

where the first sum is extended over all m^ with min {; , (r + 2)/2 } ̂  m^ p ̂  r and the second
sum is extended over all m^ with 0 < m^ p ̂  min { r+ l - ? , r / 2} . This equality follows from
the identity:

fr\ r(r-l)...0'+l)
\i} (r-0(r-<-l).. .2.1-

The proof of (ii) is analogous [one may prefer to obtain (ii) from (i) by using (3.3)].

Q.E.D.
Before we leave the rank 1 case we need to look at how the filtration ofH^ ̂ ) relates to the

filtration of H^ k(^+(o) when o is "small".
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Suppose © e X(T) such that < a", en > = 1. Then we have the short exact sequence

0 -> ©-a -»HS, p((o) -» (B -^ 0,

of rational B^-modules. Tensoring this sequence by ̂  (resp. by s,. K) and using the tensor
identity 1.10 [resp. (1.16)] we get the exact cohomology sequence

O^H^^+(B-a)^H^((B)®H^(^^H^a+(»)-^0
[resp.

O^H^(^.^+co-a)^H2,p((o)®H^(^.X)^H^(^.X+(»)^0).

LEMMA 3.5. — In the above situation there exist homomorphisms of rational P^ -modules

/•o: H^(o))®H^a)-^H^(X+(n-a),
so: H^(^+(D)^H^((o)®HS,p(^),

r i : H2,p((D)®H^(^.?.)^H^(^.^+(o-a),
^ : H^(^.)L+co)^H2.p(co)®H^(^.^),

such that the/allowing identities hold

(i) r j o i ^ , U j o S j and S j o n ^ + i ^ o r j are multiplication &y/7v '«° [•x+P»/or/=0, 1.
(ii) ^oT^^v.Ka^+p))^^)^

(iii) T^+a>-ao7tl=pv.««'•^»roo(T^(2)l).
(iv) (T^®l)o5l=^v-«<t'-x»^•(,oT^+•B-°•.
(v) T^+•»orl=^«^x+P»7too(T^®l).

Proo/. - IfveX(T) such that <a', v> ^0 then let us denote by {v]} (resp. {i^}) the
"standard" basis for H2(v) [resp. H^.. v)] used above. Then r, and 5, are defined by

'•0(^(8 ̂ )=w^l<'>-c', ro(^ ® ̂ )=0•-r)^+<•)-^

ri(î  ® ^)=(^•+l)t,;^<•>, ri(t;'̂  (g) ̂ )=(r+l -Oi;;.̂ ",

50 (î  + (1>) =(r +1 - 01^ ® î  + n^_ i 01^,

^(^+<»-a)=(r-0(^®^)-0•+l)(^l®l,n.

In the same basis the homomorphisms ij and n, are given by

^ (^ + «>-«)= i,̂  0 ̂  _ ̂  0 ̂

^•l(^+<•>)=^,;».^®^+^®^,

^to(^®^)=^+<l), "o(^®^)=^l(•>,

"l(yl*•(2)^)=^+")-a, n^^v'ik®v<^=-v\\\s'-'t.

It is now left to the reader to check the above relations.

Q.E.D.
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Let us finally record the following result.

PROPOSITION 3.6. - Let ?ieX(T) such that p"-!^ <a\ ?i> < ^n + l -1. Then the
diagram

H^ ^(-?,-2p)(x)H^ pO)^H^ /-2p)^

T.<g»T, \n"-v/«a\^+p»

^ \

HS. p(-V^-2p)®H^ ,(v5i)-H^ ,(-2p)^Z,

^ commutative [the horizontal maps are those from (1.19)].
proof. — Omitting the weight superscripts on basis elements the horizontal maps are given

by

^^(-^^•[resp. i;,®^.-^-!)^,]

and the proposition is easily checked.
Q.E.D.

Remark 3.7. - Let us again use ( , ) to denote the bilinear pairings induced from the
horizontal maps in Proposition 3.6. Then the result says

(T^, ̂ ^w)=pn-v^^+p>)(v, w),

for all v e H^( - 'k - 2 p), w e H°^ pW. Using Proposition 3.2 (ii) this may also be written

(T,i;,w)=(u,T,w),

for all yeH^(-?i-2p), weH^(v^).

4. Filtrations. The general case

We preserve the notation from the previous sections and now consider the general case.

PROPOSITION 4.1. - Let ?ieX(T), aeS and suppose p " ^ <oT, ? i+p> <pn+l. Then
there exist homomorphisms of rational G-modules

H^1 (^. )i) ̂  H^(X) and H^) ̂  H^1 (^. ?i),

^MC/I ̂  composite (in either order) is multiplication by ^n-vp«a '^P^
Pwo/. - As H^ p(^.?i)=0 for ̂  1 the spectral sequence (Proposition 1.15)

H^/P^, H^P^/B^, ̂ .^^H^^G^/B^, ^.?i)
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degenerates and gives us isomorphisms

H^^.^H^/P^, H^P^/B^, ̂ )),

;=0,1, . . .
Similarly, we have isomorphisms

H.a^H^/P^, H°(P^/B^ ^)), z=0, 1, . . .

The proposition follows now from Proposition 3.2.

Q.E.D.

NOTATION 4.2. - If E is a rational B^ -module then we will let H}(E) resp. H;(E) denote
the free quotient, resp. torsion submodule ofH^(E). Note that for [i e X(T) we have because
of Corollary 2.6. (i) that H} (^i) == 0 unless w. p, e X (T) + for some w e W with l(w) = i.

Fix now ^eX(T)+. For each weW Proposition 4.1 gives us a homomorphism

H^(u^) ̂  Hy^u^),

which we shall denote T^ or just T, when it is clear which ^ and w we refer to. (In fact one
might prefer to consider Ty as an endomorphism of © H^^w.^)).

