MARIO JORGE DIAS CARNEIRO
Singularities of envelopes of families of submanifolds in R

Annales scientifiques de I'E.N.S. 4° série, tome 16, n°2 (1983), p. 173-192
<http://www.numdam.org/item?id=ASENS_1983_4 16_2_173_0>

© Gauthier-Villars (Editions scientifiques et médicales Elsevier), 1983, tous droits réservés.

L'accés aux archives de la revue « Annales scientifiques de I'E.N.S. » (http:/www.
elsevier.com/locate/ansens) implique 1’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ASENS_1983_4_16_2_173_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. scient. Ec. Norm. Sup.,
4¢ série, t. 16, 1983, p. 173 4 192.

SINGULARITIES OF ENVELOPES
OF FAMILIES OF SUBMANIFOLDS IN R™

By Mario JorGge DIAS CARNEIRO

Introduction

In his article ““‘Sur la Théorie des Enveloppes” [18], published in 1962, R. Thom defined

envelope of families of submanifolds as the image of the singular set in a diagram of C*
I

mappings of type N « M 2 P where I is a submersion.

Contrary to other generalizations of Mather’s Theory of Singularities of Mappings, which
are based mostly on extensions of the Preparation Theorem, there is not such extension for
this situation (see [8]) making it even more attractive. '

In this hesis and other papers([8], [9]), J. P. Dufour discusses the general theory of stability
of diagrams of mappings. Among other things, Dufour studies the classification and
,unfoldings of germs of the type (R, 0) < (R, 0) - (R, 0) and classifies generic germs of

diagrams (R, 0)<i (R™1,0) 5 (R"*1, 0) such that g has a fold singularity at 0.

Also Arnold in [1] studies some diagrams, although one of the most relevant results for the
study of envelopes is stated without proof.

a s
This paper deals with diagrams of C* maps germs at,0 R« (R", 0) > R" which define a
one-parameter family of submanifolds of codimension one in R", for n2 2 (see Definition 1).

The most interesting generic case is 0€ S (f), since for OeS, (f)and 1<k<n—1itis
possible to obtain normal forms for stable cases (Thm. 1).

For Oe S,n(f ) the family is always unstable but we may characterize in Theorem 2 the
equivalence between two germs of family in terms of relations in the parameter space (weak
equivalence <>equivalence). We do this by constructing an invariant set associated to each

family and by showing that once we have equivalence on this set we have equivalence of the
families.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE. — 0012-9593/198 3/173'/$% 5.00
© Gauthier-Villars



174 M. J. DIAS CARNEIRO

This construction in the case n=2 is illustrated by the Figure 1:
If C, a family of curves such that its envelope has a cusp singularity at the origin then for
each point in the interior of the cusp there exists exactly three curves passing through it.

In this way we obtain a germ of a smooth surface £ = R> formed by the triple (¢, 7,, ;) of
parameters such that the corresponding curves C,, C,, C, intersect. X is invariant under
permutation of the coordinates and our result is that £ characterizes the family in the
following sense: two germs of family of curves are equivalent (see Def. 2) if and only if there
exists a diffeomorphism ¢ : (R, 0) — (R, 0) such that ¢ x ¢ x @(£)=2X'for T and X’ surfaces
associated to the germs respectively.

This also shows the relation between envelopes and webs and allows to show the
topological unstability of these diagrams [10].

The results presented here are contained in the author’s thesis [6] and we would like to
thank professor J. Mather for his most valuable suggestions and Professor S. Chern for his
helpful exposition of some results of web theory.
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SINGULARITIES OF ENVELOPES OF FAMILIES OF SUBMANIFOLDS IN RN 175
1. Definitions and examples

We start giving the concept of envelope of a family of submanifolds following Thom’s
article [18] and we define equivalence of such families. ~Since we are going to treat the local
situation we define germs of families.

DeFiniTION 1. — Let X be a C* manifold of dimensionnand p be a pointin X. A germat p
of a g-parameter family of submanifolds of codimension m—n+ q in R™ is a diagram of C* map

n J
germs of the form R? « (X, p) > R™ that satisfies the following conditions:

(a) I is a germ of a fibration;

(b) f restricted to each fiber 1! (w), we R is a germ of an one to one immersion.

IfS(f)={xeX : df (x)is not surjective } then its image E =/ (S(f))is called the envelope
of the family.

Comments. — If we look at the classical concept of envelope (see for example [5], [13]) we
see that E is the set of Characteristic points and by imposing the condition (b) we are avoiding
singularities of the elements of the family and self-intersections. If we put the additional
condition that E intersects any member of the family not transversally we have the classical
envelope which is called by Thom the geometric envelope.

I, n , 7
DeriniTION 2. — Two germs of family R? « (X, p) » R™ and R?« (X', p') > R™ are
equivalent if there exist germs of C* diffeomorphisms:

O (X, p)— (X, p), P (R™ () > (R™ f(p))
and: '
¢ (R II,(p)) — (R4, IO, (p')),

such that Wof, o® '=f and @oll1o® '=II,. That is, two germs of family are
equivalent if and only if their diagram are equivalent (in the sense of [9]).

At this point, we may choose different notions of stability for germs of family. We chose
to work with the one used by Dufour in [9].