W6W

Let ^eW have reduced expression .y=^ s^ ... s^ and set Ty=T^ T^ . . . T^ .

LEMMA 4.3. - The homomorphism T^H^^W.^^H^^OW.^) ̂  independent (up to a
unit inZp) of the chosen reduced expression j or y.

Proof. — Let y = s ^ ^ s ^ . . . s ^ be another reduced expression for y and set
Ty = T T . . . T . As'H^ w) (w .\) 0 Q and H^ w) (^w. ̂ ) ® Q are isomorphic irreducible
Go-modules we see" that Ty and Ty are proportional. It is therefore enough to show that
Ty (u) = Ty (u) for some v e H^ w) (w. ?i)\{ 0 }. To see this recall that by Corollary 2.7 ^ is
the unique highest weight in H^^w.X,) occurring with multiplicity 1. We can therefore
choose a generator w^ for H^^w.X)^ The following lemma implies that (up to unit
inZp)

Tyvw=Pmvyw.

where m is independent of the reduced expression for y. (In the notation of Lemma 4.4 we

have m =^ n^ with the sum extended over all P e R+ for which ^(p) e R_ and w~1 (?) e R+).
11

Q.E.D.

LEMMA 4.4. - Suppose /A^ < P\ ^ + p > ^'p4'1, P e R + and set

^p^p-Y^P^ ^+P»-

yy^, Ly <7.y above and aeS //^z M/? ^0 ^ M^?7 in J, we have

f ^ if l(^w)=l(w)-l,
t^^,P=^-l(a) ^ /(^w)=/(u;)+l.

T „ _J "̂
^^w-^ ^,, R-«,-l
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Proof. - Suppose /(^w)=/(w)-l. It follows from the analysis of weights in [2],
section 2, that v^® 1 e H^^w. 'k)<Sk c: Hj^^w. X.) is not in the kernel of the homomorphism
H^w.^^H^-^w.X).
The lemma follows from this via Proposition 4.1.

Q.E.D.

We are now ready to define the filtrations. By WQ we denote the longest element in W.

DEFINITION 4.5. - Let ^eX(T)+ and weW. Then we define

^^(^.^^{ueH^^w.^lT^^e^H^^CwoU;.^)}

and we set

Hj^w.^the image of H1/"^.^,

under the natural map H^^w.^) -> H^w.^)®^

PROPOSITION 4.6. - Let^eX(T)+ and define n^ as in Lemma 4.4. Then for allweWwe
have:

(i) The homomorphism p'^^ : H^^w.Xy^H^CwoW.^) induces an isomorphism

H!,(w)(w.)l),^H/^M;)(woW.^-,,m= ^ AZp,
peR+

(where subscript again denotes filtration level).

(ii) H^w.^O/or^ ^ n^.
PeR+

Proo/. - Immediate consequence of Proposition 4.1.

Q.E.D.

PROPOSITION 4.7. - Let'keX(T)+. Then
(i) H^(u;o.^)1 ^ the maximal submodule ofB^(wo.'k).

(ii) H^Wo.^^Oifandonlyifj^ ^ »p.
P6R+

p^^ - (;) By construction H^(wo.^)1 is the kernel of the map
H^(wo.^)(8)A;->H^a)(g)fe. However, Hy(wo.^)(8^H^(wo.^) and H^(^)®A:^H^(?i)
by Corollary 2.6 (ii). Now it is well-known that there is only one non-zero homomorphism
H^(wo.X) into H^), and that the image of this is L(^), see[\}. Lemma 4. Our
homomorphism is non-zero by Lemma 4.4.

(ii) Set m= ^ Mp. Then Lemma 4.4 shows that ^v^=pmv^ and hence
PeR+

i;i®leH2W.
Q.E.D.
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Remark 4 . 8 . — For w ̂  1 it is not always true that H{^ w) (w. ̂ w 9^ 0. Also it is not always
the case that H^ (A,)^ ̂  0 for all j^m. In fact H^ (X-) may be irreducible although m > 0.

We will now see how the formulas in Proposition 3.4 give us sum formulas in the general
case. First we need:

LEMMA 4 . 9 . — Let E denote a rational ̂ -module which as a ̂ .-module is cyclic of finite order
p " . Then

Z ^(-l^ordCH^E)))^^^
p i

where "k is the weight ofT on E.

proof. — Let Z^ denote the free rank 1 B-module on which B acts via ^. Then we have the
short exact sequence of rational B-modules

0 -^ Z^ Z^ -> E -^ 0.

Suppose weW such that w(^-j-p)eX(T)+. Then H1^) is a torsion module for i^l(w)
[Corollary 2.6(i)] and hence the long exact cohomology sequence associated to the short
exact sequence above shows that

^(-l)lv/ordHl(E),)=v/det(^,H^a),)),

where we by det(/7", V) denotes determinant of multiplication byp" on the module V. The
lemma follows therefore from Corollary 2.7(i).

Q.E.D.

Let A-eX(T)+. For weW we set

e.^^EC-iyv/ordH^w.^) and e,=^Up)^.
j ^

Also let sgn : R -> { +1} be defined by sgn (R +) = 1 and sgn (R _) == -1. With this notation
and with n^ as in Lemma 4.4 we have

THEOREM 4.10

^chH^^w^y^-iy^Q^-iy^Q^
y^

( E "«)xa)+ Z sgn(u;(a)) ^ Vp(mp)^-mp^
a e R ^ n w lR+ aeR+ , w

0<mp< <a', X+p>

Proof. - Choose basis {v^ v^ . . . , v^} and { w i , w^ . . . , w^} for H^^w.^) and
H^^WoU;.^), respectively, in such a way that r!^(y^)=paiWi for some ^e^J. Then
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H;/^(w.^)^ span {^®1 \a^j} and hence

^ ch H^ (w. XV = ̂  v,(det T^ IH-O^) ̂ l-
^i n

Now, if WQ =^ ̂  . . . ̂  is a reduced expression for WQ then T^ =T,^ . . . T,p and hence

^^n^11^
i

We set

T.(^l)=(~ly^•••^w)(9^...^.+e^ ̂ ...^)00
and

T-IT,(H)^.
n

Then VT,= -(-I)1 (w) 6^+(-1)^0^ O^u, and hence the theorem follows once we prove the
i

identities

(4.11) T^v,(detTj^)

E v^(m^)x(^.,.^) if a , e R + ,
m

0<mp< <a^ X,+p>

"-a,Xa)+ Z Vp(m^)x(^+mpa,) if a,eR_.
0<mp< -<a^ ?i+p>

Here T, | ^ denotes the restriction to the ^-weight space of the homomorphism:

T, : H /yP-•••^'c)(^,, . .•^^^)^H /}^•••^^ < ; )(5^.. . S p ^ w A )

and we have set a ,=w~ 1 ̂ ^ . . . ^(P,), <=1, 2, . . . , N.

To prove this suppose first that a ,eR+ and note that then
< P^, .yp . . . ̂  w(?i+ p) > = < a^+ p > ^0. From section 3 we therefore have the Pp^-
homomorphism Tp : Hp1,/^^^ . . . ̂  w.5i) -^ H^/^p^. . . ̂  w,)i), The cokernel Q of Tp^
has weightspaces Q1. which are cyclic of order ;/"s say, and with this notation we have

_m^^=^v,(ordQt)^=^v,(detTp^)^ẑ
 ^ ^

= ^chHp l^(^.^...^w.^)J

7^1

E Vp(m;?) ̂  (̂ p,, ̂ . ̂  ... s^ w. X,),
m

0<mp<<p^,^...5p^(^+p)>
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where the last equality follows from Proposition 3.4(1). Now

<X^p, ...^w(?i+p)>=<o^, ^+p>
and

s^^.s^ .. .s^w.'k=s^ ...^w.(^.^),
,<

i. e. we have

(4-12) E^^= E Vp(mp)^(^ ...^w.(^^.A,)).
^ m.

0 < mp < < o^, 'k + p >

From the short exact sequence
0 -^ "L^p,, • . • V^) ̂  Hp°,,(^.... ̂  u;.^) ̂  Q1 ̂ 0,

we get by observing that H}(Hp1. ̂  (̂ . ̂  . . . ̂ w^))^^1 (^._^ . . . s^wA)=0 for f^
/ (^ . . . s^ w) and H}(H^ (^.... s^ w.^))^H} (^.... ̂  w.^)=0 for i^l ( s^ . . . s^ w)
[Corollary 2.6(i)] the following identity

(4.13) E(-l)Jv,(ord(H^(Q%)==(-l)/^•••^)(v,(detT,J,)+T^

The B-module Q1 has a filtration with quotients isomorphic to the weight spaces Q^ and
hence the left side of this equality equals

ZK-lVVp^rd^^QD,)).
^ j

Employing now Lemma 4.9 we get

Z ^(-iyv/ord(H^(Q^)^= S^X^)-
4 ^ 7 ^

On the other hand applying ^ to (4.12) and using that x(Xa(^)) = X(^) f01"a^ a e S, 4 e X(T)
we find

Z^a(^)= Z Vp(m;?)^(^...^w.(^^.^)).
^ m

0<wp< <a,, X+p>

Inserting this in (4.13) we obtain the first case of (4.11). The other case is proved in the
same way using Proposition 3.4 (ii).

Q.E.D.
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Remark 4.14 (i). - In the generic case 9 ̂  == 9^ = 0. This holds for instance always when
w = 1 or w = WQ and more generally whenever H^ (w. ̂ ) is concentrated in degree l{w). The
formula should be compared to the first conjecture in [12], 2.4.

(ii) When we specialize w to WQ the right hand side coincides with Jantzen's sum formula
in [13]. We shall now prove that our filtration (H^(wo. ̂ y)^. is in fact the same as Jantzen's
Weyl module filtration constructed via a contravariant form.

First we make the following observation: Suppose (p denotes an endomorphism of G which
maps a closed subgroup H into itself. For any rational H-module E we get a natural
homomorphism of rational G-modules

(E|g)<^E^,

where we by the superscript (p indicates that the action on the module is given as the ordinary
action composed with (p. We inherit natural homomorphisms

H»(G/H, E)^ ̂  H"(G/H, E9), ^0,

which of course are isomorphisms if (p is an automorphism.
Now let (p : G -> G denote the automorphism of G corresponding to the root system

automorphism a-^—i^o), aeR. Note that (p(B)=B and that
(p(^)==^ f~1 WQ, ^eT. By the above we therefore have isomorphisms (which we also
denote by (p)

(p : H^^H^-Wo^)), ?ieX(T), ^0.

Fix again ^eX(T)+, weW and let ( , ) denote the bilinear pairing obtained from the
natural homomorphism (1.19)

Hy- /(M ;)(woW.X)®H^>(-WoW.?l-2p)^H^(-2p)^Z^

Then we define a bilinear form py, on H^^w.'k) by

P,(i;, i/)=(T^), wo(p(i/)), v, i/eH^(w.l).