DeriniTioN 3. — Homotopic Stability of Germs of Family:
A germ of a family at pe X defined by the diagram:

n ]
RY — (X, p) — R™,
is homotopically stable if for any diagram of C* map germs at (p, 0):

G F
RI < (X xR, (p, 0)) = R™,

satisfying F (x, 0)=7(x) and G (x, 0)=1II(x) there exist C* map germs:
®: XxR,(0,p)-X, ¢: (RIxR,(I(p),0)) - R
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176 M. J. DIAS CARNEIRO

and
¥ (R"xR, (f(p), 0) »R"
and a real number £>0 so that (1.1) ¢,, ®,, ¥, are germs of diffeomorphism for |\ | <e:

(1.2) ®,=idy, @,=idg., ¥ —1dRm (idy=germ of the identity of Y).
(1.3) W,oF,o®; =/ and 0, oG, o ®; * =TI (where we are setting h, (x)=h(x, 1)).

We see then that / must be stable in the sense of the theory of singularities of mappins
(Mather [14]) and we call this a right-left stable map germ. Because IT is the germ of a
submersion we may assume that IT(u, x)=u for suitable coordinates (u, x) about
peX. Using this, we may rewrite the above definition by requiring that for any germ

F: (X xR, (p, 0)) > R™ with F(x, 0)=f(x), ¥V xeX there exists C* map germs:

D: (XxR,(p,O))—»X,‘, 0: (RIxR, (I1(p), 0)) > R4
and !

¥: (R™"xR, (f(p), 0)) - R™

and a number £>0 such that the first two conditions above are satisfied but the third is
substituted by

_1__.
(1.3 T“F“qiﬁ =~
(pkol_lo(l);L =H

In other words, @, is fiber preserving. We call such change of coordinates in the domain an
admissible change of coordinates. Let C3 (X) ={ germs at p of C* functions from X to R}
and choose local coordinates (uy, ..., Ug X1, -5 Xy g A) for X x R in a neighborhood of
(», 0)and(y,, . . ., y,)for R™in a neighborhood off f(p). Asusual, taking the derivative with
respect to A in (1.3') we obtain the linearized equations:

dF. <X+i) YOF,

oA
dll.X=Zo1l.
Where
oo, ! a0 l 0
X=— ocpk_i;lxiazth;Ujauj,
for X;s and Ujs belonging to C;, ,(X xR)
¥, m
Y l
o\ ,; 6
Y, eC® Ry, z=9 7, Z,eCE ax
i€ (/(p),O)(Yx ) Z= an °‘Px=;Z5— Liec(l'l(p’),o)(R R)

4¢ SERIE — TOME 16 — 1983 — N°2



SINGULARITIES OF ENVELOPES OF FAMILIES OF SUBMANIFOLDS IN RN 177

and we are setting F (, x, M) =(F (4, x, ), \) and T1(«, x, \)=(u, A). Since we are taking
M(u, x)=u we get U;=Z; o1 and it all comes to solve the equation:

0 -
(1.4) dF.<X+ﬁ>=YoF

for X germ of vector field of the form:

0
ou;’

J

n—gq d P
X(u, x, M)= ) X;(u, x, ME + > Uju, A
i=1 =1

1 i

Integrating these vector fields we obtain that to prove homotopic stability is equivalent to
show that we can solve (1.4) for any germ F.

Example 1. — Let hy, ..., h, oy, .. ., 0, belong to C¢ (R) and J be the ideal of Cg (R?)
generated by /,, ..., h,. Suppose that the images of 1, a;, . . ., o in Cg’ (R?)/J form a basis
for this real vector space. It follows from a corollary of the Preparation Theorem ([12], p.
109), that the germ of family:

n /
(R4, 0) « (R*xR""4, 0) > (R™, 0)

for n=ks+q and m=+k(s+1) defined by /7 (u, x)=(x, fl(('u, x), ..., fi(u, x)) where:
js

fj(“’ x)=hj(u)+ Z ai—(j—l)s(u)xi’ I(u, x)=u

i=(j—-1)s+1

is homotopically stable (see [6] for details). This is a particular case of what we call in [6] a
strongly infinitesimally stable germ of family. For these germs we may take ¢ (u)=u.

'

2. Envelopes of one parameter families
of submanifolds of codimension one in R"

We turn our attention to the case g=1, m=n. Since we are doing a local study we take
X=R"and p=0. So we are going to study generic germs of family which are defined by a

diagram (R, 0) (ll (RxR""1,0) ER (R", 0) satisfing conditions («) and () of Definition 1.
The case n=1 is studied by Dufour in [8], so we also assume n=2. In view of condition

(b), generically the singularities of f are of the type S,, ford zkzn (Morin Singularities [12]).
In [6] we prove the following.

TueorReM 1. — A germ at p € X of a one parameter family of codimension one submanifolds of
R",pes,, (}” ), is homotopically stable if andonly if ISksn—~1 und it is équivalent to the germ
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178 M. J. DIAS CARNEIRO

n /
(R, 0) < (R", 0) > (R", 0) such that for 2<k<n—1:
Iz, x)=t,

17(1, x)=<x, tk+1+.i xiti>,

i=1

and for k=1:

{ I, x)=t,
It x)=(x, 2+1x,),

or Iz, x)=t,

ft, x)=(x, 2+t (nil :I_-xf),

where (t, xq, ..., X,_1) are local coordinates of R" about 0.

Comments. — Except for the case k=1 the proof of this theorem follows standard
arguments of the theory of Singularities of Mappings.

Also, it is not difficult to see that for k =# one cannot solve the linearized equation (1.4).