We check easily that py, satisfies

Pw(^» 0=PJ^ ^(WQg-^W^V1)

for all geG^, v, i/eH^^w.^). The map from G^p into G^ which takes g into
(p (WQ g~1 Wo) is an antiautomorphism. It is the identity on T and it takes U^ into U _ ^. In
other words p^, is a contravariant form [13]. Moreover, since the pairing ( , ) is non-
singular, Proposition 2.10, we get

H l/w)(w.^={^;eH^)(w.?l)|p,(l;,H^)(w.5l))e^Z^}.

Let again u^eH^^w*.^) be a generator of the ^-weight space. Then we have

LEMMA 4 . 1 5 . — H^(u?o. ̂ ) is generated as a G^ -module by v^.
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Proof. - Let M be the submodule generated by v^ and let Q = H^(wo. ?i)/M. Then ̂  is
not a weight of Q. On the other hand Q®k is a "quotient of H^(wo.5l)®^^H;?(wo.^)
which implies that Q®^=0 since L(^) is the only simple quotient of H^(wo.?l).

Q.E.D.

Comparing this lemma with the definition of V(^)^ in [13] we see that
H^(wo.^)^V(^®Z p and from the above follows

PROPOSITION 4.16. — The filtration (H^ (WQ . ̂ -O^o coincides with Jantzen's filtration
OW)^o o/ ̂  ̂ ^ module \W.

Let aeS and set P= —u;o(a). Then the automorphism (p takes Pg into Po and for any
rational B-module E we get isomorphisms (of rational Pp-modules)

HWB, Ey^H^Pp/B, E^), ^0.

Moreover, if ^ieX(T) such that < a", ^i> ^0 then we have a commutative diagram

H^(^^)^H^(Sp(-Wo.H))

I- 11-
HS, ,(^^H°p, /-M^o.P)

If<a , ( i )<0we have a similar commutative diagram involving T, and Tp. Hence for any
w e W we have a commutative diagram

H^'^w.Kr^H'^^-WoW.'k)

[r- . I1-
H^^w^r^ H^^s^WowA))

i .e.(poT^=T^o(p.
We now have

LEMMA 4.17. - Z^ X,eX(T)^w6W a^aeS. T/!̂ :

P^(T^,z)=P,(i;,T^z)

/or ^/1; e H^ w) (M; . ̂ ), z e H7}̂  (^^w. ̂ ).

Proof. — It is an easy consequence of Lemma 4.3 that Ty, T^ =T^ Ty, where
P= -u;o(oc). Hence P^.(T^, z)=(T î;, Wo<p(z))=(T^T^i;, u;o<P(^)). From
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Proposition 3.6 we obtain the commutative diagrams

H^-UHp p ( y , ^))®H^-^(H°p. ,(-^-2p))-
H1;.-1 (H^ ,(^)®H°p, /-^-Ip))-^-1^-!?)

T^®T.p

H^-1^ ^s^y^W-^^^-^y^-2^^
H^-' (H^^^^^H^C-^^A-lp)-

^-^H^-^p))

where the right vertical map is multiplication by {f^ y= -^"^P). These diagrams are
obtained for all y with ^(^eR. and we have similar diagrams for y ' s with
^(P)^^. Note that

^lf(y)~l(^p(y^))^lf(y\y•^ H^-^H^^y.W^H^^p^^),
etc. As in Remark 3.7 the commutativity of these diagrams can also be expressed by the
formula

(T,^, <»==(;€, T^'), xeH^O^), x'eH^\-s,yA-2p).

Using this we find

(T^T^u, Wo(p(z))=(T,^, T^Wo(p(z))==(T,^, Wo<p(T^z))=P,(i;, T^z),

where we have also used that (poT^==T^o(p as observed above.
Q.E.D.

5. Translation

In this section we show that it is possible to define translation functors in the category of
rational Gj -modules.—p

Let C (resp. C) denote an alcove in X(T), i. e. C (resp. C) is a Wp conjugate of the bottom
alcove in X(T)+

Co={XeX(T) |0<<a \^+p><^ ,aeR+}( resp .o fCo={^eX(T) |0^<a \^+p>^ ,
aeR^}) .

For 5ieC we let Ji^ denote the category of G^modules with the property that all their
composition factors have highest weights in Wp. ̂ . If V is a finite dimensional rational G^-
module then it is a consequence of the linkage principle that we may write

| V=®^(V),
\\ ^c

where ;^(V) denotes the largest submodule of V which belongs to M^.
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LEMMA 5.1. - LetO->^->M->Q->Obean exact sequence of rational G-modules of
finite type. Then for each X,eC we have

M®A:e^ if and only if N(g)A:, Q®fc€^.

Proof. - Suppose M0k € M^. Being a quotient of M(^k it is clear that Q®k e M^ and
hence also the submodule Q,(Ske ̂ \(Q, being the torsion part of Q). The exact sequence

Tor^ (Q,, A:) -^ N®A: -^ M®^,

together with Lemma 2.8 imply then that N®A: e ̂ . The other implication in the lemma
is obvious.

Q.E.D.

PROPOSITION 5.2.- Suppose ̂  V e C with ̂  + V. IfM WN are rational G^ -modules of
finite type with M®ke^^ N®^eM^, then

Exto (M,N)=0 for all i.^p
Proof. — If M and N are free as Zp-modules this follows from Theorem 1.18 combined

with the fact that Ext^(M(g)fe, N®fc)==0for all f[4], 1.5. Before we treat the general case
we need the following result.

LEMMA 5.3. — Suppose V is a rational G-module of finite type then V has a filtration of
rational G-modules (V1),^ with ̂ /V^^ke^for some ^eC.

Proof. — We use induction on the number of generators for V. IfVis cyclic then clearly
VOOA: e MQ. To prove the induction step pick a generator v e V^ where ^ is maximal among
the weights of V. Then we have a surjection V-^E, where E==Zu, of rational B-
modules. By (1.7) we get an induced homomorphism V-^H°(E) of rational G-
modules. Note that H° (E)OOA: e Jt\. This follows from Corollary 2.6(iii) if E is free and
also in the finite cyclic case it then follows by taking a free resolution. If I (resp. K) denotes
the image (resp. kernel) of the homomorphism V -> H°(E) it follows from Lemma 5.1 that
I0A:e^. Since K has fewer generators than V the lemma holds for K by induction
hypothesis. Hence it holds for V.

Q.E.D.
Proof of Proposition 5.2. (cont.). — Let M be a rational G^ -module of finite type such that

M(Sk e M),. By (1.4) M is a quotient of a free rational G^ -module P of finite type. By
Lemma 5.3 (or rather its proof) P has a filtration with quotients contained in certain
H^(n)' s. By Corollary 2.6(ii) these quotients are free Zp-modules and hence if P() denotes
the biggest submodule ofP with Po®fce^^ then by the special case of the proposition
treated above (the free case) ?o is a direct summand ofP, i.e. P=P()®P' for some
submodule P'. Moreover, Hom^ (P', M)=0 and hence P() maps surjectively onto M so
that we get a short exact sequence"

0 -> Pi -> PQ -> M -> 0,
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where P, is a free rational G^ -module with P^kejy^ ;=0,1. A similar sequence exists
for N and the proposition therefore follows from the free case.

Q.E.D.

For ^ e C and V a rational G^ -module of finite type we will use the notation^(V) for the
biggest submodule of V which upon tensoring with k belongs to Ji^.

THEOREM 5.4. — Lei V be a rational G^ -module of finite type. Then

V=©^(Y).
XeC

Proof. — Immediate consequence of Proposition 5.2 and Lemma 5.3.

Q.E.D.
This theorem allows us to define translation functors
Suppose ^, p, e C and pick T e W such that T (p, - ̂ ) e X (T) +. Then we define the functor

T? by

TS;V=^(V®H^(T(H-?I))),

V a rational G^-module of finite type. Note that (T^V^^T^V®^), where T^ on the
right side denotes the usual translation functor, see [4] or [14].

LEMMA 5.5. — (i) The functor T^ is exact.
(ii) When restricted to the subcategory of all rational G^-modules V with V®fee^^

(resp. \®keJ^^) the two functors T^ and T^ are adjoint.
Proof. — (i) is clear because H^(r(^-^)) is free and (ii) is proved exactly as in the usual

case [note that by (2.4) and (2.5) we have
H^T(H-?i))*^H^(-T(H-?i)-2p)^H^(u;oTa-^))].

Q.E.D.

As in [4] we set S3,={.yeWj5^=?i} and we get

PROPOSITION 5.6. -(i)J/S,=lorS,=S^A^T^Hp(w,^)^Hp(w.H)/ora//weW,^0.
(ii) Suppose S^ == { 1, s } where s i S^. Then for all w e Wp with ws.^<w.rk we have a long

exact sequence

... -^ H^wsA) -^ T^(w.n) -^ H^wA) ̂  . . .

Similarly for all weWp with w.^^ws.^ we have a long exact sequence

. . .^H^(w.^)^T^Hp(w.H)^H^.?0^ . . .

proof. - See Proposition 2.1 in [4] (the analogue of[4]. Proposition 2. l(c) also holds in
our case, but we shall not need it here).

Q.E.D.
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6. On Lusztig's conjecture

In this section we assume throughout that/? >h(h being the Coxeter number) and we fix an
alcove C Si X (T) +, ̂  e C,.? e Wp a reflection in a wall of C such that V = s. ̂  < ̂  and [i e C with
S ^ = { 1, s}. Furthermore we assume that < a\ ^+p>^2 for all aeR+ (several of the
results below have a straightforward analogue for more general X).

We also work with a fixed reduced expression for WQ, WQ=S^^S^. . .s^ and we set

^=s^s^.. .^.?i, XO)=H}(^.),
H-^.^...^.H, Ya)=T^H}(n),

^p,^...^; Za)=H}(^;.).

Let a be the positive root for which s==s^ „ for some /ze^J. Then a ==s^s^.. .s^. (Py^i)for
some jo ̂  N. Since ^/ = ̂  — ̂ a for some d> 0 we see that

^.=^.~^. ..^(a)

for y^7o»J^-ds^..s^^)<^
^,+^....^(P, î)>?i,^,+^,..^(P,^i)>A<, for y>7o.

Hence from Proposition 5.6 (ii) we get complexes

0->X(7)^Ya)^Z(7)^0 for j>^
and

O-^Za^YCO^XCO^O for j<j^

It is clear that these complexes are exact for 7=0 and fory=N and also that ij is always
injective. From section 4 we have the homomorphisms T^=T^ : X(j)->-X(j—l) and
T^=T^:Z(j)^ZC/-l). The homomorphism T^ : H}(^.)-^ H}-1^..^ induces a
homombrphism Y(j) -^ Y(7— 1) which we will denote TJ.

LEMMA 6.1. — (i) For J>JQ+ 1 we have a commutative diagram (up to a unit in Zp)

X(y) ——YC/) -^ZO-)

X(./-l) _^Y(./-1) —^ Z(./-l)

(ii) For J^JQ we have a commutative diagram (up to a unit in Zp)

Z(j) ———— Y(y) ———— X ( j )

l'2 , , l'7 . ^
zo'-i) ——Y(y-i) —^xo--i).
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Proof. — Note that by Proposition 5.6(i) we have

Hom^(XO'), Ya-l^Hom^WXC/), H}-1^,.,))

^HomG^(H}(^), <H H^ai,^))^.