The second normal form in the case k=1 involves an analysis of the set of points in the
parameter space corresponding to submanifolds that do not intersect in general

position. Once we get a normal form for this set the proof follows by using the Preparation
Theorem. [

As we said before, we are going to study here the case k=n. Stable cases, including a
complete proof of the above theorem will be analysed in other article.
First we are going to make some calculations in order to obtain an initial normal form for a
generic germ of family having singularity of type S, .
Without loss of generality we take a representative for such germ of the form Il(z, x)=1,
1, x)=(x, f (¢, x)) for (¢, x)=(t, x{, ..., X,_1), coordinates in a neighborhood of 0 in
R".  The conditions Oesln(f) and j"frhSln 1<k =<n, are equivalent to:
of o f
—a-t(O)= =

d(%)(O), i=1,...,n

are linearly indcpendent (see [12] p. 176). This also implies that it is right-left
stable. Making the following change of coordinates in the range:
yi=y; for i=1,...,n—1,
{ In=Yn=S 0, Y1, s Yamr):
We may assume that f (0, x)=0.

(0)=0

and the differentials:
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SINGULARITIES OF ENVELOPES OF FAMILIES OF SUBMANIFOLDS IN RV 179

Using the transversality hypothesis we get that the matrix:
ai+ 1 f
(Fr0)

is non singular.

Denoting by M, the ideal in Cg (R") of germs of functions vanishing at 0 and
]*(My)=ideal of CZ (R") generated by the coordinate functions y, of, ..., y, of then the
hypothesis imply that the local algebra Qo(f )=CgZ (R") /f*(My)_ is isomorphic to
R[#]/(t"*'). Therefore by a corollary of the Preparation Theorem ([12]) there exist C*
functions A,, . .., A, such that t"*! = i A,of (t, x)t'. And taking Taylor expansions at 0

i=0

we may check that:

A, . 0A,
= for i=1,...,n—1,
6)/';' (0) 0 of : ’ " ayn

(0)#0

and the matrix:

0A,
L0) ), i=1,...,n—1; j=1,...,n—1,
<6yj( )>

is non singular.

Hence we can perform the admissible change of coordinates in the domain:

O, x)=(t, =Ayof (1, X), ..., —A,_yof (£, x))=(t, X)
and:
Y)=(—=A0) s —A, 1), AcW) =V,
in the range to get:
Viof (1, x)=—Ajof (t,X)=X.  i=1,...,n—1,
n _ n—l_ . -
Ajof (6, x)t' ="+ ) x;t'—1"Ay o f (1, X).

i=1 i=1

)711 0] (t, X)=A0 07 (t, x)=t”+1_

That is: _ o n-1 B
Wof o ® 1(t, x)=(x, "'+ Y x; '+ 1"L(1, X)),
i=1

with L(0)=0 and (0L/0t)(0)=0. (Notice that [To® (s, x)=¢). From now on we are

assuming that the germ of family is represented by mappings in the above form.

The basic problem to get normal forms for these type of germs comes from the fact that
arbitrarily near O there are points where (n + 1) submanifolds of the family intersect (see what
happens for example the cusp in R?). These submanifolds correspond to (n+ 1)-uples of

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



180 M. J. DIAS CARNEIRO

parameter and this relation in the parameter space must be preserved by admissible changes
of coordinates in the domain. We are going to study in detail this relation.

We remark first that if g : (R", 0) — (R", 0) is a right-left stable map germ such that O e Si.(®)
then the closure in R” of { pe R"/3geR", g#p with g(p)=g(¢) } is equal to the image of a
right-left stable germ g, : (R", 0) - (R", 0) such that Oe S, _ (g;). Moreover if p, is a point
such that there exist k distinct points p,, ..., p, ., withg(p;)=g(p;)fori=2, ...,k+1, then
there exist & distinct points p5, ..., p; ., such that g, (pj)=p, fori=2, ..., n+1. Weuse
this in the following.

ProrposiTion 1. — Let (R, 0) 2 (R", 0) i» (R", 0) be a germ of a family such thatf' is right-
left stable and O e S1n(?)-

There exists a germ of a C* function h :(R",0) — (R, 0) with dh(0)= —(1,. . ., 1), satisfying:
If we denote by M,=f(I1"'(1)) the submanifold corresponding to the parameter t then

n+1

tis. .., L,y are distinct values such that ﬂ M, #OD ifand only t,, =h(t,,..., t,).
i=1

Proof. — As we nQted before we may choose a representative for such germ of the form:

n—1
1, x)=<x, M4 Y x4+ "L, x)>,

i=1
with L(0)=0and 0L/0¢(0)=0 and I1(z, x) =t. We define inductively right-left stable map
germs e;: (R", 0) — (R", 0) such that 0eS, (¢;) fori=1,...,n—1asfollows: e,_ is the map
germ obtained by applying the previous remark to f so that the image of e,_ 1s the closure in
R" of the set {peR"/Ig#p with f(p)=f(g)}. Assuming e,_, constructed we get
e,_._1 by applying the remark to e,_,. We have, the image of e,_,_, =closure in R"
of the set {pe R"/3q#p with e,_«(p)=e,_(q)}. Using the above expression for the
germ of family we obtain a representative for e,_, of the form:

€y ooy ety Xpetgs - o os Xy 1)
=gy oevs Ly €ue i (Egy ooy Lot ts Xats - o5 Xne1)s Xktds « - o> Xne1)
with:
Cnilys ooy Loy ts Xiggs oo X 1)
n—1
=—|:Pn+1,k+1(tla ceo )t Y P (s ti’k+1)]
i=k+1
+Rk(t1’ et tk+15 Xi+1s « -0 xn—l)
where: A
Pty oostinn)= Y oy,
Bl""’ﬁk+l
for B, integers such that:
0<B,<i—k,  OSB;Si—k—B,— ... By, Jj=2, ...,k
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SINGULARITIES OF ENVELOPES OF FAMILIES OF SUBMANIFOLDS IN RV 181 -

and By, =i—k—PB,— ... —PB, and R, eM" **2 the ideal of functions vanishing at 0,
together with all the derivatives up to order n—k+2. We obtain also that R, is invariant
under permutations of #,, ..., f; .

From this construction it follows that ¢, ..., ¢, are distinct values of the parameter
such that the corresponding submanifolds intersect if and only if:

ety o sty t)=e (B, ooy by gy Lagy)

Using the above expression for e; we obtain an equation of the form:

n+1 .
Y ti+R(ty, ..., t,11)=0,
i=1
withRe M(z,l ..... ..., invariant under permutations of 7, ..., #,.,. The proposition follows

from the Implicit Function Theorem. [

DermnTioN 4. — Given a germ of family (R, 0) bl (R", 0) N (R", 0) with f right-left stable
and 0eS, (f) the germ of the set:

Si={(t1 .-, tyr )ER™I/M, A ..M, #D},

is called the hypersurface associated foj.

Proposition 1 says that we may represent S; by the graph of a smooth
functionh(ty, ..., t,). We note also that S; is invariant under permutations of
Lis ooy by

If (f 1, I1;) and (f 2> I1,) are equivalent germs of family of type Slnwith}‘l,]2 right-left
stable, then whenever M, ... n M,  is non empty we have My, ... My  is non empty
where Mn=]71 I1=*(¢,)), M-i-i=72 (IT; *(T,)) and T,=(¢;) for ¢: (R, 0) - (R, 0) germ of
difftomorphism. This motivates the following.

DermvTioN 5. — Two generic germs of family with singularity of type S, are weakly
equivalent if there exists a germ of diffeomorphism ¢ : (R, 0) - (R, 0) such that ¢ x. .. x ¢
(S7)=S;, for S; =hypersurface associated to the germ (f» I0,).

We just observed that this is a necessary condition for equivalance of germs of
family. The following theorem gives the converse.

THEOREM 2. — Two generic germs of one parameter family of submanifolds of R", having
singularity of type S, are equivalent if and only if they are weakly equivalent.

Proof. — Without loss of generality we may assume that the given germs 2 1» I1;) and
(f, 11,) have the same associated hypersurface Ac R" .

From Proposition 1 we know that T, A, the tangent plane to A at O has equation
nt1
>, ;=0 and that A is invariant under the action of S(n+1)=group permutations of the

i=1
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182 M. J. DIAS CARNEIRO

coordinates t,,..., f,,, of R"*'. Hence the exponential map & : A - T,A is a local
equivariant diffeomorphism where the action on T, A is given by the differential of the
action on A (see Bredon [4], p. 304), that is, the permutations of ¢, ..., f,, restricted to
n+1

Y. t;=0.
i=1

Associated to each germ, we construct C* map germs at 0, g, g, : (A, 0) - (R", 0) defined
by g; (¢4, - .., t,4+) equals the point where the corresponding submanifolds M,‘;, LM
intersect. Parametrizing a neighborhood of 0 in A by the exponential map we obtain an
expression for these map germs:

gi°6_1= ,71 06’:,_1 [N Oeilo‘c,
with t=II°8""!, local diffeomorphism, [1(¢,, ..., t,,;)=(¢;, ..., t,) and et (i=1,2;
j=1, ..., n—1) are the germs obtained in Proposition 1 associated to f, and f,

respectively. If we consider the action of S(n+1) in R" given by:

o.(ty, ..., tn)=ﬁ<a.<tl, e by — Y t,.>>,
i=1

for aeS(n+1) then each g,08~ ! is invariant and the embedding of the hyperplane:
k(ty, ..., I,,)=<tl, el — Y z,,>,
i=1
is equivariant. We will use this invariance to get an equivalence between the two germs of
family in the image of g,.

To do this we let p=(pg, ..., p,) : R""! > R" be defined by p,=elementary symmetric
polynomial of degree i+1. It follows from the Preparation Theorem (see [16] or [12])
that p* : C¥ (R"*!) —» CF (R"* 13"V is surjective. (Cg (R"* ') denotes the algebra of C*
germs at 0 of functions invariant under the action of the group G and as usual p* (L)=A o p).