Hence forj>jo +1 the homomorphisms TJ o ̂ . and ^_ i o T^ differ only by a constant in Zp
and since they both are non-zero when tensored by A: (trace highest weights) we conclude that
this constant is a unit. A similar argument proves the commutativity of the other diagrams.

Q.E.D.

In order to analyse what happens for 7=7o+l we assume for simplicity that
< o^, ^ - H > == 1. Then we have

LEMMA 6.2. - Set P=Py,+i. Then:

(i) T^^1^,^,)^^^^^^)®^/^-^))

and:

T^ H^) ̂  H^(H°p, ,(^)®H°p, ,(^ - ̂ )).

(ii) We have the diagram

XQo+1) ^~ YOo+l) ^=^ ZOo-H)
^o+l i ^o+l^^
^ T "/o

ZQo) » . " YOo) ^==" XQo)
7o -^0

wA^r^ the following identities hold
(a) r^ o ;„, Kn o ̂ n and s^ o TC^ + ;„ o r^ ar^ multiplication by p, n =jo, JQ +1.
W^0^!^^^^,.

(c) T^o^=^oTj^.
(rf) T^io^i=^oT^i.

(^ T7x+lor^+l=^ooT^+l•

Proof. - Let (F")^o be a B^-filtration of H^(r(^-p,)) such that F^F"-'1^, where
the X^s are the weights of H°p(x(k-\i)). Then we get exact sequences of Pp^-modules

0 ̂  H°p, /F^1) ̂  H°p, .(F") ̂  H°p, /^).

As ^^ is a weight in H^(T^-H)) we must have < P^, ̂  > <p and hence H^ p(^n)(Sk is an
irreducible P^-module. It follows that if H^p(F") -^ H^p(^) is non-zero then it is
surjective. Hence H^T^-H)) has a filtration (E^o of Ppz^-modules with

O^E^-E^H^^O,

where the ^^'s are among the weights of H^(r(^—H)).
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Now by definition T^^1^.^!)^,^^1^,^!)®^^^-^))) and from (1.16) and
(1.15) we get
H/^l(^+l)®H^(Ta-^))^^+l(^i,.^®H^(Ta-^l)))

^^(H^(^^)®H^(T(?I-^))).

If we tensor the above sequence with H^ p(^-n) and take cohomology then we get the long
exact sequence

• • • ^H^Hp^^O^E^^-.H^H^^O^E")
-H^(H^(^,)®H^(vJ)-...

Now according to [13], Lemma 3, the only v^ for which H^ p(^+i)®H^ p(v^) contains a
weight linked to ^ is v^ = ̂  - ̂ . Hence by Corollary 2.6(iii) we get

^(^(H^^o^))®^^^-^))^,^^^^^)®^

^^(H^^.i)®^/^-^)),

where the last isomorphism comes from the short exact sequence (see section 3)
0 - ̂  /^i+^o-^-fto) - H1?, p(^i)®H°p, ,(^-^)) - H^, ,(^^+^-^) ̂  o

and by noting that ̂ . ̂  + ̂  - ̂  - ̂  = ̂ +i, ̂ ,̂ 1 + ̂  - ̂  = ̂ +2 + P = ̂ +1 are both linked
to ^. We have thus proved the first isomorphism in (i). The second is proved in the same
way and (ii) follows from (i) via Lemma 3.5.

Q.E.D.

LEMMA 6.3. — (i) Let j>jo+l. There exist homomorphisms of rational G^ -modules

r,: YCO^XO), s,: ZC/)^YC/),

such that the diagrams

Xa)^—Y(7)^—ZO)

commute and such that r^ o ̂ ., 7 .̂ o Sj and ij o r^ + Sj o n^ are multiplication by p.
(ii) Letj^jo. Then there exist homomorphisms of rational G^ -modules

.,: Ya)^Z(y), s,: xa)-.Y(A
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such that the diagrams

Z(J) ———— YO) ———— X(7)1, [ j ^
za-i)^—Yc/~i) ̂ —xo-i)

commute and such that r^oi^ K j o S j and ^or^+^o^ are multiplication by p.

Proof. — Suppose y>/o-1-1. Note that

Hom^(YO-), XO))^Hom^(H}Oi,), T?Xa))^Hom^(H}ai,), H}(^,))^Z,.

Let rj be a generator of Hom^ (Y(y), XQ')). As in Lemma 6.2 it follows that
T^o^=r j_ ioTj (up to a unit in ^p). The commutativity of the other diagram is
checked in the same way [sj is defined as a generator of Hom^ (Z(y), Y(j))].

By Lemma 6.2 we know that r^i o ̂ i =7?. Hence

T^+20 r^+20^+2= r^+lo TZ+20 ^}o+l= r^+10 ^7+lo T^+2=^T^+2»

where the second equality comes from Lemma 6.1. It follows that
^0+2 ° ̂ 0+2 =P' Repeating this argument we find r^ o ̂ . =p for all7>7o- The other relations
are checked in the same way.

Q.E.D.

Let T^T^ oT$ o . . . oT^ and define TY and T2 analogously. Then the above lemmas
prove in particular

PROPOSITION 6.4. - With the above notation and assumptions we have homomorphisms ip
Kp F J and Spj==l, . . . , N of rational G^ -modules satisfying

(i) K J o ip KJ o Sj and ij o r^ + Sj o n^ are multiplication by p , j = 1, . . ., N.
(ii) .SooT^^T^^.