By taking averages and wusing the surjectivity of k* we also get thatk™:
(053 (IR”“)SWH) - Cg‘f (RMS#+Dis  surjective. Hence if we let o,=p,0k and
o=(oy, ..., 0,), since each coordinate function of f;eei_jo...o0e}oTok belongs to
Cy (R"S®+Y and p, ok =0, we obtain C* map germs H, : (R", 0) - (R", 0), i=1, 2 such
that Hjoo=f,0€._,0...0e} otok. Ifweshow thateach H;is a germ of a diffecomorphism
at 0 then we will have:

fl 06;_10 ce oeio’tok=H1 06=H1 on_lofzoeﬁ_l o... oe%o‘tok,
which implies, since T ok is a local diffeomorphism,
froet_jo...0cel=H,oHy'of,0e2_,0...0€

In other words, proving that H;, is a local diffeomorphism we get an equivalence between the
two germs of family restricted to the closure of the set of points of the range where n+1
submanifolds intersect.
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SINGULARITIES OF ENVELOPES OF FAMILIES OF SUBMANIFOLDS IN RN 183

Proof that H, is a germ of diffeomorphism at 0 : In order to simplify the notation we

write 72 =f,e?=¢,and H ,=G. Asbefore we may assume that a representative of f is of the
from: '

n—1
Y x '+ "R(x, t)),

i=1

7, x)=<x, "4

withR(0)=0, (0R/01)(0)=0. We have Goo=(G, o0, ..., G,,ocr)=/7 0€,_(0...0€,0T
which implies:

n+1
@.1) Guoo=11""+ Y. (G,00)7} + T} R (1}, G, 00, ..., G,y 00).

i=1

Using the definition of the elementary symmetric polynomials we have:
(2.2) O=1""'4+1"" 15,01+ ... +(—=1)""' 0,0t

Combining (2.1) and (2.2) we get:

n—1
G,o0t0,0t= Y [Gocto0t]ti+1iR (1}, G 00, ..., G,00).
i=1

13

Since permutations of ¢, . . ., t, give permutations of 1, ..., T, using the invariance of ¢,
we obtain a system of equations:

n—1
G,0610,0t= Y (Gooto,01)Ti+1]R(1), G 00, ..., G,00),
i=1
forj=1, ...,n. 1If 1,#7; for i#j we may ‘‘solve” this system to get
Giooto, joteMiT? T

fori=1, ..., n—1.

n
Writing G;(y,, .., y,)= ), o y;+ Y. Ti (¥) vy, for T, smooth functions, we get:
j=1 s, k
G,o0+0,_;01=) 0ic;+G,_;o1+) Ti(o)o,0,
Jj=1 sk

belongsto M{;* 2~/ Taking now the homogeneous component of degree /(2</<n—i+1)

of the Taylor expansion at 0 of the above expression and using the fact that dt (0)=1d ;. we
obtain:
for 2<is<n—i, aj_,0,_+) Pyl(t, ..., 1,)0,0,=0,
sk
where P is a polynomial of degree /—s—k—2 and:

%G, it 0, i+ QLlty,. .., 1,)0,0,=0,
sk

with QX polynomial of degree n—i—s—k—1.
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184 M. J. DIAS CARNEIRO

Taking the average of the above expressions over the elements of S (n+ 1) acting on R" we
obtain:

ocf_l o,_, equals a polynomial in 5, ..., o, with s</—1,
(¢} _;+1)o,_; equals a polynomial in 6, ..., o, with s<n—1.

Since the o}s are algebraically independent this implies:

ai_,=0 for 2=ZI<n—i,
o _,=+1.

For i=n we look at the equation:

n—1
G,00t0,01= ) (G;o0+0, ;01)ti+1{R(1;, G, 00, ..., G,_;00)

i=1

,,,,,

obtain aj=0 for j=1, ..., n—1 and a; -+1
The conclusion is that the matrix (o) is invertible and hence G is a local dlffeomorphlsm
Let’s return to the notation of the proof of the Theorem and write:

(2.5) ]loe,l,_lc...0€%=H10H;10j206§_10...oe%.

Assuming, without loss of generality, that for suitable local coordinates we

have f, (1, x)=(x, f, (1, x)) and [, (8, u)=(u, [, (1, u)) and writing
M=H,.H;'=M,, ..., M,), it follows from the proof that H; is a local diffeomorphism

that the matrix:
<6M (0))1—1 ..,n—1j=1,...,n—1,
oy

J

is non-singular.
Thus, defining:

®: (R, 0)—(R", 0) by ®(1, X)=(t, Myof5, ..., M,_;0f3),

germ of diffeomorphism, we obtain g=Mof,o® ! another germ of family weakly

equlvalent to /1 (and obviously equlvalent to f,) such that g(z, x)=(x, g(¢, x)) and if
€u_1» - - ., €, are the mappings associated to g as constructed in the begining of this section it
is easy to check that:

g—‘ogn_.l o...08;=f o€t jo... oel

Theorem 2 follows now from the following lemmas:

LEmMA 1. — Let g :(R",0) — (R", 0) be a C* right-left stuble map germ such that 0 €S, (g).

Ifg* : C¥ (R") — C¥(R") is given by g* (A) =\ o g then a sufficient condition for a map germv
to be in the image g* (CY (R")) is that for any representatives g2:U->R"andv:U - R and for
any pair of points (p, q)€ U x U whenever g(p)=g(q) we have v(p)=0(q).
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Proof. — This lemma is a consequence of Glaeser’s article [11].
There is no loss of generality if we write a representative of g in the form

i=1 -
of 0in R". This mapping satisfies all hypothesis of Theorem 1 of [11] so g* (C* (R")) is closed
in C* (U).