(iii) T^Ti^rooT^
(iv) T^^^T2.
(v) T^rN^TiooT^
Let X(N)J, Y(N)J denote the filtrations defined by T^ TY and T7, respectively (e.g.

X(N) J={u€X(N)|TX(u)e/? JX(0)}).

LEMMA 6.5. — With the above notation and assumptions we get:
(i) ^(X(Ny•+l)^Y(Ny•/^//7.
(ii) ^{W^WYforallj.
Proof. — This is immediate in view of Proposition 6.4 (ii) and (iii).

Q.E.D.
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_Set now X(N)=X(N ®k), Y(N)=Y(N) ®k and Z(N)=Z(N) S>k. Let (XW),^,
O^N)7)^ and (ZCN)7)^^ denote the images in X(N), Y(N) and Z(N) and Z(N),
respectively, of the above filtrations.

We have the following relations between translation and these filtrations

LEMMA 6.6
(i) T^N^^H^y.
(n) TS;Z(NV=H;?(^y.

(iii) Suppose yeWp such that y. [i e X (T) +. Ify.fk<ys.fk then:

P^N)^ : L(^)]=[Z(NV : L(y^)] for all j.
Proof. - For 7 7^/0+1 we have the commutative diagram

T^XC/^H}^,)
\ ^T^xa-i)^^-1^.,)

where the left vertical map is induced by T^ and where the horizontal isomorphisms come
from Proposition 5.6 (i). For 7=70+1 we have instead the commutative diagram

T^o+l^H^Oi,^)
\ \^1

TW^H^)^1

All this follows exactly as in the proof of Lemma 6.2 from Lemma 3.5. Hence we see that
T^T^^T^ and (i) follows. The proof of (ii) is analogous [one shows that T^T^T^].
Finally (iii) is a consequence of (i) and (ii) by recalling that T^L(^.?i)==L(^.^) when
y.^<ys.^[4].

Q.E.D.

The identity s^ o ̂  =p - i^ o r^ shows that s^L (N)) ̂  ̂ (X) [by abuse of notation we let
the same letter ̂ , ̂  etc. denote also the map Z(N) -^ Y(N), Y(N) -^ Y(N), etc induced by
•^N» ^N? • • •]• In other words, .SN is the intertwining homomorphism between the two Weyl
modules H^(^) and H^(^) (compare [4]).

CONJECTURE 6.7. - Suppose <a^, ^+p><^(^-A+2) for all aeR+ . Then the
intertwining homomorphism

H^)^H^)

maps H^Y into H^)^1 for all/
From now on we assume that ^ satisfies the assumption in this conjecture and we assume

that the conjecture holds.
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LEMMA 6.8. - (i) Z(N)J+1^7^N(Y(N)• /V^ all].
(ii) YWn ^(X(N))g^(X(N)^)/or ^/y.

Proof. — (i) Let z e Z (N)7 +1. By Conjecture 6.7 we may write ̂  (z) = ̂  00 -l-/^ for some
x e X(N)•/+ 2, y e Y(N). Applying TCN to this equation and using that n^ o ̂  ==p we see that
7^(y)=z. Now /^.^/^(^—^NW and hence by Proposition 6.4 (iv) and (ii) we get

^2TY(^)=^ooTZ(z)-^oTX(x)e^+2Y(0).

Hence ^eYCNV.
(ii) Take x e X(N) such that ^ W =y +pyi for some }/ e Y(N)J, yi e Y(N). Let x, y , etc

denote the images of x, y, etc in X(N), Y(N), . . .
We want to show that i^^E^fX^).
As i^ o FN + ̂ N° ̂ N =? we have <N° '"N (^i) + ̂ N ° ̂ N (^i) = 0 and hence

^G^ -^?^N(^l)+^N(•^-^N(3;l))•

We have p n^ (y^) == - K^ (y) e n^ (Y (N)^ S Z (N)^ by Lemma 6.5 (ii). Hence by Conjecture
6.7 we get ^°^N(5Fl)e^N(Z(N)J- l)^X(N)J. We claim that also x-r^y^eX^Y. In
fact;?x=rNo;N(x)=rN(^)+/?rN(^i) and so via Proposition 6.4(v)

TX(p(x-rN(^l))=TX^(y)=^7loTY(^e^+lX(0), i.e. x-^(^)€X(N)J.
Q.E.D.

The lemmas 6.5 and 6.8 allow us to define a 4 step filtration of the filtration levels (as usual
denoted by subscripts) of Y(N) as follows

We set

X^N),^, ̂ ^(N)^1 /^1 (Y(N)^ ̂ , X^N), = ̂ ' (^(^^/^(N)^1,

Y^N), = ̂ x (Y(N)^1 (^(N)^ ̂ ,

^(^-^(^(^^/^(N)^1, ^(^-^(^'/^(^(N)7),

YZ(N),=7^N(Y(W)/7lN(Y(N)^l),

so that we have the 5 exact sequences

0-^ X^N),^ ̂  X(N),^ ̂  X°(N),^ -^ 0,

0 ̂  X^N)^ i ̂  Y^N), -> X^N), ̂  0,

0-^ Z^N),^ i ̂  Z(N),+1 ̂  Z^N)^ i ̂  0,

0 ̂  Z^N),^ -> Y^N), ̂  Z°(N), ̂  0,

0 -, Y^N), -^ Y(N), -> Y^N), ̂  0.
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LEMMA 6.9. - (i) T^X^N^T^Z^N^O/or allj.
(ii) J/Q^O ^ 6?^6?r a quotient o/Z^N), or a submodule o/X^N)^. thenT^Q^O.