Therefore if we take v a representative for v defined in U it suffices to that

veg(C*(R"). And for this we use Proposition VIII of [11] that tells us that we need only
to verify that v belongs bipointwise to g* (C* (R")). In other words, we need only to check
that for each pair p, q of points in U x U there exists a function I", ;€ C* (R") such that
v— | g is flat at p and g. (Has 0 Taylor expansion at these pomts )

s—1
g (x, t)=<x, £y t") for (x, t)=(x,, ..., x,, ) coordinates in a neighborhood U

Let us check first that v belongs pointwise to g* (C* (R")). We have two possibilities:

(1) p¢S(g)(pis aregular point). Welet U,=Ubea nelghborhood of p such that g ly, is
a diffeomorphism and define AP C* (R") such that A7 =vo g|U ) lin a nelghborhood
ofg(p). Hence T, v= T, (APo g). (Here T,h means the Taylor expansion of 4 at the
point p.) 4

(2) peS(g) : In this case peS, (g) for some k<s. If p=(x,, t,) by the Preparation

k
Theorem we may write b= ) (A;0g) ({—1,)" in a small open neighborhood of p,
i=0 )

U,=U. Since g is right left stable andpe Slk(gr) there exist k + 1 distinct point, py, ..., Px+1
arbrtrarlly near of p such that g (p,)= g(p Jforj=2, ...,k+1. Byhypothesis we also have
v(pl) v(pj) Therefore if  we write p;=(x,t)) and g(p;)=q the
polynomial p (¢)= Z A, (q (t—t,)' satisfies p(t,)=p(1;)=v(p;) forj=2, ...,k+1. That

i=0
means that it is constant and A;(q)=0fori=1, ..., k. In other words, A, vanishes in the

opensubset { geR"/# (g '(g) N U,=k+1}} nV,whereV,is a small open neighborhood
of g(p). Since g(p) is in the boundary of this set we obtain A; flat at g(p) for
j=1, ...,k. Hence T,0=T,(Ay0g), concluding the proof that v belongs pointwise
to g* (C*(R"). This also takes care of pairs of points p, ¢ such that g(p)#g(q) (it is
enough to use a partition of unity).

We will proceed now by induction in s: For s=1 (fold) if g( p)= g (¢) then both are regular
points. IfU,<Uisan open neighborhood of p such that gl U, is a difftcomorphism, we take
FeC~(R") such that l"lg(U ): g(U )—R" is given by F(y) vo(glU )" ! (v). Clearly
UIU —FoglU and if we take V, =g - (g(Up))m U,, where U,cU is a nelghborhood of q
d1s_|omt from U, then for all p'eV, there exrsts a ¢q'€eU, such that
g(p)=g(q). Hencev(p )=v(q)= Tog(q)= Tog(p’) and so v— Fog vanishes on
U,uV, (and is flat at p and q).

Let us assume the lemma for s<k and prove it for s=k. We consider two cases for
g(p)=g(q). Ifone of the points is regular then we proceed as in the proof the case s=1. If
both p and g are singular points, then the right —left stability of g implies that we must have
pes, (g) andgeS, (g g)with r,/<k. Choosingsmall enough disjoint open nelghborhood U,
U, of p and ¢ respectively and using the induction hypothesis for glup, gIUq, U|u,, leq
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we obtain two functions A and B satisfying: v vl U,=Ao g|U and gIU =Bo g|U But
if b belongs to g(U )mg(Uq) then b= g(p )=g(q' ) for (p’,¢)eU,xU, and
Ab)=A (g(p N=v(p)=v(q')= B(g(q' ))=B(b). In other words, A—B Vanishes on
§(Up)mg~(Uq)9é(D. The right-left stability of g implies that A —B is flat at §(p)=§(q),
so v—Aog is flat at p and ¢.

This concludes the induction step and the proof of Lemma 1. O

LEmMMA 2. — Suppose (17, 1) and (g, I1) are two germs of family satisfying the hypothesis of
Theorem 2 and:

@ f (6, x)=(x,f (1, X)) glt, x)=(x, g (1, X)),

(b) gogn_l(s...ogl=joen_10...oel,
then:
(1) there exist germs of diffeomorphisms oy, ..., o,_, such that o, 0l =e;00_y;
(i) (f, I1) is equivalent to (g, T1).
Proof of part (i). — We will construct the a;s by induction.
First we notice that by the choice of coordinates we have made and by the definition of e; we
may write:

(2.6 €ilys vy tymirts Xnmiwts oo os Xum ) =(1s oo Tymip €0 Xpmiits - o s Xy ),

with e, invariant under permutation of the variables ¢,,...,¢,_;,,fori=1,..., n—1. For
e; we obtain a similar expression. By hypothesis:

July_jo...0e,=(€,_joe, y0...0e, ..., e, foe,_jo.. . 0e)

i

=go€y_yo0... Oel=(€n_10€n_20 206, ..., 0, 806,10, 06’1).

Thereforee, =&, and we may take o, =identity.
We are going to construct inductively a;, i=2, ..., n—1 satisfying (i) of the statement of
the lemma with the following additional property:

a, =1, _.xa,

1 n—i 4

with I,_,=identity of R" ™/,
o, invariant under permutation of the first n—i variables. That is:
1 i—-1

O (Eyy s iy Xpeis veos Xy 1) =(E s ooy By Oy s O X, ),

with o/ invariant under permutations of 7, ..., t,_,.

Let us suppose a; constructed for i<k and let us obtain o, . If dy,  =¢;4 — 4100,
then, using the induction hypothesis and equation (2.6) we get:

€100 0€ 0. . 0@ =€ 0600 10...00;=€,10...0€p
SO a’k+1 oepo.. .o€1=0.
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If we denote by Fy=e,0...0e, (R"), Fi=¢,,, (F,)andJ,= { he C* (R")/A restricted to
F, is equal to 0} for i=k, k+1 (observe that F,=e¢,},(F,.,)) we just saw that each
coordinate function d , , of d,,, belongs to J,. Actually, from the expression for a, we
obtain:

A1ty oo s Xpeis =+ o> Xn—1)

=(0, ..., 0, €1 —€ri190 Xpop—0p, .., X,_p— 0k 0).

We want to show first that each dj , , satisfies the hypothesis of Lemma 1 (for g=e, , ; in that
lemma), so we need to check that whenever e,,,(p;)=e,.; ;) for p,#p, then

dii1(P1)=d,1(D2).
But if we write p,=(f;, ..., ly_p—1> lhok> Xp_g» ---» X, 1) then by definition
evs1()=e, ., (p,) implies that:

Xpok =€ty oo os byckmts taio lamio Xn—k 1> > Xu—1)
and:
(P =(11s s Tyt Ty Ok 0€ps + ooy O To00gy X y)-
By the induction hypothesis o, o€, =€, oo, _; hence:
()=t s ek 15 b o ?kodk—U Ui s oees AT, X, y):

But from the invariance of each o, for i=1, ..., k—2 and the definition of ?k we get
ers1°0,(p1)=e€;, 00 (p,). Therefore d,,,(p,)=d,.,(p,) and applying Lemma 1 to
each non zero component of d, ., we obtain d, ;=T 0¢,,, with

[ey1=0,...,0, Tk, ..., Tk, 1, 0)

We also obtain that I',,;€J,,, and is flat at 0. So if we let o4 =1-T,,, a local
difftomorphism in a nbhd of 0 then:

o = ol ok Xaot)

gt (Frs voos by ts Xymmga oo X )= ooy Byt et 1o+ o5 Xk 1> Xnmt
and:

Orp 01 =€~ Lol =€~y =€ 0
In other to obtain the invariance of o}, we just average:
|

= — Yl c
k+1 (n—k—l)!g k+1°05

sum over all permutations of ¢,, ..., f,_,_, and use the invariance of ’S,H ;and e, , ; to get
Opr1
This completes the induction and the proof of (i).
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Proof of (ii). — The proof of this part is analogous to the induction step. We notice that
o,_, obtained before is an admissible change of coordinates, therefore we define
h=f—goo,_, to obtain hoe,_jo...0e;=0. Furthermore, if f_'(pl).=j_r (p,) then
g o, _, (p1)=g 0%, o(p,) s0, applying lemma 1 as before we get I" such that h=Tof (T
vanishes on the image e, _;0...0e;(R")). We define p=1-T local diffeomorphism in a
neighborhood of 0 such that Bof=f—Tof =f —h =go Oy g

In other words the pair of difftomorphisms (B, o, _ ;) gives an equivalence between the two
germs of family.

This concludes the proof of Theorem 2. [

3. Weak equivalence and invariants for germs of family

In view of Theorem 2 we turn our attention to the study of weak equivalence. In
Proposition 1 we obtained the hypersurface associated to a germ of family, it is a germ at 0 of
a codimension one submanifold of R"**, invariant under permutation of a given system of
coordinates of R"*!. The next proposition tells us that any such germ can always be
realized as an hypersurface associated to some germ of family.

PRrOPOSITION 2. — Let V= R"*! be a germ at 0 of a codimension one submanifold which is
invariant under permutations of some system of coordinates (t,. .., t,,1) of R"*'.  There

I -
exists a germ of family (R, 0) «+ (R", 0) 5 (R™, 0) such that g is right-left stable, 0€ S, (g) and

Proof. — The hypothesis implies that we may take a representative for V in a neighborhood
of 0in R"*?! of the form: '

V= {(11, cees tn+1)eR"+1/F(p0(t1, U TS T M | FPRP tn+l))=0}a

where, as before, p,=elementary symmetric polynomial of degree i+1 and F is a smooth
function. In fact, wusing the Implicit Function Theorem we may suppose
F(po, -5 P)=Po=q(P1s - - - Po)-

If we let 6,=p;|y for i=0, ..., n and o : V> R" defined by c=(oy, ..., 5,) then the
equation " 1=1"p,— "1 p,+...+(—1)"p, together with the equation for V give us.

n—1
(2.7) c,=(—D)"ti"'+ Y (=1 o, i+ (=) ' iq(oy, ..., O,)
i=1

Thus, if we consider the function:

n—1
Z(yys s Yoo D=y, —(—D" 1" = _ﬂl (D" iy — (=) g (e, s V)

we obtain from equation (2.7) that Z(o, t;)=0. Butfrom the Implicit Function Theorem
the zero set of Z can be expressed (locally) by the graph of a smooth a function

.Van(yh sy Vn—1o t)‘

4° SERIE — TOME 16 — 1983 — N°2



SINGULARITIES OF ENVELOPES OF FAMILIES OF SUBMANIFOLDS IN RN 189

So (2.7) is equivalent to:
(2.8) c,=Q(c, ..., 0, 1, ).

We will show now that the germ of family represented by:

T, x)=t, g(1, x)=(x, Q(x, 1)), with x=(x,, ..., X,_,)s

n

is the one that we are looking for.

In order to verify that g is right-left stable and 0 € S; (g) we just check that (0 Q/¢')(0)=0,
i=1, ..., n and the differentials {d(0'Q/0r)(0)}, i=1, ..., n are linearly
independent. But this follows just by differentiating implicitly at 0 in the equation
Z(y, t)=0 and using ¢(0)=0.