Proof. - By Lemma 6.6 and Lemma 6.8, we see that we may identify T^Y^N)-7 with
T^NV'^CT^Ny and (i) follows. To prove (ii) let Q^O be a quotient of
Z^N),. Then Q is also a quotient of Y(N)^T^H;?(^),. Hence
0 ̂  Hom^ (T^ H^ (M,, Q) ̂  Homo, (H^ (̂ ., T^ Q) and so certainly T^ Q ̂  0. A similar
argument takes care of the case where Q is a submodule ofX^N)^..

Q.E.D.

LEMMA 6.10. - Suppose the sequence 0 -> Z^N)^. -> Z(N)^ -> Z^N)^ -^ 0 splits. Then
X^N^^^Z^N),.

Proof. — Consider the homomorphism ^~JTY : Y(N)J->>Y(0) and note that since
^(N^^YCN)7 (Lemma 6.5) and 7lo^~JTY^N(X(N)J+l)=^-^TX(X(Ny+l)^X(0)
we get a homomorphism

X^N)-74-1-^^).

We claim that the image of this is contained in Z (())'"-J, where m= T ^o as in section 4.
PeR+

To see this let xeX(N) J+ l and set J;=^-^TY^M, •^l=^~17lo(3;)• Then
x^=p~j~l^x(x) and we find that x^eXW1'-1'1. Hence by Conjecture 6.7 (or
rather its dual analogue) we have So(x^)eio (Z^O)"1"-7). However, we have
so(xl)=p~lso^o(y)=y-p~lioro(y)=y since

h ro (^) =^ ~ j io ro TY ^N 00 ==/? ~ •/ <o Tz ^N ?N (^) = 0

(Proposition 6.4) and the claim follows.
_ From this claim, we see that we get an induced homomorphism
X (N)^. +1 -> Z (())„ _ ̂  Z (N)^ where we have employed Proposition 4.6 (i). Now it is not
hard to check taht when we apply T^ to this homomorphism we get the identity on
^(Mj- From Lemma 6.9 follows then first that the composite X(N)^. ̂  Z(N)^. -»Z° (N)^.
is non-zero and factors through X^N)^ i and next that both the kernel and the cokernel of
the resulting homomorphism X^N^^i -+ Z^N)^ are zero.

Q.E.D.

Let d^ denote the composite Xfl(N)^l ^YJC(N)^•^Y(N)^ and d^ the composite
^(N^Y^N^Z^N),. Set U,0)=ker d^/lmd,.

LEMMA 6.11. - Suppose Z(N)^. is semi-simple. Then we have a short exact sequence

0 -> X^N), ̂  U,0) ̂  Z^N),^ -. 0.
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Proof. — Consider the diagram

0-> Z^N),^-> Y^N), ̂  Z°(N),-> 0

O^X°(N),^-IY(N), ^Z°(N),

0 ̂  X^N),^-. Y^N),-^ X^N), ̂  0

The only thing we have to show is that X^N)^. is the kernel of the map
U^.(^) -^Z^N)^. This is clear because by Lemma 6.9 we have
Homo^X^N^Z^N^^O.

Q.E.D.

To formulate the main result in this section let ^-6 Co, ^ieC be fixed and suppose
S^= { 1, s}. I fweWp such that w.neX(T)+ and wA>ws.'k then we let U(w) denote the
cohomology of the complex (compare [5])

0 -^ L(ws.'k) -> T^L(w.[i) -> L(ws.K) -> 0.

THEOREM 6.12. — Suppose Conjecture 6.7 holds. Then for all weWp such that
w.^i€X(T)+, w.^>ws.K and <a\ w(^+p)> (p(p—h-\-l) we have

(i) U(w) is semi-simple.
(ii) H^(woW.'k)j is semi-simple.

(in) For all yeWp with y.^eX(T)+ and y . K > y s . ' k we have

[T^H^(woW.^i), : L(^)]=[H^(wo^.X),^ : L^;^)]+[H!?(WoW.^. : L(y.^].

Proof. — We use induction on w. I f w = l then H^(W()W.^) is irreducible and there is
nothing to prove. Suppose w > 1. Then Lemma 6.11 taken relative to w. 'k gives for j = 0
the short exact sequence

0 -^ L(w, ̂ ) -> U(w) -. Z^N)! -. 0.

In fact, YCN^—T^T^ZCN^^T^T^Z^N), so that U,(w,^)^ ®U(y) with the direct sum
extended over all y e Wp with y . \i e X (T) 4., y . 'k > ys . X, and L (ys. 'k) a composition factor of
Z (N)^ (combine Lemma 6.10 and 6.11).

As [U (w. 'k) : L (w. X,)] = 1 the fact that L (w. ̂ ) is contained in U (w) implies that L (w. ̂ -) is
a direct summand. By induction hypothesis H^(W() w^.^)i is semi-simple and hence so is
the submodule Z^N^. This proves (i).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



528 H. H. ANDERSEN

To prove (ii) note that since all composition factors of Z (N)^. fory > 0 have the form L (y . X)
with y<ws all U(y)'s occurring in \J(w.'k)j for j>0 are semi-simple (by induction
hypothesis). From Lemma 6.11 we see that X^N)^ is semi-simple forj>0 and Lemma
6.10 gives that so is X^N)^. It easy now to see that
H^(wu;o.^)J=X(N),=Xfl(N),®Xb(N), and (ii) follows.

Finally (iii) is an easy consequence of Lemma 6.9 and 6.11.

Q.E.D.
In [5] we proved that Lusztig's conjecture [17], Problem IV, on the characters of irreducible

Gfe-modules is equivalent to the semi-simplicity of the \J(wYs above. Hence Theorem 6.12
(i) proves:

COROLLARY 6.13. — Conjecture 6.7 implies Lusz tig's conjecture.
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