To obtain S;=V it is enough to see thatif p=(¢;, ..., #,4,) is a point of V with 7, ¢, for
i#j then peS;.

Weletp,=(t;,6,(),...,0,_,(p)),i=1,...,n+1. From the invariance of 5, equation
(2.8) gives us:

o-n(pi)=Q(61 (p), RS Gn—l(p)a ti)-
Therefore:
é(Pi)=(0'1 @), s 6,-1(), Qo (@), ..., 0,1 (p), ;))=0(p),

for all i, which means that the submanifolds M, = g[I1~!(z,)] intersect at the point o (p). It
follows from the definition of S; that peS;. [

This leads to the following.

DEeFINITION 5. — Two germs at 0, V,, V,, of codimension one submanifolds of R"**
invariant under permutation of a system of coordinates in R"**! are C* (C°) equivalent if the .
exists a germ of a dlffeomorphlsm (resp. homeomorphlsm) ¢ : (R, 0) > (R, 0) such that
ox...x@(V,)=V, (the product is taken (n+1) times).

Theorem 2 and Proposition 2 tell us that in order to classify generic germs of family with
Oe Sln(j_r ) we need to classify germs of submanifolds satisfying the symmetry condition under
the above equivalence relation.

Applying a linearization Theorem of Sternberg [17] to the invariant subset VA {(zy, .. .,

tr)/ty=...=t .} we obtain a submanifolds V' equivalent to V such that

Vin { ty=...=t }—(tl, ..., t, —t, —nt); we call V' the osculating mamfold of V
(see [6]). Hence two germs of manifolds are equlvalent if and only if their osculatmg
manifolds are equivalent. This 1mp11es that there exists a germ ar 0 of a diffeomor-
phism ¢ : (R, 0) = (R, 0) such that ¢(— nt)— —ne(1). But this means that ¢ is linear.
We remark that Dufour in [10] proves that even in the case of C° equ1valenpe betweeq
submanifolds the germ ¢ must be linear.

The conclusion is that two generic germs of family at O satisfying the hypothesis of
Theorem 2 are equivalent (C° or C*) if and only if there exists a real number A #0 such that
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X.Sé:s”,, where Sé is the osculating manifold of the hypersurface associated to
the germ (g, IT) and:

Aty s typ)=(Aty, oy Aty y)-

To finish this article we characterize those germs of family equivalent to the one defined by

II(z, x)=1t
_ n—1
f(t, x)=<x, " Y x t‘>.
i=1
n+1
This family has the hyperplane ) #,=0 as associated hypersurface and we already know
i=1

that we need just to characterize those germs at 0 of symmetric submanifolds equivalent to
this hyperplane. One way of doing this is to use some results of Web Theory (see [3] or
[7]). If we let V=graph (k) be a representative of the germ of symmetric manifold and:

w,:gﬁdti for i=1,...,n
ot; .
and:
ud oh
Wyt1 igl _'ét_ld i

then we obtain a (n+ 1) — web of codimension one submanifolds of R" defined w; =0,fori=1,
..., n+1(see[7]for definition). Accordingto[7]a(n+1)-webis called octahedral (n=3) or
hexagonal (case n=2) if it is equivalent to one formed by n+1 families of parallel
hyperplanes. The characterization we are looking for follows from:

ProposITION A [3] case n=2. — IfI1is a l-form defined by dw, =TI Aw for i=1,2 the web is
hexagonal if and only if dI1=0.

ProPOSITION B [7], caSE n=3. — A web is octahedral if and only if there exists a 1-form I1
such that dw,=I1 Aw, fori=1,2, ...,n. Actually, computing these condition explicity for
our web we get:

(A’) case n=2. — Denoting by h;=0h/0t; we obtain:
hy,

w;=h,dt, and II= hoh Aw, +w,),
with:
_ 0*h
127 61,01,

Therefore dI1=0 if and only if:
_L lo hy =0
or,0n, E\n, )=

(Notice that #;(0)= —1 so this expression makes sense in a neighborhood of 0.)
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(B')nz3. — dw;=d(log h;) A w; and there exists Il with dw;=1II1 A w;, if and only if:
hjy h

_ Mk P
(a) o h, k+#i, j;
0? h;
- 2= V. .
®) 01, 0t; log <hj> 0, b

In any case it is easy to obtain n smooth functions Uy, ..., U, with U;(0)=0 and
U;(0)=U;(0)#0 so that the mapping:

H(y, ..., t,,)=<h(t1, o b)), i U,.(ti)_)

13

has constant rank 1.
Therefore there exists a smooth function W defined in a neighborhood of 0 such that:

Y Ui(t)=W(h(ty, ..., 1)
i=1
From this we also get W’'(0)= —Uj;(0).- This means that another equation for V is:
Y Ui(t)= W (t41)=0;.
i=1
But since V is symmetric we can average this equation to obtain:
n+1l /n=1 .
V={(t1, t,,H)/ Y < U,.—W>(tj)=0}.
| ji=1\i=1
It is enough to check that:

U—-W.

1

\P=

e

i=1

is a local difftfomorphism. But since:

¥ (0)= 3, Uj0)~W (0)=nU} (0)+ U} 0)=(n+1)U} 0)#0

i=1

¥ provides an equivalence between V and the hyperplane. [
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